
Abstract
In this paper, we consider resource adaptation in

multiprocessor real-time control systems running
periodic control tasks, where the main resource is
processor utilization, and the measure of utility is control
performance. Processor utilization of a periodic task can
be changed by changing the task’s period. To estimate
the reward rates for running a task at different periods
we will use a well-understood concept from optimal
control theory, the performance index. We present and
evaluate two algorithms for reallocating resources,
which are of low complexity in order that they can be run
quickly for fast recovery from failure. We also consider
transient scheduling effects of changing periods and
moving tasks when reallocating resources.

By simulation, we show that the algorithms provide
results that are close to optimal with randomly generated
task sets. We demonstrate the calculation of reward rates
for different frequencies of an example application task,
and also demonstrate the calculation of the reward rate
for a shadow task for the example application task.

Index Terms—real-time control, multiprocessor task
allocation, graceful degradation

1. Introduction
There is a trend to desire adaptive resource allocation

in various types of computer systems, in order to address
both changing priorities for different applications, and
also for failure recovery. This paper considers the
problem of processor utilization allocation for real-time
control systems, particularly computer systems which
control complex systems, such as aircraft, factories, and
submarines, and make use of multiprocessor or

distributed computer systems, running multiple control
tasks, which coordinate distributed intelligent sensors
and actuators to accomplish a single objective. Since
many real-time control tasks are periodic, the processor
utilization they use can be changed by changing their
periods without changing their algorithms, although
variables in the control law may need to be changed to
account for the changed period. Period adjustment
presents an easily-implementable way to vary utilization
committed to different tasks.

In this paper, we show an approach for processor
utilization reallocation by period changes in a
multiprocessor system, both for task priority changes
such as would be brought about by a mode change, and
for failure recovery. This approach considers the
transient scheduling effects of changing periods and
moving tasks when reallocating resources. We also
consider the problem of determining the value to the
system of running different control tasks at different
periods, and demonstrate an approach for estimating the
value of running a task at different periods, and an
approach for estimating the value of having redundant
shadows for a task.

There are several bodies of work related to
reallocating processor resources to tasks in real-time
control systems. One is concerned with scheduling
strategies for tasks with variable performance levels and
runtimes, referred to as “imprecise computation” [6].
With the imprecise computation model, the result
becomes more precise with more computation time. An
example of this is the “increasing reward with increasing
service” (IRIS) task model [3], in which a computation
can be stopped at any time, and answers become
increasingly better with increasing time given to a task.

In [1] processor utilization allocation for flight
control systems was discussed, and values for differing
quality-of-service (QoS) levels for tasks were taken from
an AI planner. Another QoS-based approach is discussed
in [9], in which utilities are used to guide QoS-based
resource allocation. An audio server is used as an
application. Graceful degradation of periodic tasks by
skipping task instantiations in some periods is discussed

Adaptation and Graceful Degradation of Control System Performance by Task
Reallocation and Period Adjustment

The work reported in this paper was supported in part by
the Office of Naval Research under Grants
N00014-94-1-0229 and N00014-95-1-0121.

Kang G. Shin
RTCL, EECS Department

The University of Michigan
kgshin@eecs.umich.edu

Charles L. Meissner
Lockheed Martin Tactical Aircraft Systems

charles.l.meissner@lmco.com

in [10]], in which a scheduling discipline is proposed
which guarantees that a task will be run in at leastk out
of everyn of its periods.

Varying periods of control tasks, off-line, for
schedulability purposes is discussed in [12] and [11].
The performance index (PI), a general concept from
optimal control theory which represents the cost to the
system of the performance of a control law, is discussed
as an off-line design aid for optimizing the trade-off
between control quality and computation resources in
[12] and [13].

This paper extends the approaches of [12], making
on-line use of the proposed off-line method for processor
utilization allocation. The approach proposed in this
paper is to allow on-line control task period changes in
multiprocessor systems to allow changes in control
performance and processor utilization. The approach
uses a performance index for the control task, weighted
for the task’s importance to the system, to determine the
value to the system of running a given task at a given
period. Due to the nature of the target applications,
embedded control applications, which tend to have small
memory and communication needs, processor utilization
is considered the limiting resource, and so it is the only
resource which is rationed.

The contributions of the proposed approach are that
it uses on-line period changes to handle resource
allocation for system adaptation and failure recovery in a
multiprocessor real-time control system, and that it uses
well-accepted performance measures to determine the
value to the system of running a task at different periods.
It also addresses issues which do not arise in other
adaptable systems. These issues include determining a
value for running redundant shadow tasks as opposed to
fast recovery, the potential need for a fast reallocation of
resources for graceful degradation, and the need for
consideration of the transient effects of reallocation, such
as tasks not getting sufficient time in a period because of
other tasks migrating and changing periods.

The remainder of the paper is structured as follows.
First, motivations and general concepts for task
reallocation in control systems are discussed. Several
assumptions about the underlying computer system are
then made. Two algorithms are given for reallocation,
one for independent tasks, and one for related tasks, and
the algorithms are evaluated. The next issue that is
addressed is that some tasks which are not migrating or
changing periods may not be given their full allotted time
in some periods during the reallocation process, due to
other tasks migrating and changing periods. Then, an
example control application is given, along with a
determination of the rewards associated with running the
task at different frequencies and the reward associated

with having a redundant shadow task. The paper
concludes with a summary and discussion of future
directions.

2. Changing Control Performance by
Extending Task Periods

In the proposed approach, tasks’ periods are
increased or decreased in order to optimize system
performance by giving more processor utilization to
more important tasks. The system is presented with
reward rates for running different tasks at different
frequencies, and attempts to maximize the sum of the
reward rates. The task reward rates represent the utility
gained per unit of time a task is run at a given frequency.

Each task may run at one of several allowed
frequencies, and the reallocation algorithms will adjust
the reward rates and utilizations for the tasks by adding
or removing discrete utilization increments. Each
utilization increment has a reward rate increment
associated with it.

The system-wide reward rate is the sum of all the
individual task reward rates. The system-wide reward
rate function will be additive. For sets of related tasks
which are dependent on each other such that they could
not have independent terms in the system-wide reward
rate function, the tasks may be required to have their
utilization increased or decreased together. Also, one
task gaining a higher reward rate by using more resource
may be dependent on a related task being at a specific
level of performance. A simpler algorithm can be used if
the tasks are independent.

In order to optimize computer system performance,
one must have some method of determining the reward
rates for running a task at different periods. This measure
will be the performance index (PI), which is the objective
to be minimized or maximized by the control. For
instance, if the goal is to minimize fuel consumption in
an aircraft maneuver, the PI would be a measure of how
much fuel is used. In tracking problems, the PI is often
the integral of the square of the deviation from the
desired trajectory. The advantage of using the PI is that
there is a large body of existing literature on optimal
controls, that can be used to provide good performance
measures for particular task goals, and can assist in the
clarification and definition of task goals.

The PI may be used to compare values of the same
task running at different periods, but not to compare the
value of different levels of performance of different
tasks. Ideally, one could measure the effect of changing
a task’s frequency on overall system performance. This
may be difficult to measure, however. An easier
substitute approach would be to use an appropriate PI for
the task that approximates the value to the larger system,
scaled appropriately, as an estimate of the value to the
overall system for running the task.

The PI will also be used to determine the cost of
allowing a task to go without updates for some length of
time. The cost will be used to decide whether the task can
simply go without running during the recovery delay
after a processor fails, or if the cost of its absence would
be so great that a redundant shadow task must be kept so
that the task is always running.

A shadow task is a redundant copy of a task running
on a different processor in case the processor running the
main task fails. For flexible period tasks, it will be
assumed that the shadow task is run at the minimal
allowed frequency. Since the shadow’s outputs are not
used most of the time, there is no need to commit more
than minimal resources to it.

It will be assumed for all tasks that the function of
reward rate with respect to frequency is increasing
convex.

3. Computer System Software Model and
Assumptions

Before addressing how to carry out reallocation in a
real-time control system, some assumptions about the
computer system, scheduling disciplines must be made.
Several assumptions about the computer system are as
follows:

• There are on the order of 4 to 16 processors in the
system. This is reasonable, noting that many
real-time multiprocessor systems have tended to be
lowly parallel, rather than massively parallel.

• Most of the real-time tasks are periodic.

• Tasks are preemptive and all processors are
equivalent.

• Changes in system configuration are from
infrequent causes, such as recovery from failures,
mode changes, or new long-running applications
starting.

• Tasks write out periodic checkpoints, such that they
can be re-started easily after a processor failure.

• Some middleware and OS services are provided,
including clock synchronization, task replication,
and a leader election process.

The above assumptions are commonly used and hold for
many real-time control systems.

Three scheduling algorithms for periodic tasks are
commonly cited in the literature: rate monotonic (RM),
earliest deadline first (EDF), and simply periodic (SP).
With RM scheduling a shorter period task has higher
priority than a longer period one, and with EDF
scheduling the task with the nearest deadline has the
highest priority. SP scheduling is a simplification of both
RM and EDF in which each task’s period is a multiple of

all shorter periods and evenly divides all longer periods
and the shortest-period tasks have highest priority. This
paper will concentrate on SP scheduling, because using
SP scheduling facilitates on-line period changes. Some
terminology and information for SP scheduling is as
follows. Periodic tasks run once in each period; in each
period, onejob of the task runs. Each period is referred
to as aframe. A set of tasks is schedulable under the SP
scheduling discipline if and only if the sum of the tasks’
processor utilizations is less than 1.0.

4. Heuristic Reallocation Algorithms
In this section, the reallocation problem is defined,

and two heuristic algorithms for reallocation of
processor utilization to the tasks are discussed. Their
primary objective is to generate an allocation with a high
reward rate, and their secondary objective is to minimize
the number of tasks moved. Both algorithms are meant to
be used for quick on-line generation of a new allocation
for a system, which would be required for failure
recovery, so they must have low complexity.

The algorithms change the utilizations of the tasks in
discrete increments, by changing from one allowed
frequency to another, and assign tasks to the processors.
These increments are so chosen to preserve the SP
property. The algorithms must assign tasks to processors
in such a fashion that shadow tasks do not end up on the
same processor as the main task. Also, some utilization
increments can only be allocated if another task is
already allocated to a certain level — thus, there may be
dependencies between increments. Finally, there may be
instances in which utilization must be increased for
multiple related tasks simultaneously in order to get an
increase in reward rate.

The complete problem statement, therefore, is to find
an allocation, subject to the constraints that:

1. No processor can be used for more than 1.0 utiliza-
tion,

2. A task and its shadow, or two shadows of the same
task, are not placed on the same processor,

3. An increment which is dependent on other incre-
ments cannot be allocated unless all of its predeces-
sors have been allocated,

4. For a multiple-task increment for related tasks, all
of the component increments are added to their
tasks, or none of them are.

The objective is to maximize reward rate by allocating
utilization to tasks and assigning them to processors.
Further, as discussed in Section 2, it will be assumed that
the reward rate functions with respect to frequency are

convex. It will also be assumed that no increment is
dependent on an increment of lower or equal
reward-rate-per-utilization.

It can be trivially shown that the problem is
NP-complete. The problem can be restricted to the
NP-complete problem of multiple 1-0 knapsack [7] by
letting each task be independent and have one increment
only, of arbitrary utilization and reward rate. Thus,
heuristic solutions must be used to generate allocations
for large-sized inputs.

Two algorithms are presented to solve the problem
above. The first is an algorithm for independent tasks
(AIT), which does not handle dependencies between
increments, and does not handle multiple tasks needing
to be incremented simultaneously (that is, it ignores
constraints 3 and 4 above.) The algorithm for related
tasks (ART) does handle these, but has a higher
complexity. Both algorithms work by attempting to
assign the highest reward-rate-per-utilization increments
first onto the processors, and both use a surrogate
knapsack-based approach [7], which is a large, single
knapsack used to approximate a number of smaller ones.
In this case, the smaller knapsacks are the processors.

The AIT is outlined in Figure 1. It works by
estimating how much total resource it may allocate to the
tasks, and allocates as if it had a large, single ‘pot’ of
utilization. It then balances the tasks on the processors by
the utilization-balancing-decreasing algoritm [2]. Using
the assignment generated by the utilization-balancing, it
goes to each processor and uses a greedy knapsack
algorithm to generate an actual allocation. The greedy
knapsack algorithm can produce a result with a reward
that is an infinitely small fraction of the optimal reward,
but it works well for small items.

A task which has an initial assignment will be moved
to the least loaded processor on which it is allowed if the
resulting decrease in the sum of the squares of the
processor utilizations exceeds a threshold value which is
supplied as an argument to the algorithm. The threshold
can be used to roughly control the percentage of tasks
which are moved during reallocation.

The utilization balancing algorithm is the normal
utilization-balancing-decreasing algorithm, modified to
be able to check for a shadow not being allowed on a
processor in O(1) time, and to be able to go on to check
the next least loaded processor in O(logp) time, wherep
is the number of processors. The worst-case complexity
of the entire AIT isct log ct + Bt log p, wheret is the
number of tasks,p is the number of processors,c is the
average number of utilization increments per task, andB
is the average number of shadows per task.

The AIT was evaluated in several different ways with
100 task sets generated in accordance with Figure 2. The
average reward rate with no initial allocation for a given
number of processors is shown in Figure 3. The average

reward rate for starting with 2 more processors than a
given number and then removing 2 randomly and
reallocating, in order to simulate a failure, is shown in
Figure 3. In each of these simulations, the average of the
generated reward was close to the average of the upper
bound on the optimal reward for the task sets, as shown
in the figures.

Also shown in Figure 3 is the reward rate obtained
by using an alternative algorithm, which instead of
allowing tasks to be re-assigned to any processor, assigns
all of the tasks on a failed processor to a single randomly
selected processor, then allocates greedily to the tasks
there. This method does not produce as high a reward
rate, although it does have some possible advantages.
One advantage is that there is less computation required
to generate the next assignment. It may also have much

Inputs:
• Task utilization increments
• Initial task assignments
• Task disjointness requirements due to

shadows
• A threshold of balancing improvement that

must be exceeded for a task to move
Outputs:

• Assignment of tasks to processors
• Allocation of utilization to tasks

1. Construct a vector of all the utilization increments of
all the tasks

2. Sort the vector by decreasing reward rate per resource
3. In order of decreasing reward rate per resource,

allocate increments from the vector to the tasks until
allocated utilization exceeds total available
utilization. This generates an initial guess allocation

4. For each task, in decreasing order of amount of
utilization allocated in the guess allocation,

• If the task has an initial assignment, move it to
the least loaded processor on which it is
allowed if the resulting decrease in the sum of
the squares of the processor utilizations
exceeds the threshold value.

• If the task is not assigned, place in on the least
loaded processor on which it is allowed.

This generates the task assignments to the processors.
5. Reset all the tasks allocations to 0. In order of

decreasing reward rate per resource, allocate each
increment from the vector to its task if there is
sufficient utilization remaining on the processor to
which the task was assigned. This generates the final
allocation.

Figure 1. Algorithm for Independent Tasks (AIT)

less recovery overhead, since the several processors that
may accept the tasks of a given processor could be
chosen in advance, with task code placed on them and
task checkpoints sent to them.

In the case where 2 processors were gained, the
average fraction of the tasks which changed processors is
shown in Figure 4. As can be seen, when there are few
processors, a higher fraction of tasks move than when
there are more, since the additional resource is a higher
fraction of the total resource.

The algorithm as presented does not have a bound for
the ratio of reward in the generated allocation to the
optimal reward — it could be zero. It can, however,
easily be shown that from a clean start (no initial
assignment) and without shadows, that given an
allocation to the tasks requiring a total ofU utilization,
and given2U processors, all tasks will receive their
allocated amount. Without shadow tasks and initial
assignments, the AIT could be modified to have a bound
of 1/2 the optimal reward rate. The method of achieving
this bound is similar to the bounded greedy knapsack in
[5]. A proof of these bounds is omitted here for lack of
space.

• 50 tasks
• Task period extensibility distribution: 1-20% 2-30% 4-30%

8-20%
• Task reward for first increment uniformly distributed

between 1 and 10
• Each extension by factor of 2 reduces reward by a factor

which is uniformly distributed between 1.5 and 5.0
• Task maximum utilization uniformly distributed between

0.02 and 0.33
• 25% chance of a task requiring a shadow

Figure 2. Synthetic Task Set for AIT

0 2 4 6 8 10 12
0

5

10

15

20

25

30

Upper Bound

AIT

Alternative Algorithm

Average Total Utilization

Number of Processors

R
ew

ar
d

R
at

e

Re−Allocated after Losing 2 Processors −− Failure

Figure 3. After Losing 2 Processors with AIT

The algorithm for related tasks (ART) is outlined in
Figure 5. The algorithm searches for the largest size of
surrogate knapsack that generates an allocation that can
be successfully packed on to the processors. Unlike the
AIT, the ART allows dependencies of one increment on
another, and multiple task increments are also allowed.

The bin packing algorithm is a normal
best-fit-decreasing bin packing algorithm, modified to be
able to determine if a shadow task cannot be placed on a

3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Fraction of Tasks Moved

Number of Processors

Fr
ac

tio
n

of
 T

as
ks

 M
ov

ed

Figure 4. Fraction of Tasks Moved after
Gaining 2 Processors

Inputs :
• Multi-task and single-task utilization

increments,
• Disjoint placement requirements due to

shadows
• Initial task assignments

Outputs :
• Assignment of tasks to processors
• Allocation of utilization to tasks

1. Construct a vector of all the utilization increments of
all the tasks

2. Sort the vector of increments by decreasing reward
rate per resource

3. Do a binary search over the interval [0,P] to tolerance
tol to find the largest surrogate knapsack value
whose corresponding greedy allocation can be
packed on the processors:

• Allocate by greedy knapsack algorithm into
the surrogate knapsack

• Sort tasks by utilization allocated
• In order, assign tasks where currently

assigned, if sufficient utilization remaining
• Place the remaining tasks

Best-Fit-Decreasing

Figure 5. Algorithm for Related Tasks (ART)

processor in O(1) time, and able to find the next-best-fit
in O(log p) time, wherep is the number of processors.
The worst-case complexity of the entire ART isct log ct
+ Bt(log tol)(log p), wheret is the number of tasks,p is
the number of processors,c is the average number of
utilization increments per task,tol is the tolerance of the
binary search, andB is the average number of shadows
per task.

The ART was evaluated in several different ways
with 100 task sets generated in accordance with Figure 6.
The average reward rate with no initial allocation for a
given number of processors is shown in Figure 7. The
average reward rate for starting with 2 more processors
than a given number and then removing 2 randomly and
reallocating, in order to simulate a failure, is also shown
in Figure 7. In each of these simulations, the average of
the generated reward was close to the average of the
upper bound on the optimal reward for the task sets, as
shown in the figures.

The fraction of tasks moved in the case of gaining 2
processors is shown in Figure 8. Again, with increasing
number of processors, a lower fraction of running tasks
are moved.

5. Scheduling Issues for Reallocation
After a new task allocation has been generated, it

must be communicated to all the processors, which must
adjust task periods and migrate tasks in order to bring it
into effect.

It can be shown that only jobs that are in progress
during reallocation can be given too little time under the
SP scheduling discipline. Once a task is scheduled the
first time after the reallocation, all lower- and
equal-period tasks will have already re-started at their
new allocation. Since the new allocation is valid (i.e., the
utilization is less than 1.0), the utilization of the given
task and lower- and equal-period tasks must sum to less
than one. Longer-period tasks can be ignored, since the

• There are 10 groups of related tasks which must be
increased together

• The number of tasks in each group is uniformly
distributed between 1 and 8

• The reward for the first increment of each group is
uniformly distributed between 1 and 10

• The distribution of the extensibility of the group is:
1-20% 2-30% 4-30% 8-20%

• Maximum utilization is uniformly distributed between
0.04 and 0.50 for each task

• For each task group, each extension by a factor of 2
reduces reward by a factor which is uniformly distributed

shorter period tasks have priority over them. Thus the job
of a task that starts in the period following reallocation
will have sufficient time to complete.

Tasks which are migrated, or have their periods
change, will lose a job that is running when reallocation
starts. For jobs which do not finish in one of their frames,
whether to continue the job in the next frame, or start a
new one, is task-dependent.

6. Example Application
An example of determination of the reward rates for

different frequencies of a control application with a
flexible period, and determination of the reward rate for
a shadow task for that application, is given as follows.

Consider a classical inverted pendulum application,
shown in Figure 9. The objective is to keep the anglex
zero, while using only a low control torque. Noise torque
disturbs the system, and requires the controller to react to

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

Upper Bound

ART

Allocated from Clean Start

Average Total Utilization

Number of Processors

R
ew

ar
d

R
at

e

Reallocated after Losing 2 Processors −− Failure

Figure 7. ART After Losing 2 Processors

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Fraction of Tasks Moved

Number of Processors

F
ra

ct
io

n
of

 T
as

ks
 M

ov
ed

Figure 8. Fraction of Tasks moved after Gaining
2 Processors with ART

it. A simple compensator will be emulated in a control
task with a zero-order-hold approximation, and the
constants of the approximation are re-calculated each
time the task’s period changes. The transfer function for
the plant is 1/(s2-1), and for the compensator
35(s+2)/(s+10).

In this example, the PI will be:

wherex is the angle of the pendulum, andu is the control
torque, and the objective is to minimize the PI. This is a
common form of PI [4], being a measure of controlled
system performance and of energy used, and the
coefficients of the two terms (in this case both 1) can be
varied to make either system performance or control
energy more important.

The average ofdJ/dt over a simulation interval is
used to generate a steady-state penalty rate for frequency
f, as follows:

whereu is the emulated control law at frequency f, and
tss is long enough that the average penalty rate can be
considered steady state. Running the emulated control
law at different frequencies for 10 seconds and averaging
produces the average penalty rate function shown in
Figure 10. As can be seen, in this case the function of the
penalty rate with frequency is concave, meaning that the
function of reward rate with frequency will be convex.

In order to estimate the value of a shadow task, the
cost of allowing the system to go without an update for a
given period of time must be found. A plot of the penalty
for going a given time without updates is shown in
Figure 11.

Figure 9. Example System

u, control torque applied to base of pendulum

x, angle of pendulum

J x u t, ,() x
2

u
2

+() τd
0

t

∫=

PR(f)
1
tss
----- x

2
u

2
+() τd

0

tss

∫=

The penalty for going timet without an update, P(t),
is calculated as the average penalty for a set of 30 second
intervals with the emulated control law running atfmin,
with a gap of timet in the control updates, subtracted
from the average penalty over 30 seconds with a
non-interrupted control law atfmin. For this example,fmin
is chosen to be 10 Hz.

For this example system, as can be seen in Figure 11,
the penalty for going a given time without updates
accelerates until it hits the “stop”, when it becomes linear
and continues at the maximum allowed penalty. Also, as
in the case in many systems, brief periods without an
update cost very little, meaning that there is no great
increase in penalty if the task misses a few periods.

It is now desired to translate these results from
control theory into reward rates for the reallocation
algorithms. The steady-state penalty rate mentioned
above is used to generate a reward rate. For use in
reallocation, the raw penalty or reward rates must be
weighted, to give an adjusted reward rate. The weight
must be specified externally to the task. The PI for a
given task can be used to compare the reward rate for
running that task at 10 Hz against the reward rate for the
same task running at 20 Hz, but cannot be used to
compare one task against another. Using a PI can cut the
designer’s problem from having to specify a reward
function for the task to having to specify a single number,
the weight, but one would also desire a systematic way of
finding the weight. This issue is an area for future work.

The cost of going without updates is used, along with
the estimated recovery delay and the estimated failure
rate, to determine an expected cost incurred due to not
having a shadow task. Using the estimated reward rate
for a shadow, it can be decided whether it would be better
to spend the utilization needed for a shadow task indeed
running a shadow task, or instead making the primary
task run with better performance. This evaluation is a
specific case of performability [8].

10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Average Penalty Rate vs. Frequency

Task Frequency, Hz

Pe
na

lty
 R

at
e

Figure 10. Average Steady-State Penalty Rate

7. Conclusion
We have shown a method for adaptive processor

utilization allocation in real-time control systems that
can be used for graceful degradation, for system
overloads due to new applications or changes in
applications, and for future expansion in resource use if
total resources become greater due to faster processors or
applications being no longer needed. We have presented
a framework for valuing the running of control tasks at
different frequencies that uses well-understood
performance indices from control theory. We have
presented two algorithms for processor utilization
reallocation, one for independent tasks, and one for
related tasks, and evaluated each with synthetic
workloads.

There are several areas for future work. One is
finding a systematic way of determining the coefficients
by which to scale the PI to get the adjusted reward rate.
Another possible area of future work is to allow other
resources to be allocated, along with processor
utilization. The two main options are communication
bandwidth, and memory. Finally, this paper has
concentrated on periodic control tasks, but extending the
allocation of processor utilization to tasks which do not
fit the periodic model, but still use a given fraction of the
processor’s utilization over some period of time, would
be simple. This is because the AIT and ART algorithms
allocate utilization without relying on assumptions about
the scheduling of the tasks.

References
[1] T. Abdelzaher, E.M. Atkins, and K.G. Shin, “QoS
Negotiation in Real-Time Systems, and its Application to
Flight Control”,IEEE RTAS 97, pp.228-238.

[2] Bannister, J.A. and K.S. Trivedi, “Task Allocation in
Fault-tolerant Distributed Systems”,Acta Informatica, Vol. 20,
1983. pp. 261-281.

0 2 4 6 8 10
0

50

100

150

200

250

300

350
Average Penalty for not Updating Control Output

Time without Update, s

Pe
na

lty

Figure 11. Average Penalty for Going without a
Control Update

[3] J.K. Dey, J.F. Kurose, D.F. Towsley, C.M. Krishna, and M.
Girkar, “Efficient On-Line Processor Scheduling for a Class of
IRIS Real-Time Tasks”,SIGMETRICS 1993, pp. 217-228.

[4] Franklin, Gene.Digital Control of Dynamic Systems.
Addison-Wesley, 1990.

[5] Garey, M. and D.S. Johnson,Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman,
1979.

[6] Liu, J.W.S., W-K. Shih, K-J Lin, R. Bettati, J-Y. Chung.
“Imprecise Computations”,Proceedings of the IEEE, Jan.
1994, pp. 83-93.

[7] Martello, S. and P. Toth,Knapsack Problems : Algorithms
and Computer Implementations. Wiley, 1990.

[8] J.F. Meyer, “On Evaluating the Performability of
Degradable Computer Systems”,IEEE Transactions on
Computers C-29, 1980. pp. 720-721.

[9] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A
Resources Allocation Model for QoS Management”,IEEE
RTSS 97, pp. 298-307.

[10] P. Ramanathan , “Graceful Degradation in real-time
control applications using(m,k)-firm guarantee”,IEEE FTCS
27, 1997, pp. 132-143.

[11] M. Ryu, S. Hong, and M. Saksena, “Streamlining
Real-Time Controller Design: From Performance
Specifications to End-to-End Timing Contstraints”,IEEE
RTAS 3,1997, pp. 91-110.

[12] D.B. Seto, J.P. Lehoczky, L. Sha, K.G. Shin, “On Task
Schedulability in Real-Time Control Systems”,IEEE RTSS 96,
pp. 13-21.

[13] K.G. Shin, C.M. Krishna, and Y.-H. Lee, “A Unified
Method for Evaluating Real-Time Computer Controllers and
Its Application”,IEEE Transactions on Automatic Control,
April 1985, pp. 357-365.

