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Abstract 
A n  effective failure-detection scheme is essential 

for reliable communication services. Most computer 
networks rely on behavior-based detection schemes: 
each node uses heartbeats to detect the failure of 
its neighbor nodes, and the transport protocol (like 
TCP) achieves reliable communicataon by acknowledg- 
ment/retransmission. In  this paper, we experimentally 
evaluate the eflectiveness of such behavior-based de- 
tection schemes in real-time communication. Specifi- 
cally,  we measure an,d analyze the coverage and  latency 
of two failure-detection schemes - neighbor detection 
and end-to-end detection - through fault-injection ex- 
periments. The experimental results have shouin that 
a sipificant portionl of failures can be detected very 
quickly by the neigh,bor detection scheme, while the 
end-to-end detection scheme uncovers the remaining 
failures with larger detection latencies. 

1 Introduction 
Reliable communication is an essential service for 

many distributed applications, some of which require 
very fast recovery from failures, while others can toler- 
ate slower failure recovery. For example, telecommu- 
nication services are provided with a very high avail- 
ability goal (2 hours downtime in 40 years) and require 
fast failure recovery so that humans may hardly no- 
tice the service disruption caused by the failure. Ef- 
fective failure detection with high coverage and low 
latency is a key in meeting such stringent reliabil- 
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ity requirements. Telecommunication networks em- 
ploy an expensive fail we- detection technique using 
hardware duplication/comparison to  detect switching- 
node failures [l]. However, such computer network 
applications as electronic mail, file transfer, or re- 
mote file services do not mandate fast failure recov- 
ery, but require reliable (correct) delivery of all mes- 
sages even if it takes a long time. Behavzor-based 
failure-det&ion schemes without hardware support 
may suffice for these applications. A network node 
(i.e., gateway) uses heartbeats to  detect the failure of 
its neighbor nodes, and upon detection of a failure, 
the node updates its routing table to have the traffic 
detour around the faulty component. Each message is 
acknowledged hop-by-hop or at the end-to-end level, 
and unacknowledged messages are retransmitted. 

Recently, computer networks are beginning to  carry 
real-time messages for such applications as multime- 
dia and distributed real-time control. Real-time com- 
munication requires different reliability goals as com- 
pared to  non-real-time (or best-effort1 ) commiinica- 
tion. Since the content of a real-time message is mean- 
ingful only when it is delivered in time, retransmit- 
ted messages due to  their loss or corruption may be 
of little use. To mask the effects of failures, multi- 
ple copies of a message should be sent simultaneously 
via disjoint paths. This failure masking technique has 
an advantage that failures are handled without ser- 
vice disruption. However, it may be too expensive for 
applications with high volume traffic like video, and 
moreover, many real-time applications do not require 
such strict reliability as ‘no message loss at  all’. For 
example, loss of a couple of frames in video/voice data 

‘The usual non-real-time datagram service is often called 
‘best-effort delivery’, implying that the network attempts to 
deliver messages as quickly as possible by using the available 
resources. 
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streams is acceptable, and temporary message losses 
are also tolerable in many real-time control applica- 
tions because of the ‘system inertia’ characterized by 
the control system deadline [a] .  In such applications, 
it would be more attractive to  detect and recover from 
persistent failures. 

In this paper, we focus on the issue of failure detec- 
tion, an important step of failure recovery. We exper- 
imentally evaluate the effectiveness of two behavior- 
based detection schemes: neighbor detection and end- 
to-end detection. Transient and intermittent faults are 
injected into the communication subsystem, using a 
software-implemented fault injector. In particular, we 
measure and analyze the coverage and latency of the 
detection schemes. 

Before delving into the details of failure detec- 
tion] we need to  discuss some general characteris- 
tics of real-time communication. Real-time commu- 
nication service is fundamentally different from best- 
effort service in that individual guarantees on such 
QoS (Quality of Service) as delay or throughput for 
each connection are the key requirement. Typically, 
real-time communication schemes in multi-hop packet- 
switched networks are built based on three principles: 
QoS-contracted, connection-orienied, and reservation- 
based. A contract between an application and the net- 
work should be established before actual data trans- 
fer. The application/client must first specify its input 
traffic behavior and required &OS. Then, the network 
service provider computes the resource needs (link and 
CPU bandwidths, buffer space) from this information, 
selects a path, and reserves necessary resources along 
the fixed path. If there are not enough resources to  
meet the QoS requirement, the client’s request is re- 
jected. This uni-directional virtual circuit is called a 
real-time channel. Messages of a real-time channel 
are delivered in the order they were generated, but 
the delivery of a message is not guaranteed when it is 
corrupted, delayed, or lost due to  failures. 

The rest of the paper is organized as follows. Sec- 
tion 2 discusses the failure-detection schemes under 
evaluation. Section 3 presents an overview of the fault 
injector used for experimental evaluation. Section 4 
describes the experimental setup. Section 5 deals with 
the analysis of experimental results, and Section 6 con- 
cludes the paper. 

2 Channel Failure Detection 
Reliable transport protocols guarantee the even- 

tual (loss-free) delivery of messages between two end- 
points. Therefore, the “grain” of failure detection is a 
message. Message loss is typically detected using the 
‘positive acknowledgment’ method, in which the re- 

ceiver informs the sender of the reception of each mes- 
sage (or a group of messages), so that the sender can 
detect delivery failures. ‘Negative acknowledgment’ is 
an alternative] in which the receiver detects message 
losses and requests the retransmission of missed mes- 
sages to  the sender or other servers. 

Here we are interested in detecting failures of a 
grain different from the above-mentioned protocols, 
i.e., channel failures. A real-time channel is said to 
have ‘failed’, if the rate of correct2 message deliv- 
ery within a certain time interval is below a thresh- 
old specified by the application. In this section, we 
present two behavior-based failure-detection schemes 
to  uncover channel failures. These schemes do not re- 
quire any special hardware support so that they can 
be used in any network. 

2.1 Neighbor Detection Method 
To detect node crash/hang failures or permanent 

link failures, adjacent nodes periodically exchange 
node heartbeats (“I am alive”). If a node does not 
receive heartbeats from one of its neighbors for a cer- 
tain period, it considers the silent neighbor failed and 
stops sending heartbeats to  that node. Heartbeats 
do not carry any useful information, and regular mes- 
sages can be used as heartbeats. Explicit heartbeats 
are sent only if there are no regular messages for a 
pre-specified period. 

The heartbeat scheme is specified by three parame- 
ters: heartbeat-generation interval t ,  , heartbeat-check 
interval t,, and a tolerable number, m, of heartbeat 
misses. Assume that the same value is used for both 
t ,  and t,. Then, unless the clock and/or scheduling 
skews << t,, the heartbeat checker should wait one 
more t ,  after the number of heartbeat misses reached 
m, because of the variance in the actual heartbeat- 
generation/check timing between two adjacent nodes. 
Thus, it takes (m+2) tC for a node to detect the failure 
of one of its neighbors. 

When two nodes are joined by dual simplex links, a 
node cannot tell the difference between the failure of 
its neighbor nodes and that of the corresponding links 
by exchanging local heartbeats only. Instead of relying 
on sophisticated diagnosis, we treat all channels run- 
ning through the suspected link as faulty. So, when 
the incoming link from a node fails, the channels on 
the outgoing link to  the node will be considered failed, 
even if they were healthy. This is reasonable because 
a channel cannot maintain dependable service if the 
health of the channel cannot be monitored. 

*In terms of both content and timing. 
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2.2 End-to-End Detection Method 
The end-to-end detection method involves both end 

nodes of a real-time channel. It works as follows. The 
source node, whenever necessary, injects a “channel 
heartbeat” into the channel message stream. A chan- 
nel heartbeat is a sort of real-time message, and the 
intermediate nodes on a channel do not discriminate 
channel heartbeats from data messages. Each channel 
heartbeat contains the sequence number of the lat- 
est data message. In this way, the destination node 
can monitor the number of data messages lost. If the 
message-loss rate of the channel exceeds the threshold 
y specified by the application, the destination node 
declares that the channel has failed. 

For each channel, the source node manages a 
heartbeat-generation timer which is incremented by 
clock interrupts. The heartbeat-generation timer is re- 
set every time a message (data or heartbeat) is trans- 
mitted over the channel. Only when the value of 
the heartbeat-generation timer reaches the maximum 
heartbeat interval h,,, , an explicit channel heartbeat 
is generated. Therefore, when h,,, is set to a suffi- 
ciently large value relative to the data message in- 
terval, explicit heartbeats will seldom be generated 
due to the (near) periodic nature of real-time mes- 
sages, thus making the overhead of channel heartbeats 
small. The h,,, of a real-time channel should be cho- 
sen to fit the channel’s traffic characteristics. It should 
be larger than the minimum message interval of the 
channel which is specified in the channel’s QoS con- 
tract; otherwise, the resources reserved for the channel 
will not be sufficient to carry both data and heartbeat 
messages of the channel. The smallest possible failure- 
detection latency of a channel is therefore determined 
by the channel’s traffic characteristics. 

2.3 Experiment Goals 
The end-to-end detection scheme will uncover all  

channel failures, so the main concern is its detection 
latency. Under this scheme a large minimum message 
interval of a channel will result in a long detection 
latency. Even when the message interval is small, if 
the channel’s y value is large, a long detection latency 
will result. The neighbor detection scheme has a much 
weaker dependency on the underlying traffic than the 
end-to-end scheme, because it monitors the behavior 
of a neighbor node, rather than that of a real-time 
channel. Therefore, one can achieve smaller detection 
latencies by the neighbor scheme than by the end-to- 
end scheme. However, in the neighbor scheme, there is 
a possibility that a node is not operating correctly in 
terms of message processing, but still generates node 
heartbeats or propagates part of regular messages. In 

such a case, the neighbor scheme will result in less than 
perfect detection coverage. Even though the faulty 
node becomes silent eventually, the detection latency 
may be larger than that of the end-to-end scheme. 
In case of multiple channels going through a node, 
another problem arises: have all channels on the node 
or part of them failed, when the node stops generating 
heartbeats? In this paper, we would like to answer 
the above questions by experimentally evaluating the 
coverage and latency of the neighbor detection scheme. 

3 DOCTOR: Integrated Fault Injec- 
tion Tool Set 

Fault injection has long been viewed as a use- 
ful means of testing/evaluating fault-tolerant sys- 
tems. Numerous hardware-implemented fault injec- 
tors (HFIs) [3-51 have been developed and used for 
various experiments. However, as the complexity of 
contemporary computer increases as a result of us- 
ing highly-integrated VLSI chips, it is becoming more 
difficult, or nearly impossible, to evaluate dependabil- 
ity with HFIs alone. On the other hand, software- 
implemented fault injectors (SFIs) [6-101 have been 
proposed as less expensive and more controllable al- 
ternatives. Although SFI techniques such as overwrit- 
ing memory or register contents are becoming pop- 
ular, they still face many difficulties. For example, 
the intrusion into normal execution by fault injection 
should be minimized and isolated to obtain accurate 
measurements, especially in real-time systems. In or- 
der to remedy some of these difficulties, we have devel- 
oped an integrated fault-injection environment called 
DOCTOR[11], particularly for distributed real-time 
systems. 

DOCTOR provides a complete set of tools for au- 
tomated fault-injection experiments. One of the core 
parts of DOCTOR is the fault injector which con- 
sists of three modules: experiment generation module 
(EGM), experiment control module (ECM), and fault 
injection agent (FIA). EGM is responsible for prepar- 
ing experiments, such as generating a set of fault in- 
stances to  be injected, while ECM is the run-time ex- 
periment manager. FIA performs actual fault injec- 
tions under ECM’s control. Another core part is the 
data monitor (HMON) which collects the experimen- 
tal data at run time. Data analysis module (DAM) 
analyzes the collected data off-line after completing 
the experiment. 

One distinct structural feature of DOCTOR is the 
separation of software components of the host com- 
puter from those of the target system. Thus, EGM 
and ECM run on the host computer while FIA runs 
on the target system. It  has the advantage of reduc- 
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ing the run-time interference with the target system 
caused by fault injection, because only essential com- 
ponents are executed on the target system. It also in- 
creases the portability of DOCTOR, since the highly 
system-dependent part is isolated from the rest. 

Evaluation of a fault-tolerance mechanism needs a 
systematic fault-injection plan, and thus, the capabil- 
ity of injecting a proper fault instance into a proper 
location at  a proper time is essential. DOCTOR sup- 
ports the injection of a variety of faults and errors, 
ranging from low-level faults such as memory or pro- 
cessor faults to high-level errors such as communica- 
tion errors. Three temporal properties - transient, 
intermittent and permanent - are supported for the 
following fault types. 

Memory fault: Contents of the cache or main mem- 
ory are corrupted. The fault injection target can 
be either explicitly specified by the user, or cho- 
sen randomly from the address space using the 
symbol table and object file information. For bet- 
ter controllability, DOCTOR allows faults to be 
injected only into a certain memory section of a 
particular target task (or executable object im- 
age), such as text area, global variable area, or 
stack/heap area. 

Processor fault: CPU faults are emulated by cor- 
rupting the contents of CPU registers. The tim- 
ing of injecting register errors can be randomly 
selected or can be controlled to be the time when 
a specific task or instruction is executed. Bus 
faults can be emulated as well, by corrupting the 
content of an instruction just before its execution 
and restoring it after the instruction cycle. Simi- 
larly, various types of faults in the processing unit 
can be emulated, such as ALU errors and instruc- 
tion fetching unit errors. 

Communication error: Errors in communication 
links can be emulated using a special fault- 
injection layer inside the protocol stack. The user 
can define the intended fault behavior, while some 
pre-defined fault types are supported including 
message loss, corruption, delay, and duplication. 
Fault injection timing/duration can be specified 
by either time or message history (e.g., dropping 
several consecutive messages of a certain type). 

In addition to the capability of injecting various 
faults, effective data collection is essential in fault- 
injection experiments. Typically, software monitors 
suffer from poor timing-resolution and cause signif- 
icant performance intrusion. On the other hand, 
signal-level hardware monitors lack the ability of cap- 
turing a wide range of software-level events, such as 

Figure 1: Configuration of the experimental platform 

OS events or application-specific events. To overcome 
the shortcomings of these conventional approaches to 
data collection, we have developed a hybrid-style data 
monitor, called HMON, which mainly observes soft- 
ware events. 

The data monitoring process consists of three steps: 
event probing, time-stamping, and d a t a  logging. In 
our approach, event probing is done by software to 
preserve flexibility, the advantage of software moni- 
tors - special program codes are inserted into the 
objects to be monitored. Probing targets may include 
system call invocations, context switches, interrupts, 
fault injections, fault detections, etc. In contrast, 
time-stamping and data logging are done by custom 
hardware to maximize timing accuracy and to mini- 
mize intrusion. For data collection in distributed sys- 
tems, multiple HMONs can be used. Each network 
node will be equipped with its own HMON, and these 
HMONs are connected via a dedicated HMON net- 
work for generating synchronized time-stamps. 

4 Experimental Setup 
In this section, we describe the hardware/software 

configuration of the experimental platform, the real- 
time communication subsystem, and the failure detec- 
tion mechanisms implemented on the platform. We 
also outline our fault-injection experiments. 

4.1 Experimental Platform 
As shown in Figure 1, the experimental platform 

consists of three nodes, Nodes 1-3. Each node is a 
VME bus-based multiprocessor system with Motorola 
68040 microprocessors. In each node, a CPU board 
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(labeled as NP) is dedicated to  communication pro- 
cessing, while a separate CPU board (labeled as AP) 
is used for application processing. As a communica- 
tion fabric between nodes, a network interface board 
(NI) featuring the ‘ANSI Fiber Channel 3.0 standard’ 
is equipped with each node. In addition, a HMON 
board is added to  each node for data collection. Node 
1 and Node 2 are connected by two simplex network 
links (i.e., optical fibers), one for each direction. The 
same type of connection exists between Node 2 and 
Node 3. A SUN workstation serves as the host ma- 
chine, and is connected to nodes through an Ether- 
net. Nodes are not equipped with disks, and appli- 
cation/system software is downloaded from the host 
machine. 

An extended version of the pSOSf” real-time 
OS [la] is used for AP’s system software. The AP- 
side software is not important in our experiment, since 
APs run very simple applications which request mes- 
sage delivery to  the associated NP, and retrieve mes- 
sages received by the NP. N P  employs a derivative of 
x-kernel 3.1  [13] as a system executive and a substrate 
for building the protocol stack. Since NPs do not run 
user tasks, we disabled the virtual address manage- 
ment of x-kernel. Thus, all tasks in N P  are executed 
within a single (kernel) address space. Memory pro- 
tection of x-kernel was also disabled to  minimize the 
overhead. 

4.2 Communication Subsystem 
Each NP features the real-time communication 

scheme described in [14]. The protocol stack includes 
protocols for application program interface (API), 
network management (NM), remote procedure call 
(RPC), transport-level fragmentation (FRAG), unreli- 
able datagram service (HNET), and the device driver 
for network interface boards (DD). The API proto- 
col exports routines that applications can use to  set 
up/tear down real-time channels and perform data 
transfer on the channels. The RPC protocol is used 
by the NM protocol for transmitting channel establish- 
ment/teardown messages. The HNET protocol covers 
the function of the network layer and part of the data- 
link layer. The run-time message scheduler is imple- 
mented in it. 

The NP system software, z-kernel, uses a non- 
preemptive scheduling policy with 32 priority levels for 
task scheduling, and its protocol processing is based on 
the process-per-message model. Whenever a message 
arrives at a network device or needs to be transmitted 
into the network, a process (or thread) is created to  
shepherd the message through the protocol stack; this 
eliminates extraneous context switches encountered in 

the usual process-per-protocol model. Once a protocol 
thread is scheduled, it runs without preemption until 
completion of protocol processing. While the process- 
per-message model suffices for best-effort messages, i t  
introduces complexity for maintaining QoS guarantees 
and performing traffic policing. For this reason, we im- 
plemented the run-time message scheduler as a special 
thread that is created at system startup and runs at  
the highest-priority level. Implementation details can 
be found in [15]. 
4.3 Failure-Detection Mechanisms 

For the neighbor detection scheme, the node heart- 
beat generator/checker is implemented as a separate 
task. It is periodically executed and checks special 
flags, each of which is associated with a link and is set 
whenever a message is transmitted over the link. If the 
flag is not set when the heartbeat generator is invoked, 
a new heartbeat is generated and sent as a best-effort 
message. The heartbeat checking is also done in a sim- 
ilar way. There is an alternative implementation for 
heartbeat generation. Instead of running as a separate 
task, the heartbeat generator can run on top of the 
clock interrupt thread, and heartbeats are directly fed 
to  the device driver without going through the mes- 
sage scheduler in the HNET protocol. However, we 
have not used this implementation option because of 
the following two drawbacks. First , execution time of 
the clock interrupt handler is extended, during which 
other interrupts are disabled. Second, even when OS 
task scheduler or the message scheduler hang, heart- 
beats will be sent out, which will lower the detection 
coverage. 

For the end-to-end detection scheme, NM spawns a 
special thread for each channel. This thread is invoked 
using watchdog timers (or alarm functions). Thus, 
every time a message of a real-time channel is gen- 
erated by the application, the thread associated with 
the channel is scheduled to  be invoked after a delay 
of h,,,. When a new data message is generated by 
the application before the timer is expired, the timer 
is reset to  h,,, again; hence, the scheduled thread is 
canceled and a new thread is scheduled to be invoked 
after a delay of h,,,. When activated, the thread gen- 
erates channel heartbeats for the corresponding real- 
time channel. 
4.4 Experiment Description 

The experiment controller, ECM, on the host ma- 
chine communicates with FIAs in the target nodes 
through an Ethernet. To minimize the interference 
caused by fault injection, the function of the FIA 
in N P  is minimized; the communication with ECM 
is done by a FIA proxy in AP, and the FIA in NP 
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Figure 2: Real-time message passing 

communicates with the FIA proxy through the VME 
bus. The FIA proxy is also responsible for controlling 
HMON and uploading the collected data by HMON. 

One or two real-time channels were established from 
Node 1 to Node 3 through Node 2. The end-to-end 
delay requirement was 30 msec and the application 
program generated real-time messages regularly once 
every 50 msec without any burst. A channel failure is 
said to occur if no message is delivered for more than 
250 msec. Since messages were generated periodically, 
no ‘channel heartbeat’ was added in between two con- 
secutive messages of the real-time channel. The in- 
terval of ‘node heartbeats’ was set to 30 msec and 
the tolerable number of (node) heartbeat misses was 
set to 1. Thus, the node heartbeat generator and re- 
ceiver are invoked once every 30 msec to generate or 
check heartbeats, and if heartbeats are not received 
for three consecutive checking intervals, a failure is 
declared (detected). 

Faults were injected into the NP of the intermedi- 
ate node, Node 2. As illustrated in Figure 2, only the 
bottom two protocols, HNET and DD, are executed 
for run-time message passing at  Node 2.3 Since we are 
interested in detecting failures of real-time channels af- 
ter their establishment, we restrict the fault-injection 
target to these two protocols and other OS modules, 
particularly the task manager (TM) and the clock ser- 
vice (CS). 

memory 
faults, CPU register faults, and communication faults. 
Memory faults were injected into the text area of the 
target modules at randomly-selected times. The ef- 
fects of memory faults in the data area can be covered 
largely by CPU register faults, since memory variables 
are typically loaded into registers. To emulate CPU 
faults, the values of data/address registers were cor- 

Three classes of faults were injected: 

~ ~~ 

3NM/RPC protocols are used for channel establishment and 
API/FRAG is executed only at end-nodes. 

rupted. Time-driven triggering was not very effective 
in injecting CPU register faults in our platform. It 
is because message threads are created and destroyed 
very quickly and thus, the CPU is idle for a large por- 
tion of time, unlike usual fault-injection experiments 
in which application programs run continuously. To 
increase the fault-activation rate, a different method 
was used to trigger a fault-injection. When an in- 
struction in the target address is executed, a fault is 
injected into the register used by the instruction. In 
addition, we inject faults into PC and CCR to study 
the effects of faults in control registers. To maxi- 
mize the chance of fault activation, CCR faults are 
injected when conditional branch instructions are ex- 
ecuted. We also emulate the faults in (physical) com- 
munication links. The fault-injection layer is inserted 
between DD and HNET. Since the results of such com- 
munication errors as message drop or message data 
corruption are straightforward, we inject corruption 
errors into the message header part. 

Each experiment was fully automated, so that 
multi-run experiments were done without human in- 
tervention. To synchronize the start and the end of 
each run, dummy FIAs were executed at NPs of Node 
1 and 3. Each experimental run consists of 6 sequen- 
tial steps: 

Step 1: EGM generates a fault-injection script for 
the run. (Scripts for multiple runs can be gen- 
erated at  once.) 

Step 2: ECM downloads system software (includ- 
ing communication subsystem) and fault-injector 
software to NPs and APs, and remotely boots the 
target system. 

Step 3: When the connection between ECM and FIA 
proxy is ready, ECM sends the current fault- 
injection script to FIA proxy. 

Step 4: FIA waits until applications establish real- 
time channels. 

Step 5: After the message transmission is started, 
FIA injects a fault (or multiple faults). Dur- 
ing the run, HMON collects time-stamped data 
such as message generation, message relay, mes- 
sage reception, fault injection, failure detection, 
and heartbeat generation/reception. 

Step 6: When the pre-specified experiment duration 
is reached, the collected data is uploaded to ECM, 
and FIA proxies reset all nodes for the next run. 

After each experiment, we calculated (i) the 
channel-failure rate, and (ii) failure-detection cover- 
age/latency of the neighbor detection scheme. First, 
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each fault injection will result in one of 3 cases: no 
error, tolerable error, channel failure. The channel- 
failure rate is then computed as the ratio of the third 
case to all cases. The failure-detection coverage is 
the percentage of detections among the runs in which 
channel failures had occurred. We measured only the 
failure-detection coverage of the neighbor scheme, be- 
cause the end-to-end scheme has always perfect cov- 
erage. When calculating the coverage of the neigh- 
bor scheme, we excluded the case when the neighbor 
scheme detects a failure which had already been de- 
tected by the end-to-end scheme. Finally, the failure- 
detection latency is computed as the duration between 
the time of the last message delivered correctly and 
the time of failure detection. Figure 3 illustrates the 
failure-detection latency. In our current experimental 
setup, the detection latency of the end-to-end scheme 
is always 250 msec, and the minimum possible detec- 
tion latency of the neighbor scheme is 90 m ~ e c . ~  The 
detection latency of the neighbor scheme depends on 
(i) how long it takes until the fault affects the real-time 
message, and (ii) how long i t  takes until heartbeats are 
affected by the fault. 

5 Experimental Results 
In this section, we present the experimental results 

and analyze their implications. The data was col- 
lected from more than 10,000 experimental runs, each 
of which took about 65 seconds; 35 seconds for experi- 
ment setup + 30 seconds for executing the experiment. 
5.1 Injection of Transient Faults 

In this experiment, transient single-bit toggle 
faults were injected, with one real-time channel set 
up. According to  the common practice in software- 
implemented fault injectors, we use the term ‘tran- 
sient’ to  mean the opposite t o  ‘permanent’. For exam- 
ple, register faults are transient because the corrupted 
register contents can be overwritten by the subsequent 

One has to be careful in interpreting the detection latencies 
of these two detection schemes, because destination nodes de- 
tect failures in one scheme, while intermediate nodes do in the 
other scheme. 

no I 55.6% 

Channel failure (cf); tolerable error (ok); no error (no)  

Table 1: Fault manifestations: transient fault injec- 
tion 

instructions. A message fault corrupts the header of 
only one message, so it is also transient. The faults 
injected into memory are also transient, but,  since the 
program text area is corrupted, they will have proper- 
ties similar to  permanent memory faults. The experi- 
mental results are summarized in Tables 1 and 2. 

The first observation from these experimental re- 
sults is the relatively low coverage. For example, 
(72.6 + 0.1)/(100 - 18.2) = 88.8 % of failures were 
reported in [16] to  have been detected by the system 
hardware detection mechanism, which was also based 
on a Motorola 680x0 CPU. This is much higher than 
the coverage observed in our experiment. This dis- 
crepancy can be explained based on the following four 
reasons. First , the two used different fault-injection 
methods. In [16] , a hardware-implemented (pin-level) 
fault injector was used, so the fault injected at a CPU 
pin for two memory cycles can be manifested as several 
errors at the level which a software-implemented fault 
injector deals with. Moreover, the faults forced into 
control signal pins will make more pronounced impact 
on the target system than the data-level errors. Sec- 
ond, we excluded the late detections by the neighbor 
scheme from the coverage calculation. As shown in Ta- 
ble 3, the portion of late detections within the set of 
undetected failures ranges from 0% to loo%, depend- 
ing on fault types and fault-injection targets. Third, 
the underlying workload (i.e., system software and ap- 
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Coverage (c); latency mean (Im), latency var ( I , )  in msec 

PC 

I ,  21.52 27.g2 21.52 NA 23.52 
c 86.7% 87.7% 82.5% 80.0% 84.3% 
1, 140.5 134.3 132.4 137.7 136.2 
I ,  20.9’ 20.72 19.42 25.52 21.g2 
C 39.4% 

20.5’ I 
Table 2: Detection coverage and latency: transient 
fault injection 

Table 3:  
among undetected failures 

The percentage of late failure detection 

plication program) was different. Computationally- 
intensive workloads (e.g., sorting, searching, matrix 
multiplication, etc.) were executed in the experiments 
of [16]. The dependency of fault-tolerance measures 
on workload has been reported by several researchers, 
e.g., [17,18]. Fourth, our target system, like most 
other real-time systems, is not equipped with memory- 
protection capability. The experimental result in [5] 
indicates that memory protection can enhance detec- 
tion coverage up to  15%. 

One can make several other observations. The com- 
position of fault manifestations varies greatly, depend- 
ing on fault types and injection  target^.^ For exam- 
ple, fault injection into PC has resulted in very high 
channel-failure rate and detection coverage. Though 
some of the failures caused by P C  faults have gone 
undetected by the neighbor scheme, most of them 
were eventually detected (see Table 3 ) .  In contrast, 
the faults injected into CCR have resulted in much 

The channel-failure rate can be slightly increased, if the 
experiment duration is extended, because there could be the 
cases of very long fault-activation latency. 

lower detection coverage than those injected into PC. 
It is because CCR errors cause incorrect control flow, 
which is difficult to  detect without special hardware 
support (e.g., a watchdog processor), while many 
P C  errors can be detected by CPU-intrinsic fault- 
detection mechanisms like bus error, unaligned mem- 
ory access, etc. The faults injected in the clock ser- 
vice routines were not detected well by the neighbor 
scheme. Particularly, address/data register faults and 
CCR faults into the clock service resulted in very low 
coverage, implying the need for incorporating some 
additional anomaly-detection features (e.g., software 
assertions) into the clock service routines. 

Interestingly, while many of the tolerable errors 
were due to  ‘message deadline violations’ and some 
of them were due to  ‘message losses’, very few ‘mes- 
sage data corruption’ errors were found. This is be- 
cause the message data part is saved into the memory 
by the device driver when the message arrives and is 
not copied or modified by other protocols in x-kernel. 
We also measured the probability of false alarm; no 
channel failure had actually occurred even if the neigh- 
bor scheme signals a failure detection. This happens 
when both heartbeats and real-time messages are not 
transmitted for longer than 90 msec, then the real- 
time message delivery service returns to normal in 250 
msec. According to our experimental results, false 
alarms occur very rarely and the false-alarm proba- 
bility is statistically negligible. 

Now, let us consider the detection latency. In the 
current experimental setup, a real-time message is 
transmitted once every 50 msec, and a heartbeat is 
transmitted 30 msec after each real-time message was 
transmitted. If faults prevent the transmission of both 
real-time messages and heartbeats at  the same time, 
the detection latency of the neighbor scheme will be ei- 
ther 90 msec or 120 msec. If a fault is activated within 
30 msec after a real-time message was sent (thus, be- 
tween a real-time message and a heartbeat), since all 
messages after that point will be dropped, the failure- 
detection latency will be the same as three consecutive 
heartbeat intervals, 90 msec. On the other hand, if a 
fault is activated between a heartbeat and a real-time 
message, the heartbeat will be sent and only the real- 
time message will not be sent, extending the detection 
latency by 30 msec. Thus, the average detection la- 
tency is theoretically 30/50 x 90 + 20/50 x 120 = 102 
msec, provided the fault-activation time is evenly dis- 
tributed. 

However, in reality, the nature of faults is not that 
simple; the measured detection latency was about 140 
msec on average. There are two reasons for this. First, 
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Msg 
I 

no I 26.6% 

runs 252 

ok 0% 
c f  73.4% 

Table 4: Fault manifestations: intermittent fault in- 
jection 

faults may delay or drop messages for some duration 
before a complete channel failure. Late real-time mes- 
sages are the same as message losses from the applica- 
tion’s point of view, while they are considered as im- 
plicit heartbeats from the heartbeat checker’s perspec- 
tive. Thus, delayed messages may extend the detec- 
tion latency. Second, fault-propagation delay can be 
another reason for a long detection latency. Suppose 
a fault is injected between a real-time message and a 
heartbeat. The heartbeat may not be affected by the 
fault because of the fault-propagation delay, but the 
next real-time message can be affected by the fault. 
Then, the detection latency will become 120 msec, in- 
stead of 90 msec. Moreover, the fault-propagation de- 
lay can be different for real-time messages and heart- 
beats. In an extreme case, faults affect real-time mes- 
sages quickly and affect heartbeats slowly, which will 
result in a very long detection latency. 
5.2 Injection of Intermittent Faults 

To examine the performance of the neighbor detec- 
tion scheme for harsher (than transient) faults, we ex- 
perimented the case of intermittent faults. Up to  five 
single-bit toggle faults were injected, where each fault 
was independently selected. The experimental results 
are summarized in Tables 4 and 5. As expected, higher 
channel failure rate and detection coverage have re- 
sulted as compared to  the case of transient fault injec- 
tions. In particular, the detection coverage for mem- 

I I ,  1 26.42 I 31.02 [ 28.g2 1 14.82 I 28.62 
I c I 86.8% I 88.7% I 83.9% 1 78.8% I 84.6% 

68.1% 
149.1 
19.8’ 

Table 5: Detection coverage and latency: intermittent 
fault injection 

ory faults or message faults increased by a larger mar- 
gin than address/data register faults and CCR faults 
which seem to affect the program execution more del- 
icately. 

5.3 Effects of Faults on Multiple Chan- 
nels 

The same experiment as in Section 5.1 was con- 
ducted with two real-time channels set up, in order to 
study the effects of faults on multiple real-time chan- 
nels. We measured the coverage and latency sepa- 
rately for each channel. Though the results were not 
presented due to  space limitation, they were close to  
those shown in Tables 1 and 2. 

A surprising result is that, among more than 2,000 
experiments, we did not observe any case in which 
one channel fails but the other channel does not. 
This is attributed to  the sharing of program codes 
in processing real-time messages belonging to  differ- 
ent channels. Recall that in x-kernel, whenever neces- 
sary, a shepherd thread is spawned to  process a new 
message, and all shepherd threads execute the same 
(protocol-processing) program code.6 If the execution 
of a thread is faulty because of faults in the local data 
of the thread, only the message associated with the 
thread will be affected, not all messages of a channel. 
In contrast, if the source of the incorrect execution 
is in a globally-shared component like program code 
or system software, all messages of all channels will 
be affected. If a faulty thread affects the execution 
of other threads or the channel-specific data (i.e., a 

‘The property of program code sharing in message process- 
ing is not limited to our platform and is common in most con- 
ventional protocol implementations such as in BSD Unix. 
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message late messages 

channel failure 

Figure 4: A typical example of undetected channel 
failure 

link-deadline) is corrupted, only a subset of channels 
fail. However, our experimental results have shown 
this possibility to be negligible. 

6 Conclusion 
In this paper, we investigated the effectiveness of 

two failure-detection schemes - neighbor and end- 
to-end detection - in real-time communication net- 
works. The neighbor scheme has been used widely in 
many non-real-time computer networks to  monitor the 
health of network nodes. Our experimental results on 
a platform, which was designed without any particular 
consideration for fault-tolerance, have indicated that 
the coverage of the neighbor scheme is not very high 
and a long latency occasionally results, but in general, 
it  detects a significant portion of failures very quickly. 
One main reason for this low coverage and occasional 
long latency is that faults do actually cause real-time 
messages to be delayed. A typical failure symptom 
which was not detected by the neighbor scheme is il- 
lustrated in Figure 4. The end-to-end scheme can de- 
tect the failures which were missed by the neighbor 
scheme. Despite its perfect coverage, this scheme has 
such weaknesses as high overhead, long latency, and 
the inability to  locate failures. Thus, improving the 
coverage and latency of the neighbor scheme is a cru- 
cial step for fast failure recovery. 
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