
Non-preemptive  Scheduling of Real-Time 
Threads on Multi- level-context  Architectures  

Jan  Jonsson 1, Henrik LSnn 1, and Kang G. Shin 2 

1 Dept. of Computer Engineering, Chalmers, S-412 96 G5teborg, Sweden 
{janjo,hlonn}�9 

2 Dept. of Elec. Engr. and Computer Science~ Univ. of Michigan, Ann Arbor 
kgshin@eocs.umich.odu 

Abs t rac t .  This paper addresses the problem of how to schedule peri- 
odic, real-time threads on a class of architectures referred to as multi- 
level-context (MLC) architectures. Examples of such architectures are 
real-time operating systems with support for user- or kernel-level threads, 
and multithreaded microprocessors endowed with on-chip contexts. A 
common feature of these architectures is that they provide support for 
the administration of threads within contexts at different levels of ab- 
straction. Therefore, the cost for switching between threads will depend 
on the affinity of their corresponding contexts. The main contributions 
of this paper are to demonstrate (i) how the scheduling performance 
for off-line scheduling on MLC architectures can benefit from an inte- 
grated heuristic that is cognizant of both the time-criticality of a thread 
and the current context affinity; and (ii) how the predicted performance 
for on-line scheduling on MLC architectures can benefit from an off-line 
schedulability test that accounts for variations in the context affinity. 

1 I n t r o d u c t i o n  

Assessing the impact  of architectural properties on the schedulability of a real- 
t ime application has become a very important  issue in the real-t ime research 
community.  Most modern microprocessor architectures are endowed with such 
mechanisms as caches and instruction pipelines whose temporal  behavior are 
very difficult to predict a priori. Despite many  recent successful a t t empts  to 
model the behavior of these mechanisms [1, 2], real-time scheduling research has 
not been able to keep pace with the progress in microprocessor design. This has 
led to an unfortunate gap between real-time scheduling theory and its practice. 

An impor tan t  remaining problem is to analyze the effects of context switch 
operations on the schedulability analysis. While tradit ional  real-time schedula- 
bility tests [3] simply assumed that  a context switch can be made at a negli- 
gible cost, more recent tests [4] are capable of incorporating a non-negligible 
context-switch cost. Unfortunately, these schedulability tests are based on the 
assumption that  the cost for a context switch is constant and independent of 
the underlying thread-invocation pattern.  This assumption does not hold for 
an impor tan t  emerging class of architectures referred to as multi-level-context 



364 

(MLC) architectures. A common feature of these architectures is that  they pro- 
vide software and /or  hardware support for the execution of multiple threads in 
the application. The administration of threads requires support for contexts at 
different levels of abstraction, that  is, with different amounts of execution states 
to maintain. When there are more than one context level, the cost for switch- 
ing between two threads will depend on the affinity of their contexts. Since the 
context-switch scenario cannot typically be predicted in advance, existing tech- 
niques for schedulability analysis can only be used with an MLC architecture at 
the expense of overly-pessimistic assumptions on the context-switch cost. This 
will dramatically reduce the usefulness of an off-line schedulability test. 

Many existing real-time systems can be classified as MLC architectures, e.g., 
real-time operating systems with support for user- or kernel-level threads [5]. 
Also, thread-level parallelism is believed to be the only alternative to maintain 
the performance growth of microprocessors [6]. Because one can predict an in- 
creasing demand for computing power in modern real-time applications [7], it is 
very likely that  mutti threaded architectures will also be used widely in future 
real-time systems. In order to analyze the real-time performance of such archi- 
tectures, their degree of run-time predictability must be thoroughly assessed. 

In this paper, we address the problem of non-preemptive scheduling of pe- 
riodic, real-time threads on a uniprocessor MLC architecture. Non-preemptive 
scheduling is the natural  choice for many systems since (i) uncontrolled preemp- 
tion can cause extra context switches which may jeopardize the schedulability, 
(ii) exclusive access to shared resources is guaranteed which eliminates much of 
the need for synchronization and its associated overhead, and (iii) worst-case ex- 
ecution time analysis becomes easier since the instruction stream of a thread can 
execute without interference by other threads. Using a set of randomly-generated 
application thread sets and various context-configuration scenarios, we study the 
performance of a set of heuristic algorithms using the success ratio as the per- 
formance measure - -  that  is, the ratio of the number of successfully-scheduled 
thread sets to the total number of evaluated thread sets. 

Despite the growing interest in the MLC architectures, very few results on 
thread scheduling on them have been reported. The main intent of this paper is, 
therefore, to make the following two contributions: 

C1. For real-time systems employing a time-driven thread dispatching policy, we 
demonstrate an integrated polynomial-time scheduling heuristic - -  cognizant 
of both time-criticality and the current context affinity - -  that  significantly 
outperforms other heuristics when used with MLC architectures. 

C2. For systems employing a priority-driven thread dispatching policy, we pro- 
pose a sufficient schedulability test for the on-line EDF algorithm that  makes 
far bet ter  predictions than existing tests when used with MLC architectures. 

We start  in Sect. 2 to elaborate on the problem of scheduling on MLC archi- 
tectures, and then continue in Sect. 3 to introduce the assumed system models 
and the terminology used. In Sect. 4, we present an experimental evaluation of 
our proposed techniques. In Sect. 5, we discuss related work and give a brief 
description of future work. Finally, we summarize our findings in Sect. 6. 



365 

RS = Reg i s ter  S t a t e  

P S  ~ P r o c e s s o r  S t a t e  

V S  = V i r t u a l  m e m o r y  S t a t e  

C P U  

o n - c h i p  c o n t e x t s  

~ 10  n s  

P r i m a r y  m e m O r y  

address - space  c o n t e x t s  

. . . . . .  _~_~_ !0o_o22 . . . . . .  
p r i m a r y - m e m o r y  c o n t e x t s  

~ 100  n s  

s y s t e m  s p a c e  

u s e r  s p a c e  

Fig. 1. Multi-Level-Context architecture. 

2 B a c k g r o u n d  a n d  p r o b l e m  s t a t e m e n t  

In an MLC architecture, the schedulable entities are threads, streams of control 
that  represent stretches of executable code in an application. Each thread exe- 
cutes within multiple levels of contexts. Each context is a locus of control that  
describes the current execution state of the thread at a certain abstraction level. 
When switching between two threads, a context switch must take place so as to 
exchange the active execution state. The cost for a context switch depends on 
the context affinity of the threads, which is defined as the amount of execution 
information shared between the threads. 

Depending on the level of context abstraction, the cost for a context switch 
consists of different components. An on-chip context is typically found in multiple- 
context, multi threaded architectures where the registers are either duplicated in 
hardware [8, 9], or parti t ioned in software [10], to hold multiple active threads. 
The cost for switching between two on-chip contexts on a pipelined processor 
is in the range of 5-10 clock cycles. The primary-memory context contains pro- 
cessor user registers (e.g., in a thread control block). The total  cost for these 
operations is typically in the range of 100-200 clock cycles for a RISC processor 
with a large number of user registers. An address-space context is typically found 
at the operating system level. The cost for switching between address-space con- 
texts includes the cost for updating virtual-memory mechanisms (e.g., TLB and 
MMU), operations that  can take thousands of clock cycles to perform. 

Fig. 1 illustrates how the context-switch cost # relates to the different con- 
text  levels in a typical MLC architecture. Apparently, depending on how the 
application threads are organized with respect to the contexts levels, the cost 
for a context switch can vary by as much as an order of a magnitude at run-time. 
Thus, depending on the way the application has been parti t ioned into threads, 
and the invocation pat tern of the threads at run-time, the cost for switching 
between two threads will vary with the current context affinity of the threads, 
which, in turn,  is a function of time. Unless such variations are taken into ac- 
count during off-line analysis, an expensive context switch at run-time may cause 
a thread, and hence the application, to miss its deadline. The objective of this 
paper is to find effective real-time scheduling strategies that  are robust with 
respect to such variations in the context-switch cost. 



Fourth International Workshop on 
High-Level Parallel Programming Models 
and Supportive Environments (HIPS'99) 

h t tp : / /www. in fo rma t ik .hu -be r l i n .de /~mue l l e r / h ip s99  

Chair: Frank Mueller 

Humboldt-Universit~it zu Berlin, Institut fiir Informatik, 10099 Berlin (Germany) 
e-maih mueller@informatik.hu-berlin.de phone: (+49) (30) 2093-3011,fax:-3011 

Preface 

HIPS'99 is the 4th workshop on High-Level Parallel Programming Models and Sup- 
portive Environments held in conjunction with IPPS/SPDP 1999 and focusing on high- 
level programming of networks of workstations and of massively-parallel machines. 
Its goal is to bring together researchers working in the areas of applications, language 
design, compilers, system architecture, and programming tools to discuss new develop- 
ments in programming such systems. 

Today, a number of high-performance networks, such as Myrinet, SCI and Gigabit- 
Ethemet, have become available and provide the means to make cluster computing an 
attractive alternative to specialized parallel computers, both in terms of cost and effi- 
ciency. These network architectures are generally used through network protocols in a 
message-passing style. 

Parallel programming using the message-passing style has reached a certain level of 
maturity due to the advent of the de facto standards Parallel Virtual Machine (PVM) and 
Message Passing Interface (MPI). However, in terms of convenience and productivity, 
this parallel programming style is often considered to correspond to assembler-level 
programming of sequential computers. 

One of the keys for a (commercial) breakthrough of parallel processing, therefore, 
are high-level programming models that allow to produce truly efficient code. Along 
this way, languages and packages have been established, which are more convenient 
than explicit message passing and allow higher productivity in software development; 
examples are High Performance Fortran (HPF), thread packages for shared memory- 
based programming, and Distributed Shared Memory (DSM) environments. 

Yet, current implementations of high-level programming models often suffer from 
low performance of the generated code, from the lack of corresponding high-level de- 
velopment tools, e.g. for performance analysis, and from restricted applicability, e.g. to 
the data parallel programming style. This situation requires strong research efforts in 
the design of parallel programming models and languages that are both at a high con- 
ceptual level and implemented efficiently, in the development of supportive tools, and 
in the integration of languages and tools into convenient programming environments. 



367 

earliest t ime by which T~ is allowed to start  its execution. The absolute deadline 
k Dki = a i +d i  is the latest t ime by which T~ must complete its execution. 

Now, assume that  the dispatcher is in the process of selecting a new thread 
to schedule at t ime t. We then make the following definitions. 
Definition: A thread Ti is ready at time t if its immediate predecessors have 
finished their execution. 
Definition: A thread ~ is released at time t if it is ready, ai ~_ t, and the thread 
has received all necessary data  from its immediate predecessors. 
Definition: A thread is called a continuation thread if it is ready and belongs to 
the same context group as the most-recently-executed thread. 
Definition: A thread is called a completion thread of period class ~rk if it is 
executed last among all threads in ~rk within one particular invocation. 
Definition: A thread is said to be returning from period class r j  to period class 
Irk if it belongs to ~rj, is the most-recently-executed thread, and the next thread 
that  executes belongs to rk. 
Definition: A scheduling policy that  allows itself to insert idle t ime slots instead 
of executing a ready thread is said to use inserted idle time. 

4 E x p e r i m e n t a l  e v a l u a t i o n  

4.1 Q u a l i t y  a s s e s s m e n t  

Our primary performance measure is the success ratio, defined as follows. If 
a real-time scheduling strategy can aid in finding feasible schedules for x of 
the y thread sets considered, its success ratio is (x/y) .  We choose to study the 
delivered performance as a function of the c o n t e x t - s w i t c h  c o s t  (#g) and the 
c o n t e x t  af f in i ty  (7). The former represents the cost for performing a switch to 
another pr imary-memory context and reflects two important  characteristics of 
the system: (i) the number of on-chip registers that  must be exchanged, and (ii) 
the granularity (in terms of execution time) of the application threads. The latter 
represents the probability that  two arbitrarily-chosen threads in the generated 
thread set share the same primary-memory context. This parameter  allows us 
to observe the effect of the number of primary-memory contexts in the system 
on scheduling performance. The affinity ranges from ~ = 0.0 (threads execute in 
separate contexts) to ~ -- 1.0 (threads execute in a common context). 

4.2 A r c h i t e c t u r e  

Similar to the SPARCLE processor, we assume that  there are four on-chip con- 
texts. We also assume that  there are eight primary-memory contexts. When a 
pr imary-memory context switch occurs, we assume that  all on-chip contexts are 
reloaded and that  all memory references hit in the cache during the context 
switch. The primary-memory context-switch cost ranges from 0% (no overhead) 
to 25% (significant overhead) of the mean thread execution time, cmea~. We 
also assume that  all threads execute within one single address-space context. 
Any overhead associated with interrupt handling and thread dispatching in the 
run-time system is assumed to be negligible in our experiments. 



368 

4.3 W o r k l o a d  

To evaluate 1 the robustness of each heuristic in the presence of varying context- 
switch costs, we at tempted to schedule 1024 randomly-generated sets of threads, 
each containing 40-50 threads organized in four chains of threads. Each chain 
of threads was then randomly mapped to one of the eight pr imary-memory 
contexts, as determined by the context affinity, ~?. The default value of T] is 0.25. 
The chains were generated in such a way that  the parallelism of the threads 
sharing one specific context could be fully exploited on the on-chip contexts. 
Individual thread execution times were chosen at random assuming a uniform 
distribution in the range of 15 to 25 #s, and a mean execution time c~nea, = 20 #s. 

All threads in a chain were assigned a common period, chosen at random 
(with uniform probabilities) from four period classes with the corresponding 
periods p(Trl) -- 0.8p, p(cr2) = 1.0p, p(Tr3) = 1.2p, and p(~r4) = 1.6p. The base 
period p was chosen so that  the total utilization U of the processor was kept at 
approximately 85%. We assume for each thread Ti that  r = 0 and di = p~. 

4.4 Pre-run-t ime scheduling for a t ime-driven sys tem 

We first investigate the time-driven dispatching policy where run-time thread 
dispatching is performed using a table with explicit start  and finish times of 
each thread. The table of thread invocations (the schedule) is constructed off- 
line. The off-line scheduling heuristics under investigation in this experiment are 
all variations of the l ist  scheduling [12] strategy, which uses inserted idle time. 

Fig. 2a plots the performance of the evaluated heuristics as a function of 
the pr imary-memory context-switch cost pg. The figure presents the results for 
five different heuristics. We first discuss the performance of two simple list- 
scheduling strategies: the earliest-deadline-first (EDF) and earliest-start-time 
(EST) heuristics. In these strategies, the next thread to schedule in the priority 
list is the one with the closest (absolute) deadline and the one that  can begin 
execution soonest (accounting for any precedence or periodicity constraints), 
respectively. The plots indicate that  the EDF heuristic does not perform well 
under the list-scheduling policy. In fact, EDF is not capable of scheduling more 
than 30% of all generated thread sets, regardless of context-switch cost and 
context affinity. Moreover, the success ratio drops as the context-switch cost 
increases owing to the fact that  the deadline of a thread does not contain any 
information as to whether a context switch will be taken or not should the thread 
be scheduled next. In contrast, the plots for the EST heuristic indicate that  EST 
performs better  when the context-switch cost is significant, than when it is zero. 
In fact, the success ratio increases from 30% to approximately 50% when the 
context-switch cost increases from zero to 5%. The explanation for this behavior 
is as follows. As soon as the context-switch cost is non-negligible, the earliest 
start  t ime of a thread indicates whether a context switch will be taken or not 
should the thread be scheduled. Hence, the list-scheduling algorithm can take 
advantage of this information when selecting the next thread to schedule. 

1 All modeling and simulations were performed within the GAST [11] framework. 



369 

I00 

8O 

~ 6 0  

~ 4o 

I lambda = 25%, eta = 0.25, U = 85% ] 

EDF -e-- 
EST -4--. 

....... ~ DDM-8 -8--.. 
.............. _~ . . . . . . . . . . . . . . .  A . . . . . .  ~ E D S - 2  .4(  ...... 

/ 
/ 

I I I 2t0 
5 i0 15 25 

Context-switch cost mu_g (%) 

I00 

8O 

~ 6 0  

~ 40 

20: 

lambda = 25%, mu_g = 15%, U = 85% ] 

EDF -e--- 
EST -*-- 

. . . . . . . .  ~ . . . . . .  ....~M . . . . . . . . . . . . . . . . . . . .  E D S - 8  ~ ' -  

: . .~:: : :~:?: ,---s . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . .  

0.125 0.25 0.5 
Context affinity eta 

Fig. 2. Success ratio for time-driven dispatching as a function of a) the primary- 
memory context-switch cost #g assuming a context affinity W ---- 0.25; b) the context 
affinity W assuming a primary-memory context-switch cost #g = 15%. 

In the dynamic deadline modification (DDM) technique [13], non-continuation 
threads have their original deadlines temporar i ly  modified during thread se- 
lection so as to favor continuation threads. The t empora ry  deadline of a non- 
continuation thread ~-i is 19i = D~ + k, where Di is the original deadline of the 
thread and k is an offset factor. In our experiments, we have used the DDM 
with an offset factor k = 8 (denoted in the figure by DDM-8). Fig. 2a clearly 
indicates tha t  this approach is successful in increasing the success ratio. 

An interesting choice of heuristic would be to integrate the time-criticality- 
cognizant t ra i ts  of the EDF heuristic with the context-switch-cognizant t rai ts  
of the EST heuristic. To this end, we define the earliest-deadline-and-start-time 
(EDS) heuristic, where the priority function for a thread Ti is the weighted sum 
Di + w x test, where Di is the (absolute) deadline of the thread, test is the earliest- 
s tar t - t ime of the thread, and w is a weight factor. Fig. 2a shows the plots for 
the EDS heuristic with a weight factor w = 2 and 8 (denoted by EDS-2, and 
EDS-8, respectively). As indicated by these plots, the integrated approach gives 
a significant boost in performance. Initially, the success ratio increases to more 
than  75% for a negligible context-switch cost, and, as the context-switch cost 
increases, the plots show the potential  of the integrated approach - -  in part icular  
when the weight factor increases. For example, a weight factor w = 8 gives a 
very robust  behavior as compared with the original EDF and EST heuristics ~. 

Fig. 2b plots the performance of the evaluated heuristics as a function of the 
context affinity 7- The plots indicate tha t  EDS-8 is very robust with respect to 
variations in the context affinity. Also, note the anomalous behavior of EST as 
the context affinity increases. While the other heuristics benefit from an increase 
in the context affinity because the degree of sharing increases, EST performs 
worse as the earliest s tar t  t ime of a thread provides less and less information on 
whether a p r imary-memory  context switch will be taken or not. 

2 Note that an increase in the weight factor not automatically implies an increase in 
performance. Too high a weight factor would give the "EST" part of the heuristic too 
strong an influence, which would cause the performance to reduce to that of original 
EST. We found that w ---- 8 through w ---- 32 gives the overall best performance. 



370 

4.5 R u n - t i m e  schedul ing for a priority-driven s y s t e m  

In this section, we explore a priority-driven dispatching scheme. Threads are 
kept in a list at run-time, ordered by their priorities. Whenever the dispatcher 
selects a thread to execute, it selects the one that  has the highest priority in 
the list. Inserted idle time is not used for this dispatching scheme, which means 
that  only released threads will be considered during thread selection. We assign 
thread priorities according to the earliest-deadline-first (EDF) policy. 

Now, since we are using an on-line scheduling algorithm, it is necessary to 
verify, off-line, that  all thread deadlines will be met at run-time with the em- 
ployed dispatching policy. To this end, we use the schedulability test proposed 
by Zheng and Shin [14], modified to account for context-switch costs. 

T h e o r e m  1 ( Z h e n g  a n d  Sh in) .  In  the presence o /non-rea l - t ime  threads, a 
set  of real-time threads T = {~'i : 1 < i < n}  with di = Pi are schedulable on 
a uniprocessor with a p r i m a r y - m e m o r y  context-switch cost pg under  the non- 
preemptive  E D F  policy i f  the following conditions hold: 

1. E (c, + "g ) lP '  < 1. 
T~ET 

r~ cT 

where S : Ur~eT{t : t < tmax, t : Pi -~- rrtPi, m E J~f}, 

tm~x : max{pl , . . . ,p ,~}  

One obvious problem with the schedulability test in Theorem 1 is that  it as- 
sumes that  one primary-memory context-switch is taken for each thread invoca- 
tion. This is not a reasonable assumption since, on an MLC architecture, multiple 
threads execute within shared contexts. Thus, many primary-memory context 
switches accounted for in Theorem 1 will, in fact, never be taken at run-time. 
Unfortunately, with the current run-time policy, it is difficult to calculate tight 
upper bounds on the number of context switches unless we completely predict 
the thread invocation pat tern in advance, tn order to make bet ter  predictions on 
the context-switch scenario, we introduce a degree of determinism by replacing 
the original EDF policy with a similar scheduling policy that  we call the EDF* 
policy. The new scheduler behaves exactly like the original EDF scheduler except 
when choosing among released threads with the same deadline. Recall tha t  the 
EDF rule allows for an arbi t rary choice among threads with the same deadline. 
We will exploit this feature to enforce the precedence constraints on the threads. 
When there are multiple released threads with the nearest deadline, the EDF* 
policy will choose a continuation thread whenever one exists. This decision will 
be enforced at run-time by complementing the dynamic-priority policy with an 
additional static thread priority that  will guarantee that  continuation threads 
will be favored before other threads. The actual static-priority assignment is per- 
formed according to the CLASSIFY algorithm listed in Fig. 3. The main purpose 
of this algorithm is to guarantee that  the execution of threads in the same period 
class gives rise to as few context switches as possible. 



371 

Algorithm CLASSIFY: 

1. create a se t /7  of period classes: one class ~rk for each distinct thread period; 
2. create one local context group 8,k,~ for each distinct thread context in 7rk; 
3. enumerate context groups within each period class according to significance; 
4. initialize a variable z with the highest possible priority; 
5. for { each Irk @/7, shortest period first } loop 
6. for { each 0,~,~ 6 rk, most significant first } loop 
7. assign to all threads in 0~,~ a priority equal to z; 
8. decrease the priority variable z; 
9. end  loop; 
10. end  loop; 

Fig. 3. The period-based classification algorithm. 

Now, to find a schedulability test that  is less pessimistic than  the one in 
Theorem 1, we analyze the period classes one by one and determine, for each 
period class 7rk, the number  of context switches caused by (i) threads being 
invoked in Irk, and (ii) threads returning from another period class to 7rk. To 
this end, we use Lemma  1. The proof can be found in detail in [15]. 

L e m m a  1. Assuming that the non-preemptive EDF* policy and the CLASSIFY 
algorithm are used, an upper bound nc(Trk) on the total number of primary- 
memory context switches experienced while executing the threads in irk during 
the time interval p(Trk) can be found as follows. 

nc(rk) = min{n~(Trk), ng(rk) + Z min{~t(rk ,  rj ) ,  [(P(rk) -- p(rj))/p(Trj)l  }} 
rjEH : p(v~)<p(zch) 

where ht(Trk,~rj) = ~ n t ( O ~ , r )  
0.~,~eo~ : o(o~,,~)#o(0~5,~g(~j) ) 

By means of Lemma  1, we now arrive at a new sufficient, but  not necessary, 
schedulability test  tha t  is based on the assumption tha t  the EDF* policy is 
employed at run-time. The proof can be found in [15]. 

T h e o r e m  2 ( J o n s s o n ,  LSnn ,  a n d  Sh in ) .  In the presence of non-real-time 
threads, a set of real-time threads T = {Ti : 1 <_ i < n}  with di ~ Pi are 
schedulable on a uniprocessor with a primary-memory context-switch cost #g 
under the non-preemptive EDF* policy if the following conditions hold: 

"riET ~rk e I1 

T~ 6T ~ 6H 

where S = UrleT{t : t <_ tmaz~ t = Pi + mpi~ m E Af}, 

tmax = m a x { p l , . . . , p n }  



372 

i00 

~ 8 O  

60 

[ lambda = 25%, eta = 0.25, u = 85% ] 

On-line EDF -0--- 
Off-line JST -4--. 
Off-line ZST -8-- 

"--, . 

- - . . . . .  

i00 

o 
2 
~ 60 

i 401 
ul 

2 0  

0 

[ lambda = 25%, mug = 15%, U = 85% ] 

On-line EDF -e--- 
Off-line JST -~--- 
Off-line ZST -8-- 

I [ 1 1 I I [ 

5 I0 15 20 25 0.125 0.25 0.5 
Context switch cost mu_g (%) Context affinity eta 

Fig. 4. Success ratio for dynamic-priority-driven dispatching as a function of a) the 
primary-memory context-switch cost #g assuming a context affinity ~ = 0.25; b) the 
context affinity ~? assuming a primary-memory context-switch cost tzg = 15%. 

Returning to the C L A S S I F Y  algorithm in Fig. 3, we observe that  the strategy 
used for enumerating the context groups within each period class is not specified 
in Step 3 of the algorithm. Recall that  one of the strengths with the schedulability 
test in Theorem 2 is that  it accounts for context affinity. More specifically, we 
observed that ,  given a certain period class rk,  only the context of the completion 
thread in period class r j  has to be checked against the threads in Irk to find the 
number of context switches caused by the completion thread returning from r j  
to ~rk. Now, in order to reduce the number of context switches, we must take 
advantage of the fact that  only the completion thread has to be checked. This 
can be done by devising a good heuristic for enumerating the context classes 
within each period class. To this end, we make the following conjecture. 

Conjecture 1. Assuming that  the non-preemptive EDF* policy and the CLAS- 
SIFY algorithm are used, a good strategy for minimizing nc(Trk) is to guarantee 
that  the completion thread is part  of the context group that  minimizes the fol- 
lowing expression: 

Fig. 4a plots the performance of the on-line EDF* algorithm as a function 
of the pr imary-memory context-switch cost #g. Also included in the plots is 
the modified Zheng/Shin schedulability test from Theorem 1 (denoted by ZST). 
The plots indicate that  the EDF* policy performs much bet ter  than what can be 
predicted by ZST. For example, the performance of the on-line EDF* algorithm 
is more than 20 percentage points higher than the predicted one for #g > 20%. 
The reason for this poor correspondence between predicted and real performance 
is that  ZST always assumes that  a full primary-memory context switch will occur 
at a thread invocation. Since this strategy does not account for the variations in 
context-switch cost tha t  can occur in an MLC architecture, the system will be 
poorly utilized if the context-switch cost is significant. In contrast, we can see 
that  the predicted performance of the new schedulability test from Theorem 2 



373 

(denoted by JST) is significantly higher than that of ZST. In fact, the increase 
in predicted performance can be as high as 20 percentage points in systems with 
significant context-switch cost. This increase should, of course, be attributed 
to the "intelligence" that was added through the EDF* policy, the CLASSIFY 
algorithm and Conjecture 1. 

Looking at the scheduling performance as a function of the context affinity, 
we observe in Fig. 4b that the performance of JST follows the curve for EDF* and 
increases for higher values of context affinity. This shows that the combination 
of the CLASSIFY algorithm and Conjecture 1 works very well. No such behavior 
can be noticed for ZST, since it does not account for the context affinity. 

5 R e l a t e d  w o r k  a n d  d i s c u s s i o n  

Little has been reported in the literature on the problem of real-time schedul- 
ing on MLC architectures, despite its growing importance. Humphrey et  al. [5] 
recognize the need to exploit fast context-switch operations in order to improve 
the performance in the Spring kernel but did not make any attempt to evalu- 
ate the impact of such a technique on the application schedulability. Fiske and 
Dally [9] evaluated the use of a priority-based thread selection mechanism in a 
multithreaded architecture with multiple on-chip register sets. However, their 
work only evaluated scheduling strategies whose objective is to minimize the av- 
erage application completion time. The work that comes closest to ours is that 
by Cheng et  al. [13]. They proposed the dynamic-deadline-modification (DDM) 
heuristic for a multiprocessor MLC architecture assuming arbitrary thread pre- 
emption. As shown thus far, our proposed EDS heuristic clearly outperforms the 
uniprocessor version of DDM with respect to all the parameters considered. 

The proposed strategies for reducing the number of imposed context switches 
during schedulability analysis is just a first attempt to address the problem of 
scheduling on MLC architectures. One interesting topic for future work is to 
investigate whether it is possible to find good heuristics for enumerating the 
context groups, and whether there exists an optimal enumeration strategy that 
minimizes the total number of primary-memory context switches at run-time. 
Such a strategy would have to consider not only period times and contexts but 
also execution times and phasings of threads. 

6 C o n c l u s i o n s  

In this paper, we have proposed and evaluated scheduling heuristics suitable 
for multi-level-context (MLC) architectures, where the context-switch cost is a 
function of the thread invocation pattern. Our main contributions are: (i) an in- 
tegrated off-line scheduling heuristic that accounts for both the time-criticality of 
a thread and the current context affinity, and a demonstration of how this heuris- 
tic deliver superior performance over traditionally-used scheduling heuristics; (ii) 
an improved schedulability test for the on-line EDF algorithm that accounts for 
the variations in context affinity that can occur in an MLC architecture. 



374 

References  

1. C. A. Healy, D. B. Whalley, and M. G. Harmon, "Integrating the Timing Analysis 
of Pipelining and Instruction Caching," Proc. of the IEEE Real-Time Systems 
Symposium, Pisa, Italy, Dec. 5-7, 1995, pp. 288-297. 

2. R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and M. G. Harmon, "Tim- 
ing Analysis for Data Caches and Set-Associative Caches," Proc. of the IEEE 
Real-Time Technology and Applications Symposium, Montreal, Canada, June 9- 
11, 1997, pp. 192-202. 

3. C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogramming 
in a Hard-Real-Time Environment," Journal of the Association for Computing 
Machinery, vol. 20, no. 1, pp. 46-61, Jan. 1973. 

4. D. I. Katcher, H. Arakawa, and J. K. Strosnider, "Engineering and Analysis of 
Fixed Priority Schedulers," IEEE Trans. on Software Engineering, vol. 19, no. 9, 
pp. 920-934, Sept. 1993. 

5. M. Humphrey, G. Wallace, and J. A. Stankovic, "Kernel-Level Threads for Dy- 
namic, Hard Real-Time Environments," Proc. of the IEEE Real-Time Systems 
Symposium, Pisa, Italy, Dec. 5-7, 1995, pp. 38-48. 

6. S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M. Tullsen, 
"Simultaneous Multithreading: A Platform for Next-Generation Processors," IEEE 
Micro, vol. 17, no. 5, pp. 12-19, Sept./Oct. 1997. 

7. K. Diefendorff and P. K. Dubey, "How Multimedia Workloads will Change Pro- 
cessor Design," IEEE Computer, vol. 30, no. 9, pp. 43-45, Sept. 1997. 

8. A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lira, D. Yeung, G. D'Souza, and 
M. Parkin, "Sparcle: An Evolutionary Processor Design for Large-Scale Multipro- 
cessors," IEEE Micro, vol. 13, no. 3, pp. 48-61, June 1993. 

9. S. Fiske and W. J. Dally, "Thread Prioritization: A Thread Scheduling Mechanism 
for Multiple-Context Parallel Processors," Proc. of the IEEE Symposium on High 
Performance Computer Architecture, Raleigh, North Carolina, Jan. 22-25, 1995, 
pp. 210-221. 

10. C. A. Waldspurger and W. E. Weihl, "Register Relocation: Flexible Contexts for 
Multithreading," Proc. of the ACM Int'l Symposium on Computer Architecture, 
San Diego, California, May 16-19, 1993, pp. 120-130. 

11. J. Jonsson, "GAST: A Flexible and Extensible Tool for Evaluating Multiproces- 
sor Assignment and Scheduling Techniques," Proc. of the Int'l Conf. on Parallel 
Processing, Minneapolis, Minnesota, Aug. 10-14, 1998, pp. 441-450. 

12. C.-Y. Lee, J.-J. Hwang, Y.-C. Chow, and F. D. Anger, "Multiprocessor Scheduling 
with Interprocessor Communication Delays," Operations Research Letters, vol. 7, 
no. 3, pp. 141-147, June 1988. 

13. B.-C. Cheng, A. D. Stoyenko, T. J. Marlowe, and S. Baruah, "A Scheduler Max- 
imizing Maximum Tardiness for DSP Programs with Context Switch Overheads 
Considered," Proc. of the Int'l Conf. on Signal Processing Applications gA Tech- 
nology, Boston, Massachusetts, Oct. 7-10, 1996, pp. 771-775. 

14. Q. Zheng and K. G. Shin, "On the Ability of Establishing Real-Time Channels 
in Point-to-Point Packet-Switched Networks," IEEE Trans. on Communications, 
vol. 42, no. 2/3/4, pp. 1096-1105, Feb./Mar./Apr. 1994. 

15. J. Jonsson, H. LSnn, and K. G. Shin, "Non-Preemptive Scheduling of Real-Time 
Threads on Multi-Level-Context Architectures," Technical Report No. 98-6, Dept. 
of Computer Engineering, Chalmers University of Technology, S-412 96 GSteborg, 
Sweden, May 1998. 


