
400 Commonwealth Drive, Warrendale, PA 15096-0001 U.S.A. Tel: (724) 776-4841 Fax: (724) 776-5760

SAE TECHNICAL
PAPER SERIES 1999-01-1276

A Distributed Control System Framework
for Automotive Powertrain Control with

OSEK Standard and CAN Network

Shoji Suzuki, Wataru Nagaura, Takaaki Imai,
Satoru Kuragaki and Takanori Yokoyama

Hitachi Research Laboratory, Hitachi Ltd.

Kang G. Shin
University of Michigan

International Congress and Exposition
Detroit, Michigan

March 1-4, 1999

Downloaded from SAE International by University of Michigan, Thursday, April 18, 2019

The appearance of this ISSN code at the bottom of this page indicates SAE’s consent that copies of the
paper may be made for personal or internal use of specific clients. This consent is given on the condition,
however, that the copier pay a $7.00 per article copy fee through the Copyright Clearance Center, Inc.
Operations Center, 222 Rosewood Drive, Danvers, MA 01923 for copying beyond that permitted by Sec-
tions 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying such as
copying for general distribution, for advertising or promotional purposes, for creating new collective works,
or for resale.

SAE routinely stocks printed papers for a period of three years following date of publication. Direct your
orders to SAE Customer Sales and Satisfaction Department.

Quantity reprint rates can be obtained from the Customer Sales and Satisfaction Department.

To request permission to reprint a technical paper or permission to use copyrighted SAE publications in
other works, contact the SAE Publications Group.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written
permission of the publisher.

ISSN 0148-7191
Copyright 1999 Society of Automotive Engineers, Inc.

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely
responsible for the content of the paper. A process is available by which discussions will be printed with the paper if it is published in
SAE Transactions. For permission to publish this paper in full or in part, contact the SAE Publications Group.

Persons wishing to submit papers to be considered for presentation or publication through SAE should send the manuscript or a 300
word abstract of a proposed manuscript to: Secretary, Engineering Meetings Board, SAE.

Printed in USA

All SAE papers, standards, and selected
books are abstracted and indexed in the
Global Mobility Database

Downloaded from SAE International by University of Michigan, Thursday, April 18, 2019

1

 1999-01-1276

A Distributed Control System Framework for Automotive
Powertrain Control with OSEK Standard and CAN Network

Shoji Suzuki, Wataru Nagaura, Takaaki Imai,
Satoru Kuragaki and Takanori Yokoyama

Hitachi Research Laboratory, Hitachi Ltd.

Kang G. Shin
University of Michigan

Copyright © 1999 Society of Automotive Engineers, Inc.

ABSTRACT

This paper presents a distributed control system frame-
work for next-generation automotive control systems, in
which various control units are connected with CAN bus.
The framework is a software platform that performs com-
munication between control units and invocation of appli-
cation programs. The framework includes necessary
functions for data transmission to meet end-to-end timing
constraints in distributed control systems. Application
programmers don’t have to write any communication pro-
cedure but focus on developing application programs with
appropriate API (Application Program Interface). The
framework is based on driving force management and
also OSEK, which is a standard real-time operating sys-
tem (OSEK-OS) and a communication protocol (CAN) for
automotive control. We are now applying our prototype
framework to an adaptive cruise control system in our
experimental vehicle.

1. INTRODUCTION

In next-generation vehicle control systems, various con-
trol units inside a vehicle are connected to each other via
a control network like CAN7) and execute their functions
cooperatively with others. A typical example conventional
application program is shown in Figure 1. The figure
shows an example ACC (Adaptive Cruise Control) which
keeps the headway distance from the vehicle ahead. The
ACC application program and the Throttle Valve Opening
application program are embedded into the ACC unit and
the PCM (Powertrain Control Module) unit, respectively.
Each application program in Figure 1 is invoked periodi-
cally, and also sends or receives the Desired Driving
Force between the two control units independently.

Figure 1.A conventional application program

Conventionally, application programmers must provide all
of the structure and flow of execution of application pro-
grams and make them call function libraries as neces-
sary. All communication services are mixed and
embedded into the application programs independently
on control units. This not only complicates the software
but also requires exhaustive modification of application
programs in most control units when one wants to make
a slight improvement/change, thus making it very difficult
to ensure logical correctness and meet all end-to-end
timing constraints in the whole distributed control system.
Because of this complexity of software, it is the simplest
and easiest to guarantee all end-to-end timing con-
straints by periodically invoking all application programs.

In order to solve/alleviate the problems of conventional
application programs, we introduce a new framework1)

for distributed control systems software. The framework
allows (1) application programmers to focus only on

Periodic Driven

control
Throttle Valve

receive Desired
Driving Force

ACC AP
Periodic Driven

ACC unit PCM unit

Throttle Valve
Opening AP

calculate Desired
Driving Force

send Desired Driving
Force

UHVHQG�
UHTXHVW"

UHVHQG�
UHTXHVW

Success

Failure

Yes
No

ACC: Adaptive Cruise Control
PCM: Powertrain Control Module
AP: Application Program

Downloaded from SAE International by University of Michigan, Thursday, April 18, 2019

2

developing these application programs which are essen-
tial for controlling devices in automotive control systems,
and (2) a system integrator to focus on the software
structure of distributed control systems. It also reduces
software-complexity and enables construction of applica-
tion programs while meeting all end-to-end timing con-
straints in the system.

In the next section, we describe the features of the frame-
work and then present its implementation. The memory
size and CPU load of the framework on our experimental
vehicle is evaluated and conclusions are drawn.

2. THE FRAMEWORK

The framework provides the basic software infrastructure
of distributed control systems and the flow of control, and
invokes all application programs and communication ser-
vices. Application programs are described according to
the API that the framework provides.

Figure 2.The framework

2.1 APPLICATION PROGRAM INVOCATION AND COM-
MUNICATION CONTROLS – The framework invokes
application programs and communication services
among them and provides an integrated control in distrib-
uted control systems. An example structure of the frame-
work is shown in Figure 2. The example application is the
ACC in Figure 1. In this example, the framework invokes
the ACC unit periodically. Then it transfers the Desired
Driving Force (DDF) which is calculated from the ACC
application program on the ACC unit to the Throttle Valve
Opening application program on the PCM unit. Finally, it
invokes Throttle Valve Opening application program on
completing the transfer of DDF.

The framework calls procedures in application programs,
and reads and writes data for communication. The frame-
work separates application programs from communica-
tion procedures; decreases software-complexity
dramatically as compared to conventional application
programs; and makes it easy to meet all end-to-end tim-
ing constraints in the system.

2.2 PERIODICAL AND EVENT DRIVEN CONTROLS –
The framework provides the optimal invocation of appli-
cation programs and communication services by a com-
bination of periodical and event driven controls.

Periodic control: invokes programs and services period-
ically (e.g. interrupts by a timer). This control makes it
easy to predict the timing behavior of execution. This is
also the default in the framework.

Event-driven control: invokes programs and services
upon occurrence of an event (e.g. interruption of a switch,
receipt of a message via network,...). Though this control
makes it difficult to predict the behavior of execution on
time axis, it can execute application programs with much
faster response than periodic control. This is generally
applied to time-critical and hard real-time applications.

2.3 LOCATION-TRANSPARENT API IN DISTRIBUTED
CONTROL SYSTEMS – The object-oriented program-
ming is the default programming style for development of
application programs in the framework. The example
shown in Figure 3 shows the location-transparent API
which the framework provides. By this API, an application
program consisting of object A, B and C in Figure 3 (1)
can be divided into several groups (object A and B, and
object C) and allocated to several separate control units
without any modification of codes in the application pro-
gram (Figure 3 (2)).

Figure 3.Location transparency

2.4 INTRODUCTION OF STANDARD TECHNOLOGIES –
In order to keep abreast of users' demand for open sys-
tems and also reduce time to market, we introduce
OSEK/VDX6) and CAN into our implementation on the
framework as the software platform and the communica-
tion protocol for automotive control.

2.5 IMPLEMENTATION WITH LESS RESOURCE – In
order to reduce the cost, we need to implement most of
control units with 1 chip microprocessor of low price and
also to embed all programs into internal memory of the
microprocessor. It is required to implement the frame-
work with less resource (memory size and CPU load).

control
Throttle Valve

ACC AP

ACC unit PCM unit

Throttle Valve
Opening AP

calculate Desired
Driving Force

Transmission Failure
 -> UHVHQG�UHTXHVW

The framework

send receive

Periodic Driven

Object B
AP

Object A Object C

Control Unit

Object B
AP

Object A Object C

Control Unit 1

AP

Control Unit 2

Communication

(1) Centralized Control System

(2) Distributed Control System

Downloaded from SAE International by University of Michigan, Thursday, April 18, 2019

3

3. IMPLEMENTATION

In order to realize the facilities and to meet the require-
ments of the framework mentioned above, we implement
the framework as follows.

3.1 SOFTWARE STRUCTURE – The software struc-
ture of the framework consists of the API software, the
middleware, OSEK-COM, OSEK-NM, OSEK-OS and the
CAN driver as shown in Figure 4. Most contemporary
software for automotive control does not use OS, but the
framework is implemented to support both systems with
OS (OSEK-OS) and without OS.

Figure 4.Software Structure

The API software controls the invocation of objects in
application programs and communication services
among objects. The middleware contains message com-
munication services to improve the efficiency of data
transmission. OSEK-COM provides basic message com-
munication services. The CAN driver is the interface
between OSEK-COM and a Hitachi's CAN controller
device, HCAN. OSEK-NM provides basic network man-
agement. OSEK-OS controls tasks which execute appli-
cation programs and provides the mutual execution
service among tasks.

3.2 API SOFTWARE – The API software invokes objects
in application programs and controls communication ser-
vices among objects and executes the integrated control
of objects in distributed control systems. It also provides
location-transparency of objects by making replicas of
the original object.

The implementation of replica objects is shown in Figure
5.The replica of object B on the sender control unit1 is
implemented at the API software on the receiver control
unit 2. The object A on the unit 2 calls the replica object
located at the API software on the same unit instead of
original object B, making it possible to realize the loca-
tion-transparency of objects. The copy of data from the
original object to the replica object is provided by the data
transmission facility below the middleware layer of the
framework.

Figure 5.Location transparency and packet
packing

3.3 MIDDLEWARE – The middleware provides the pack-
ing and unpacking services of data into or from packets
for data transmission in order to improve the efficiency of
data transmission. As shown in Figure 5, the API soft-
ware reads several small data from objects in application
programs and pack them into one packet with this pack-
ing service, which copies these several packed data into
a message object of OSEK-COM and sends into other
control unit(s). Meanwhile, the API software extracts sev-
eral packed data from the receipt message object with
this unpacking service, then copies the unpacked data
into the replica objects in application programs in the
sender control unit 1. The middleware also provides the
priority-based message communication service of data
transmission with the message ID (arbitration field) of
CAN packet protocol, which makes the guarantee of real-
time control easier.

3.4 OSEK-COM AND CAN DRIVER – As CAN control-
ler devices for communication, we adopt Hitachi's CAN
controller device, HCAN with the internal packet arbitra-
tion service. HCAN has 16 send/receive mail boxes and
enables priority-based transmission control of packets on
the device, even in the case when the packet of lower pri-
ority on the device is pending for transmission because of
traffic congestion on the network. The CAN driver soft-
ware is the interface between OSEK-COM and a HCAN,
while OSEK-COM software provides the message com-
munication services to the middleware. We implement
OSEK-COM and CAN driver on HCAN with the internal
arbitration service of controller device.

The conventional implementation of communication
driver software is shown in Figure 6 (1). The message
objects on OSEK-COM are copied into the FIFO mes-

communication
control

OSEK-NM

OSEK-OS

OSEK-COM

CAN driver

AP
invocation

SH micro HCAN processsor

middleware

basic message communication service

API software

AP

CAN Network

System
Profile

System Configuration
information

Codes and
Configuration
generator

Object B
AP

Object A Object C

Control Unit 1

AP

Control Unit 2

Message Object
Message Send

middleware

OSEK-COM

Packet Packing

API
software

CAN driver

CAN controller device

Message Receive

middleware

OSEK-COM

Packet Unpacking

API
software

CAN driver

CAN controller device

Object B
replica

Message Object

Downloaded from SAE International by University of Michigan, Thursday, April 18, 2019

4

sage queue and the order of message transmission to
the network is fixed as the order of message queue. Our
implementation of CAN driver is shown in Figure 6 (2).
The CAN driver does not have message queue but each
message object on OSEK-COM is written directly onto
the corresponding message box on HCAN by OSEK-
COM. Then HCAN sends the message with the highest
priority on message boxes at first. This implementation
decreases not only CPU load but also the consumption of
memory, because the CAN driver does not require the
message queue.

Figure 6.Implementation of OSEK-COM and
CAN Driver

3.5 EMERALDS-OSEK – We have developed
EMEALDS-OSEK4) with the University of Michigan,
based on their EMERALDS microkernel5). The original
EMERALDS is designed for small-memory embedded
applications. EMERALDS is not only very small (its code
size is just 13 KBytes even in the full-spec version) but
also has low overhead kernel services. EMERALDS-
OSEK provides full-feature of OSEK interface con-
structed with the minimal set of functions provided by the
original EMERALDS.

3.6 CODES AND CONFIGURATION GENERATOR –
Each component in the software structure of the frame-
work contains the configuration information of the system
as shown in Figure 5, and executes its processing control
based on the information. Only the codes of the API soft-
ware as well as its configuration information depends
much on application programs, while other software of
the framework is static and only its configuration informa-
tion is modified according to the system configuration.
The codes of the API software and the configuration
information of all software of the framework will be gener-
ated automatically by a tool, which requires system pro-
file information as input (this feature is now under
development).

3.7 PROTOTYPE FRAMEWORK – We are now applying
our prototype framework to the ACC system in our exper-
imental vehicle to show the improvement both on soft-
ware productivity and also on ease in guaranteeing end-
to-end timing constraints in the distributed automotive
control. The overview of our framework is shown in Fig-
ure 7. The distributed automotive control system is con-
structed on the ACC unit, the engine control unit, the
brake control unit, and the AT (Automatic Transmission)
control unit. Our current prototype framework is imple-
mented onto the whole system except the AT control unit.
The framework provides the flow of control, that is, when
and how the sequences of control - not only calling each
application program but also transmitting the data - are
determined and invoked by the framework. The applica-
tion program is running on the SH2 32bit RISC micropro-
cessor (20MHz), and the network is CAN (1Mbps) with
the HCAN CAN protocol controller.

The sequence of control is invoked by a 50 msec. timer
on the ACC unit. It calls the application program to calcu-
late the desired speed of the vehicle with the measured
data on the radar unit, invokes another application pro-
gram to calculate the desired driving force (DDF), and
sends the calculated DDF to the engine control unit via
the CAN network. In the engine control unit, the
sequence of control is invoked by the calculated DDF
information receipt event. It invokes the application pro-
gram of driving force manager which calculates the
desired driving force and controls opening the throttle.
The application program also calculates the desired brak-
ing force and sends it to the brake control unit via the net-
work. Finally, the brake control unit controls the braking
force on receiving the calculated desired braking force
information. This means all application programs on the
control units are executed synchronously with the 50
msec. timer on the ACC unit and makes the response
time of the braking force control about 50 + α msec.,
while α is the execution time of the sequence on the
framework (at most, several msec.).

In conventional application programming style, however,
it is difficult to meet all end-to-end timing constraints in
the system and each application program is generally
executed periodically. In case that the period of invoking
application programs on each control unit is 50 msec.,
the worst-case response time of throttle valve opening
control is about 150 + β msec., while β is the execution
time of the sequence (at most, several msec.).

4. PERFORMANCE EVALUATION

We have developed most of the primitive functions on the
API software and the middleware, and completed the
development of OSEK-COM, and CAN driver software.
Here, we show the memory size and CPU load of the
framework. The evaluation is done on the hardware of
the ACC system mentioned in Section 3.7.

Message Object

OSEK-COM

Network driver

Controller device

OSEK-COM

CAN driver

CAN controller device (HCAN)

Message Object

Message Object Message Object

Mail
Box 1

Mail
Box 2Mail

Box

Message
Queue

(1) Conventional Implementation (2) Our Implementation

Downloaded from SAE International by University of Michigan, Thursday, April 18, 2019

5

Figure 7. Prototype Framework on ACC Control

4.1 MEMORY SIZE – The code sizes of the framework
are as follows: the middleware is about 1.5 KBytes of
ROM, OSEK-COM is about 2 KBytes, CAN driver is
about 2 KBytes and OSEK-OS (EMERALDS-OSEK) is
about 5 KBytes. The code size of API software depends
on the application programs and is proportional to their
code sizes. But most of execution of API software is just
calling application programs or the services of the mid-
dleware and its code size is smaller than application pro-
grams. Here, we don't consider the code size of API
software.

The total code size of the framework (except API soft-
ware) is about 10 KBytes of ROM with OSEK-OS or
about 5 KBytes without OSEK-OS. The code size with
OSEK-OS is twice as large as without OSEK-OS. How-
ever, the internal ROM size of recent microprocessor for
automotive control has increased from several dozen
KBytes to 1 hundred Kbytes or more. So, 10 Kbyte-code
size of the framework with OSEK-OS is small enough to
be implemented into the application for automotive con-
trol.

4.2 CPU LOAD – On the control unit of our experimental
ACC system, the required throughput of data transmis-
sion via 1Mbps CAN network is 56 Kbit/sec. at most, and
the maximum CPU load of the framework is about 7 %
with OSEK-OS or about 4 % without OSEK-OS. In both
cases, the load is small enough to execute application
programs on it.

5. CONCLUSION

We presented a distributed control system framework for
next-generation automotive control systems, in which
various control units are connected with a CAN bus and

execute their missions cooperatively. The framework is a
software platform that performs both communications
between control units and invocation of application pro-
grams. The framework also includes necessary functions
for data transmission. These features of framework are
effective to improve software productivity as well as to
meet real-time constraints on distributed control systems.

Future work includes completing the development of pro-
totype framework, the tool generating the codes of the
API software and the configuration information of all soft-
ware of the framework automatically, and implementing
OSEK-NM in the framework.

6. ACKNOWLEDEGMENTS

The authors would like to thank Khawar Zuberi and Pad-
manabhan Pillai for their EMERALDS-OSEK develop-
ment and cooperation of the performance evaluation on
this paper.

REFERENCES

1. Leveraging Object-Oriented Frameworks, IBM Java
Education - White Papers, Tutorials, and Articles -
(available from http://www.ibm.com/java/education/
papers-oo.html)

2. W. Nagaura, T. Imai, S. Suzuki and T. Yokoyama,
"Development of a Distributed System Framework for
Automotive Controllers (1) - Goal and Features -," in
Proc. IEICEJ Society, Oct. 1998 (in Japanese)

3. T. Imai, W. Nagaura, S. Suzuki and T. Yokoyama, ,
"Development of a Distributed System Framework for
Automotive Controllers (2) - Functions and Imple-
mentation -," in Proc. IEICEJ Society, Oct. 1998 (in
Japanese)

Network

Engine Control unit
Driving Force

Manager

Transmit
Antenna

Receive
Antenna

Radar unit

Headway Distance
Relative Speed

Desired Driving Force
Transmission

The Framework

Event-Driven
Periodic

50ms.

M

Automatic
Transmission

Fuel Ignition

Transmission
Ratio

Braking Force

Throttle Valve Opening

ACC unit

Calculate Desired
Driving Force

Calculate
Desired Speed

Send Receive

Brake Co unit
Braking Force

Manager

Event-Driven

Send Receive

Desired Braking Force
Transmission

AT Control
unit

Downloaded from SAE International by University of Michigan, Thursday, April 18, 2019

6

4. K. M. Zuberi, P. Pillai, K. G. Shin, T. Imai, W. Nagaura
and S. Suzuki, "EMERALDS-OSEK: A Small Real-
Time Operating System for Automotive Control and
Monitoring," in Proc. SAE International Congress &
Exhibition, Mar. 1999

5. K. M. Zuberi and K. G. Shin, "EMERALDS: A micro-
kernel for embedded real-time systems," in Proc.
RTAS, pp.241-249, June 1996

6. OSEK/VDX Version 2.0, OSEK Group, 1997.

7. Road vehicles - Interchange of digital information -
Controller area network (CAN) for high-speed com-
munication, ISO 11898, 1st edition, 1993.

Downloaded from SAE International by University of Michigan, Thursday, April 18, 2019

