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Abstract

Unlike deterministic real-time communication in which
excessive resources may be required for absolute per-
formance guarantees, statistical real-time communication
seeks to achieve both probabilistic performance guaran-
tees and efficient resource sharing. In this paper, we pro-
pose a framework for statistical real-time communication
in ATM networks that provides delay-guaranteed transport
of MPEG-coded video traffic with a statistically-guaranteed
cell-loss ratio. In order to provide delay-guaranteed com-
munication service, we employ a modified version of Traffic-
Controlled Rate-Monotonic Priority Scheduling (TCRM).
We multiplex a set of statistical real-time channels that share
(i) similar traffic characteristics into a common channel
called a macro-channel and (ii) the resources of the macro-
channel. Individual statistical real-time channels are given
timeliness and probabilistic cell-loss guarantees. A macro-
channel is serviced by the modified TCRM which improves
link utilizationand makes channel management simpler. Us-
ing the analysis of an M/D/1/N queueing system, we pro-
pose a procedure for determining the transmission capacity
of a macro-channel needed to statistically guarantee a cell-
loss ratio bound. Simulation results have shown our frame-
work to work well as compared to the other approaches.
The overall cell-loss ratios for multi-hop statistical real-time
channels are shown to be smaller than the pre-determined
bounds.

1. Introduction

Providing integrated services in high-speed store-and-
forward networks like ATM is difficult because of the wide
range of traffic patterns and quality of service (QoS) require-
ments to support. Real-time communication services such as
video & audio conferencing, video-on-demand, and remote
medical services in an integrated network pose serious chal-
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lenges in meeting their stringent QoS requirements, such as
bounded cell-delivery delay and cell-loss ratio, while han-
dling the burstiness of their traffic.

Real-time communication can be classified into two cat-
egories according to QoS requirements:deterministicand
statistical [1]. In the former, QoS requirements are spec-
ified in deterministic terms and no cell losses or deadline
misses are allowed. In order to satisfy its absolute QoS re-
quirements, each deterministic real-time connection requires
resource reservation based on the worst-case source traffic-
generation behavior, thus resulting in severe underutilization
of network resources when source traffic is bursty. In order
to make more efficient use of network resources, statistical
real-time communication specifies QoS requirements insta-
tistical (instead of deterministic) terms, thus tolerating a cer-
tain percentage of cell losses and deadline misses. Such a
specification allows for overbooking network resources and,
at the same time, enhancing the multiplexing gain. Statisti-
cal real-time communication is useful to those applications
(i) that can tolerate a portion of cell losses and deadline
misses and (ii) whose traffic is bursty. The statistical mul-
tiplexing gain is substantial, especially in Variable-Bit-Rate
(VBR) applications such as MPEG-coded video.

Many studies on supporting statistical performance guar-
antees in a WAN environment have been reported in the lit-
erature [7, 12, 31]. In particular, Zhanget al. [31] derived
a statistical bound on the end-to-end delay by applying the
Exponentially-Bounded Burstiness (E.B.B.) process model
[30] to Generalized Processor Sharing (GPS) networks. Al-
though their work is theoretically elegant, it assumes an in-
finite buffer at eachnode. Moreover, the implementation
complexity of PGPS must be resolved before it can be used
for high-speed networks like ATM [20].Effective band-
widthhas been investigated in order to provide statistically-
guaranteed QoS in ATM networks [7, 12]. This approach is
based on the large deviation theory and often employs an on-
off process as a source traffic model. In particular, Elwalidet
al. [7] derived the worst-cast traffic parameters for achieving
lossless multiplexing and used them in order to extract mul-



tiplexing gains from the statistical independence of traffic
processes subject to the constraint of a small buffer-overflow
probability. They employed the leaky-bucket-regulated pe-
riodic on-off process as their input traffic model to this end.
In order to calculate the overflow probability in the buffered
multiplexing system like an ATM multiplexer, they devel-
oped a virtual buffer/trunk system. This model enabled them
to transform the two-resource (buffer and link bandwidths)
reservation problem into a single-resource reservation prob-
lem. By using this model, they were able to use the Chernoff
bound as a buffer-overflow probability estimate. Although
their approach is mathematically elegant, the estimate based
on the extremal on-off process is quite pessimistic as we
shall see in Section 4.2.

In this paper, we propose a framework to provide statis-
tical real-time communication services for MPEG videos in
ATM networks based on Traffic-Controlled Rate-Monotonic
Priority Scheduling (TCRM) [20]. The TCRM was origi-
nally proposed as a cell-multiplexing scheme for realizing
deterministic real-time communication in ATM networks.
While it is simple to implement, the TCRM achieves a good
channel accommodability. The TCRM, however, does not
allow statistical multiplexing among real-time connections.
We make a slight modification to the TCRM so that it may
allow statistical multiplexing among a set of real-time con-
nections. The modified TCRM retains the property of pro-
viding a CBR (Constant-Bit-Rate) pipe to each individual
virtual channel. Therefore, every cell of each virtual chan-
nel is guaranteed to be delivered within a certain bound as
long as it is not lost due to buffer overrun. By employing the
histogram-based model [29] as the input traffic specification
for video traffic data along with the modified TCRM, we
analytically derive a statistical bound for the average cell-
loss ratio of each statistical real-time channel. The TCRM’s
ability to provide CBR pipes is crucial to our analysis. Sim-
ulation results are shown to support our analysis.

Our approach differs in several aspects from the effective
bandwidth approach [7, 12] in providing statistical real-time
communication services. First, our approach can provide
a framework that can control the capacity of a trunk over
which statistical real-time channels are multiplexed using
the TCRM. Therefore, it can be used not only for a large
ATM network but also for a small system that multiplexes
only dozens ofreal-time channels. Second, compared to the
effective bandwidth approach, ours provides much tighter
cell-loss estimates that can be used for channel-admission
control. Lastly, we can reduce the complexity of channel
admission control by adjusting the number of bins in the his-
togram while the Chernoff bound approach requires solving
non-linear equations in calculating cell-loss estimates.

The remainder of this paper is organized as follows. Sec-
tion 2 defines a real-time connection with statistical perfor-
mance guarantees (i.e., a statistical real-time channel) and
reviews the the characteristics of the TCRM. In Section 3,

we describe the MPEG video source model and analytically
derive the cell-loss ratio ratios of a set of real-time channels
for both single-hop and multi-hop cases. Section 4 presents
a simulation study with real MPEG video data and compares
our approach with the effective bandwidth approach. The
paper concludes with Section 5.

2. Background

Providing statistical real-time communication service re-
quires source-traffic modeling, resource reservation, and
an appropriate scheme for cell-multiplexing and buffer-
management. This section describes the cell-scheduling
scheme employed in our approach.

We first define astatistical real-time channelas a uni-
directional virtual circuit that guarantees the probability of
losing a cell of this channel to be less than a given number
Z:

Pr(end-to-end cell loss) � Z: (1)
Although a statistical real-time channel can also be defined
in terms of delay as was done in [5], we consider only
the cell losses due to buffer overrun, because the modified
TCRM used in our scheme can guarantee the delivery dead-
line of every cell as long as it is not lost due to buffer over-
run. (More on this will be discussed in Section 3.4.2.)

2.1 TCRM

The TCRM [20] is a cell-scheduling scheme for output-
queueing ATM switches in order to provide a guaranteed
throughput to individual deterministic real-time channels
sharing a common outgoing link. It emulates circuit switch-
ing during a period longer than the cell inter-arrival time
of each real-time channel. The TCRM consists of a set
of traffic controllersand arate-monotonic priority sched-
uler. A traffic controller is assigned to each individual real-
time channel and the rate-monotonic priority scheduler is
shared by all the real-time channels running over the link.
The function of a traffic controller is to keep the cell-arrival
rate at the scheduler below the pre-specified throughput,
�i, by holding early-arrived cells until their expected ar-
rival times. The rate-monotonic priority scheduler trans-
mits cells according to the priorities of real-time channels
to which the cells belong. Priorities are assigned in the or-
der of throughput,�i, requested by the end-users. That is,
real-time channels that request higher throughputs are as-
signed higher priorities. With the schedulability test in [20],
the rate-monotonic priority scheduler guarantees minimum
throughput�i to real-time channeli. Assuming that an iden-
tical bandwidth/throughput is reserved at every link along
the path, the traffic controllers need buffer space for only
one cell for each channel.

The deterministic real-time communication service pro-
vided by TCRM has two disadvantages due to its strict sep-
aration among real-time channels. The first is inefficient uti-
lization of link bandwidth and buffer, and the second is the



Figure 1. Arrival rate of MPEG-coded video se-
quence: Starwars

complex channel management that results from the require-
ment of monitoring each individual real-time channel sepa-
rately. By allowing real-time channels to be multiplexed sta-
tistically, our new framework for statistical real-time com-
munication utilizes network resources more efficiently and,
at the same time, provides simpler channel management by
monitoring asetof statistical real-time channelstogether.

3. A Framework for Statistical Real-Time
Communication

Using the guaranteed throughput service provided by the
TCRM, we now build the framework for statistical real-time
communication on ATM networks. We first describe the
model of MPEG video traffic sources.

3.1 The Histogram-Based Model for MPEG Video
Traffic Sources

In order to reduce the large amount of multimedia traf-
fic such as video, audio and graphical data, a number of
data compression techniques have been proposed and used.
Compression attempts to keep the quality of played-back
data at the receiving end constant at the expense of chang-
ing the bit rate. Consider an MPEG-coded movie sequence,
Starwars,1 in Figure 1. The sequence shows extremely high
burstiness asI (Intra-coded),P (Predictive) andB (Bidirec-
tional) frames alternate. Accurate characterization of these
compressed data streams is essential for real-time transport
of such data over ATM networks.

Many models were previously proposed for VBR video
under various compression schemes [3, 8, 10, 14, 29, 13,
15, 16, 22, 23, 24, 25, 29, 18, 19]. Since the VBR be-
havior of a video stream strongly depends on the compres-
sion technique used, many of these models do not char-
acterize MPEG-coded video which is widely accepted as
a standard for transmission and storage of video data in

1The original sequence was generated by Garrett and Vetterli [9].

many multimedia systems. How to characterize MPEG-
coded video streams has been investigated by several re-
searchers [16, 24, 15, 18, 19]. They addressed the model-
ing of MPEG streams using a model fitting or an analytic
approach. However, none of them presented an analytic so-
lution to the bandwidth-allocation problem for multiplexed
video streams. For instance, in [18], Krunzet al. character-
ized a video stream using its frame-size histogram and gen-
erated synthetic streams possessing the same characteristics
as the original stream. These synthetic streams are then used
for a simulation study of bandwidth-allocation and buffer-
dimensioning problems. Compared to the analytic approach
considered in this paper, their approach doesn’t scale well
(i.e., has a limitation in dealing with a large number of mul-
tiplexed video streams).

Skelly et al. [29] proposed a histogram-based model in
order to describe a slow-varying VBR video traffic source
like a motion JPEG video. In their model, the traffic-
generation rate from a video source is assumed to be con-
stant during a fairly long period since the bit rate of a mo-
tion JPEG video changes very slowly. Based on this as-
sumption, Shroff and Schwartz [28] derived an analytic so-
lution to the bandwidth-allocation problem for multiplexed
video streams which were deterministically smoothed at
their sources.

The bit rate changes more rapidly in an MPEG video than
in a motion JPEG video, but this change can still be consid-
ered slow compared to a cell’s worst-case link delay if the
ratio of buffer size to the output rate is sufficiently small.
If video frames are decomposed into ATM cells for trans-
mission and cells are injected into the network after being
deterministically smoothed within each frame period, then
the cell-arrival rate remains constant in each frame period.
For example, if a video buffer can hold 100 cells and the
output rate of the buffer is 2000 cells/frame, the worst-case
cell delay at the buffer is 1/20 of a frame period,2 and thus,
the bit-rate change is slow relative to the worst-case cell link
delay.

Under this assumption, we can derive the cell-loss be-
havior of aggregated video streams using a similar approach
to that in [28]. To this end, we extend the use of the
histogram-based video model for an MPEG-coded video as
follows. Let’s assume that all the video streams have the
same frame period,T , and that transmissions of ATM cells
are randomly scattered within a frame period, i.e., random
smoothing at the source. The cell-arrival rate is measured in
each frame period. We can then think of the arrival process
formed by a video stream as a modulated Poisson process
whose modulating process is the cell-arrival rate sequence
of the entire stream. Since the cell-arrival rate changes

2Note that this is acell link delay bound. To calculate the end-to-
end frame delay bound, we should consider additional delays such as
source/destination processing delays and smoothing delay at the source
since we assumed source smoothing.



frame-by-frame, the modulating process keeps it constant
during a certain frame period. The probability mass of a
certain cell-arrival rate can be obtained from the histogram
of frames’ cell-arrival rates. When multiple video streams
are multiplexed, the input process of the aggregate traffic
can also be modeled as a modulated Poisson process if all
the component streams are synchronized frame-by-frame,
i.e., frame-transition times of all the component streams
are synchronized. The frame-transition time is defined as
a time at which the transmission of a new frame starts, and
denoted bykT wherek = 0; 1; 2; : : : . During a time in-
terval, (kT; (k + 1)T ], each component stream generates
a Poisson traffic. Since the superposition of Poisson pro-
cesses forms another Poisson process, the aggregate traffic
becomes a Poisson process during this interval. Consider-
ing full-length videos, the aggregate traffic becomes another
modulated Poisson process. In this case, the modulating pro-
cess has the same form as that of a single video stream, and
the probability mass function (pmf) of the cell-arrival rate
of the aggregate traffic — called therate pmf— determines
the probability masses of cell-arrival rates in the modulated
Poisson process. The rate pmf of the aggregate traffic is ob-
tained by taking the convolution of the rate pmfs of all com-
ponent streams.

The modulated Poisson process model described above
may appear unrealistic due mainly to the condition that all
the component streams are synchronized frame-by-frame.
However, it can be shown that the synchronized traffic-
arrival scenario is the worst case of cell losses for multi-
plexed video streams3 One can then obtain an upper bound
of cell-loss ratio for any frame synchronization scenario us-
ing the modulated Poisson process model.

When a large number of video streams are multiplexed,
the assumption of using random smoothing at the source can
be relaxed since a large number of similar and independent
sources can be considered as a Poisson process [4]. Thus,
as long as the cells of a frame do not arrive in burst as a
result of some form of smoothing — whether it is random or
deterministic — at the source, we can model the cell arrivals
of the aggregate video as a modulated Poisson process.

Figure 2 shows the histogram of the traffic-generation
rate of the sequence in Figure 1. The MPEG sequence is
IBBPBBPBBPBBIBB.... SinceI frames appear once
every 12 frames, the frequency of large frames in the his-
togram is very low compared to that of small frames.

3.2 Macro-Channel

In our approach, a QoS guarantee is given to asetof sta-
tistical real-time channels, rather than to a single real-time
channel as in the deterministic approach. Specifically, we
use a statistical real-time channel to transport a video stream.
These statistical real-time channels are multiplexed onto a

3Because of space limitation, we omitted the proof. For the details, see
[21].
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Figure 2. Arrival rate histogram of Starwars

common “macro” real-time channel which is guaranteed to
receive the minimum throughput provided by the TCRM. A
macro-channel is defined as a single-hop real-time channel
with parameters (�;N ) over a link where� is the bandwidth
(in bits/sec) guaranteed to this channel by the TCRM andN
is the size of buffer needed at the traffic controller of this
channel. Recall that the buffer space for only one cell is re-
served for each real-time channel at its traffic controller in
the original TCRM. In this paper, we change the TCRM’s
buffer size from 1 toN in order to reduce the cell-loss prob-
ability when multiple cells arrive at the macro-channel in a
very short time. The cell-drain rate from the buffer is en-
sured to be�=L using the cell logical arrival times. Since
the admission control in [20] requires only� as a parame-
ter, the change of the buffer size does not require any other
modifications in the structure of the TCRM.

Within a macro-channel, we do not differentiate statis-
tical real-time channels from one another. All the cells
arriving at this macro-channel are transmitted on a FIFO
(First-In-First-Out) basis. This policy simplifies signifi-
cantly channel management within a macro-channel com-
pared to the case of treating individual statistical real-time
channels separately. Note, however, that the cells of a
macro-channel are serviced separately from those of the
other macro-channels, deterministic real-time channels, and
best-effort traffic. Since all statistical real-time channels
sharing a common macro-channel are teatedequallyon a
FIFO basis, all cells in the macro-channel are given the
sameloss probability irrespective of the cell’s channel mem-
bership. This implies that individual statistical real-time
channels sharing a common macro-channel have the same
cell-loss ratio of the macro-channel. That is, the statistical
loss guarantee of a macro-channel implies that of each of
its component channels, hence allowing us to focus on the
macro-channel (or a “bundle” of statistical real-time chan-
nels).

Given input traffic specifications of all of its component
statistical real-time channels, we can derive the parameters
(�;N ) of a macro-channel based on its QoS requirement, or



Macro-Channel

Figure 3. Macro-channel

its cell-loss ratio boundZ.
Figure 3 shows a scenario in which various statistical

real-time communication services are provided. Macro-
channels with different parameters (�;N ) are established
in order to provide different QoS guarantees in a single
ATM network. Although Figure 3 shows one macro-channel
per link, one can establish an arbitrary number of macro-
channels with different cell-loss ratios over a link as long as
there are sufficient resources.

A statistical real-time channelC may run through a
(fixed) multi-hop path between its source and destination.
In such a case, since a macro-channel is established over
eachhop, we need to concatenate a series of “appropriate”
macro-channels each of which is selected from the macro-
channels established over each link along the path, and mul-
tiplex the statistical real-time channelC into them. By an
“appropriate” macro-channel, we mean that it must guaran-
tee the cell-loss ratio required for this statistical real-time
channelC. We will discuss how to choose macro-channels
when we consider admission control later in this section.

Given the above setting, the problem is how to determine
the bandwidth� and the buffer spaceN needed to meet the
given delay and cell-loss requirements. Since the TCRM
bounds the delay overeach link when the buffer sizeN and
the minimum throughput� are fixed, we will first concen-
trate on the cell-loss ratio.

3.3 Cell-Loss Ratio within a Macro-Channel

We want to derive the cell-loss ratio of a macro-
channel using the histogram-based model for aggregate
video sources. For now, we consider only the case in which
all statistical real-time channels are established over only a
single hop, so that all the cell streams are fed into a macro-
channel directly from external sources. We will in Sec-
tion 3.4 relax this assumption.

In order to determine the cell-loss ratio of a macro-
channel, we need the input traffic specification of the ag-
gregate of statistical real-time channels multiplexed over the
macro-channel. Since the histogram-based model is chosen
for source traffic, we need the rate pmf of the aggregated sta-
tistical real-time channels. It can be obtained by taking the
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Figure 4. An M=D=1=N queueing system.

convolution of the rate pmfs of component sources, as dis-
cussed in Section 3.1. We also assume that all the statistical
real-time channels multiplexed are synchronized frame-by-
frame.

According to the MPEG video source model in Section
3.1, an aggregate of multiple video streams has a constant
cell-arrival rate during a frame period, and the cell-arrival
process during this period forms a Poisson process. Dur-
ing the next frame period, the cell-arrival process forms an-
other Poisson process. Suppose a macro-channel is fed with
such a modulated Poisson process. Then, the buffer of the
macro-channel can be considered as a queueing system with
a modulated Poisson process input. Once a new frame pe-
riod started, after some transient period, the queueing system
reaches the steady-state during which the arrival process is a
Poisson process with a certain rate. During the transient pe-
riod, the queueing system either serves cells arrived during
the previous frame period or spends time reaching a steady-
state queue level. If we assume the small ratio of buffer to
output rate discussed in the previous section, the transient
period can be considered negligible compared to the length
of the steady-state, and thus, the cell-loss behavior of the
queueing system can be approximated using the steady-state
analysis. The small ratio assumption is valid in a variety of
applications since most real-time video communications re-
quire a very small link delay bound. Under this assumption,
the cell-loss behavior of a macro-channel can be analyzed in
two steps as follows. First, we fix cell-arrival rate to a con-
stant, say,� (cells/frame), and analyze the cell-loss behavior
of the system with a Poisson arrival input whose rate is�.
Then, using the rate pmf, we calculate the weighted sum of
cell-loss ratios in order to obtain the cell-loss statistics of the
overall system.

Assume that the throughput guaranteed to macro-channel
j is � and that the buffer space reserved at the traffic con-
troller for macro-channelj isN . Then, the buffer of macro-
channelj can be seen as anM=D=1=N queueing system
since the cell inter-transfer time from the traffic controller’s
buffer to the rate-monotonic priority scheduler is constant,
which is L=�. Then � = �=L is the service rate (in
cells/frame) of the queueing system as illustrated in Figure
4. Although there can be multiple queueing systems when
multiple macro-channels run through a link, we specify only
a single macro-channel since different macro-channels are
virtually isolated from one another, thanks to the TCRM’s
Firewall property [20].

When the cell-arrival rate is� in anM=D=1=N system,
the cell-blocking probabilityPb(�) can be calculated using



the followingO(N2) algorithm [6]:

�00 = 1;

�0k+1 = a�10 (�0k �
kX

j=1

�0jak�j+1 � ak); 0 � k � N � 1;

�0;n = (
nX

k=0

�0k)
-1

; n = 0; : : : ; N

Pb;n(�) = 1� (�0;N + �=�)(�1); n = 0; : : : ; N

Pb(�) = Pb;N (�);

where

ak =
(�=�)k

k!
e�

�
� :

�0;n represents the probability that a departing customer
finds anM=D=1=n system empty [6]. The computation
time of this recursion increases with the buffer size,N . For
fast admission control, it is critical to reduce this time. For-
tunately,Pb;n(�) converges toPb(�) rapidly asn increases
towardN except when�=� is close to 1. For example, when
�=� = 2 andN = 100, �0;0, �0;1, �0;2, �0;3, and�0;4
are, respectively, 0.5317,0.5062,0.5012,0.5003, and 0.5001.
Therefore,�0;n converges rapidly to�0;100 = 0:5000. In-
tuitively, when�=� << 1, the cell-blocking probability of
anM=D=1=N approaches zero rapidly as the buffer size in-
creases. When�=� >> 1, �0;n approaches zero rapidly as
the buffer size increases. So,Pb(�) is given by1 � �=�.
In addition, since�0k is non-negative [6],�0;n is a non-
decreasing sequence for any�=�. Therefore,Pb;n(�) upper-
boundsPb(�) for n = 0; : : : ; N . Using these properties, one
can obtain an upper bound ofPb(�) which is very close to
Pb(�) within a reasonable amount of time except when�=�
is close to 1.

The cell-loss ratio of the macro-channel,Pmacro, is given
as the weighted sum of cell-loss ratios where weights are
given by the rate pmf of the aggregated video sources. Thus,

Pmacro =

PM

i=1 Pb(�i)fi�iPM

i=1 fi�i
; (2)

whereM is the number of intervals (bins) in the histogram
andfi is the probability mass of arrival rate�i which is ob-
tained from the histogram of the cell-arrival rate of the ag-
gregate traffic.

3.4 Cell Losses in an End-to-End Connection

In Section 3.3, we considered only the single-hop case in
which the Poisson-arrival approximation holds. However, in
general point-to-point networks, cell streams take multiple
hops before arriving at their destination nodes. In our frame-
work, a statistical real-time channel is multiplexed over ase-
ries of macro-channels on the links along the channel path.
We first describe our assumptions on the traffic switched and
routed via multiple hops and then derive the cell-loss ratio
bound for the end-to-end connection.

3.4.1 Effects of Switching
As cells are switched and routed from one macro-channel
to another, the traffic pattern may change depending on the
traffic condition ateach macro-channel. This raises two
questions on our assumptions about the traffic from ag-
gregate sources in a single hop. One is theaccuracy of
the Poisson-arrival assumption on the traffic from aggregate
sources. The other is the derivation of the new cell-arrival
rate histograms at intermediate nodes, because the histogram
defined at the source may change depending on the condi-
tions of the intermediate nodes. That is, if other statistical
real-time channels sharing the same macro-channel at the
upstream nodes have large amounts of traffic, a statistical
real-time channel may lose a large portion of its cells at those
nodes and the rate pmf at the downstream links may change.

For the time being, let’s assume that the histogram de-
fined at the source node remains unchanged at all intermedi-
ate nodes. In general, the output process of anM=D=1=N
queue is not a Poisson process and cell inter-departure times
are correlated [11]. This poses difficulty in analyzing a
multi-hop statistical real-time channel. This is also the case
in an M=M=1 system analysis. In theM=M=1 system,
the packet inter-arrival and service times are correlated. To
handle this difficulty, Kleinrock proposed to use “Indepen-
dence Approximation” in analyzing a communication net-
work using a general queueing network like the Jackson net-
work [17]. It asserts that, in anM=M=1 system, merging
several cell streams on a transmission link has an effect akin
to restoring the independence of inter-arrival times and ser-
vice times. In particular, he emphasized the independence
of service times of a packet at different nodes, which is not
true in real communication networks. Since the length of a
cell is fixed in ATM networks, the correlation of cell-service
time is not important in our problem. What matters in the
M=D=1=N analysis is the independence of cell inter-arrival
times. As with Kleinrock’s independence approximation,
we assume that the cell inter-arrival time at a macro-channel
at an intermediate link is exponentially-distributed if multi-
ple cell streams routed from different macro-channels on dif-
ferent links and externally-fed cell streams are merged into
this macro-channel. Then, the new aggregate traffic arriving
at this new macro-channel can be approximated as a Pois-
son process, thus enabling the application of theM=D=1=N
analysis result at any macro-channel as long as the number
of multiplexed real-time channels are large enough and the
routing processes are uncorrelated. Our simulation study in
Section 4.2 confirms the validity of this assumption.

Next, let’s consider the rate-histogram of a video stream
switched and routed inside the network. As the traffic
traverses downstream nodes, the original traffic pattern at
the source node will change and may, in general, become
burstier. However, in the rate-histogram model, we assumed
that the cell-arrival process is a Poisson with a certain rate,
say,�, during a single frame period. During the same period,



this cell stream is multiplexed with streams of other statisti-
cal real-time channels onto a macro-channel,Ma. After de-
parting from macro-channelMa, the cell stream is separated
from the other statistical real-time channels and then multi-
plexed onto a new macro-channel,Mb. While being multi-
plexed atMa, some cells of this stream may be lost due to
buffer overrun. Therefore, the number of cells of the stream
at Mb cannot be larger than that atMa. Over the frame
period considered, the arrival rate of this stream atMb, de-
noted byI(�), cannot be larger than that atMa, �. That
is, I(�) � �: Now, let’s consider the entire stream which
was modeled as a modulated Poisson process in Section 3.1.
Let the rate pmf of the process be given byf�i; figi=1;:::;M ,
whereM is the number of bins andfi is the probability mass
of arrival rate�i. Let �a and�b denote the arrival rates of
the stream atMa andMb, respectively. Then,

Prf�b � I(�k)g =
MX

i=k

I(�i) � fi

�

MX

i=k

�i � fi

= Prf�a � �kg (3)

SinceI(�k) � �k,

Prf�b � �kg � Prf�b � I(�k)g: (4)

Thus,
Prf�b � �kg � Prf�a � �kg: (5)

This relation shows that the rate pmf of a video stream at
intermediate nodes isprobabilistically boundedfrom above
by the rate-histogram at the source node. That is,

Pr(cell-arrival rate at the source node� x) �

Pr(cell-arrival rate at the intermediate nodes� x):

In terms of QoS guarantees, it is still effective to use the
traffic characteristics calculated at the source nodes in or-
der to calculate the convolution of the rate pmfs of com-
ponent video streams at intermediate nodes since the cell-
loss probability can still be bounded by using the same traf-
fic characteristics. It allows for simple run-time channel-
establishment at the expense of slightly conservative re-
source reservation. The amount of over-reservation of re-
sources at intermediate nodes is negligible when the cell-
loss probability is quite small, which is the case of most sta-
tistical real-time applications, as will be discussed in Section
4.2.

3.4.2 Cell-Loss Ratio Bound in an End-to-End Connec-
tion

Based on the above arguments, the end-to-end cell-loss
probability of a statistical real-time channel is given by

Pr(end-to-end cell loss) � 1�
KY

j=1

(1� Pmacro;j); (6)

whereK is the number of hops the statistical real-time chan-
nel takes andPmacro;j is the cell-loss probability of the
macro-channel at thejth hop. Notice that althoughPmacro;j

is the cell-loss ratio of the macro-channel at thejth hop, it
is also the cell-loss ratio of individual statistical real-time
channels multiplexed onto the macro-channel.

Although we focused on deriving a cell-loss ratio bound,
it must be stressed that our approach also guarantees sta-
tistically each real-time cell’s delivery delay. That is, the
probability that a cell is delivered to its destination before its
deadline is larger than

QK

j=1(1�Pmacro;j). This is because
a cell which has “survived” buffer overruns on its way to the
receiver is guaranteed to be delivered within abounded time
because buffer size is fixed and the minimum buffer drain
rate is guaranteed at each link by the TCRM. The end-to-
end delay bound of the statistical real-time channel is given
as:

Dend�to�end =
KX

j=1

(Nj + 1)L=�j (7)

whereNj and �j are the buffer size (in number of cells)
and the bandwidth of the macro-channel at thejth hop, re-
spectively, andNjL is the maximum backlog at the macro-
channel upon arrival of a cell. The reason for adding 1 to the
buffer size is to account for the delay at the rate-monotonic
priority scheduler, as can be seen in Figure 4.

3.5 Admission Control for Channel Establishment
Requests

When the establishment of a statistical real-time chan-
nel is requested, the network service provider must execute
channel-admission control in order to guarantee the QoS
promised to a new channel as well as existing real-time
channels. One approach to channel admission control is to
use a set of pre-established macro-channels. Each local link
has its own set of pre-established macro-channels. Each
macro-channel’s buffer size and bandwidth are fixed, and
its QoS parameter (i.e., cell loss ratio bound) is also fixed.
When a new channel request arrives, the network service
provider selects a macro-channel for each local link from the
pre-established macro-channels such that the end-to-end de-
lay and cell-loss bound given by Eq. (7) and Eq. (6), respec-
tively, are smaller than the user-requested bounds. Then,
at each local link, the rate pmf of a new aggregate stream
consisting of existing channels multiplexed onto the chosen
macro-channel and the requested channel is derived using
convolution. Using Eq. (2), one can calculate the maximum
cell-loss ratio of the aggregate stream. If the maximum cell-
loss ratio is less than, or equal to, the pre-specified cell loss
ratio bound of the macro-channel, the requested channel is
accepted. Otherwise, the request is denied. For a multi-hop
statistical real-time channel, such an admission test must be
executed at every node along the path.



4. Simulation and Discussion

In order to demonstrate the usefulness of the histogram-
based model for statistical real-time communication, we
have conducted an in-depth simulation study using MPEG-
coded video traces. Since every cell which survives buffer
overruns is delivered in time by the TCRM, we will consider
only the cell-loss ratio as the QoS parameter.

4.1 Simulation Model

Figure 5 shows the topology of an ATM network used
for the simulation study which consists of 5 nodes and 4
links. All the links are simplex, and thus, cells are trans-
mitted only in the direction of arrows shown in the figure.
Also, for the sake of simplicity, we assume that there exists
only one macro-channel over each link. That is, there is no
deterministic real-time traffic, and other statistical real-time
traffic or non-real-time traffic except for the statistical real-
time traffic is multiplexed over the macro-channel oneach
link. Since the TCRM provides a virtual circuit with a guar-
anteed throughput over an ATM link, a macro-channel can
be considered as a CBR pipe with throughput� and the input
buffer of sizeN .

In this network, we multiplexed 20 statistical real-time
channels on each link. The starting frames of each statisti-
cal real-time channel are randomly selected from the clips of
movieStarwarsin Figure 1, and 17 different MPEG-coded
video clips.4 The length of each stream is1000 frames, and
each run lasts about 50 seconds since we set one frame in-
terval to 1/24 second. First, we conducted an experiment
using streams only from theStarwarssequence in order to
study cell-loss ratios in a homogeneous-traffic environment.
Using convolution, we derived the pmf of the arrival rate
of the aggregate of 20 streams in Figure 6. We derived a
20-bin histogram from the sequence, which requires simple
operations for the convolution. The average cell-generation
rate of the aggregate traffic is about 822 cells/frame and the
maximum cell-generation rate is about 9,000 cells/frame.

Next, in order to investigate the heterogeneous-traffic
case, we have conducted a similar experiment using 17 dif-
ferent sequences. We selected as many streams as needed
for the simulation from these sequences. In particular, we
chose 14 streams once and the other streams twice in order
to feed 20 channels which are multiplexed over link 1. In
this case, the average cell-arrival rate of the aggregate of 20
streams was 988 cells/frame and the maximum was about
12,000 cells/frame.

To investigate the various cases, the multiplexed streams
are groupedaccording to their paths: six groups are shown in
Figure 5. For example, group 2 consists of channels whose
sources (destinations) are node A (node E), and that pass
through node C and D. Only the channels of group 1 and 2
traverse link 1. As a result, through link 1, no routed cells

4These sequences were generated by Rose [27].
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Figure 5. The network topology for simulation
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Figure 6. Probability mass function of arrival
rate of an aggregate of 20 statistical real-time
channels of Starwars

are transmitted, but only external input traffic from node A
are transmitted. On link 3, group 2 and 3 are routed from
link 1 and 2, respectively, and group 5 is directly fed from
node C.

During the simulation, the cell transmission from each
source is randomly distributed over one frame duration,
and all the cells belonging to a frame must be transmitted
from the source within one frame duration. At intermediate
nodes, cells are transmitted on a FIFO basis regardless of
their channel identities.

4.2 Simulation Results

In order to investigate the validity of our assumption on
the Poisson arrival process at intermediate nodes, we have
considered a case in which some links, in addition to the
routed traffic from upstream links, are fed with external in-
puts. We have assigned 13 channels to group 1, 6 to group
2, 7 to group 3, 13 to group 4, 6 to group 5, and 7 to group
6 so that 20 streams traverse each link. Note that link 1 and
link 2 are not fed with any routed traffic.

First, we consider a homogeneous traffic environment
in which we multiplex only streams from theStarwarsse-
quence. We have varied the bandwidth assigned to a macro-
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channel established over each link from 700 cells/frame to
2,300 cells/frame. The buffer sizeN is 50 (cells), and thus,
the worst-case cell delay in a single hop is 1/20 frame pe-
riod, i.e., 2.1 msec if the throughput guaranteed to a macro-
channel is 1000 cells/frame. This is small enough to satisfy
the steady-state condition presented in Section 2.1. The cell-
loss ratios are compared to the analysis of anM=D=1=N
system in Figure 7. We only show the average cell-loss ra-
tios because the loss guarantees provided to a macro-channel
and individual statistical real-time channels are the same.
When utilizations of macro-channels are low, the cell-loss
ratios of all links for the two systems do not show any no-
table difference. All the cases simulated show that the cell-
loss ratios are bounded by theM=D=1=N result.5 On the
other hand, when utilizations of macro-channels are high,
the cell-loss ratios of link 3 and link 4 are smaller than the
bounds while those of link 1 and link 2 match the bound al-
most exactly. As we mentioned in Section 3.4, the tail distri-
butions of the aggregate traffic at link 3 and link 4 decrease
because of the cell losses at the upstream links, despite the
fact that the decrease is negligible when the cell-loss prob-
ability is small. This explains the smaller cell-loss ratios at
link 3 and link 4 which have the routed cell streams from
links 1 and 2, when the cell-loss probability is large. From
this observation, we conclude that if we use a macro-channel
with a high cell-loss ratio bound, our scheme will result
in over-reservation of network resources. However, for a
macro-channel with a very small cell-loss ratio bound (e.g.,
10�4), our scheme provides accurate cell-loss estimates, and
thus, enables efficient use of network resources.

In Figure 7, we also show the Chernoff bound estimate of
the cell-loss ratio which is calculated using the derived peri-
odic on-off random process suggested by Elwalidet al. [7].
This approach was chosen since it allows us to analyze the
cell-loss behavior of a buffered multiplexing system. Al-
though the Chernoff bound estimate can be derived using

5In all the cases in this simulation, 99 % confidence-level intervals are
10
�4, so any value below10�4 is considered to be noisy.

more detailed information,e.g., the rate histogram as used in
our approach, it only considers an unbuffered multiplexing
system. We also show the approximation by a Gaussian dis-
tribution, which is based on Central Limit Theorem (CLT)
[12]. Both approaches employed the buffer-overflow prob-
ability as a QoS parameter while ours uses the cell-loss ra-
tio. For the purpose of comparison, we derived the cell-loss
estimates from the buffer-overflow probability obtained by
both methods [26]. The parameters of the on-off process de-
rived from theStarwarssequence are as follows. The peak
rate is 230 cells/frame,6 the mean rate is 41 cells/frame,
and the bucket size of the leaky-bucket regulator is 462,858
cells. The on and off periods derived from the parameters
are 2,450 frame intervals and 11,256 frame intervals, re-
spectively. By substituting these parameters into the Cher-
noff bound estimateaccording to the step suggested in [7],
we plotted the result in Figure 7. In addition to the Cher-
noff bound, Figure 7 shows a moreaccurate refined Cher-
noff bound by Bahadur and Rao [2]. Compared to our anal-
ysis result based on the theM=D=1=N system, both the
Chernoff bound and the refined Chernoff bound estimates
are too pessimistic. Considering the fact that Elwalid’s ap-
proach is based on the extremal traffic description, one can
anticipate the pessimistic result in Figure 7. In contrast, the
M=D=1=N analysis based on the rate histogram provides
a very accurate cell-loss estimate with only a 20-bin his-
togram for which it is not difficult to compute convolutions.
Specifically, when the cell-loss ratio bound is set to10�4,
our scheme requires reservation of 1,712 cells/frame while
Bahadur and Rao’s approach requires reservation of 2,650
cells/frame.

In the CLT approximation, buffer size is ignored and only
bandwidth is considered as a reservable resource. Ignor-
ing buffer size may result in pessimistic cell-loss estimates.
However, as argued in [12], the CLT approximation is shown
to be too optimistic in estimating cell losses for very bursty
traffic like MPEG since it tends to ignore the long tail of
the rate distribution of a bursty source. By contrast, the
M=D=1=N analysis provides a reasonable cell-loss ratio
bound that lies between the Chernoff bound estimate and
the Gaussian approximation.

We have conducted the same experiment using 17 differ-
ent video clips in order to study the validity of our model in
a heterogeneous-traffic environment. We followed the same
procedure as before and plotted the result in Figure 8. The
only difference is choice of the peak rate of the on-off pro-
cess. Instead of 99.9 percentile, we used the average cell-
generation rate ofI frames as a peak rate in order to favor
Elwalid et al.’s approach, but it is not justifiable in a strict
sense since the original peak cell-generation rate is neces-

6Originally, the peak rate for achieving lossless multiplexing was 483
cells/frame, but it resulted in too pessimistic a cell-loss ratio estimate. So,
we instead choose the 99.9 percentile from the cell-arrival rate histogram
as a peak rate.
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sary to obtain the parameters for a lossless multiplexing sys-
tem [7]. Figure 8 shows the simulation result on link 1 only
since each link has a different trunk capacity depending on
the characteristics of the aggregate traffic. However, we ob-
tained similar results on the other links. In the figure, the
M=D=1=N analysis provides a good estimate of cell-loss
ratios as in the homogeneous-traffic case, as compared to
the Chernoff bound estimate and the CLT approximation.
The Chernoff bound estimate is a little closer to the simula-
tion result than the homogeneous case due to the choice of a
smaller peak rate.

Next, we considered the case in which there exists only
routed traffic without any external input traffic at interme-
diate nodes: we disabled group 5 in Figure 5 and changed
the number of channels in each group accordingly. We as-
sign 10 channels to each of groups 1, 2, 3, 4 and 6. Note
that the number of channels multiplexed overeach macro-
channel on each link is kept at 20. In this case, there is no
external input traffic at the macro-channel on link 3. In Fig-
ure 9, we only show the homogeneous-traffic case using the
Starwarssequence. The loss at the macro-channel on link
3 does not make any difference from that on links 1, 2 and
4 when the cell-loss probabilities are small. When the cell-
loss probability is large (i.e., the reserved bandwidth of the
macro-channel approaches the average cell-generation rate
of the aggregate channel), the cell loss of the macro-channel
on link 3 is smaller than others. However, the trend is clear
that the cell-loss probability is bounded by the analysis result
and that the difference between the simulation and analysis
results is small when the cell-loss ratio is small. Thus, the
Poisson-arrival assumption can be applied even when there
is no external input traffic at the intermediate nodes.

The statistical multiplexing gain achieved by increasing
the number of channels multiplexed is shown in Figure 10 in
which the cell-loss ratios are plotted against link utilization
when 5, 10 and 20 channels are multiplexed. The link uti-
lization is normalized against the average cell-arrival rate of
the aggregate sources. We show only theM=D=1=N bound.
One can see that the loss ratios are bounded for all three
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cases, and thus, the histogram-based model satisfies our re-
quirements regardless of the number of statistical real-time
channels multiplexed. Moreover, the statistical multiplex-
ing gain is shown to increase with the number of channels
multiplexed. However, in order to establish a macro-channel
with the cell-loss probability of10�4, we need to reserve the
bandwidth which is twice the average cell-generation rate.
This results from the high burstiness of MPEG data and is
inevitable in order to satisfy the QoS requirement. Although
the macro-channel’s utilization is about 0.5, it does not nec-
essarily mean the waste of bandwidth since the unused band-
width by the macro-channel can be used for transmission of
best-effort traffic, as in the case of real-time channels [20].

5. Conclusion

In this paper, we have proposed a framework for statisti-
cal real-time communication in ATM networks. To quantify
the cell-loss ratio of a set of statistical real-time channels, we
have proposed to use a histogram-based model for the input
traffic specification of MPEG video sources. The histogram-
based model specifies an MPEG video source with the his-
togram of time-sampled traffic-generation rates. Using this
model, we have shown that the cell-loss behavior of a set
of statistical real-time channels can be characterized by an
M=D=1=N system. The simulation results have reasonably



well matched the analysis that is based on the assumptions
including the histogram-based modeling and Poisson arrival
at each link, although, in some cases, over-reservation of
network resources has been observed.
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