
This article reports on a set of projects to

❚ design, implement, and evaluate software
frameworks for providing performance assur-
ances in emerging Internet services and real-
time applications with a focus on multimedia,
and

❚ design and evaluate video-on-demand (VOD)
servers as an application.

First we describe the Adaptware project, which
investigates adaptive software for server platforms.
A complementary project addresses reliable trans-
mission of QoS-sensitive data over packet-
switched networks. Together, these two prongs
compose an end-to-end approach to achieving
flexible QoS guarantees for future Internet appli-
cations. We discuss VOD servers as a potential
application of this two-pronged approach.

Adaptive software for servers
The Adaptware project addresses the server-side

communication subsystem design to exploit
application semantics for more efficient use of
premium resources. Since the server communica-
tion subsystem manages an increasing number of
connection end points, a QoS-sensitive imple-
mentation may significantly affect the amount of
server traffic.

Communication subsystem extensions for
servers

We augmented the server-side communication
subsystem with the notion of QoS contracts, which
express QoS requirements on the client’s behalf.1

A QoS contract expresses the nominal QoS level
the client requests and a minimum acceptable
QoS level for the client. It may also specify the
utility (or price) of respective QoS levels and the

penalty, if any, for violating the contracted QoS.
For example, QoS levels may represent video
frame rates and average frame sizes (derived from
image resolution), audio bandwidth, and so on.
The server will attempt to deliver the highest con-
tracted quality but can degrade quality in case of
overload. Our architectural extensions fall in three
categories:

❚ Contract creation: Creates and activates a con-
tract for a new client, at which point the server
invokes admission control, chooses an optimal
QoS level, and allocates a utilization budget for
the contract.

❚ Request classification: Sorts client requests by the
QoS contract in order to “charge” request exe-
cution to the corresponding contract’s resource
budget. Classification generally occurs accord-
ing to client Internet protocol (IP) addresses,
although other schemes are possible.

❚ QoS control: Enforces that no contract takes
away the resources allocated to others and
provides the “signed” QoS guarantees.

Figure 1 shows the general architecture of the
communication subsystem. Upon creation of a
new contract, a QoS mapping module translates
contract QoS specifications into resource require-
ments. The system then performs capacity plan-
ning and admission control to determine if
enough resources exist to honor the contract. In
addition, the system selects a QoS level for each
admitted contract according to load conditions,
which monitors it dynamically.

We assume a multithreaded communication
subsystem model in which each thread handles
the flow of a particular contract. We call such a
thread a contract handler thread (CHT). Flow con-
trol and policing thus convert into a CHT-sched-
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uling problem. To decouple thread scheduling
from packet transmission on the network, CHTs
deposit their outgoing packets into a data buffer
that the network device will later drain. An auto-
profiling module computes processing overheads
that the system feeds back into the QoS mapping
module to better map contract requirements into
resource constraints.

Server sharing support
Hosting performance-sensitive services on

multipurpose servers becomes more important as
multimedia elements become part of best-effort
services. Furthermore, the explosive growth of
Internet services creates the need for sharing the
same execution platform among multiple services.
Intranets and proposals for active and smart sen-
sor networks, also, require server sharing for mul-
tiple purposes.

To permit simultaneous use of one server or
group of servers for several services, we need to
insulate services against each other. We provide
this insulation via an appropriate extension of the
operating system. Once insulated, the system
must manage the services’ resources and support
applications to use these new facilities (see
Figure 2).

Addressing operating system issues. Provid-
ing interprocess insulation means improving per-
formance predictability of individual processes in
a concurrent environment. We propose operating

system resource-reservation mechanisms to meet
individual processes’ resource requirements. We
found that a stripped-down version of capacity re-
serves—resource sharing over a specified base win-
dow—without high-level resource-management
semantics proves a good approach to take. We can
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guarantee system integrity by requiring superuser
privileges when using the new scheduling class for
capacity reserves. Processes can be insulated from
each other because they can only consume
reserved shares of different resources. While iden-
tifying CPU capacity reserves as the key to system
control, we also found it quite useful to employ
additional controls, like I/O capacity reserves.
Nevertheless, the additional predictability
achieved for Internet-type services remains orders-
of-magnitude lower than what we can achieve by
accurately controlling processor arbitration.

Focusing on resource management. By
resource management, we mean a combination of
admission control, resource allocation, and grace-
ful degradation. It becomes necessary once
resources can be allocated for quasiprivate use.
Admission control avoids generating unanticipat-
ed overload situations. Graceful degradation
improves system response to detected overload.
Instead of requiring a specific resource manage-
ment behavior to develop a framework, we identi-
fied the key components of resource management:
admission control, measurement of degradation,
fairness, and prioritization. This simplifies the
design of resource-management strategies.

In our model, resource management resides on
top of a basic reservation mechanism and uses a
measure—called adaptability—to evaluate each
process’ ability to adapt. Generally, the system
designer can tune the adaptability to certain sys-
tem characteristics without having to reimple-
ment the adaptation strategy, which balances the
degradations experienced by all processes in the
system. In fact, we measure degradation in terms
of adaptability.

To obtain a concrete instance of adaptability,
we took an interval-based resource reservation
scheme as an example. Adaptability in this exam-
ple defines resource management characteristics
as follows.

1. Admission control: Minimal requirements must
not exceed system resource capacity.

2. Fairness: All processes get an amount of
resources resulting in the same amount of
adaptability loss.

3. Graceful degradation: Processes degrade in
accordance with their own preference for
degradation and are informed of changes in
their resource allocation.

Our general framework describes common and
uncommon resource-management strategies quite
well. It can thus be seen either as some sort of a
template library or as a conceptual framework for
developing resource-management strategies.

Providing support for adaptive/adaptable
applications. Graceful degradation in our
resource management—necessary to accommo-
date a growing number of services—may cause an
individual service’s resource availability to
change. Therefore, individual services must be
adaptive. At present, it’s difficult to write an appli-
cation/service that exhibits a “reasonable” respon-
sive behavior when the system reallocates
resources at the resource-management level. 

In the previous section, we noted that QoS lev-
els let applications react to changes brought on by
flexible resource management.2 This scheme also
solves the problem of degrading the service when
its internal load rises beyond a manageable level.
To derive an objective function, which guides the
suballocation of a service’s resources to individual
sessions, we used environmental information. We
showed that measures given to evaluate the per-
formance of the server in terms of consumer-
perceived usefulness can create an adequate per-
formance model, which in turn defines an adap-
tation strategy under overload or degradation
scenarios.

Our abstraction builds on the concept of client-
server sessions, which execute in a specific mode
or service class. This mode can change dynamical-
ly subject to resource availability. Furthermore,
the effect on the entire system of operation in a
specific service class is captured by objective func-
tions stored in a subscription class. Once the sys-
tem identifies these two sides, service classes can
be coded as different modes in our moded-thread
library, and subscription classes can be declared in
configuration files read at service startup time.

Our runtime system maximizes the value of
the objective function on the fly. We’ve shown
that our model trades off the number of adapta-
tion operations necessary for optimal evaluation
of the objective function. While the value of the
objective function decreases linearly through the
setting of certain configuration parameters, the
number of adaptation operations followed an
exponential decline. The work on the application
side of adaptation showed that it’s possible to
implement efficient adaptive services, thus justi-
fying our insulation/adaptation approach to
resource management.
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The future
Regarding operating system-level interservice

insulation, we’re currently working to achieve
insulation without requiring resource reservations
as explicit as capacity reserves. Instead of specify-
ing resource requirements upfront, we want to
support the initial specification of a coarse
resource need estimate, which is refined during a
service’s execution. This makes capacity reserva-
tion portable between different execution plat-
forms, thus greatly facilitating distributed service
management.

At the resource-management layer, we’re plan-
ning to incorporate monitoring to let the resource
manager deal with many different types of work-
loads effectively.

The lack of good abstractions for adaptation at
the application level remains the biggest hurdle to
overcome. Instead of coding explicit modes into
software, which forces the programmer to make
adaptation choices at compile time, we would
rather defer adaptation decisions as much as pos-
sible. Therefore, we’re seeking to separate
resource, QoS, and functional requirements so
that programmers don’t have to worry about
them at the same time. Instead, they would imple-
ment options, which the resource manager would
use at runtime depending on how adaptation
works best on the service’s platform. The methods
found in the framework of Aspect-Orientation3

appear the key to achieving our goal.

Reliable multimedia communication
The second project deals with the reliable

transmission of multimedia data over packet-
switched networks (such as the Internet). Distrib-
uted multimedia applications typically need a
certain QoS guarantee (for example, bandwidth,
delay, and delay jitter) from the network, which
requires special communication services other
than conventional best-effort services. We’ve
extensively researched various issues of QoS guar-
antees, such as priority-based packet scheduling,
hardware support for multimedia data transmis-
sion, end-host operating system issues, resource
reservation, QoS routing, and so on. But here we’ll
focus on dependability support for QoS-guaran-
teed communication.

The packet-loss rate typically represents a com-
munication service’s dependability. In modern
optical networks, most packet losses occur because
the buffer overflows. This results from traffic con-
gestion at network switches/routers, since the use
of optical fibers reduces the transmission-error

rate to a negligible level. Congestion-induced
packet losses can be avoided or minimized by
resource reservation in QoS-guaranteed commu-
nication. Plus, the packet loss rate can serve as a
performance parameter of admission-control
schemes with statistical guarantees rather than a
measure of dependability. Moreover, multimedia
applications can tolerate transient packet losses.

Thus, in multimedia communication, the
dependability in a larger time scale (that is, ses-
sion-management level as opposed to packet
level) proves more meaningful. We use connection
availability—the probability of a connection being
available at any given time—for this purpose. For
high availability, the network has to quickly
restore the QoS connections affected by compo-
nent failures (that is, failures of links or routers).
Since a QoS guarantee can be realized by reserving
resources on a static path and transferring packets
only via that path—essentially establishing a vir-
tual circuit—restoring a failed QoS connection
requires establishing a new virtual circuit. Similar
to the approach used in telephone networks that
bound the service disruption delay to less than a
second, we set up a backup channel for each QoS
connection a priori to guarantee quick, successful
failure recovery. However, our scheme4 targets
QoS communication over the Internet and sub-
stantially differs from that of telephone networks
in many aspects.

Fast failure recovery occurs in three steps: back-
up channel establishment, failure detection and
channel switching, and postrecovery resource
reconfiguration. Figure 3 gives an overview of the
failure recovery scenario.

A backup channel doesn’t carry any data until
activated, so it doesn’t consume resources in a
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normal situation. However, a backup channel
isn’t free, since it requires the same amount of
reserved resources as its primary channel in order
to provide the same QoS as its primary upon acti-
vation. We call these resources spare resources. In
a normal situation best-effort traffic can use spare
resources, but they can’t be used to accommodate
other QoS connections. As a result, equipping
each QoS connection with a single backup, which
will be routed disjointly with its primary, reduces
the network capacity of accommodating QoS con-
nections by 50 percent or more. To alleviate this
problem, we developed backup multiplexing, a
resource-sharing technique that at each hop
reserves only a small fraction of resources needed
by all the backup channels taking the hop.

Backup multiplexing has three unique charac-
teristics. First, it allows per-connection depend-
ability control. That is, each connection may
request a different availability level depending on
its application criticality. Second, it doesn’t require
global knowledge of the traffic demand over the
entire network. Thus, it’s scalable and works in an
environment where connections are dynamically
set up and torn down. Third, it applies to any QoS
communication scheme because it uses a meta-
admission test, so the admission test of any QoS-
communication scheme can be plugged in. This
way, backup channels can be run through multi-
ple heterogeneous networks.

When a QoS connection fails, it should be quick-
ly detected and reported to the connection’s end
nodes so that the damaged connection can be
switched to its healthy backup. We use a simple
heartbeat protocol (similar to the Hello protocol) as
a primary means of failure detection. As a secondary
means, we use an end-to-end protocol, which
detects connection failures using negative acknowl-
edgments. The measurement in our experimental
testbed reveals that we can achieve high-detection
coverage and low-detection latency with these pro-
tocols. We also developed a protocol for failure
reporting and channel switching. After channel
switching, the network reconfigures resources to
preserve the dependability of the QoS connections
directly or indirectly affected by failures. New back-
ups should be established for the QoS connections
that lack backups. We’re currently extending the
unicast solution to dependable multicast services.

Application
Now we’ll discuss VOD servers as a potential

application of our end-to-end approach. Seen
today as one of the most promising applications

emerging from advances in networking, large-
scale interactive digital video service has the
potential to provide millions of customers with
convenient and unrestricted access to large col-
lections of movie titles. Customers’ QoS in inter-
actions proves critical to such deployment, given
that economical viability of VOD depends on cus-
tomers’ appreciation of the service delivered.
Based on the premise that the architectural deci-
sions in VOD end systems—the local VOD server
and customers’ premise equipment (CPEs)—affect
customers’ level of interactivity, our research aims
to combine two orthogonal requirements:

1. service scalability, or the ability to accommo-
date possibly significant workload fluctuations
and overloading situations without affecting
customers’ QoS in interactions, and

2. long-term, cost-effective resource allocation so
that a large collection of movie titles and
channels can be accessed by a maximum num-
ber of viewers.

Current status
Our research has focused on the following

areas.

Storage organizations for VOD service. We
showed that hybrid storage organizations, in
which videos first get partitioned into several disk-
array-based clusters, then striped across each disk
array using coarse-grained striping (CGS), achieve
a cost-effective video repository, low-admission
latency, and high availability. To provide further
guidance in choosing a storage organization, we
examined at what cost a minimal “playback-only”
service could be upgraded to achieve fully inter-
active “true” VOD.

As an alternative to disk striping, we felt it was
also important to identify practical situations in
which information systems designers could
choose the one-movie-per-disk (OMPD) storage
scheme, since this scheme proves easier to deploy,
upgrade, and experiment with when the service
expands. We showed that although many regard
OMPD as a naive approach to storage configura-
tion, it might actually be acceptable for highly
reliable service of a small number of movies to a
large user population.

Optimal scheduling in near-VOD systems.
Batching requests made by many different view-
ers for the same movie proves a cost-effective way
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to improve service scalability. For instance, the
commercially available near-VOD systems sched-
ule video programs for the same movie title at reg-
ularly staggered intervals, called phase offsets. We
introduced an analytical yet realistic approach to
program scheduling that integrates customers’
and service provider’s points of view. We then
derived the optimal schedule of movies of differ-
ent popularities for various performance metrics
such as throughput. We also analyzed variations
on near-VOD service, such as scheduling channels
based on a threshold of requests.

Scalable batching policies. After focusing on
the commercially available near-VOD, it’s equal-
ly important to systematically identify and com-
pare other scalable batching schemes based on
various factors for their possible impact on batch-
ing performance. These factors include

1. nonstatic request arrival rates,

2. storage organization of the VOD server, and

3. customers’ willingness to wait for service.

When batching occurs “on demand,” without any
control in the channel allocation process, we
found the following three factors make the system
prone to channel clumping. This means a large
fraction of the VOD server channel capacity tends
to be allocated within a short period of time, thus
triggering short- and long-term congestion cycles:

1. the inherent lack of variability in movie
lengths,

2. the access locality to movie titles, and

3. the small number of different movie titles rel-
ative to the number of channels allocated to
them.

Based on this observation, we evaluated5 various
scalable batching policies and identified simple
variations of near-VOD that vastly improve
uncontrolled on-demand channel allocation,
while being easily implementable in both mono-
lithic and clustered disk arrays.

Scalable fully interactive VOD service. Full
support for interactive VCR functions can be
achieved only by dedicating a channel for each cus-
tomer. Unfortunately, channel dedication degrades

scalability in a multicast VOD system. Therefore,
we introduced a scheme6 for fully interactive, yet
scalable multicast VOD. In the proposed frame-
work, support for interactive operations requires

1. allocating a fraction of the VOD server’s chan-
nel capacity to handle interactive operations
that would otherwise be blocked and

2. using partial caching of programs in CPEs to
merge customers back in synchronization with
broadcast channels.

Unlike shared buffers located closer to the server,
we showed that small individual CPE buffers can
be used in synergy with dedicated video channels
to allocate and reclaim resources more efficiently
than existing schemes, therefore providing unre-
stricted VCR functionality. We confirmed these
results for a wide range of CPE buffer sizes, chan-
nel capacities, and VCR action characteristics.

Future directions
Our future research will cover the following

areas.

Interactive behavior modeling. Modeling
consumer use of continuous digital media, albeit
inherently speculative, is inevitable to identify
or anticipate the human factors and worst-case
scenarios that will challenge system scalability.
Nevertheless, throughout VOD deployment, the
same emphasis should be put on actual moni-
toring of human-media interactions. This
twofold effort requires appropriate tools located
in end systems and delivery networks to support
iterative refinements through implementation
and experimentation.

Efficient support for VCR-like interactions.
For illustrative purposes, we made several simpli-
fying assumptions on video transport and support
for interactions. For instance, we assumed all
frames were of the same size and VCR actions
didn’t incur loss of frames. Since most of the
mechanisms presented can be adapted to variable
bit-rate (VBR) video, future work will determine
whether our framework works as efficiently when
we relax the assumption of equal-size frames.

Scalability in other interactive Internet appli-
cations. Various large-scale Internet applications
are being deployed before VOD. In the field of
interactive networked games, for instance, there
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exists a need to provide a service that is both fun
and fast, and scalability per se remains more of a
perpetual design constraint than a new feature that
would be brought into a system. This holds true
with client-server models of game architectures,
since the requirement to handle a large number of
users from a restricted set of game servers intro-
duces a host of new constraints that game devel-
opers attempt to satisfy on a best-effort basis.

These design constraints mirror the problems
observed with large-scale VOD. Even in the most
casual Internet games (such as card games), where
users have a high tolerance to network latencies
or bandwidth scarcity, the challenge lies in devis-
ing a distributed architecture that can accommo-
date large numbers of long-lasting connections
over wide-area networks and that scales as the
demand fluctuates throughout the day. To
achieve this goal, we’re currently investigating the
synergistic combination of message coalescence,
that is, the delayed broadcast of agglomerated
update messages; asynchronous or rate-controlled
transmission of those messages; and hierarchical
information caching. MM

References
1. T. Abdelzaher and K. Shin, “End-Host Architecture

for QoS-Adaptive Communication,” Proc. IEEE Real-

Time Technology and Applications Symp., IEEE Press,

Piscataway, N.J., June 1998, pp. 121-130.

2. J. Reumann and K. Shin, “Adaptive Quality-of-

Service Session Management for Multimedia

Servers,” Proc. Int’l Workshop on Network and Operat-

ing System Support for Digital Audio and Video (NOSS-

DAV), IEEE Press, Piscataway, N.J., July 1998, pp.

303-316.

3. G. Kiczales et al., “Aspect-Oriented Programming,”

Proc. European Conf. on Object-Oriented

Programming, Springer-Verlag, Berlin, June 1997,

pp. 220-242.

4. K.G. Shin and S. Han, “Fast Low-Cost Failure Recov-

ery for Reliable Real-Time Multimedia Communica-

tion,’’ IEEE Network, Vol. 12, No. 6, 1998, pp. 56-63.

5. E.L. Abram-Profeta and K.G. Shin, “Comparative

Study of Scalable Batching Policies in Disk-Array-

based Deterministic Video-on-Demand Servers,’’

Proc. IEEE Int’l Conf. on Computer Communications

and Networks, IEEE Press, Piscataway, N.J., Oct.

1998, pp. 682-689.

6. E.L. Abram-Profeta and K.G. Shin, “Providing Unre-

stricted VCR Functions in Multicast Video-on-

Demand Servers,” Proc. IEEE Int’l Conf. on Multimedia

Computing and Systems, IEEE Press, Piscataway, N.J.,

June-July 1998, pp. 66-75.

Readers may contact the authors at the Real-Time Com-

puting Laboratory, Department of Electrical Engineering and

Computer Science, University of Michigan, Ann Arbor, MI

48109-2122, e-mail {kgshin, zaher, sjhan, reumann}@eecs.

umich.edu.

Project Reports

Scientists, engineers, and mathematicians can learn much from each other about advances in computing. In
a groundbreaking development, the IEEE Computer Society has joined forces with the American Institute of
Physics to jointly produce Computing in Science & Engineering magazine. This new magazine bridges a
broad range of scientific and engineering disciplines to explore both the scientific and the practical aspects
of computers and computation. 

This new bimonthly publication continues the strong tradition of focused theme issues and topical articles in
the spirit of IEEE CS&E, augmented by the comprehensive departments that have long been the hallmark
of Computers in Physics. 

As a subscriber, you now get new coverage on
Lab Applications   • Algorithms   • Scientific Programming   
Computer Simulations   • Web Mechanics   • Practical Visualizations
Essays from the Top   • Education  • Computing Perscriptions

To subscribe, check out our Web site at http://www.computer.org
for special pricing options or contact our Customer Service office at
membership@computer.org 

IEEE COMPUTATIONAL SCIENCE & ENGINEERING
+ COMPUTERS IN PHYSICS

= CCOOMMPPUUTTIINNGG  IINN  SSCCIIEENNCCEE  &&  EENNGGIINNEEEERRIINNGG

Both Worlds! 
Best
THE

OF 

THE 

OF 

1999 Editorial Calendar 
January Computation in Communication

March Cosmology and Computation

May Computational Biology

July Massive Data Visualization

September Dynamic Fracture

November Computational Finance


