
A Self-Confimring RED Gateway
U

Wu-chang Fengt Dilip D. Kandlurt

University of Michigan
Ann Arbor, MI 48109

{wuchang,kgshin}@eecs.umich.edu

Absrrucr-The congestion control mechanisms used in TCP have
been the focus of numerous studies and have undergone a number of
enhancements. However, even with these enhancements, TCP con-
nections still experience alarmingly high loss rates, especially during
times of congestion. To alleviate this problem, the IETF is considering
active queue management mechanisms, such as RED, for deployment
in the network. In this paper, we first show that the effectiveness of
RED depends, to a large extent, on the appropriate parameterization
of the RED queue. We then show that there is no single set of RED
parameters that work well under different congestion scenarios. In
light of this observation, we propose and experiment with more a d a p
tive RED gateways which self-parameterize themselves based on the
traffic mix. Our results show that traffic cognizant parameterization
of RED gateways can effectively reduce packet loss while maintaining
high link utilizations under a range of network loads.

KqwordsCongestion control, Internet, TCP, RED, queue man-
agement.

I. INTRODUCTION

Improving the congestion control mechanisms used in
TCP has been an active area of research in the past few
years. While a number of proposed TCP enhancements
have made their way into implementations, TCP connec-
tions still experience high packet loss rates. Loss rates are
especially high during periods of heavy congestion, when
a large number of connections compete for scarce net-
work bandwidth. Recent measurements have shown that
the growing demand for network bandwidth has driven loss
rates up across various links in the Internet [181.

One of the reasons for this high packet loss rate is the
failure of the network to provide early congestion notifi-
cation to sources. This has led the IETF to recommend
the use of active queue management in Internet routers [1,
141. There have been several active queue management
algorithms which have been proposed including random
drop [6,13], early packet discard [21], and early random
drop [SI. The most prominent and widely studied active
queue management scheme is Random Early Detection
(RED) [1,5]. RED gateways alleviate many of the problems
found in other active queue management algorithms in that
they can prevent global synchronization, reduce packet loss
rates, and minimize biases against bursty sources using a
simple, low-overhead algorithm. Although RED outper-
forms traditional drop-tail queues, it is often difficult to
parameterize RED queues to perform well under different
congestion scenarios.

Debanjan Sahat Kang G. Shin!

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

{kandlur,debanjan}@watson.ibm.com

This paper demonstrates the importance of appropri-
ately parameterizing RED queues by studying the perfor-
mance of RED under a variety of configurations. The ef-
fectiveness of early detection is shown to be critically de-
pendent upon the rate at which congestion notification is
provided to the sources. When congestion notification is
aggressive, packet loss can be avoided, but at the expense
of low overall link utilization. On the other hand, when the
rate of congestion notification is not sufficiently aggres-
sive, link utilization remains high but the increased packet
loss results in a drop in goodput and an increase in wasted
resources. We present an on-line auto-configuration mech-
anism that determines suitable operating parameters for a
RED queue depending on the traffic pattern. A key feature
of this mechanism is that it does not require per-flow ac-
counting, and retains the main advantages of RED. This
is in contrast with other approaches which introduce addi-
tional complexity to the queue inanagement scheme in re-
turn for additional functionality. Such schemes add either
per-flow queueing [22] or per-flow accounting [1 11 in or-
der to improve performance. Because of its simplicity and
low overhead, the modifications proposed in this paper are
particularly well-suited for managing traffic through large
backbone routers where per-flow accounting and queueing
may not be available.

Section I1 gives some background on how TCP conges-
tion control and RED queue management work. Section 111
shows how the selection of RED parameters impacts perfor-
mance across varying load. Section IV describes modifica-
tions which allow RED to self-parameterize itself in order
to adapt to network load. In Section V, we present experi-
mental results that demonstrate the efficacy of the proposed
scheme. Finally, Section VI concludes the paper with a dis-
cussion of possible extensions.

11. BACKGROUND

When a network is congested, a large number of con-
nections compete for a share of scarce link bandwidth.
Over the last decade, TCP congestion control has been
used to effectively regulate the rates of individual connec-
tions sharing network links. TCP congestion control is
window-based. The sender keeps a congestion window
whose size limits the sending rate by limiting the num-
ber of unacknowledged packets that the sender can have
outstanding in the network. When a connection starts

0-7803-5417-6/99/$10.00 01 999 IEEE. 1320

mailto:wuchang,kgshin}@eecs.umich.edu
mailto:kandlur,debanjan}@watson.ibm.com

1 Parameter 11 Function

TABLE I
RED PARAMETERS

up, it attempts to ramp up its transmission rate quickly
by exponentially increasing its congestion window. This
stage is called slow-start and allows the source to double
its congestion window, and thus its transmission rate, ev-
ery round-trip time. In order to prevent excessive losses
due to an exponentially-increasing transmission rate, TCP
senders typically employ what is known as the congestion-
avoidance algorithm [7]. In this algorithm, TCP sources
keep track of a threshold value (ssthresh) which is a
conservative approximation of the window size the net-
work can support. When the window size exceeds this
threshold, TCP enters the congestion avoidance phase. In
this phase, the window is increased at a much slower rate
of one segment per round-trip time. When the aggregate
transmission rate of the active connections exceeds the net-
work’s capacity, queues build up and eventually packets
are dropped. One way in which TCP detects a packet loss
is through the receipt of duplicate acknowledgments from
the receiver [9]. Upon receiving a small number of dupli-
cate acknowledgments, TCP infers that a packet loss has
occurred and immediately cuts its transmission rate in half
by halving its congestion window. These mechanisms are
called fast retransmit and fast recovery. When congestion
is severe enough such that packet loss cannot be inferred
in such a manner, TCP relies on a retransmission timeout
mechanism to trigger subsequent retransmissions of lost
packets. When a retransmission timer is triggered, TCP re-
duces its window size to one segment and retransmits the
lost segment.

One problem with the TCP congestion control algorithm
over current networks is that the TCP sources reduce their
transmission rates only after detecting packet loss caused
by queue overflow. This is a problem since considerable
time may pass between the packet drop at the router and
its detection at the source. In the meantime, a large num-
ber of packets may be dropped as the senders continue to
transmit at a rate that the network cannot support. Ac-
tive queue management has been proposed as a solution
for preventing losses due to buffer overflow. The goal of
active queue management is to detect incipient conges-
tion early and convey congestion notification to the end-

hosts, allowing them to back off before queue overflow
and packet loss occur. One of the more promising active
queue management schemes being proposed by the IETF
for deployment in the network is RED (Random Early De-
tection) [1,4]. RED maintains an exponentially weighted
moving average of the queue length which it uses to detect
congestion. When the average queue length exceeds a min-
imum threshold (?ninth), packets are randomly dropped
or marked with an explicit congestion notification (ECN)
bit [4,19,20] with a calculated probability. When a TCP
sender receives congestion notification in the form of an
ECN mark, it halves its congestion window as it would if
it had detected a packet loss. The probability that a packet
arriving at the RED queue is either dropped or marked de-
pends upon, among other things, the average queue length,
the time elapsed since the last packet was dropped, and
an initial probability parameter (muxp). When the aver-
age queue length exceeds a maximum threshold (muxth),
all packets are dropped or marked. In our experiments,
the aggressiveness of RED is varied by changing ?nuxp,
RED’S initial drop probability. While it is possible to vary
any of RED’S parameters (as shown in Table I), we vary
muxp since it directly impacts the aggressiveness of the
early detection mechanism. One could potentially change
f (t) and wg, the inter-drop probability function and the
queue weight respectively, however, doing so could poten-
tially impact RED’S fairness to bursty connections as well
as its ability to avoid global synchronization effects.

111. How EFFECTIVE IS RED?
The basic operating principle of all active queue man-

agement mechanisms is to provide early congestion noti-
fication to the sources in order to avoid packet loss due
to buffer overflow. In heavily-congested networks, con-
gestion notification must be signaled to a sufficiently large
number of sources so that the offered load is reduced con-
siderably. However, excessive early notification can lead
to underutilization of network resources. Consequently,
the success of an active queue management mechanism de-
pends critically on how effectively it can strike a balance
between reducing packet loss and preventing underutiliza-
tion of the network by appropriately adjusting the rate of
congestion notification.

For example, consider a bottleneck link of capacity
lOMbs which is equally shared amongst several connec-
tions. When 100 TCP connections share this link, sending
congestion notification to one connection reduces the of-
fered load to 9.95Mbs. On the other hand, when only 2
TCP connections share the link, sending congestion notifi-
cation to one of them reduces the offered load to 7.5Mbs.
In general, when the bottleneck link is shared between N
connections, a congestion notification signal to one con-
nection reduces the offered load by a factor of (1 - &).
Hence, as N becomes large, the impact of individual con-
gestion notifications decreases. In this situation, if the RED
algorithm is not configured to be more aggressive, the RED
queue can degenerate into a simple drop-tail queue. On the
other hand, when N is small, the impact of individual con-

1321

(a) Network topology

6sr--- ' ' ' ----I

4 5 1 O
L - 2

4 0 0 b ; - - - ~ : 4 0:6 0.8 1.0

m"p

(b) 32 connections

a 10.5 ~ - T - - - - V ----

8.5 L o -- '
0.0 0.2 0.4 0.6 0.8 1.0

""p

(c) 64 connections

Fig. 1. Impact of early detection aggressiveness on RED

gestion notifications is large. In this condition, if the RED
algorithm is aggressive, underutilization can occur when
many sources back off their transmission rates in response
to the observed congestion.

In the following sections, we analyze the effective-
ness of early congestion notification used by RED . First,
we consider the scenario where congestion notification is
provided via packet drops. We show that RED is only
marginally effective when used in conjunction with packet
drop as a mechanism for congestion notification. Next,
we study the performance of RED when used in conjunc-
tion with ECN enabled TCP connections. Although, RED is
more effective when used with ECN enabled connections,
packet losses are still significant. In either case, it is con-
spicuous that the congestion notification mechanism used
by RED does not directly depend upon the number of con-
nections multiplexed over the link.

A. RED with Packet Drop

In order to examine the impact of traffic load on early
detection mechanisms used by RED , we performed a set
of experiments using the ns simulator [15]. We varied
both the aggressiveness of the early detection algorithm
and the total number of connections multiplexed on the
bottleneck link. Figure l(a) shows the network topology
used in these experiments. Note that each link is full-
duplex, so acknowledgments flowing on the reverse path
do not interfere with data packets flowing on the forward
path. Each connection originates at one of the leftmost
nodes (no, nl , n2, n3,n4) and terminates at n8, making
the link between n5 and n6 the bottleneck.

Figure l(b,c) shows the loss rates for 32 and 64 con-
nections in a drop-tail and in a RED queue for a range of
macp values. In these experiments, packet drop is used to
signal congestion to the source. This leads to an interest-
ing optimization problem where the RED queue must pick
a maxp value which minimizes the overall packet loss, in-
cluding drops due to early detection and drops due to buffer
overflow. When extremely large values of maxp are used,
packet loss rates are dominated by drops due to early de-
tection, while with extremely small values of m a x p packet

loss is mostly due to queue overflow.
As the Figure 1 shows, RED has only a marginal im-

pact on the packet loss rates observed. For small values of
maxpr early detection is ineffective and the loss rates in
the RED queue approach loss rates in the drop-tail queue.
As maxp is increased, loss rates decrease slightly since the
RED queue is able to send congestion notification back to
the sources in time to prevent continual buffer overflow.
Finally, as maxp becomes large, the RED queue causes a
slight increase in packet loss rates over drop-tail queues.
Note that the value of maxp that minimizes the loss rates
is different in Figure l(b) and Figure l(c). As more con-
nections are added, the optimal value of maxp increases.

The use of packet drops as a means for congestion
notification fundamentally limits the effectiveness of ac-
tive queue management. Steady state analysis of the TCP
congestion avoidance algorithm [3,10,12,15,17] provides
some insight as to why this is the case. Such analysis has
shown that given random packet loss at constant probabil-
ity p , the upper bound on the bandwidth of a TCP connec-
tion can be estimated as:

where M S S is the segment size, RTT is the round-trip
time, and C is a constant. Using this model, we can ap-
proximate packet loss rates over a single bottleneck link
of L Mbs for a fixed number of connections N . In this
situation, the bandwidth delivered to each individual con-
nection is approximately the link bandwidth divided by the
number of connections (LIN) . By substituting this into
the previous equation and solving for p , we obtain

(2) p < (N M s s * C) 2 L RTT
As the equation shows, when all connections use the

TCP congestion avoidance algorithm, the upper bound on
the packet loss rate increases quadratically with the num-
ber of connections present. Intuitively, this can be shown
using an idealized example. Suppose we have two iden-
tical networks with bandwidth-delay products of 64KB

1322

100 , --/ 100

80 80
P P
Y, Y,

S, 60 g 60
5 6
J 40 J 40
m m

2.0 4.0 6.0 8.0 10.0
Time (s)

(a) mazp = 0.0 16

a

Time (s)

(b) mazp ~ 0 . 0 6 3

Fig. 2. Queue length plots of RED overmazp

from a given pair of end points. In one network, we have 4
identical connections while in the other we have 8 identical
connections going across the network. Given fair sharing
amongst the connections, the congestion windows of each
connection will approximately be the bandwidth-delay
product divided by the number of connections present. For
4 connections, each connection will have congestion win-
dows which oscillate near 16KB. Assuming standard TCP
windowing and a segment size of l K B , an individual con-
nection in this network will typically build its congestion
window up to around 16 packets, receive congestion noti-
fication in the form of a lost packet, back off its window to
about 8 packets and then slowly build its congestion win-
dow back up at a rate of one packet per round-trip time.
Given this behavior, the loss rate across all connections in
this idealized model would then be approximately 4 packet
drops every 8 round-trip times or 0.5 packets/round-trip
time. Similarly, using the same idealized model, it can be
shown that when 8 connections are present, losses occur at
a rate of 2.0 packetshound-trip time, a quadratic increase.

It should be noted that the derivation of Equation 2 is
based on idealized scenarios, the actual loss rates do not
quite vary quadratically with the number of connections.
From the drop-tail experiments in Figure 1, the observed
loss rates show a dependence on the number of connec-
tions which is somewhere between linear and quadratic.
This is partially due to the fact that connections can expe-
rience retransmission timeouts causing them to send less
packets than the equation predicts. Still, since packet loss
rates increase rapidly as networks become more congested,
it is necessary to decouple packet loss from congestion no-
tification through the use of ECN in order to prevent con-
gestion collapse.

In lieu of explicit congestion notification, Equation 2
provides some insight on how to reduce loss rates. One
way would be to eliminate the quadratic dependence on
loss rate by making TCP’S linear increase mechanism more
conservative. For example, by making the increase linear
in terms of the transmission rate, loss rates can be made to
increase linearly with the number of connections. Without
changing end-host congestion control, Equation 2 shows

- Average Length,
80

P
Y,
5 60 I m

J 40

20

6

a m

‘0.0 2.0 4.0 6.0 8.0 10.0
Time (s)

(c) m a x p = I .OO

that decreasing the segment size, increasing the bottleneck
bandwidth, and increasing the round-trip times through the
use of additional buffers [23] can slow the rate of con-
gestion notification considerably and thus, decrease the
amount of packet loss observed. Note that the dependence
of packet loss rates on round-trip time explains why R E D
queues, which attempt to reduce network queueing delays,
can potentially increase packet loss rates (as observed in
Figure 1). To examine this particular effect, Figure 2 plots
the queue lengths of the congested R E D queue over several
values of maxp in the experiment with 32 connections.
When maxp is small as in Figure 2(a), early detection is
ineffective and the behavior of the RED queue approaches
that of a drop-tail queue. Figure 2(b) shows the queue
length plot for the macp value which minimizes packet
loss (0.063). In this case, the RED algorithm is sufficiently
aggressive to eliminate packet loss due to buffer overtlow
while keeping the average queue length as close to the size
of the queue as possible. Finally, as maxp increases even
further as shown in Figure 2(c), RED becomes more aggres-
sive in its early detection leading to a drop in the average
queue length. Consequently, the round-trip times seen by
TCP connections also drop. Because packet loss rates in-
crease with decreasing round-trip times (see Equation 2),
this causes the loss rates in the RED queue to eventually
exceed that of the drop-tail queue.

B. RED with ECN

Next we examine the performance of RED using ECN-
enabled TCP. By using ECN, all packet losses from the RED
queue can be attributed to buffer overflow. We first focus
on the effects of congestion notification in the desired op-
erating range for RED where the queue length is between
the minth and mazth thresholds. This is achieved by set-
ting maxth to the queue limit, which and causes packet
loss to occur whenever early detection is not effective. In
these experiments, the aggressiveness of RED algorithm is
controlled using maxp.

Figure 3(a,b) shows a plot of the queue-length at the link
between n5 to n6 when the number of connections active
is 8 and 32 respectively. As Figure 3(a) shows, when only

1323

P W
Y 5 40

a $ 1 20

'0.0 2.0 4.0 6.0 8.0 10.0
Time (s)

a 20

- Aver eLen

Time (6)
'0.0 2.0 4.0 6.0 8.0 10.0

(a) Aggressive early detection (maz, = 0.250) (b) Conservative early detection (mm, = 0.016)

Fig. 3. Impact of early detection aggressivenesson queue length.

8 connections are active, aggressive early detection signals
congestion notification to the sources at a rate which is too
high, causing the offered load to be significantly smaller
at times than the bottleneck link bandwidth. This causes
periodic underutilization where the queue is empty and the
bottleneck link has no packets to send. When the num-
ber of connections is increased to 32 the aggressive early
detection performs as desired, sending congestion notifica-
tion at a rate which can both avoid packet loss and achieve
high llnk utilization.

Figure 3(b) repeats the same set of experiments, but
with a more conservative early detection setting. In con-
trast to Figure 3(a), Figure 3(b) shows that by using less ag-
gressive early detection, the RED queue can maintain high
link utilization while avoiding packet loss when the num-
ber of connections is small. However, when the number of
connections is increased to 32, Figure 3(b) shows that con-
servative early detection does not deliver congestion noti-
fication to a sufficient number of sources. Thus, the RED
queue continually overflows causing it to behave more like
a drop-tail queue. The figure also shows that the bottleneck
queue never drains even though it is dropping a significant
number of packets. This indicates that the TCP sources do
not back off sufficiently in response to the congestion. In
fact, the packets that are successfully delivered through the
bottleneck queue trigger further increases in transmission
rate. Consequently, the bottleneck queue remains close to
fully occupied through the duration of the experiment.

To systematically evaluate the impact of maxp, we re-
peated the experiments across a range of traffic loads '.
Figure 4(a) shows the loss rates observed for 4, 8, 32, and
64 connections. The figure also plots the loss rates when
a drop-tail queue is used at the bottleneck link. As the
drop-tail results show, loss rates at the bottleneck link in-
crease proportionally to the number of connections using
the link. The corresponding bottleneck link utilizations

In each experiment, connectionsare started within the first 10 seconds
of simulation. Afier 100 seconds, both the loss rates and the link utiliza-
tion for the bottleneck link are recorded for 100 seconds. The loss rate is
calculated as the number of packets dropped by the queue divided by the
total number of packets which arrive at the queue. The link utilization is
calculated as the total number of packets sent divided by the maximum
number of packets the link could send.

are shown in Figure 4(b). The figures show that for small
numbers of connections, loss rates remain low across all
values of maxp, while only small values of maxp can
keep the bottleneck link at full utilization. Thus, to op-
timize performance over a small number of connections,
early detection must be made conservative. In contrast, for
large numbers of connections, bottleneck link utilizations
remain high across all values of maxp and only large val-
ues of maap are able to prevent packet loss. In order to
optimize performance in this case, early detection must be
aggressive.

In the previous experiments, we set r " t h equal to the
queue size so that whenever the early detection algorithm
fails, packet loss occurs. By setting maqh sufficiently be-
low the queue size, the RED algorithm can avoid packet
losses when early detection fails by deterministically mark-
ing every incoming packet. Figure 5 shows the queue-
length plot using the same experiment as in Figure 3(b)
with 32 connections, a larger bottleneck queue size and a
fixed maxth of 80KB. When the queue size is 120KB,
the queue-length plot shows that even with a fairly signif-
icant amount of additional buffer space, packet loss is not
eliminated. It also shows that the combined effect of using
ECN and packet drops for signaling congestion notification
leads to periods of time where TCP is able to impact the
transmission rates of the sources. This is in contrast to the
behavior seen in Figure 3(b). In that experiment, whenever
a connection is able to send a packet through the bottle-
neck link it increases its transmission rate even though the
bottleneck queue is full. By setting maxth sufficiently low
and using ECN, all connections receive congestion notifi-
cation when the queue is full either in the form of ECN
or packet loss. Thus, as Figure 5 shows, after a sustained
period of ECN marking and packet loss, the sources back
off sufficiently to allow the queue to drain. One of the
problems with deterministic marking is that it often goes
overboard in signaling congestion to the end-hosts. As
the queue-length plots in Figure 5 show, periods of con-
gestion are immediately followed by fairly long periods of
underutilization where the queue is empty. Furthermore,
the buffer space required to reduce loss is substantial. Fig-
ure 5(b) plots the queue-length using a queue size limit of
240KB. The figure shows that even though deterministic

1324

10.0 1
i I

0 OREO-ECN (4)

0
i

0.0 L A -AA-- I , ’
0.0 0.2 0.4 0.6 0.8 1 .o

max
P

(a) Packet loss rates

100.0 m
w ” m

Y 43

S REO-ECN (32

85.0 gO.Ol 0.0 J 0.2 0.4 0.6 0.8 1 .o

P
max

(b) Bottleneck link utilization

Fig. 4. Impact of early detection aggressiveness on RED-ECN

32 Sources 32 Sources
120

100

9 80

’ 60 3

6 40

-
8

m
m

20

6.0 8.0 10.0
0
0.0 2.0 4.0

Time (s)
8.0 1 2.0 4.0 6.0

Time (s)

(a) queue size=l20KB; matth=80KB @) queue size=240KB; mazth=80KB

Fig. 5. Impact of maqh and queue size

marking is enforced at an average queue length of 80KB,
the actual queue length can more than double before the
sources have a chance to back off.

IV. SELF-CONFIGURING RED

From the discussion in the previous sections, it is clear
that adapting RED parameters based on traffic load and us-
ing explicit congestion notification can be beneficial to net-
work performance. Figure 8 presents an on-line algorithm
for adaptively changing the RED parameters according to
the observed traffic. The idea behind this algorithm is to
infer whether RED should become more or less aggressive
by examining the variations in average queue length. If
the average queue length oscillates around minth, then the
early detection mechanism is too aggressive. On the other

.O

hand, if it oscillates around musth, then the early detec-
tion mechanism is too conservative. Based on the observed
queue length dynamics, the algorithm adjusts the value of
mazp . In particular, it scales maap by constant factors of
a and /3 depending on which threshold it crosses.

To explore the feasibility of the approach proposed in
Figure 8, we ran another set of experiments using the same
network as shown in Figure l(a) with lOOKB queues. In
this experiment, we vary the number of active connec-
tions between 8 and 32 over 40 second intervals. Figure 6
plots the queue-lengths for RED queues statically config-
ured to be either aggressive or conservative. When aggres-
sive early detection is used, as shown in Figure 6(a), the
RED queue performs well whenever 32 connections are ac-
tive. When only 8 connections are active though, the RED

1325

20.0 -

0.0 - L ' i i i L

0 0 20.0 40 0 60 0 80.0 100.0 120.0
Time (s)

(a) Aggressive detection (mazp = 0.250)

100.0

80.0

60.0

40.0

20.0

n n
0.0 20.0 40.0 60.0 80.0 100.0 120.0

V.V

Time (s)

(b) Conservative detection (m a l p = 0.01 6)

Fig. 6 . Static random early detection

100.0

80.0

E
?c 60.0 s e

a
-I
a, 2 400

20.0

0.0
00 20.0 400 60.0 80.0 100.0 120.0

Time (s)

(a) Queue Length

0.05 I i
1

J

.O 20.0 40.0 60.0 80.0 100.0 120.0
Time (s)

(b) m a s p parameter

Fig. 7. Adaptive random early detection

Every Q(ave) Update:
if (minth < Q(ave) < m a x t h)

status = B e t w e e n ;
if (& (a m) < minth && status != B e l o w)

status = B e l o w ;
m a x p = m a x p I a;

status = Above;
m a x p = m a x p * p;

if (Q(ave) > m a x t h && status != Above)

Fig. 8. Adaptive RED algorithm

queue is too aggressive in its congestion notification, thus
causing periodic underutilization when the queue is empty.

When conservative early detection is used, as shown in
Figure 6(b), the RED queue only performs well when 8
connections are active. When all 32 connections are ac-
tive, the RED queue continually fluctuates between periods
of sustained packet loss and ECN marking and subsequent
periods of underutilization.

Figure 7(a) shows the queue-length plot of the same ex-
periment using the adaptive RED algorithm with a and ,B
set to 3 and 2, respectively. We initially set m a x p to 0.020
and allow the algorithm to adjust the parameter according
to Figure 8. As the plot shows, after brief learning peri-
ods when the experiment starts and when the input traffic
changes, the RED queue is able to adapt itself well. Fig-
ure 7(b) plots the m a c p parameter as the RED queue adapts
itself to the input traffic. As expected, its value adapts to
reflect the number of active flows. When all 32 connec-
tions are active, m a x p increases significantly, causing the

1326

RED algorithm to become more aggressive. When only 8
connections are active, maxp decreases, causing the RED
algorithm to become less aggressive.

V. IMPLEMENTATION
We have implemented the adaptive RED modifications

on a small testbed of PCs (Figure 9(a)) running FreeBSD
2.2.6 and ALTQ [2]. In this implementation, calls to the
generic IF-ENQUEUE and I F D E Q U E U E macros from the
i f -ou tpu t and i f -s t a r t are changed in order to re-
place the FIFO queueing mechanism typically used in BSD
UNIX with the adaptive RED queueing discipline. In addi-
tion, ECN is implemented using two bits of the type-of-
service (ToS) field of the IP header [19]. When the adap-
tive RED algorithm decides that a packet must be dropped
or marked, it examines one of the two bits to see if the flow
is ECN-capable. If it is not ECN-capable, the packet is sim-
ply dropped. If the flow is ECN-capable, the other bit is
set and used as a signal to the TCP receiver that congestion
has occurred. The TCP receiver, upon receiving an ECN
signal, modifies the TCP header of the return acknowledg-
ment using a currently unused bit in the TCP flags field. A
bit labeled “congestion experienced” (CE) is used by the
TCP receiver to indicate the presence of congestion to the
sender. Upon receipt of a TCP segment with CE bit set, the
TCP sender invokes its congestion control mechanisms as
if it had detected a packet loss.

Using this implementation, we ran several experiments
on the testbed shown in Figure 9(a). Each network node
and link is labeled with CPU model and link bandwidth, re-
spectively. Note that all links are shared ethemet segments.
Hence, the acknowledgments on the reverse path collide
and interfere with data packets on the forward path. As
the figure shows, FreeBSD-based routers using the adap-
tive RED queue management algorithm connect ethemet
and fast ethernet segments.

We use ne tpe r f [16] to generate load on the system.
ne tper f is a well-known, parameterizable tool for gen-
erating network load in order to evaluate the performance
of both end-hosts and network elements. In the experi-
ments shown here, a variable number of infinite ne tper f
sessions is run from f a s t to slow, the endpoints of the
network. The router queue on the congested interface on
r o u t e r l to the slow ethemet segment is sized at 50KB
usingaminth of lOKB amaxth of40KB. Amax, value
of 0.02 is used for the conservative early detection algo-
rithm while a maq, value of 1 .OO is used for the aggressive
early detection algorithm. The maxp value of the adaptive
algorithm is initially set at 0.02 and allowed to vary ac-
cording to the algorithm in Figure 8. In order to ensure
the adaptive RED modifications did not create a bottleneck
in the router, we ran several experiments between f a s t
and rou te r2 using the modifications on r o u t e r l to
forward packets between both hosts. In all of the exper-
iments, the sustained throughput of rou ter l was always
above 70Mbs. Thus, experiments run from f a s t to slow
always bottleneck at the output interface to the slow ether-
net segment on r o u t e r l .

Figure 9 shows the throughput and packet loss rates
at the bottleneck link across a range of workloads. The
throughput measures the rate at which packets are for-
warded through the congested interface. This rate slightly
overestimates the end-to-end goodput of the ne tpe r f
sessions since retransmissions are counted. The packet loss
rate measures the ratio of the number of packets dropped
at the queue and the total number of packets received at
the queue. In each experiment, throughput and packet
loss rates were measured over ten 5-second intervals and
then averaged. As Figure 9(a) shows, both the conserva-
tive and adaptive early detection algorithms maintain high
throughput levels across all workloads while the aggres-
sive early detection algorithm achieves a lower throughput
for smaller numbers of connections. Note that since the
ethernet segments are shared, acknowledgments on the re-
verse path collide with data packets on the forward path,
thus limiting throughput. Figure 9(b) shows the packet
loss rates over the same workloads. As the figure shows,
both the aggressive and the adaptive early detection algo-
rithms maintain low packet loss rates across all workloads
while the conservative early detection algorithm suffers
from fairly large packet loss rates as the number of connec-
tions increase. As the number of connections increases, an
interesting observation is that marking rate of the adaptive
and aggressive early detection algorithms approaches 50%.
Because aggregate TCP behavior becomes more aggressive
as the number of connections increases, it becomes more
and more difficult for the RED queue to maintain low loss
rates. Fluctuations in queue lengths occur so abruptly that
the RED algorithm oscillates between periods of sustained
marking and packet loss and periods of minimal marking
and link underutilization.

VI. CONCLUSION A N D FUTURE WORK
This paper has shown how adaptive active queue man-

agement can be used in conjunction with explicit conges-
tion notification to effectively reduce packet loss in con-
gested networks. In particular, an adaptive RED mecha-
nism which is cognizant of the number of active connec-
tions can provide significant benefits in terms of decreasing
packet loss and increasing network utilization. Preliminary
experiments using a small testbed has shown the efficacy
of the algorithm. Since early detection algorithms become
more effective as round trip times increase, it is expected
that the performance improvements will become even more
significant as the network grows.

We are currently examining ways to methodically im-
prove the adaptiveness of the RED algorithm. This paper
presents one specific algorithm for tailoring RED param-
eters to the input traffic. There are many other potential
alternatives for doing so. For example, the RED queue
can actually keep track of the number of active connec-
tions and change its aggressiveness accordingly. Another
mechanism would be to infer the number of connections
present by the rate that the average queue length changes,
then have the RED queue adapt its parameters accordingly.
It may also be possible to adapt other RED parameters such

1327

200 MHz Pentium MMX 200 M M Pcntium Pro
32 MB 64MB

1 10.0

4 8.0

6.0

4.0

2.0

0.0

:
a

1.4 I P 4

-

-

-

4. -1- 7.2 i
1 7 . 0 1 /

6.6 1
0.0 20 0 8.0 60.0 80.0

233 MHz Pentium I1 166 MHz Pcntium " b r d C-tlans

I28 MB 32 MB

(a) Testbed (b) Throughput

12.0 } 4

(c) Packet Loss (percent)

Fig. 9. Queue Management Performance

as inter-packet drop probabilities, RED threshold values, or
queue length weights in order to optimize performance.
For example, one could adapt the weight used to calcu-
late the exponentially weighted average of the queue length
based on the input traffic. When a large number of connec-
tions are present, queue lengths can fluctuate considerably
in a short period of time. In such cases, an average which
heavily weights more recent queue lengths is necessary in
order to trigger congestion notification in time to prevent
packet loss.

REFERENCES
R. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Es-
trin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peter-
son, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang.
Recommendations on Queue Management and Congestion Avoid-
ance in the Intemet. Internet Dra) dra)-irtf-e2e-queue-mgt-OO.1~t,
March 1997.
K. Cho. A Framework for Altemate Queueing: Towards Traffic
Management by PC-UNIX Based Routers. USENIX 1998 Annual
Technical Conference, June 1998.
S. Floyd. Connections with Multiple Congested Gateways in
Packet-Switched Networks, Part 1 : One-way Traffic. Computer
Communication Review, 2 1 (S), October 199 1.
S. Floyd. TCP and Explicit Congestion Notification. Computer
Communication Review, 24(5):10-23,0ctober 1994.
S. Floyd and V. Jacobson. Random Early Detection Gateways for
Congestion Avoidance. ACM/IEEE Transactions on Networking,
1(4):397-413, August 1993.
E. Hashem. Analysis of Random Drop for Gateway Congestion
Control. MIT Technical Report, 1990.
V. Jacobson. Congestion Avoidance and Control. In Proceedings of
ACMSIGCOMM, pages 3 14-329, August 1988.
V. Jacobson. Presentations to the IETF Performance and Congestion
Control Working Group. August 1989.
V. Jacobson. Modified
TCP Congestion Avoidance Algorithm. end2end-interest mailing
list (jip:/~p.ee.lbl.gov/emailhanj.90apr30.txt), April 1 990.
T. V. Lakshman and U. Madhow. The Performance of TCP/IP
for Networks with High Bandwidth-Delay Products and Random
Loss. IFIP Transactions C-26, High Performance Networking,
pages 135-1 50,1994.
D. Lin and R. Moms. Dynamics of Random Early Detection. In
Proc. ofACMSIGCOMM, September 1997.

scopic Behavior of the TCP Congestion Avoidance Algorithm.
Computer Communication Review, 27(1), July 1997.

[I31 A. Mankin. Random Drop Congestion Control. In Proceed-
ings ACMSIGCOMM (Speciallssue Computer Communication Re-
view), pages 1-7, September 1990. Published as Proc. ACM SIG-
COMM '90; (Special Issue Computer Communication Review),
volume 20, number 4.

[I41 A. Mankin and K. K. Ramakrishnan. Gateway Congestion Control
Survey. RFC 1254, August 199 1.

[IS] S. McCanne and S. Floyd. http://www-nrg.ee.Ibl.gov/ns/. ns-LBNL
Network Simulator, 1996.

[161 Netperf. The Public Netperf Homepage: http://www.netperf.org/.
The Public Netperf Homepage, 1998.

[I71 T. Ott, J. Kemperman, and M. Mathis. The Stationary Behavior
of Ideal TCP Congestion Avoidance.
)p:/Jp.bellcore.com/pub/tjoflCPwindow.ps, August 1996.

[IS] V. Paxson. End-to-End Intemet Packet Dynamics. In Proc. ofACM
SIGCOMM, September 1997.

1191 K. K. Ramakrishnanand S. Floyd. A Proposal to Add Explicit Con-
gestion Notification (ECN) to IPv6 and to TCP. Internet DrafidraJ-
kkyifecn-03.tx1, October 1998.

[20] K. K. Ramakrishnan and R. Jain. A Binary Feedback Scheme for
Congestion Avoidance in Computer Networks. ACM Pansaction
on Computer Systems, 8(2): 158-1 8 I , May 1990.

[2 I] A. Romanow and S. Floyd. Dynamics of TCP Traffic over ATM
Networks. Proc. ofACM SIGCOMM, pages 79-88, August 1994.

[22] B. Suter, T. V. Lakshman, D. Stiliadis, and A. Choudhury. Design
Considerations for Supporting TCP with Per-flow Queueing. Proc.
IEEE INFOCOM, March 1998.

[23] C. Villamizar and C. Song. High Performance TCP in ANSNET.
Computer Communication Review, 24(5):45-60, October 1994.

J

1
_i 70.0 80.0

[I21 M. Mathis and J. Semke and J. Mahdavi and T. Ott. The Macro-

1328

http://www-nrg.ee.Ibl.gov/ns
http://www.netperf.org

