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Absrrucr-The congestion control mechanisms used in TCP have 
been the focus of numerous studies and have undergone a number of 
enhancements. However, even with these enhancements, TCP con- 
nections still experience alarmingly high loss rates, especially during 
times of congestion. To alleviate this problem, the IETF is considering 
active queue management mechanisms, such as RED, for deployment 
in the network. In this paper, we first show that the effectiveness of 
RED depends, to a large extent, on the appropriate parameterization 
of the RED queue. We then show that there is no single set of RED 
parameters that work well under different congestion scenarios. In 
light of this observation, we propose and experiment with more a d a p  
tive RED gateways which self-parameterize themselves based on the 
traffic mix. Our results show that traffic cognizant parameterization 
of RED gateways can effectively reduce packet loss while maintaining 
high link utilizations under a range of network loads. 

KqwordsCongestion control, Internet, TCP, RED, queue man- 
agement. 

I. INTRODUCTION 

Improving the congestion control mechanisms used in 
TCP has been an active area of research in the past few 
years. While a number of proposed TCP enhancements 
have made their way into implementations, TCP connec- 
tions still experience high packet loss rates. Loss rates are 
especially high during periods of heavy congestion, when 
a large number of connections compete for scarce net- 
work bandwidth. Recent measurements have shown that 
the growing demand for network bandwidth has driven loss 
rates up across various links in the Internet [ 181. 

One of the reasons for this high packet loss rate is the 
failure of the network to provide early congestion notifi- 
cation to sources. This has led the IETF to recommend 
the use of active queue management in Internet routers [ 1, 
141. There have been several active queue management 
algorithms which have been proposed including random 
drop [6,13], early packet discard [21], and early random 
drop [SI. The most prominent and widely studied active 
queue management scheme is Random Early Detection 
(RED) [ 1,5]. RED gateways alleviate many of the problems 
found in other active queue management algorithms in that 
they can prevent global synchronization, reduce packet loss 
rates, and minimize biases against bursty sources using a 
simple, low-overhead algorithm. Although RED outper- 
forms traditional drop-tail queues, it is often difficult to 
parameterize RED queues to perform well under different 
congestion scenarios. 
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This paper demonstrates the importance of appropri- 
ately parameterizing RED queues by studying the perfor- 
mance of RED under a variety of configurations. The ef- 
fectiveness of early detection is shown to be critically de- 
pendent upon the rate at which congestion notification is 
provided to the sources. When congestion notification is 
aggressive, packet loss can be avoided, but at the expense 
of low overall link utilization. On the other hand, when the 
rate of congestion notification is not sufficiently aggres- 
sive, link utilization remains high but the increased packet 
loss results in a drop in goodput and an increase in wasted 
resources. We present an on-line auto-configuration mech- 
anism that determines suitable operating parameters for a 
RED queue depending on the traffic pattern. A key feature 
of this mechanism is that it does not require per-flow ac- 
counting, and retains the main advantages of RED. This 
is in contrast with other approaches which introduce addi- 
tional complexity to the queue inanagement scheme in re- 
turn for additional functionality. Such schemes add either 
per-flow queueing [22] or per-flow accounting [ 1 11 in or- 
der to improve performance. Because of its simplicity and 
low overhead, the modifications proposed in this paper are 
particularly well-suited for managing traffic through large 
backbone routers where per-flow accounting and queueing 
may not be available. 

Section I1 gives some background on how TCP conges- 
tion control and RED queue management work. Section 111 
shows how the selection of RED parameters impacts perfor- 
mance across varying load. Section IV describes modifica- 
tions which allow RED to self-parameterize itself in order 
to adapt to network load. In Section V, we present experi- 
mental results that demonstrate the efficacy of the proposed 
scheme. Finally, Section VI concludes the paper with a dis- 
cussion of possible extensions. 

11. BACKGROUND 

When a network is congested, a large number of con- 
nections compete for a share of scarce link bandwidth. 
Over the last decade, TCP congestion control has been 
used to effectively regulate the rates of individual connec- 
tions sharing network links. TCP congestion control is 
window-based. The sender keeps a congestion window 
whose size limits the sending rate by limiting the num- 
ber of unacknowledged packets that the sender can have 
outstanding in the network. When a connection starts 
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TABLE I 
RED PARAMETERS 

up, it attempts to ramp up its transmission rate quickly 
by exponentially increasing its congestion window. This 
stage is called slow-start and allows the source to double 
its congestion window, and thus its transmission rate, ev- 
ery round-trip time. In order to prevent excessive losses 
due to an exponentially-increasing transmission rate, TCP 
senders typically employ what is known as the congestion- 
avoidance algorithm [7]. In this algorithm, TCP sources 
keep track of a threshold value (ssthresh) which is a 
conservative approximation of the window size the net- 
work can support. When the window size exceeds this 
threshold, TCP enters the congestion avoidance phase. In 
this phase, the window is increased at a much slower rate 
of one segment per round-trip time. When the aggregate 
transmission rate of the active connections exceeds the net- 
work’s capacity, queues build up and eventually packets 
are dropped. One way in which TCP detects a packet loss 
is through the receipt of duplicate acknowledgments from 
the receiver [9]. Upon receiving a small number of dupli- 
cate acknowledgments, TCP infers that a packet loss has 
occurred and immediately cuts its transmission rate in half 
by halving its congestion window. These mechanisms are 
called fast retransmit and fast recovery. When congestion 
is severe enough such that packet loss cannot be inferred 
in such a manner, TCP relies on a retransmission timeout 
mechanism to trigger subsequent retransmissions of lost 
packets. When a retransmission timer is triggered, TCP re- 
duces its window size to one segment and retransmits the 
lost segment. 

One problem with the TCP congestion control algorithm 
over current networks is that the TCP sources reduce their 
transmission rates only after detecting packet loss caused 
by queue overflow. This is a problem since considerable 
time may pass between the packet drop at the router and 
its detection at the source. In the meantime, a large num- 
ber of packets may be dropped as the senders continue to 
transmit at a rate that the network cannot support. Ac- 
tive queue management has been proposed as a solution 
for preventing losses due to buffer overflow. The goal of 
active queue management is to detect incipient conges- 
tion early and convey congestion notification to the end- 

hosts, allowing them to back off before queue overflow 
and packet loss occur. One of the more promising active 
queue management schemes being proposed by the IETF 
for deployment in the network is RED (Random Early De- 
tection) [ 1,4]. RED maintains an exponentially weighted 
moving average of the queue length which it uses to detect 
congestion. When the average queue length exceeds a min- 
imum threshold (?ninth), packets are randomly dropped 
or marked with an explicit congestion notification (ECN) 
bit [4,19,20] with a calculated probability. When a TCP 
sender receives congestion notification in the form of an 
ECN mark, it halves its congestion window as it would if 
it had detected a packet loss. The probability that a packet 
arriving at the RED queue is either dropped or marked de- 
pends upon, among other things, the average queue length, 
the time elapsed since the last packet was dropped, and 
an initial probability parameter (muxp). When the aver- 
age queue length exceeds a maximum threshold (muxth),  
all packets are dropped or marked. In our experiments, 
the aggressiveness of RED is varied by changing ?nuxp, 
RED’S initial drop probability. While it is possible to vary 
any of RED’S parameters (as shown in Table I), we vary 
muxp since it directly impacts the aggressiveness of the 
early detection mechanism. One could potentially change 
f ( t )  and wg, the inter-drop probability function and the 
queue weight respectively, however, doing so could poten- 
tially impact RED’S fairness to bursty connections as well 
as its ability to avoid global synchronization effects. 

111. How EFFECTIVE IS RED? 
The basic operating principle of all active queue man- 

agement mechanisms is to provide early congestion noti- 
fication to the sources in order to avoid packet loss due 
to buffer overflow. In heavily-congested networks, con- 
gestion notification must be signaled to a sufficiently large 
number of sources so that the offered load is reduced con- 
siderably. However, excessive early notification can lead 
to underutilization of network resources. Consequently, 
the success of an active queue management mechanism de- 
pends critically on how effectively it can strike a balance 
between reducing packet loss and preventing underutiliza- 
tion of the network by appropriately adjusting the rate of 
congestion notification. 

For example, consider a bottleneck link of capacity 
lOMbs which is equally shared amongst several connec- 
tions. When 100 TCP connections share this link, sending 
congestion notification to one connection reduces the of- 
fered load to 9.95Mbs. On the other hand, when only 2 
TCP connections share the link, sending congestion notifi- 
cation to one of them reduces the offered load to 7.5Mbs. 
In general, when the bottleneck link is shared between N 
connections, a congestion notification signal to one con- 
nection reduces the offered load by a factor of (1 - &). 
Hence, as N becomes large, the impact of individual con- 
gestion notifications decreases. In this situation, if the RED 
algorithm is not configured to be more aggressive, the RED 
queue can degenerate into a simple drop-tail queue. On the 
other hand, when N is small, the impact of individual con- 
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Fig. 1. Impact of early detection aggressiveness on RED 

gestion notifications is large. In this condition, if the RED 
algorithm is aggressive, underutilization can occur when 
many sources back off their transmission rates in response 
to the observed congestion. 

In the following sections, we analyze the effective- 
ness of early congestion notification used by RED . First, 
we consider the scenario where congestion notification is 
provided via packet drops. We show that RED is only 
marginally effective when used in conjunction with packet 
drop as a mechanism for congestion notification. Next, 
we study the performance of RED when used in conjunc- 
tion with ECN enabled TCP connections. Although, RED is 
more effective when used with ECN enabled connections, 
packet losses are still significant. In either case, it is con- 
spicuous that the congestion notification mechanism used 
by RED does not directly depend upon the number of con- 
nections multiplexed over the link. 

A. RED with Packet Drop 

In order to examine the impact of traffic load on early 
detection mechanisms used by RED , we performed a set 
of experiments using the ns simulator [15]. We varied 
both the aggressiveness of the early detection algorithm 
and the total number of connections multiplexed on the 
bottleneck link. Figure l(a) shows the network topology 
used in these experiments. Note that each link is full- 
duplex, so acknowledgments flowing on the reverse path 
do not interfere with data packets flowing on the forward 
path. Each connection originates at one of the leftmost 
nodes (no, nl ,  n2, n3,n4) and terminates at n8, making 
the link between n5 and n6 the bottleneck. 

Figure l(b,c) shows the loss rates for 32 and 64 con- 
nections in a drop-tail and in a RED queue for a range of 
macp values. In these experiments, packet drop is used to 
signal congestion to the source. This leads to an interest- 
ing optimization problem where the RED queue must pick 
a maxp value which minimizes the overall packet loss, in- 
cluding drops due to early detection and drops due to buffer 
overflow. When extremely large values of maxp are used, 
packet loss rates are dominated by drops due to early de- 
tection, while with extremely small values of m a x p  packet 

loss is mostly due to queue overflow. 
As the Figure 1 shows, RED has only a marginal im- 

pact on the packet loss rates observed. For small values of 
maxpr early detection is ineffective and the loss rates in 
the RED queue approach loss rates in the drop-tail queue. 
As maxp is increased, loss rates decrease slightly since the 
RED queue is able to send congestion notification back to 
the sources in time to prevent continual buffer overflow. 
Finally, as maxp becomes large, the RED queue causes a 
slight increase in packet loss rates over drop-tail queues. 
Note that the value of maxp that minimizes the loss rates 
is different in Figure l(b) and Figure l(c). As more con- 
nections are added, the optimal value of maxp increases. 

The use of packet drops as a means for congestion 
notification fundamentally limits the effectiveness of ac- 
tive queue management. Steady state analysis of the TCP 
congestion avoidance algorithm [3,10,12,15,17] provides 
some insight as to why this is the case. Such analysis has 
shown that given random packet loss at constant probabil- 
ity p ,  the upper bound on the bandwidth of a TCP connec- 
tion can be estimated as: 

where M S S  is the segment size, RTT is the round-trip 
time, and C is a constant. Using this model, we can ap- 
proximate packet loss rates over a single bottleneck link 
of L Mbs for a fixed number of connections N .  In this 
situation, the bandwidth delivered to each individual con- 
nection is approximately the link bandwidth divided by the 
number of connections (LIN) .  By substituting this into 
the previous equation and solving for p ,  we obtain 

(2) p <  ( N M s s * C ) 2  L RTT 
As the equation shows, when all connections use the 

TCP congestion avoidance algorithm, the upper bound on 
the packet loss rate increases quadratically with the num- 
ber of connections present. Intuitively, this can be shown 
using an idealized example. Suppose we have two iden- 
tical networks with bandwidth-delay products of 64KB 
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from a given pair of end points. In one network, we have 4 
identical connections while in the other we have 8 identical 
connections going across the network. Given fair sharing 
amongst the connections, the congestion windows of each 
connection will approximately be the bandwidth-delay 
product divided by the number of connections present. For 
4 connections, each connection will have congestion win- 
dows which oscillate near 16KB. Assuming standard TCP 
windowing and a segment size of l K B ,  an individual con- 
nection in this network will typically build its congestion 
window up to around 16 packets, receive congestion noti- 
fication in the form of a lost packet, back off its window to 
about 8 packets and then slowly build its congestion win- 
dow back up at a rate of one packet per round-trip time. 
Given this behavior, the loss rate across all connections in 
this idealized model would then be approximately 4 packet 
drops every 8 round-trip times or 0.5 packets/round-trip 
time. Similarly, using the same idealized model, it can be 
shown that when 8 connections are present, losses occur at 
a rate of 2.0 packetshound-trip time, a quadratic increase. 

It should be noted that the derivation of Equation 2 is 
based on idealized scenarios, the actual loss rates do not 
quite vary quadratically with the number of connections. 
From the drop-tail experiments in Figure 1, the observed 
loss rates show a dependence on the number of connec- 
tions which is somewhere between linear and quadratic. 
This is partially due to the fact that connections can expe- 
rience retransmission timeouts causing them to send less 
packets than the equation predicts. Still, since packet loss 
rates increase rapidly as networks become more congested, 
it is necessary to decouple packet loss from congestion no- 
tification through the use of ECN in order to prevent con- 
gestion collapse. 

In lieu of explicit congestion notification, Equation 2 
provides some insight on how to reduce loss rates. One 
way would be to eliminate the quadratic dependence on 
loss rate by making TCP’S linear increase mechanism more 
conservative. For example, by making the increase linear 
in terms of the transmission rate, loss rates can be made to 
increase linearly with the number of connections. Without 
changing end-host congestion control, Equation 2 shows 
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that decreasing the segment size, increasing the bottleneck 
bandwidth, and increasing the round-trip times through the 
use of additional buffers [23] can slow the rate of con- 
gestion notification considerably and thus, decrease the 
amount of packet loss observed. Note that the dependence 
of packet loss rates on round-trip time explains why R E D  
queues, which attempt to reduce network queueing delays, 
can potentially increase packet loss rates (as observed in 
Figure 1). To examine this particular effect, Figure 2 plots 
the queue lengths of the congested R E D  queue over several 
values of maxp in the experiment with 32 connections. 
When maxp is small as in Figure 2(a), early detection is 
ineffective and the behavior of the RED queue approaches 
that of a drop-tail queue. Figure 2(b) shows the queue 
length plot for the macp value which minimizes packet 
loss (0.063). In this case, the RED algorithm is sufficiently 
aggressive to eliminate packet loss due to buffer overtlow 
while keeping the average queue length as close to the size 
of the queue as possible. Finally, as maxp increases even 
further as shown in Figure 2(c), RED becomes more aggres- 
sive in its early detection leading to a drop in the average 
queue length. Consequently, the round-trip times seen by 
TCP connections also drop. Because packet loss rates in- 
crease with decreasing round-trip times (see Equation 2), 
this causes the loss rates in the RED queue to eventually 
exceed that of the drop-tail queue. 

B. RED with ECN 

Next we examine the performance of RED using ECN- 
enabled TCP. By using ECN, all packet losses from the RED 
queue can be attributed to buffer overflow. We first focus 
on the effects of congestion notification in the desired op- 
erating range for RED where the queue length is between 
the minth and mazth thresholds. This is achieved by set- 
ting maxth to the queue limit, which and causes packet 
loss to occur whenever early detection is not effective. In 
these experiments, the aggressiveness of RED algorithm is 
controlled using maxp. 

Figure 3(a,b) shows a plot of the queue-length at the link 
between n5 to n6 when the number of connections active 
is 8 and 32 respectively. As Figure 3(a) shows, when only 
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8 connections are active, aggressive early detection signals 
congestion notification to the sources at a rate which is too 
high, causing the offered load to be significantly smaller 
at times than the bottleneck link bandwidth. This causes 
periodic underutilization where the queue is empty and the 
bottleneck link has no packets to send. When the num- 
ber of connections is increased to 32 the aggressive early 
detection performs as desired, sending congestion notifica- 
tion at a rate which can both avoid packet loss and achieve 
high llnk utilization. 

Figure 3(b) repeats the same set of experiments, but 
with a more conservative early detection setting. In con- 
trast to Figure 3(a), Figure 3(b) shows that by using less ag- 
gressive early detection, the RED queue can maintain high 
link utilization while avoiding packet loss when the num- 
ber of connections is small. However, when the number of 
connections is increased to 32, Figure 3(b) shows that con- 
servative early detection does not deliver congestion noti- 
fication to a sufficient number of sources. Thus, the RED 
queue continually overflows causing it to behave more like 
a drop-tail queue. The figure also shows that the bottleneck 
queue never drains even though it is dropping a significant 
number of packets. This indicates that the TCP sources do 
not back off sufficiently in response to the congestion. In 
fact, the packets that are successfully delivered through the 
bottleneck queue trigger further increases in transmission 
rate. Consequently, the bottleneck queue remains close to 
fully occupied through the duration of the experiment. 

To systematically evaluate the impact of maxp, we re- 
peated the experiments across a range of traffic loads '. 
Figure 4(a) shows the loss rates observed for 4, 8, 32, and 
64 connections. The figure also plots the loss rates when 
a drop-tail queue is used at the bottleneck link. As the 
drop-tail results show, loss rates at the bottleneck link in- 
crease proportionally to the number of connections using 
the link. The corresponding bottleneck link utilizations 

In each experiment, connectionsare started within the first 10 seconds 
of simulation. Afier 100 seconds, both the loss rates and the link utiliza- 
tion for the bottleneck link are recorded for 100 seconds. The loss rate is 
calculated as the number of packets dropped by the queue divided by the 
total number of packets which arrive at the queue. The link utilization is 
calculated as the total number of packets sent divided by the maximum 
number of packets the link could send. 

are shown in Figure 4(b). The figures show that for small 
numbers of connections, loss rates remain low across all 
values of maxp, while only small values of maxp can 
keep the bottleneck link at full utilization. Thus, to op- 
timize performance over a small number of connections, 
early detection must be made conservative. In contrast, for 
large numbers of connections, bottleneck link utilizations 
remain high across all values of maxp and only large val- 
ues of maap are able to prevent packet loss. In order to 
optimize performance in this case, early detection must be 
aggressive. 

In the previous experiments, we set r " t h  equal to the 
queue size so that whenever the early detection algorithm 
fails, packet loss occurs. By setting maqh sufficiently be- 
low the queue size, the RED algorithm can avoid packet 
losses when early detection fails by deterministically mark- 
ing every incoming packet. Figure 5 shows the queue- 
length plot using the same experiment as in Figure 3(b) 
with 32 connections, a larger bottleneck queue size and a 
fixed maxth of 80KB. When the queue size is 120KB, 
the queue-length plot shows that even with a fairly signif- 
icant amount of additional buffer space, packet loss is not 
eliminated. It also shows that the combined effect of using 
ECN and packet drops for signaling congestion notification 
leads to periods of time where TCP is able to impact the 
transmission rates of the sources. This is in contrast to the 
behavior seen in Figure 3(b). In that experiment, whenever 
a connection is able to send a packet through the bottle- 
neck link it increases its transmission rate even though the 
bottleneck queue is full. By setting maxth sufficiently low 
and using ECN, all connections receive congestion notifi- 
cation when the queue is full either in the form of ECN 
or packet loss. Thus, as Figure 5 shows, after a sustained 
period of ECN marking and packet loss, the sources back 
off sufficiently to allow the queue to drain. One of the 
problems with deterministic marking is that it often goes 
overboard in signaling congestion to the end-hosts. As 
the queue-length plots in Figure 5 show, periods of con- 
gestion are immediately followed by fairly long periods of 
underutilization where the queue is empty. Furthermore, 
the buffer space required to reduce loss is substantial. Fig- 
ure 5(b) plots the queue-length using a queue size limit of 
240KB. The figure shows that even though deterministic 
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marking is enforced at an average queue length of 80KB, 
the actual queue length can more than double before the 
sources have a chance to back off. 

IV. SELF-CONFIGURING RED 

From the discussion in the previous sections, it is clear 
that adapting RED parameters based on traffic load and us- 
ing explicit congestion notification can be beneficial to net- 
work performance. Figure 8 presents an on-line algorithm 
for adaptively changing the RED parameters according to 
the observed traffic. The idea behind this algorithm is to 
infer whether RED should become more or less aggressive 
by examining the variations in average queue length. If 
the average queue length oscillates around minth, then the 
early detection mechanism is too aggressive. On the other 

.O 

hand, if it oscillates around musth, then the early detec- 
tion mechanism is too conservative. Based on the observed 
queue length dynamics, the algorithm adjusts the value of 
mazp . In particular, it scales maap by constant factors of 
a and /3 depending on which threshold it crosses. 

To explore the feasibility of the approach proposed in 
Figure 8, we ran another set of experiments using the same 
network as shown in Figure l(a) with lOOKB queues. In 
this experiment, we vary the number of active connec- 
tions between 8 and 32 over 40 second intervals. Figure 6 
plots the queue-lengths for RED queues statically config- 
ured to be either aggressive or conservative. When aggres- 
sive early detection is used, as shown in Figure 6(a), the 
RED queue performs well whenever 32 connections are ac- 
tive. When only 8 connections are active though, the RED 
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Fig. 8. Adaptive RED algorithm 

queue is too aggressive in its congestion notification, thus 
causing periodic underutilization when the queue is empty. 

When conservative early detection is used, as shown in 
Figure 6(b), the RED queue only performs well when 8 
connections are active. When all 32 connections are ac- 
tive, the RED queue continually fluctuates between periods 
of sustained packet loss and ECN marking and subsequent 
periods of underutilization. 

Figure 7(a) shows the queue-length plot of the same ex- 
periment using the adaptive RED algorithm with a and ,B 
set to 3 and 2, respectively. We initially set m a x p  to 0.020 
and allow the algorithm to adjust the parameter according 
to Figure 8. As the plot shows, after brief learning peri- 
ods when the experiment starts and when the input traffic 
changes, the RED queue is able to adapt itself well. Fig- 
ure 7(b) plots the m a c p  parameter as the RED queue adapts 
itself to the input traffic. As expected, its value adapts to 
reflect the number of active flows. When all 32 connec- 
tions are active, m a x p  increases significantly, causing the 
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RED algorithm to become more aggressive. When only 8 
connections are active, maxp decreases, causing the RED 
algorithm to become less aggressive. 

V. IMPLEMENTATION 
We have implemented the adaptive RED modifications 

on a small testbed of PCs (Figure 9(a)) running FreeBSD 
2.2.6 and ALTQ [2]. In this implementation, calls to the 
generic IF-ENQUEUE and I F D E Q U E U E  macros from the 
i f  -ou tpu  t and i f  -s t a r  t are changed in order to re- 
place the FIFO queueing mechanism typically used in BSD 
UNIX with the adaptive RED queueing discipline. In addi- 
tion, ECN is implemented using two bits of the type-of- 
service (ToS) field of the IP header [19]. When the adap- 
tive RED algorithm decides that a packet must be dropped 
or marked, it examines one of the two bits to see if the flow 
is ECN-capable. If it is not ECN-capable, the packet is sim- 
ply dropped. If the flow is ECN-capable, the other bit is 
set and used as a signal to the TCP receiver that congestion 
has occurred. The TCP receiver, upon receiving an ECN 
signal, modifies the TCP header of the return acknowledg- 
ment using a currently unused bit in the TCP flags field. A 
bit labeled “congestion experienced” (CE) is used by the 
TCP receiver to indicate the presence of congestion to the 
sender. Upon receipt of a TCP segment with CE bit set, the 
TCP sender invokes its congestion control mechanisms as 
if it had detected a packet loss. 

Using this implementation, we ran several experiments 
on the testbed shown in Figure 9(a). Each network node 
and link is labeled with CPU model and link bandwidth, re- 
spectively. Note that all links are shared ethemet segments. 
Hence, the acknowledgments on the reverse path collide 
and interfere with data packets on the forward path. As 
the figure shows, FreeBSD-based routers using the adap- 
tive RED queue management algorithm connect ethemet 
and fast ethernet segments. 

We use ne tpe r f  [16] to generate load on the system. 
ne tper f  is a well-known, parameterizable tool for gen- 
erating network load in order to evaluate the performance 
of both end-hosts and network elements. In the experi- 
ments shown here, a variable number of infinite ne tper f  
sessions is run from f a s t  to slow, the endpoints of the 
network. The router queue on the congested interface on 
r o u t e r l  to the slow ethemet segment is sized at 50KB 
usingaminth of lOKB amaxth of40KB. Amax, value 
of 0.02 is used for the conservative early detection algo- 
rithm while a maq, value of 1 .OO is used for the aggressive 
early detection algorithm. The maxp value of the adaptive 
algorithm is initially set at 0.02 and allowed to vary ac- 
cording to the algorithm in Figure 8. In order to ensure 
the adaptive RED modifications did not create a bottleneck 
in the router, we ran several experiments between f a s  t 
and rou te r2  using the modifications on r o u t e r l  to 
forward packets between both hosts. In all of the exper- 
iments, the sustained throughput of rou ter l  was always 
above 70Mbs. Thus, experiments run from f a s t  to slow 
always bottleneck at the output interface to the slow ether- 
net segment on r o u t e r l .  

Figure 9 shows the throughput and packet loss rates 
at the bottleneck link across a range of workloads. The 
throughput measures the rate at which packets are for- 
warded through the congested interface. This rate slightly 
overestimates the end-to-end goodput of the ne tpe r f  
sessions since retransmissions are counted. The packet loss 
rate measures the ratio of the number of packets dropped 
at the queue and the total number of packets received at 
the queue. In each experiment, throughput and packet 
loss rates were measured over ten 5-second intervals and 
then averaged. As Figure 9(a) shows, both the conserva- 
tive and adaptive early detection algorithms maintain high 
throughput levels across all workloads while the aggres- 
sive early detection algorithm achieves a lower throughput 
for smaller numbers of connections. Note that since the 
ethernet segments are shared, acknowledgments on the re- 
verse path collide with data packets on the forward path, 
thus limiting throughput. Figure 9(b) shows the packet 
loss rates over the same workloads. As the figure shows, 
both the aggressive and the adaptive early detection algo- 
rithms maintain low packet loss rates across all workloads 
while the conservative early detection algorithm suffers 
from fairly large packet loss rates as the number of connec- 
tions increase. As the number of connections increases, an 
interesting observation is that marking rate of the adaptive 
and aggressive early detection algorithms approaches 50%. 
Because aggregate TCP behavior becomes more aggressive 
as the number of connections increases, it becomes more 
and more difficult for the RED queue to maintain low loss 
rates. Fluctuations in queue lengths occur so abruptly that 
the RED algorithm oscillates between periods of sustained 
marking and packet loss and periods of minimal marking 
and link underutilization. 

VI. CONCLUSION A N D  FUTURE WORK 
This paper has shown how adaptive active queue man- 

agement can be used in conjunction with explicit conges- 
tion notification to effectively reduce packet loss in con- 
gested networks. In particular, an adaptive RED mecha- 
nism which is cognizant of the number of active connec- 
tions can provide significant benefits in terms of decreasing 
packet loss and increasing network utilization. Preliminary 
experiments using a small testbed has shown the efficacy 
of the algorithm. Since early detection algorithms become 
more effective as round trip times increase, it is expected 
that the performance improvements will become even more 
significant as the network grows. 

We are currently examining ways to methodically im- 
prove the adaptiveness of the RED algorithm. This paper 
presents one specific algorithm for tailoring RED param- 
eters to the input traffic. There are many other potential 
alternatives for doing so. For example, the RED queue 
can actually keep track of the number of active connec- 
tions and change its aggressiveness accordingly. Another 
mechanism would be to infer the number of connections 
present by the rate that the average queue length changes, 
then have the RED queue adapt its parameters accordingly. 
It may also be possible to adapt other RED parameters such 
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as inter-packet drop probabilities, RED threshold values, or 
queue length weights in order to optimize performance. 
For example, one could adapt the weight used to calcu- 
late the exponentially weighted average of the queue length 
based on the input traffic. When a large number of connec- 
tions are present, queue lengths can fluctuate considerably 
in a short period of time. In such cases, an average which 
heavily weights more recent queue lengths is necessary in 
order to trigger congestion notification in time to prevent 
packet loss. 
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