
Abstract
Complete exchange communications are found necessary
in many important parallel algorithms. This paper presents
algorithms for complete exchange for 2D torus-connected
multiprocessors. The proposed algorithms are unique in
that they are configurable while trading the time for mes-
sage startups against larger message sizes. At one extreme,
the algorithm minimizes the number of message startups at
the expense of increased message-transmission time. At the
other extreme, the message-transmission time is reduced at
the expense of increased number of message startups. The
algorithms are structured such that intermediate solutions
are feasible, i.e., the number of message startups can be
increased slightly and the message-transmission time is
correspondingly reduced. The ability to configure these
algorithms makes the proposed algorithms distinct from
others and leads to efficient portable implementation of
complete exchange algorithms.

1. Introduction
In distributed memory multicomputer systems, it is often

required that each processor communicates its data with all
other processors. The all-to-all personalized or complete
exchange is one of the most demanding communication
patterns in parallel computing. In this communication pat-
tern, every processor communicates a block of distinct data
to every other processor in the system [2,3,5,6]. Many sci-
entific applications require the all-to-all personalized
exchange communication pattern.

Several studies by Bokhari and Berryman [1], Sunder et
al. [16] and Tseng et al. [19] have produced algorithms
using message combining in meshes or tori. These

algorithms incur an execution time due to message

start-ups and time due to message transmissions.
Recently, Suh and Yalamanchili [13] proposed algorithms
using message combining in and tori
having time complexities of due to message start-ups

and (in 2D) or (in 3D) time due to message
transmissions.

This paper presents a set of configurable algorithms for
complete exchange for two-dimensional torus-connected
networks. The salient feature of the proposed algorithms is
that they can be tuned to trade the overheads of message
initiation or start-ups against message-transmission time.
At one extreme, the algorithm minimizes the number of

message start-ups at the expense of increased message-
transmission time. At the other extreme, the message-
transmission time is significantly reduced at the expense of
increased number of message start-ups. The algorithm is
structured to yield intermediate solutions, i.e., the number
of message start-ups can be slightly increased and the mes-
sage- transmission time reduced accordingly. The ability to
configure these algorithms allows us to match the algo-
rithm characteristics with machine characteristics based on
message-initiation overhead and link speeds, to minimize
overall execution time. In effect the algorithms can be con-
figured to strike a balance between direct and message-
combining approaches on a specific architecture for a
given problem size.

2. Performance Model and Parameters
Our target architecture is a torus-connected, wormhole-

switched multiprocessor. Each message is partitioned into
a number of flits. We assume that each processor has N dis-
tinct m-flit message blocks. We also assume that the chan-
nel is one flit wide and each processor has one pair of
injection/consumption buffers for the internal processor-
router channel (i.e., one-port architecture). All links are
full duplex channels.

We will focus on the two dominant components of mes-
sage latency: start-up time (ts) and message-transmission
time (tc). In our model, a step is the basic unit of conten-
tion-free communication, i.e., in one-time step, a set of
nodes can communicate via disjoint network paths. The
duration of a step is determined by the message size and,
for large messages, is insensitive to the distance between
communicating nodes. The number of steps corresponds to
the number of message start-ups. A phase is a sequence of
multiple steps.

3. Two Algorithms
We now summarize two algorithms (T1 and T2) pro-

posed in [13]. They are message-combining algorithms
with a bottom-up approach. The communication proceeds
as a number of phases and, within each phase, the algo-
rithms differ in the number of steps. The two algorithms
are combined to construct a set of configurable algorithms
for 2D tori in Section 4.

3.1 Algorithm T1
Special Node Groups

For a torus, in exchange phase , , the

communication steps are performed within a sub-
 * This research was supported in part by Pohang University of Science

and Technology, Korea, 1998.

2
d

2
d×

O 2
d()

O 2
3d()

2
d

2
d× 2

d
2

d× 2
d×

O d()

O 2
3d() O 2

4d()

2
d

2
d× i 1 i d≤ ≤

2
i

2
i×

Configurable Complete Exchanges in 2D Torus-Connected Networks*

Young-Joo Suh Kang G. Shin Syungog An

Dept. of Computer Science and Engineering Real-Time Computing Laboratory Dept. of Computer Engineering
Pohang University of Science and Technology Department of EECS Paichai University

San 31, Hyoja-Dong The University of Michigan 439-6 Doma-2-Dong
 Pohang 790-784, Korea Ann Arbor, MI 48109-2122 Taejeon 302-735, Korea

 yjsuh@postech.edu kgshin@eecs.umich.edu sungohk@mail.paichai.ac.kr

mesh or torus. In a submesh, , we iden-
tify two special sets of nodes. The first special group (SG)
of nodes in phase () is defined as the set of nodes
along the two main diagonals. The second SG () is
the set of nodes along the main diagonals of the four quad-
rants excluding the elements already in the first SG. If each
node is labeled , , we can formally
define the two groups, and , as follows.

iff OR .

iff OR .
An important property of SGs is that the nodes in the

first SG are partitioned into two SGs in the next phase.
That is, , where .

Communication Pattern:

For a torus, the algorithm consists of exchange
phases. Each exchange phase consists of exactly two steps
for a total of steps. If , there is an additional send
phase.

In phase 1, message exchanges are performed on each
 submesh. In this phase, all nodes in the submesh

belong to the first SG. In step 1 (step 2) of phase 1, each
node sends a block of message to a node whose address is
complemented in the least significant bit of the X-coordi-
nate (Y-coordinate). This is represented as follows.
Phase 1 Step 1:

.

Phase 1 Step 2:

.

Starting with phase 2 until phase , each node in the
first SG sends blocks horizontally, while each node in the
second SG sends blocks vertically in the first step. In the
second step of a phase, each node in the SGs changes
dimensions and sends blocks along the new dimension.
The message transmissions in two steps of phase ,

, are summarized as follows.
Phase p Step 1:

.

.

Phase p Step 2:

.

.

where iam indicates an arbitrary node
In phase , the nodes in SGs in phase are also

active. The following operations are performed in phase .
Phase d Step 1:

.

.

Phase d Step 2:

.

.

If , there is an additional send phase consisting of
 steps. After phase , each node in or

, i.e., each node in , has all blocks from
every other node, each node in has blocks from

 nodes, each node in has blocks from
 nodes, and so on. In step s of the send phase,

, the following operation is performed.
Send phase Step s:

Examples:
Consider a torus. The steps in phases 1 and 2 are

shown in Figures 1(a)-(d) for one submesh (the
remaining submeshes are identical). In phase 3 (or 4), mes-
sage exchange operations are performed within each
(or) submesh as illustrated in Figures 1(e) and (f)

2
p

2
p× 2 p d 1–≤ ≤

p SGp 1()

SGp 2()

P x y,() 0 x y, 2
d

1–≤ ≤
SGp 1() SGp 2()

P x y,() SGp 1()∈

y x=()mod2
p

x y+ 2
p

1–=()mod2
p

P x y,() SGp 2()∈

y x 2
p 1––=()mod2

p
x y+ 2

p 1–
1–=()mod2

p

SGj 1() SGj 1+ 1() SGj 1+ 2()∪≡ 2 j d 2–≤ ≤

2
d

2
d× d

2d d 4≥

2 2×

P xd 1– …x0 yd 1– …y0,() P xd 1– …x1x0 yd 1– …y0,()→

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y1y0,()→

d 1–

p

2 p d 1–≤ ≤

I f iam SGp 1()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …xpxp 1– …x0 yd 1– …y0,()→

I f iam SGp 2()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …ypyp 1– …y0,()→

I f iam SGp 1()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …ypyp 1– …y0,()→

I f iam SGp 2()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …xpxp 1– …x0 yd 1– …y0,()→

P xd 1– …x0 yd 1– …y0,()

d d 1–

d

If iam SGd 1– 1()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y0,()→

I f iam SGd 1– 2()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y0,()→

I f iam SGd 1– 1()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y0,()→

I f iam SGd 1– 2()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y0,()→

d 4≥
d 3– d SGd 1– 1()
SGd 1– 2() SGd 2– 1()

SGd 2– 2()

2
2 d 1–()

SGd 3– 2()

2
2 d 2–()

1 s d 3–≤ ≤

I f iam SGd s– 1– 1()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …xd s– 2– xd s– 3– …x0 yd 1– …y0,()→

32 32×

Figure 1. Phases 1, 2 (for a 4x4 submesh), 3 (for an 8x8
submesh), and 4 (for a 16x16 submesh) in a 32x32 torus.

(e) phase 3 step 1

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

(a) phase 1 step 1
(b) phase 1 step 2

(c) phase 2 step 1
(d) phase 2 step 2

������
������

����
����

�����
�����

�������
�������������

������
����
����

�����
�����

�������
�������������

������
����
����

�����
�����

�������
�������������

������
����
����

�����
�����

�������
�������

����
����

�������
�������

����
����

������
����������

����
�������
�������

����
����

������
����������

����
�������
�������

����
����

������
����������

����
�������
�������

����
����

������
������

�����
�����

��������
��������������

������
������
������������

������
������
�����������

�����
��������
��������

������
������

����
�����������

�������
�������
��������������

�������
�������
�������������

������
����
����

(g) phase 4 step 1

(f) phase 3 step 2

(h) phase 4 step 2

4 4×

8 8×
16 16×

(or Figures 1 (g) and (h)). After phase 4, the nodes in
 or have blocks from all nodes in the quad-

rant in which those are located. Figure 2(a) shows the first
step in phase 5. As shown in the figure, only the active
nodes in phase 4 (marked nodes in Figure 2(a), i.e., nodes
in or) participate in exchanging messages.
In the next step, the active nodes change dimensions and
exchange messages. Now, each node in or
(i.e.,) has all blocks from all nodes in the torus.
Starting with phase 3, we note that for subsequently larger
size submeshes, all processors are not active, i.e., some
processors are not members of either SG. The solution is to
require one additional phase referred to as a send phase
after exchange phases. In two steps in the send phase,
the blocks for non-active nodes are sent as shown in Fig-
ures 2(b) and (c), where only one submesh is shown
(the remaining submeshes are identical).

Complexity Analysis:

The number of steps is steps if and steps
if . If , blocks are exchanged in each step.
Since there are steps, the total message transmission

time is . If , the number of exchanged
blocks per step is not always identical. The total message
transmission time is .

3.2 Algorithm T2
Algorithm T1 focused on minimizing the number of

phases (i.e., message start-ups). Algorithm T2 requires
more communication steps, but it is simpler and has lower
transmission times. The primary distinguishing feature of
T2 is that it doesn’t have any send phase.

In T1, each exchange phase comprises exactly two steps.
For larger size submeshes, not all processors can partici-
pate, hence needing a send phase. In T2, each phase is
extended to ensure participation of all processors within a
phase by identifying additional node groups that are active
in the additional steps in a phase.
Node Groups:

Groups of nodes (Gs) are defined for Algorithm T2,
where the Gs are defined for phases 2 to . The Gs in
phase are also used in phase . Until phase 2, the Gs
in T2 are the same as the SGs in T1. In phase ,

, there are Gs as follows:

iff OR .

iff OR .

iff {{ OR }

AND } OR {{ OR

} AND }.

iff {{ OR }

AND } OR {{ OR

} AND }.

where . Note that the first two Gs in each
phase are the same as the two SGs in T1.
Communication Pattern:

For , T2 is identical to T1. For , Algorithm T2
consists of exchange phases but no send phase. The fol-
lowing two steps are performed in phase 1.
Phase 1 Step 1:

.
Phase 1 Step 2:

From phase 2, there are steps in phase , where

. In step or , , of phase ,
the following operations are performed.
Phase p Step 2i-1:

Phase p Step 2i:

SG4 1() SG4 2()

SG4 1() SG4 2()

SG4 1() SG4 2()
SG3 1()

d

8 8×

Figure 2. Phase 5 step 1 and two steps in the send
phase (for an 8x8 submesh) in a 32x32 torus.

(a) phase 5 step 1

(b) send phase step 1 (c) send phase step 2

2d d 4< 3d 3–

d 4≥ d 4< 2
2d 1–

2d

d 2
2d⋅()mtc d 4≥

9 2
3d 4–⋅ d

2
5d– 3+()2

2d 1–+{ }mtc

d 1–

d 1– d
p

3 p d 1–≤ ≤ 2
p 1–

P x y,() Gp 1()∈

y x=()mod2
p

x y+ 2
p

1–=()mod2
p

P x y,() Gp 2()∈

y x 2
p 1––=()mod2

p
x y+ 2

p 1–
1–=()mod2

p

P x y,() Gp 2k 1+()∈

y x 2k–=()mod2
p

x y+ 2
p

2k 1––=()mod2
p

y()mod2 0= y x 2
p

2k+–=()mod2
p

x y+ 2k 1–=()mod2
p

y()mod2 1=

P x y,() Gp 2k 2+()∈

y x 2k–=()mod2
p

x y+ 2
p

2k 1––=()mod2
p

y()mod2 1= y x 2
p

2k+–=()mod2
p

x y+ 2k 1–=()mod2
p

y()mod2 0=

1 k 2
p 2– 1–≤ ≤

d 4< d 4≥
d

P xd 1– …x0 yd 1– …y0,() P xd 1– …x1x0 yd 1– …y0,()→

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y1y0,()→

2
p 1–

p

2 p d 1–≤ ≤ 2i 1– 2i 1 i 2
p 2–≤ ≤ p

If iam Gp 2i 1–()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …xpxp 1– …x0 yd 1– …y0,()→

I f iam Gp 2i()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …ypyp 1– …y0,()→

If iam Gp 2i 1–()∈()

In phase , there are steps, which is the same as
those in phase . In step or , where

, the following operations are performed.
Phase d Step 2i-1:

Phase d Step 2i:

Examples:
Consider the following example. For a torus,

phases 1 and 2 are identical to T1. In phase 3, there are
four steps. The first two steps in phase 3 are identical to T1
shown in Figures 1 (e) and (f). Steps 3 and 4 in phase 3 are
shown in Figures 3 (a) and (b). In T1, nodes in and

 exchange blocks while nodes in and do
not participate in message exchange operations in phase 3
and eventually receive data during the send phase. The key
modification here is to add two more steps to phase 3 and
enable these nodes in and to acquire blocks.
This was prevented in the first two steps of phase 3 due to
link contention in T1. In phase 4, there are also four steps.
The first two steps in phase 4 are identical to T1 shown in
Figure 3 (c), where only step 1 is shown. In step 2, active
nodes in step 1 change dimensions and exchange blocks.
Step 3 in phase 4 is shown in Figure 3 (d) and, in step 4,
active nodes in the step change dimensions and exchange
blocks. After the 4 steps in the phase 4, all processors have
all blocks from all processors.
Complexity Analysis:

For a torus, two steps are required in phase 1.

From phase 2 until phase , there are steps in

phase p, where . In phase , there are

steps. Thus, the total number of steps is . In each
step, the number of exchanged blocks is . So, the
total number of exchanged blocks is . Total mes-

sage start-up time is and total message trans-
mission time is .

4. Configurable Algorithms
In the previous section, we described two bottom-up

algorithms: T1 and T2. Algorithm T1 focused on minimiz-
ing the message start-up cost while T2 focused on mini-
mizing the message-transmission cost. An interesting
feature of these algorithms is that they can produce a range

of implementations by trading off message start-up time
for message-transmission time. Within an exchange phase,
a small number of additional steps may be added at the
expense of a smaller send phase. Such tradeoffs can be
made to balance message size against the cost of message
start-ups. These algorithms improve the start-up time for
T2 at the expense of message-transmission time, or vice
versa. We now propose such configurable algorithms,
called T1.x, where . First, we propose algo-
rithm T1.1, and then general algorithms T1.x are proposed.

4.1 Algorithm T1.1

Communication Pattern:

In a torus, the algorithm T1.1 consists of
exchange phases followed by one send phase. In phase 1,
there are two steps and the communication pattern in phase

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …ypyp 1– …y0,()→

I f iam Gp 2i()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …xpxp 1– …x0 yd 1– …y0,()→

d 2
d 2–

d 1– 2i 1– 2i

1 i 2
d 3–≤ ≤

If iam Gp 2i 1–()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y0,()→

I f iam Gp 2i()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y0,()→

I f iam Gd 1– 2i 1–()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y0,()→

I f iam Gd 1– 2i()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y0,()→

16 16×

G3 1()
G3 2() G3 3() G3 4()

G3 3() G3 4()

2
d

2
d×

d 1– 2
p 1–

2 p d 1–≤ ≤ d 2
d 2–

3 2
d 2–⋅

2
2d 1–

3 2
3 d 1–()⋅

3 2
d 2–⋅()ts

3 2
3 d 1–()⋅()mtc

����
����

������
������������

������
����
����������

������
����
��������

����
������
������

����
����

������
������������

������
����
����������

������
����
��������

����
������
����������

����
������
������������

������
����
����������

������
����
��������

����
������
������

����
����

������
������������

������
����
����������

������
����
��������

����
������
������

Figure 3. Phases 3 and 4 in T2 for a 16x16 torus.

(a) phase 3 step 3

0000
0001

0010
0011

0100
0101

0110
0111 1000

1001
1010

1011
1100

1101
1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

(c) phase 4

������
������

G3(1)

G3(2)

G3(3)

G3(4)

����
����

������
������������

������
����
����������

������
����
��������

����
������
������

����
����

������
������������

������
����
����������

������
����
��������

����
������
����������

����
������
������������

������
����
����������

������
����
��������

����
������
������

����
����

������
������������

������
����
����������

������
����
��������

����
������
������

(b) phase 3 step 4

�������
������� �����

�����

����
����������

������������
������ ����

������
���������

����
������

���
������

������������
�������

������ ����
����

����
���� ������

������

������
���������

����������
������� �����

�������
�����������

�����
�������

����
�������

����������
����

��� ������
�������������

������� �����
�����

����
����������

������������
����

������
���

����
������

���
�����������

������������
�������

������
������ ����

����

����
���� ������

������

������
���������

����������
�����

�������
����

�����
�������

����
�������������

����������
����

���
��� ������

������

 step 1

(d) phase 4
 step 3

x 1 … d 4–, ,=

2
d

2
d× d

1 is the same as the those in algorithms T1 and T2:
Phase 1 Step 1:

Phase 1 Step 2:

In phase 2, there are also two steps and nodes in
send blocks horizontally in the first step, then send blocks
vertically in the second step:
Phase 2 Step 1:

Phase 2 Step 2:

In phase , , there are Gs, among

which nodes in Gs that constitute participate

in exchange operations in steps. In step or ,

, of phase , the following operations are per-
formed.
Phase p Step 2i-1:

Phase p Step 2i:

In phase , nodes in Gs that constitute par-

ticipate in exchange operations in steps, where mes-
sage exchanges among one half of nodes are performed
using local channels while those among the other half of
nodes are performed using wrap-around channels. In step

 or , , of phase , the following opera-
tions are performed.
Phase d Step 2i-1:

Phase d Step 2i:

After phase , each node in has all blocks from
all other nodes, destined for itself and a neighboring node.

In one step in the send phase, each node in receives
blocks destined for itself from a node in as follows.

Send Phase Step 1:

Example:

Consider an example for a torus. The communi-
cation patterns until phase 3 are the same as those of T1
shown in Figures 1 (a)-(f). The communication operations
in phase 4 are illustrated in Figure 4. Due to channel con-
tention, nodes in cannot exchange blocks in two
steps. So, in the first two steps, nodes in and
(i.e., nodes in) exchange blocks, then nodes in

 and nodes in (i.e., nodes in) exchange
blocks in the next two steps. Figure 5 shows the communi-
cation patterns in phase 5. In the first two steps of phase 5,
nodes in and exchange blocks, then nodes in

 and nodes in exchange blocks in the next two
steps. Now, each node in possesses all blocks from
all nodes in the torus destined for itself and a
neighbor node with which it exchanged blocks in step 1 of
phase 1. Thus, in a single step in the send phase, the blocks
destined for the neighbor node are transmitted as shown in
Figure 2(c).

Complexity Analysis:

For a torus, there are two steps per phase in

phases 1 and 2. In phase , , there are

steps. In phase , there are steps and there is one step
in the send phase. Thus, the total number of steps is

. In the first step of phase 1, blocks are

transmitted. In each step of the remaining

steps, the number of transmitted blocks is . Thus, the

total number of transmitted blocks is .

4.2 Algorithm T1.x

Communication Pattern:

Algorithm T1.x is defined for a torus, where

. In a torus, T1.x consists of exchange
phases followed by one send phase which consists of x
steps. Until phase , there are two steps per phase and
communication patterns are very similar to those in Algo-
rithm T1. After phase , nodes in have all

blocks from nodes in a submesh. From phase
, nodes in cannot exchange blocks in two

steps due to channel contention. In phase ,

, there are Gs, among which nodes in

 Gs that constitute participate in exchange

operations in steps. In phase , there are steps.
In x steps of the send phase, each node not in
receives blocks destined for itself from a node in .

P xd 1– …x0 yd 1– …y0,() P xd 1– …x1x0 yd 1– …y0,()→

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y1y0,()→

G2 1()

I f iam G2 1()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x1x0 yd 1– …y0,()→

I f iam G2 1()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y1y0,()→

p 3 p d 1–≤ ≤ 2
p 1–

2
p 2– G2 1()

2
p 2–

2i 1– 2i

1 i 2
p 3–≤ ≤ p

If iam Gp 4i 3–()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …xpxp 1– …x0 yd 1– …y0,()→

If iam Gp 4i 2–()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …ypyp 1– …y0,()→

If iam Gp 4i 3–()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …ypyp 1– …y0,()→
If iam Gp 4i 2–()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …xpxp 1– …x0 yd 1– …y0,()→

d 2
d 3–

G2 1()

2
d 3–

2i 1– 2i 1 i 2
d 4–≤ ≤ d

If iam Gp 4i 3–()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y0,()→

If iam Gp 4i 2–()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y0,()→

If iam Gp 4i 3–()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y0,()→

If iam Gp 4i 2–()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x0 yd 1– …y0,()→

d G2 1()

G2 2()

G2 1()

I f iam G2 1()∈()

P xd 1– …x0 yd 1– …y0,() P xd 1– …x1x0 yd 1– …y0,()→

32 32×

G2 1()

G4 1() G4 2()

G3 1()

G4 5() G4 6() G3 2()

G4 1() G4 2()
G4 5() G4 6()

G2 1()

32 32×

2
d

2
d×

p 3 p d 1–≤ ≤ 2
p 2–

d 2
d 3–

3 2
d 3–⋅ 3+ 2

2d 1–

3 2
d 3–⋅ 2+

2
2d

3 2
3d 3–⋅ 5 2

2d 1–⋅+

2
d

2
d×

d x 4+≥ 2
d

2
d× d

x 1+

x 1+ Gx 1+ 1()

2
x 1+

2
x 1+×

x 2+ Gx 1+ 1()
p

x 2+ p d 1–≤ ≤ 2
p 1–

2
p 2–

Gx 1+ 1()

2
p 2– d 2

d 3–

Gx 1+ 1()

Gx 1+ 1()

Complexity Analysis:

For a torus, , there are two steps per
phase until phase . In phase , , there

are steps. In phase , there are steps and there
are x steps in the send phase. Thus, the total number of

steps is . In the first steps,

 blocks are transmitted in each step. In the remain-

ing steps in exchange phases,
blocks are transmitted in each step. In step of the send

phase, where , blocks are transmitted.
Thus, the total number of transmitted blocks is

.

5. Performance Evaluation
We have presented a set of configurable complete

exchange algorithms for 2D tori, which operate in a bot-
tom-up fashion proceeding from contiguous sub-
meshes to higher-order submeshes.

In Algorithm T1, exchanges continue in larger and larger
submeshes, until some of the processors in each quadrant
have blocks from all of the processors. Getting to this point
requires a relatively few steps since all processors in each
quadrant need not have the blocks from all processors. At
this point a send phase can be initiated. The basic idea of
Algorithm T1 is that the number of steps required for some
processors to acquire all the blocks is relatively small. The
additional number of steps in the send phase also grows

Figure 4. Phase 4 (in each 16x16 submesh) in algorithm
T1.1 for a 32x32 torus.

(a) step 1

(b) step 3

G 4(1)

G 4(2)

G 4(5)

G 4(6)

2
d

2
d× d x 4+≥

x 1+ p x 2+ p d 1–≤ ≤

2
p 2–

d 2
d 3–

3 2⋅ d 3–
3x 2+ +() 2

x
– 2x 1–

2
2d x 2–+

3 2⋅ d 3–
3+() 2

x
– 2

2d x 1–+

s

1 s x≤ ≤ 2
2d x s–+

3 2
3d x 4–+⋅ 2x 3+()2

2d x 2–++

Figure 5. Phase 5 in algorithm T1.1 for a 32x32 torus.

(b) step 3

(a) step 1 G4(1) G4(2)

G4(5) G4(6)

2 2×

slowly. The small number of steps, in turn, reduces the
total start-up time. T1 focused on minimizing start-up cost
at some expense of message-transmission cost, whereas T2
focused on minimizing message-transmission cost with an
increased start-up cost. Existing algorithm [19] has identi-
cal characteristic as T2 and thus the performance of T2 is
very similar to that of the algorithm [19]. When software
overhead of message initiation is high, T1 is preferred, and
when message-transmission time is dominant, T2 is pre-
ferred. The variants between the two are possible where
the time for message start-ups can be traded against larger
message sizes. This is useful in configuring the algorithm
for different message-passing machines based on message-
initiation overhead and link speeds. A set of configurable
algorithms of T1.x has been developed for this purpose.

The time complexities of T1, T2, and T1.x are summa-
rized in Table 1. For tori, message start-up costs are

 for T2 while they are for T1. Algorithms T1.x

also show start-up cost and message-trans-
mission cost. But, they have start-up costs that are higher
than T1 but lower than T2. In addition, message-transmis-
sion costs are lower than T1 and higher than T2.

Ideally, we would like to evaluate the performance of
these algorithms on commercial parallel supercomputers.
However, evaluation of their scalability across a range of
system sizes is hampered by the unavailability of large sys-
tems, and by the lack of control over the shape of sub-
meshes allocated in commercial sizeable machines. What
we need is a more flexible methodology that would yield
reliable estimates of execution time across a broader range
of system sizes. Consequently, we use analytic models of
execution time that are based on real values of parameters
measured on commercial machines. Where relevant, the
values of parameters were measured as a function of prob-
lem size. In order to derive the interconnection network
parameters, roundtrip test messages of known (large) size
were transmitted between pairs of processors. The mea-
sured times were averaged over the number of messages.
Given this parameterized model, with values of and ,
it is now possible to study the performance of different
algorithms over a wide range of systems and problem sizes
without requiring access to the machine configurations of
these sizes. While not as realistic as time measured on real
implementations, the model is detailed enough to provide
insight into the performance over a range of system param-
eters.

Figures 6 and 7 illustrate the completion times of T1, T2,
and T1.x for different network sizes as a function of block

size, while considering only the two dominant terms: start-
up cost and message-transmission cost. In this analysis, the

Table 1: Performance summary of algorithms.

Range of
d

Start-up Time Message Transmission Time

T1

T2

T1.x

d 4< 2d() ts d 2
2d⋅()m tc⋅

d 4≥ 3d 3–()ts 9 23d 4–⋅ d2 5d– 3+()22d 1–+{ }m tc⋅

d 4< 2d() ts d 2
2d⋅()m tc⋅

d 4≥ 3 2⋅ d 2–()ts 3 2⋅ 3d 3–()m tc⋅

d x 4+≥ 3 2⋅ d 3– 3x 2+ + 2x–{ }ts 3 2⋅ 3d x 4–+ 2x 3+()22d x 2–++{ }mtc

2
d

2
d×

O 2
d() O d()

O 2
d() O 2

3d()

tc ts

Block s ize (m)

B lock size (m)

C
om

pl
et

io
n

tim
e

-
lo

g
sc

al
e

C
om

pl
et

io
n

tim
e

-
lo

g
sc

al
e

Figure 6. Performance comparison of algorithms for a
26x26 torus.

0 4 8 1 2 1 6 2 01 0 5

1 0 6

d = 6 , a = 5 0 0 0 (T 1)

d = 6 , a = 5 0 0 0 (T 2)

d = 6 , a = 5 0 0 0 (T 1 .1)

d = 6 , a = 5 0 0 0 (T 1 .2)

0 4 8 1 2 1 6 2 0 2 4 2 8

1 06

d = 6 , a = 1 0 0 0 0 (T 1)

d = 6 , a = 1 0 0 0 0 (T 2)

d = 6 , a = 1 0 0 0 0 (T 1 .1)

d = 6 , a = 1 0 0 0 0 (T 1 .2)

Blo ck s ize (m)

B lock s ize (m)

C
om

pl
et

io
n

tim
e

(s
ec

) -
 lo

g
sc

al
e

C
om

pl
et

io
n

tim
e

(s
ec

) -
 lo

g
sc

al
e

Figure 7. Performance comparison of algorithms for a
27x27 torus.

0 2 4 6 8 10
106

107

d=7, a=5000 (T1)

d=7, a=5000 (T2)

d=7, a=5000 (T1.1)

d=7, a=5000 (T1.2)

d=7, a=5000 (T1.3)

0 4 8 12 16 20106

107

d=7 , a=10000 (T1)

d=7 , a=10000 (T2)

d=7 , a=10000 (T1.1)

d=7 , a=10000 (T1.2)

d=7 , a=10000 (T1.3)

comparison is parameterized with the normalized ratio of ts
to tc, , assuming that tc has a value of one time unit.
According to our measurements of the start-up costs and
message transmission costs in commercial multicomputers
such as Intel Paragon or Cray T3D, we found that the nor-
malized ratio is between 2500 to 10000. So, we evaluate
the performance of the proposed algorithms for two values
of in this range, 5000 and 10000. Note that, since exist-
ing algorithms and the proposed algorithm T2 yield almost
the same performance [13], we compare the performance
of T1, T2, and T1.x.

Figure 6 shows the completion times of T1, T2, T1.1,
and T1.2 in a torus as functions of block size and
the ratio . The completion time plot indicates that when
the block size is small, T1 is shown to have the best perfor-
mance while T2 or T1.2 shows the worst performance. As
the block size increases, T1.1 exhibits the best perfor-
mance, while T1 becomes worse. When the block size fur-
ther increases, T2 exhibits the best performance. Note that
the cross-over points both between T1 and T1.1, and T1.1
and T2 appear in large block sizes as the ratio increases.
It indicates that as start-up cost is a more dominant factor,
T1 provides the best performance until larger block sizes,
while T2 shows the best performance for larger block
sizes. Between ranges of the two points of block sizes,
T1.1 shows the best performance. In this network, T1.2
does not show good performance. Figure 7 shows the com-
pletion times of T1, T2, T1.1, T1.2, and T1.3 in a

 torus as functions of block size and the ratio .
The general characteristics of these plots are very similar
to those in Figure 6. But, the cross-over points appear in
smaller block sizes, indicating that, as the network size
increases, T1 becomes a less powerful algorithm while T2
becomes more efficient. In this network, T1.2 and T1.3 do
not show good performance.

From the above performance figures, we can observe
some important facts: i) in a given network, T1, T1.1, T2
show the best performance when block sizes are relatively
small, medium, and large, respectively, ii) in a given net-
work, T1 shows better performance when the start-up cost
is dominant, iii) for a given performance parameters, T2
shows better performance in larger networks and larger
block size.

6. Conclusion
In this paper, we presented a set of configurable algo-

rithms for complete exchange for two-dimensional torus-
connected networks. They can be tuned to trade message-
initiation or start-ups overhead against message-transmis-
sion time. The ability to configure these algorithms allows
us to match the algorithm characteristics with machine
characteristics based on message-initiation overhead and
link speeds, in order to minimize overall execution time.
Our performance evaluation results have shown T1, T1.1,
T2 to perform best when block sizes are relatively small,
medium, and large, respectively in a given network.

References

[1] S. H. Bokhari and H. Berryman, Complete Exchange on a Cir-
cuit Switched Mesh, Scalable High Performance Computing
Conference, pages 300-306, 1992.

[2] S. H. Bokhari, Multiphase Complete Exchange on Paragon,
SP2, and CS-2, IEEE Parallel & Distributed Technology,
pages 45-59, Fall 1996.

[3] J. Bruck, C. T. Ho, S. Kipnis, and D. Weathersby, Efficient
Algorithms for All-to-All Communications in Multi-Port
Message-Passing Systems, Symposium on Parallel Algo-
rithms and Architectures, pages 298-309, 1994.

[4] W. J. Dally, “Performance Analysis of k-ary n-cube Intercon-
nection Networks,” IEEE Trans. on Computer, vol. 39, no. 6,
pp. 775-785, June 1992.

[5] S. Hinrichs, C. Kosak, D. R. O’Hallaron, T. M. Sticker, and R.
Take, An Architecture for Optimal All-to-All Personalized
Communication, Symposium on Parallel Algorithms and
Architectures, pages 310-319, 1994.

[6] S. L. Johnsson and C. T. Ho, Optimum Broadcasting and Per-
sonalized Communication in Hypercubes, IEEE Trans. on
Computers, vol. 38, no. 9, pages 1249-1268, Sep. 1989.

[7] P. K. McKinley, Y.-J. Tsai, and D. F. Robinson, “Collective
Communication Trees in Wormhole-Routed Massively Paral-
lel Computers,” Technical Report MSU-CPS-95-6, Michigan
State University, March 1995.

[8] P. K. McKinley and Y.-J. Tsai and D. Robinson, “Collective
Communication in Wormhole-routed Massively Parallel
Computers,” IEEE Computer, pages 39--50, December 1995.

[9] L. M. Ni and P. K. McKinley, “A Survey of Wormhole Rout-
ing Techniques in Direct Networks,” IEEE Computer, vol. 26,
pp. 62-76, February 1993.

[10] D. K. Panda, “Issues in Designing Efficient and Practical
Algorithms for Collective Communication on Wormhole-
Routed Systems,” Technical Report TR-25, Dept. of Com-
puter and Information Science, Ohio State University.

[11] D. S. Scott, Efficient All-to-All Communication Patterns in
Hypercube and Mesh Topologies, Proceedings of 6th Confer-
ence. Distributed Memory Concurrent Computers, pages 398-
403, 1991.

[12] Y. J. Suh and S. Yalamanchili, “Algorithms for All-to-All
Personalized Exchange in 2D and 3D Tori,” Proceedings of
the 10th International Parallel Processing Symposium, pages
808-814, April 1996.

[13] Y. J. Suh and S. Yalamanchili, “All-to-All Communication
with Minimum Start-Up Costs in 2D/3D Tori and Meshes,”
IEEE Transactions on Parallel and Distributed Systems, Vol.
9, No. 5, May 1998.

[14] Y. J. Suh and K. G. Shin, “Efficient All-to-All Personalized
Exchange in Multidimensional Torus Networks,” Proceedings
of the 27th International Conference on Parallel Processing,
August 1998.

[15] Y. J. Suh, K. G. Shin, and S. Yalamanchili, “Complete
Exchange in General Multidimensional Mesh Networks,”
Proceedings of the 10th International Conference on Parallel
and Distributed Computing Systems, 1997.

[16] N. S. Sundar, D. N. Jayasimha, D. K. Panda, and P. Sadayap-
pan, Complete Exchange in 2D Meshes, Scalable High Per-
formance Computing Conference, pages 406-413, 1994.

[17] R. Thakur and A. Choudhary, All-to-All Communication on
Meshes with Wormhole Routing, Proceedings of 8th Interna-
tional Parallel Processing Symposium, pages 561-565, Apr.,
1994.

[18] Y.-C. Tseng and S. Gupta, All-to-All Personalized Commu-
nication in a Wormhole-Routed Torus, Proceedings of Inter-
national Conference on Parallel Processing, volume 1, pages
76-79, 1995

[19] Y.-C. Tseng, S. Gupta, and D. Panda, An Efficient Scheme
for Complete Exchange in 2D Tori, Proceedings of Interna-
tional Parallel Processing Symposium, pages 532-536, 1995.

[20] Message Passing Interface Forum, “MPI: A Message-Pass-
ing Interface Standard,” Technical Report CS-93-214, Univer-
sity of Tennessee, April 1994.

[21] Cray T3D, System Architecture Overview, 1994.

a

a

a

64 64×
a

a

128 128× a

