62 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 1, JANUARY 1999

A Router Architecture for Flexible Routing and
Switching in Multihop Point-To-Point Networks

Stuart W. Daniel, Member, IEEE Computer Society, Kang G. Shin, Fellow, IEEE,
and Sang Kyun Yun, Member, IEEE Computer Society

Abstract—Modern parallel and distributed applications have a wide range of communication characteristics and performance
requirements. These diverse characteristics affect the performance and suitability of particular routing and switching policies in
multihop point-to-point networks. In this paper, we identify a core set of architectural features necessary for flexible selection and
implementation of multiple routing and switching schemes. Using this, we present a flexible router whose routing and switching
policies can be tailored to the application, allowing the network to meet these diverse needs. By dedicating a small programmable
processor to each incoming link, we can implement wormhole, virtual cut-through, and packet switching, as well as hybrid switching
schemes, each under a variety of unicast and multicast routing algorithms. In addition, a flexible router can support several
applications or traffic types simultaneously, enabling better support of applications with multiple traffic classes. We have designed,
implemented, and fabricated the Programmable Routing Controller (PRC). Cycle-level simulations of mesh-connected PRCs also
demonstrate that flexible routing and switching can significantly enhance application performance.

Index Terms—Routers, cut-through switching, flexible routing and switching, switch architecture.

1 INTRODUCTION

ARALLEL and/or distributed applications typically em-

ploy a wide variety of communication paradigms that
affect the volume and frequency of communication between
nodes. Applications such as scientific computations, parallel
databases, and real-time applications generate distinct distri-
butions for packet lengths, interarrival times, and target des-
tinations [1], [2], [3]. At the same time, applications also vary
in their quality-of-service (QoS) requirements for communi-
cation: Most applications can benefit from low network la-
tency, while others need predictable and/or high-bandwidth
communication. Maximizing system performance, therefore,
requires matching application characteristics and perform-
ance requirements with a suitable network design. This pa-
per concentrates on the network policies used in message-
passing multicomputers with a point-to-point (or direct) net-
work topology. In a point-to-point network, every node has a
direct connection with several other nodes; these nodes are
then connected to others to form a network topology.

For point-to-point networks, application communication
characteristics affect the performance of particular routing
and switching schemes [4], [5], [6], [7]. [8], [9]. The routing
policy for a network determines the path taken by a packet
between its source and destination, while the switching
scheme impacts performance by determining how packets

* S.W. Daniel is with Lexmark International, 740 New Circle Rd. NW,
C19L/035-3, Lexington, KY 40550.

E-mail: swdaniel@lexmark.com.

» K.G. Shin is with Real-Time Computing Laboratory, Department of Elec-
trical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 481099-2122. E-mail: kgshin@eecs.umich.edu.

* S.K. Yun is with the Department of Computer Science, Seowon University,
Cheongju, Chungbuk, 361-742, Korea. E-mail: skyun@dragon.seowon.ac.kr.

Manuscript received 29 July 1996.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100253.

move through the intervening nodes. Numerous researchers
have examined the relative performance of various rout-
ing and switching schemes and found that their relative
performance varies according to the application’s com-
munication characteristics, such as the distribution of
packet destinations and packet size [6], [7], [9], [10], [11].
Packet switching requires an incoming packet to buffer
completely before transmission to a subsequent node can
begin. In contrast, cut-through switching schemes, such as
virtual cut-through [12] and wormhole [13], try to forward an
incoming packet directly to idle output links; if the link is
busy, virtual cut-through routers buffer the packet, whereas a
wormhole router stalls the packet in the network. Due to its
lower communication latency, cut-through switching is pre-
ferred and used in most contemporary routers.

Most routers use distributed routing schemes that com-
pute the route for a packet at every intervening node; this
reduces the size of the packet header compared to source-
routed schemes that must carry information about the en-
tire route in the packet header. Oblivious routing schemes
generate a single outgoing link for an incoming packet,
whereas adaptive schemes can consider multiple links to
take dynamic factor. Oblivious schemes are used by most
wormhole routers due to their simplicity and also to sim-
plify deadlock prevention. Adaptive routing algorithms
generally improve performance by routing around conges-
tion. Under certain traffic patterns, however, local decisions
made by adaptive routing schemes may actually increase
overall congestion by directing packets into congested re-
gions [9]. In addition, the order in which adaptive schemes
consider possible links is a major factor in determining the
network latency under a particular traffic load [14]. Adap-
tive routing algorithms are either minimal or nonminimal.
Minimal routing algorithms allow only shortest paths to be

1045-9219/99/$10.00 © 1999 IEEE

DANIEL ET AL.: A ROUTER ARCHITECTURE FOR FLEXIBLE ROUTING AND SWITCHING IN MULTIHOP POINT-TO-POINT NETWORKS 63

used, while nonminimal routing algorithms can use non-
minimal paths bypassing network congestion and faulty
links. Adaptive routing algorithms can be classified as par-
tially adaptive or fully adaptive. Partially adaptive routing
algorithms use only a subset of the available physical paths
between source and destination. By improving link
throughput or increasing routing adaptivity, the routing
algorithms can enhance communication performance, de-
pending on the traffic pattern [9], [10], [11], [15], [16].

Many applications and systems can benefit from router
support for multicast communication since sending a mes-
sage to multiple destinations facilitates applications such as
efficient barrier synchronization and global reduction op-
eration and distributed shared memory [17], [18]. Worm-
hole-switched networks often employ virtual channels [19]
for preventing deadlock and increasing network through-
put, although oblivious and partially adaptive routing can
also prevent deadlock. Several virtual channels share a sin-
gle physical link by time multiplexing the virtual channels
on the same physical link.

Since no single routing-switching combination performs
best under all conditions, a router should support a range
of policies. Most existing routers, however, only implement
a single routing-switching scheme. Consequently, maxi-
mizing performance often requires redesigning the appli-
cation to utilize the network efficiently. Rather than forcing
the system to adjust its communication patterns to the net-
work, we wish to adapt the network to the system’s re-
quirements and traffic workloads. Since changing the actual
network interface hardware for every application is im-
practical, we propose, implement, and evaluate a flexible
router that allows network policies to be tuned to these di-
verse characteristics.

In this paper, we present a flexible router architecture
that implements a variety of routing and switching schemes
by dedicating a microprogrammable routing engine to each
incoming link. In particular, we focus on the low-level
routing and switching policies implemented in the router.
In the next section, we overview the architecture of a flexi-
ble router. Section 3 describes the Programmable Routing
Controller (PRC) implemented on a single chip, and Section 4
presents the PRC microarchitecture. Section 5 evaluates an
example of flexible routing using the PRC to demonstrate
the benefits of tailoring routing-switching policies to appli-
cation characteristics [4], [8], [9], [20], [21], [22]. The paper
concludes with Section 6.

2 ROUTER ARCHITECTURES

Contemporary routers typically implement only a single,
fixed policy for routing and switching packets. The torus
router [13] was the first wormhole router that implemented
oblivious deadlock-free wormhole routing in a k-ary n-cube
system in which each physical channel was time-
multiplexed by two virtual channels. The adaptive virtual
cut-through router treated in [23] is a variation of the torus
router that supports a virtual cut-through switching with-
out using any virtual channel. The router buffers blocked
packets at the local node and the routing scheme is “adap-
tive minimal” with dimension-order selection. The CHAOS

router [24] is another router using adaptive virtual cut-
through switching. It provides a small multiqueue on-chip
buffer; if this buffer fills up, packets are derouted through
any available link.

These routers implement only a single, fixed (thus, in-
flexible) routing and switching policy, although they achieve
small routing latencies with hard-wired routing engines.
Moreover, most of the routing algorithms proposed and
evaluated thus far have not been implemented/fabricated.
It is therefore important and interesting to design, imple-
ment, and evaluate a router architecture for programmable
(thus, flexible) routing and switching. In this section, we
present a router architecture satisfying this requirement
and its implementation.

The flexible router has the following main objectives:

1) simultaneous support of wormhole, virtual cut-
through, and packet switching schemes,

2) development of a programmable routing engine for
processing incoming packet headers, and

3) reduction of the complexity of higher-level protocols.

It also supports virtual channels. Its programmable feature
permits multicomputer networks to handle a wide variety
of header formats, routing algorithms, switching schemes
at a reasonable cost. Note, however, that this flexibility
comes at the expense of slightly longer routing latencies
than pure hardwired routers.

The architecture of this flexible router is depicted in
Fig. 1. The router consists of a single-chip programmable
routing controller (PRC) and external buffer memory. The
PRC provides four bidirectional (physical) links and three
virtual channels per each physical link. The receiver mod-
ule of each physical link has a separate routing engine in
order to compensate for the larger routing latency of the
programmable routing engine. A routing engine is shared
by several virtual channels on a single physical link. For
data switch among input links, output links, and host, a
32-bit time multiplexed bus is used instead of a crossbar
switch. External buffer memory is for buffering input, out-
put, and forwarding data. Data transfer between host and
buffer memory is performed at a page level to reduce soft-
ware complexity, and the PRC contains the hardware logic
for the page-level data transfer.

3 THE PRC ARCHITECTURE

This section describes the Programmable Routing Controller
(PRC), which is the main component of the flexible router
and manages bidirectional communication with four other
nodes, with three virtual channels on each unidirectional link.
It has a high-performance, low-overhead interface, while im-
plementing the switch as a high-speed, time-multiplexed bus
[4], [25], [26]. Fabricated in the HP CMOS14 process, the
PRC provides a single-chip solution for flexible routing in
distributed and parallel networks.

The PRC architecture is shown on the right side of Fig. 1.
The network interface of the PRC manages bidirectional
communication with four other nodes and consists of four
receiver modules, four transmitter modules, and cut-
through bus (CTBUS). A transmitter module controls an

64 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 1, JANUARY 1999

Programmable Routing Controller
CR_C Routing
Buffer Memory Unit Engine
Memory H):K
— 3NIRXs ||[[—<
(x 4 links) [T~
q\ <~
Memory -
& Reservation
Control Time
Interface |[S=| Stamp CTBUS
Unit CRC
Control ¢/ Unit
S o 4 >
3 TFUs 3 NITXs
To/from host — (x 4 links) (x 4 links)
J\

Fig. 1. Flexible router architecture.

outgoing link and contains three network interface transmit-
ters (NITXs), each implementing a single transmission vir-
tual channel. Similarly, a receiver module controls an in-
coming link and contains a programmable routing engine
and three network interface receivers (NIRXs), each imple-
menting a single incoming virtual channel. Data is trans-
ferred between the host interface, the NITXs, and the NIRXs
via the cut-through bus (CTBUS), which is a 32-bit high-
speed time-multiplexed bus. The host interface of the PRC
provides support for reducing the complexity of both the
hardware and software protocols and consists of memory
interface, control interface, and transmitter fetch unit (TFU).
A memory interface is used to access the buffer memory
and the host accesses the PRC through a control interface to
initiate packet transmission and control packet reception.
TFU controls the transmission of packets from the buffer
memory to the network interface.

3.1 Host Interface

The host interface of PRC provides a flexible scheme for
controlling the simultaneous transmission and reception of
multiple variable-length packets. It also transfers packet
data between the external buffer memory and the network
interface. Since the PRC does not include internal buffers
for blocked packets, packets that buffer at intermediate
nodes are stored in this buffer memory.

To reduce software protocol complexity, the host inter-
face of the PRC interacts with the host in terms of pages,
with each packet consisting of one or more (possibly non-
contiguous) pages. To better accommodate different sizes,
the PRC allows packets to consist of either 256-byte or
1,024-byte pages; larger pages allow the PRC to operate
longer without host intervention. The page-level data trans-
fer facilitates scatter-gather DMA between the buffer mem-
ory and the network and also allows the host to construct
packet headers on a separate page from the data, avoiding
unnecessary data copying for attaching and removing
packet headers. Fig. 2 depicts the major components of the
PRC’s host interface.

A packet is transmitted in the following steps: The
packet is transferred from the memory in the host to buffer
memory by DMA and the packet header is constructed in a
separate page of buffer memory by direct write of the host.
The host then writes the page tags, specifying the address
and size of pages to be transferred to the transmission page
queue of the appropriate TFU. Each TFU is associated with
a particular NITX. After the TFU reserved the NITX, the
memory interface fetches the data from each page, one 32-bit
word at a time, and transfers to the NITX. When the packet
begins to arrive at an NIRX in the network interface of
other nodes, it is directly forwarded to the reserved NITX
or is buffered at the local node according to its destination
address and switching scheme. Once the packet is buffered
at the local node, the NIRX simply forwards the incoming
words to buffer memory. The host supplies reception page
queues with pointers to free page tags in the buffer memory
for use by arriving packets. Each reception page queue is
associated with a particular NIRX.

The transmission and reception data paths incorporate
transparent error detection via cyclic redundancy code
(CRC) generation and checking, as well as packet time-
stamping useful for controlling clock drift between nodes.
The event queue keeps an ordered record of the pages
transmitted and received by the PRC. By logging multiple
events before interrupting the host for service, this reduces
the host’s overhead for managing the PRC.

3.2 Network Interface

While the host manages communication at the page level,
the PRC coordinates the fine-grain interaction between
incoming and outbound channels. Each outbound channel
is controlled by an NITX. The PRC treats the NITXs as
individually reservable resources. To transmit a packet
through an outgoing channel, the master (either a recep-
tion channel or the host interface) must first reserve the
NITX channel. Once the desired NITX has been reserved,
the master may forward packet data to the NITX through
the switch. By providing programmable control over this

DANIEL ET AL.: A ROUTER ARCHITECTURE FOR FLEXIBLE ROUTING AND SWITCHING IN MULTIHOP POINT-TO-POINT NETWORKS 65

i

(x 4 links)

address

<—|

reception page tags

transmission page tags

Buffer
Memory -~
(4 MB
SRAM)
Event
Queue

address

D]:IE (x4 links)<—|

Data I—»

(DMA

transfer)

Control and
Status Information

Fig. 2. PRC host interface.

reservation process for every packet entering the router, dif-
ferent routing and switching schemes may be implemented.

Packets are injected by the local host or from a neigh-
boring node by an incoming channel. For packets injected
through the host interface, the routing policies can be im-
plemented by the host. When the packet is received from
the neighboring node, the routing engine of the incoming
link is responsible for determining the routing policy.

Each incoming channel is controlled by an NIRX. To
provide flexibility in packet routing at the receivers, a pro-
grammable routing engine is necessary—it offers maximum
flexibility for header parsing and route computation. In
addition, expressing routing and switching schemes as as-
sembly language instructions simplifies programming new
routing schemes. This programmability of the routing en-
gine is usually achieved at the expense of a longer routing
latency than a hardwired router. In order to reduce this
degradation of routing latency, each physical incoming link
uses a separate routing engine which is shared by virtual
channels running on the link. Since a physical link itself
serializes the arrival of packet headers, the arbitration
scheme for accessing the routing engine does not have to
consider simultaneous packet arrivals.

To share the routing engine efficiently among several
virtual channels, time-consuming functions are imple-
mented on the incoming channels. An incoming channel is
responsible for forwarding the entire packet and waiting for
transmission channels when necessary. A routing engine

|~ VME Bus (to/from host)

reserves a transmission channel or determines the channels
for which the packet should stall by header parsing and
route computation.

Initially, the incoming channel forwards incoming data
to the routing engine. This process continues until the
routing engine returns a routing primitive to the incoming
channel. After the arrival of the routing primitive, if a
transmission channel is reserved, the incoming channel
begins forwarding the body of the packet until the last flit
of the packet arrives. If a transmission channel is not re-
served, the incoming channel continues to check whether
the selected channel is free; when a selected channel is
found to be free, it reserves that channel and begins for-
warding the packet (thus, without going through the rout-
ing engine). If multicast semantics are triggered in the
routing primitive, it attempts a reservation only when all
selected channels are available.

3.3 Switch Architecture

The network interface components of the PRC communi-
cate over the CTBUS, a 32-bit time-division multiplexed
bus. The CTBUS operates at twice the byte-transmission
speed of the internode links (in our current implementa-
tion, the clock speed for PRC’s internal operations is
40MHz and that for internode link is 20MHz), matching the
bandwidth of the eight unidirectional links. The CTBUS
implements two primary functions within the PRC: data
transfer and channel allocation. As shown in Table 1, the
CTBUS protocol includes commands to transfer data and

66 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 1, JANUARY 1999

TABLE 1

CTBUS COMMAND SET
Command Function
DTX Normal data transfer
MARK End-of-page data transfer
EOP End-of-packet data transfer
FREE Relinquishes selected channels
RESV Reserves selected channels
HOLD Host-initiated override for channel allocation
CHECK Reserves “held” channels

reserve/relinquish NITXs. The DTX, MARK, and EOP
commands “tag” data words to denote page and packet
boundaries, while the other commands control channel al-
location. As a data switch, the CTBUS combines high
throughput with support for multicast operations. Since
each bus transaction can address the memory interface and
any of the NITXs, a single CTBUS transaction may spawn
transmissions on several outbound virtual channels simul-
taneously; this facilitates efficient broadcast and multicast
algorithms [17], [27].

Access to the CTBUS, which is controlled by a demand-
slotted binary priority-tree arbiter that allocates bandwidth
fairly among the active devices [20], also implicitly deter-
mines the PRC’s allocation policy for reserving outbound
channels. Any master needing to reserve an outbound
channel simply checks to see if the outbound channel is
free; if so, it requests access to the CTBUS and issues an
RESV command when access is granted. However, since
CTBUS access is pipelined to minimize the cycle time, an-
other master may have reserved the outbound channel in
the meantime. This is handled by the reservation status
unit—upon receiving an RESV command, the reservation
status unit determines if the requested NITXs are available.
If all of the selected NITXs are free, they are marked as re-
served. Although all CTBUS devices have concurrent access
to the NITX’s reservation status, the bus interconnect im-
plicitly serializes reservation requests, simplifying the de-
sign of the reservation status unit. Masters relinquish chan-
nel reservations with the FREE command; any slave NITXs
forward the FREE command to the subsequent link(s) in the
route to clear any downstream channel reservations. Al-
though a FREE typically follows an EOP, the host can con-
figure the PRC to establish connections that outlive indi-
vidual packets.

The HOLD command provides a simple mechanism for
overriding the CTBUS access arbitration when allocating
outbound channels; once a HOLD command has been is-
sued for a outbound channel, all subsequent RESV com-
mands will fail. Since the HOLD may be issued while the
outbound channel is busy, this command guarantees the next
reservation for the issuing master. The CHECK command is
used to reserve devices held by a HOLD command.

Besides simplifying the implementation of the reser-
vation status unit, the data serialization provided by the
CTBUS also simplifies the architecture of the channels
controlling the outbound links. Rather than providing a
separate arbitration mechanism for the link between
virtual channels, data flits are simply transmitted in
FIFO order.

Input/output ports of the PRC are compatible with par-
allel ports of AMD TAXI (Transparent Asynchronous
Xmitter-Receiver Interface) chips [28], which provide the
means to establish a transparent high speed serial link be-
tween two high-performance parallel buses. The physical
internode links may be implemented as either parallel or
serial connections although input/output ports of the PRC
are parallel. For parallel interconnects, each PRC’s output
ports are directly connected to the input ports of its neigh-
bors. For serial communication over a longer interconnect
through coaxial or fiber-optic media, each PRC’s output
ports are connected to the input ports of its neighbors
through TAXI transmitter and receiver chips.

Ten bits of information, including a tag, are transmitted
every two cycles and, thus, transferring a word of data con-
sumes eight cycles. Each of the physical outgoing ports is
shared or time-multiplexed by two outgoing links because
of pin-limitation of the chip and can transmit data every
cycle. Note that the cycle time of internode link transfers is
twice that in internal operations. The extra bits tag the data
bytes with control information indicating the virtual chan-
nel and CTBUS command associated with the data. In ad-
dition, this control information also carries flow-control
acknowledgments for the reverse channel.

3.4 PRC Status

The PRC has been fully designed using the HP CMOS14
process and Epoch design tools from Cascade Design
Automation and was packaged by MOSIS. The physical
and timing specifications of the PRC are shown in Table 2.
As shown in Fig. 3, the memory interface consumes ap-
proximately one-third of the chip area, while the remaining
two-thirds is used by the network interface. Within the
network interface, the NIRXs and routing engines utilize
two-thirds of the area since these devices provide most of
the PRC’s flexibility. The memory interface, on the other
hand, divides its area almost equally between the datapath
(for buffering, timestamping, and verifying data) and the
address/control logic. In addition, the network interface’s
design allows the transmission ports to directly connect to
the reception ports. This allows a single PRC to transmit the
packets it receives, greatly simplifying the external circuitry
required for testing.

Verilog simulations were used to test a single PRC, with
the outgoing links connected to the reception ports, under
random and contrived workloads. The fabricated PRC has
been tested with an HP 82000 tester using scan chains to
access the chip’s critical state machines and the bus arbitra-
tion logic. The PRC is found to function in complete com-
pliance with the design specification.

4 ROUTING ENGINE

While the incoming channel is responsible for handling data
transfer, flow control, and executing some switching functions,
the routing engine performs the header parsing and route
computation for every incoming packet by using its pro-
grammable feature. After giving an overview of the major
components of the routing engine, we will examine how the
routing engine implements each of its major functions.

DANIEL ET AL.: A ROUTER ARCHITECTURE FOR FLEXIBLE ROUTING AND SWITCHING IN MULTIHOP POINT-TO-POINT NETWORKS

TABLE 2
PRC SPECIFICATIONS

Clocking

Peak bandwidth

Parameter Value Component
Size 9.0x7.3 Transmitters
Transistors 490,000 Receivers

Power 0.8 watts Control interface
Pins 256 Memory interface
Clock 40 MHz Internal switch

20 MHz, synch
20 MHz, asynch
10 MHz, asynch
20 MHz, synch
40 MHz, synch

200 Mbits/sec
200 Mbits/sec
N/A

80 MBytes/sec
160 MBytes/sec

(a) Physical specifications

67

TFU RECEIVER RECEIVER
(x12) MODULE MODULE
Control Logic MEMORY
nieviowy || Conolage ||| MEMORY,
(outbound NITX | |[NITX (inbound
data port) (x6) (x6) data port)
MEMORY
INTERFACE RECEIVER RECEIVER
(address logic) MODULE MODULE

G
Fig. 3. Floorplan of the PRC. (a) PRC floorplan, (b) PRC layout.

4.1 Architectural Overview

The routing engine is a small, 8-bit microcontroller with
256-instruction control store for microprograms, as shown
in Fig. 4. Each instruction executes in a single cycle unless a
branch is required. Within the CPU block, integer-operation
support is provided by an 8-bit integer ALU that imple-
ments addition, subtraction, and Boolean operations; a 16-
byte register file provides storage for constants and inter-
mediate computations. The host uses the control interface
to download the microprograms during system initializa-
tion and to adjust microcode operation at runtime through
the notification FIFOs. The routing engine interacts with the
NIRXs and the CTBUS through the data input module and
data output module. The header word in NIRX is trans-
ferred to the network interface data register (nid) in the
data input module. The microprogram manipulates and
updates the routing header, and possibly reserves out-
bound channels. Then, the routing engine returns controls
to the NIRX by sending the routing primitive through the
registers in the data output modules, as shown in Table 3.
The switch interface, on the other hand, allows the routing
engine to read the current reservation status of the out-
bound channels without accessing the switch.

(b) Timing specifications

4.2 Instruction Set

The routing engine implements instructions for manipulating
header data, controlling external interface, and branching
based on internal conditions, as shown in Table 4. The
routing engine employs alu instructions to parse and
modify a packet header. The 1dc instruction loads con-
stants, such as predetermined address masks and control
tags, into registers, while the xfer instruction copies data
between these registers. The 1dc and xfer instruction can
issue routing primitives or CTBUS commands as side ef-
fects if it is used with go rtp or go ctbus suffix.

The support for control flow is provided by the jump
instruction, which can react to flags such as ALU’s zero
and carry bits, as well as reservation status flags for
NITXs. Several user-controlled flags are also available for
temporary storage of Boolean conditions, and may be
set, cleared, or loaded via the flag instruction. For ex-
ample, an algorithm may save the result of a bit-mask or
comparison operation on a routing header; later, a jump
instruction could branch based on these condition bits.
When a jump instruction includes the 1ink qualifier, the
routing engine stores the address of the next microin-
struction, so the microsequencer can return to the main

68 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 1, JANUARY 1999

Data Input

Data Output

20

CPU
N
>
] jD
Control Accumulator
Store L_| Address
| Register File Feedback
ALU —
[[[=E
|| Notification FIFos| | |
| ||| _—
LT - 1 J

Control Interface

Fig. 4. Routing engine architecture.

Switch Status

TABLE 3
ROUTING PRIMITIVE AS STORED IN REGISTERS

Registers

Function

ctd3-ctd0

next word to transmit

ctaddrl, ctaddrO

selects host, NITXs

ctctl
resvd
all
crcflg

Boolean control flags
slaves already reserved
reserve all of slaves
include word in CRC

TABLE 4
ROUTING ENGINE INSTRUCTION SET

Command

Function

alu

Boolean/arithmetic operation

1ldc

load constant into register

xfer

copy register contents

flag

set, clear, and copy flags

jump

conditional branch

return

return from subroutine

wait

three-way, blocking branch

go rtp

trigger routing primitive

go ctbus

trigger CTBUS access

instruction flow later; this restricted implementation of
subroutines reduces microprogram size by enabling code
reuse.

The special wait instruction controls the data input mod-
ule. This instruction blocks until a header word arrives at one
of incoming channels. Then it transfers data from the in-
coming channel to the nid registers and begins executing the
appropriate microcode for the selected incoming channel.

4.3 Routing and Switching Microprogram

The PRC has programmable routing engines and can im-
plement various routing and switching schemes. Fig. 5
shows a typical microprogram structure.

4.3.1 Offset-Based Routing

Distributed routing schemes often employ offset-based ad-
dressing. Fig. 6 shows an example of parsing a packet
header in offset-based routing. This program uses an adap-
tive, diagonal-biased routing scheme, e.g., the routing en-
gine tries to reduce the offset with the largest magnitude
first. In this way, packets will have multiple minimal-length
paths to their destination as long as possible. The example
program uses the ALU to examine the signs of the offsets,
and to compare their magnitudes. Based on this informa-
tion, the routing engine can jump to the proper code for
routing the packet.

DANIEL ET AL.: A ROUTER ARCHITECTURE FOR FLEXIBLE ROUTING AND SWITCHING IN MULTIHOP POINT-TO-POINT NETWORKS 69

init:
ldc <cO_handler, trap0;
ldc c1_handler, trapil;
/* waits for a packet header */
wait c2, trap0(cil), trap1(c0);
c2_handler:
< header parsing for channel 2 >
< route computation >
< channel reservation >
ldc rtp_flags, ctctl, go rtp;
jump true, init;

= = O 00 =1 OO O i QO DN =

[l =]

12 ci_handler:

13 < header parsing for channel 1 >
14 < route computation >

15 < channel reservation >

16 ldc rtp_flags, ctctl, go rtp;

17 jump true, init;

18 cO_handler:

19 < header parsing for channel 0 >
20 < route computation >

21 < channel reservation >

22 ldc rtp_flags, ctctl, go rtp;

23 jump true, init;

Fig. 5. Typical microprogram structure.

1 handler:

2 wait ni2, trap0(nil), trapl(ni0);
3 xfer nidl, ctdi;

4 /* check x offset */

5 alu nid2 + 1;

6 xfer acc, ctd?2;

7 jump zero, y_only;

8 /* check y offset */

9 alu nidi;

10 jump zero, x_only;

11 alu nidl & reg0;

12 jump zero, y_is_neg;

13 /* compare magnitudes; x<0,y>0 */

14 xfer nidl,regl;

15 alu nid2 + regi;

16 alu acc & reg0; /* check sign */
17 jump zero, y_first;

Fig. 6. Header parsing example.

After parsing a packet’s header, the routing engine may
need to select one or more channels for the packet to trav-
erse. The functions required at this stage vary according to
the addressing scheme, e.g., offset-based addressing, such
as in the Appendix, require integer addition and subtrac-
tion, along with comparison operations. The route compu-
tation may also be trivial—source-list routed schemes, for
example, often carry an address mask specifying the next
link(s) to traverse.

4.3.2 Table-Based Routing

Although offset-based routing algorithms are suitable for
many network topologies, other topologies (especially ir-
regular ones) may require more flexible routing schemes. To
efficiently handle these topologies, routing tables are often
used: Each packet carries a destination address in its
header. To route the packet, the routing engine simply looks
up the destination in a table and the table entry instructs
the routing engine on which link(s) to forward the packet.
Rather than providing a separate memory for the routing
table, however, the routing engine may use an indirect
jump into a “table” stored in its control store. Each table
entry then directs the routing engine to the appropriate
routine for routing the packet. This approach has several
advantages:

1) The existing control store may be used for the table,
avoiding the cost of a separate RAM;

2) Having the table entries call a routing subroutine per-
mits great flexibility in specifying channel orderings.

4.3.3 Multicast Routing

The routing engine allows implementation of a broad spec-
trum of multicast routing algorithms under both wormhole
and virtual cut-through switching. Fig. 7 shows a sample
multicast routing algorithm that employs either wormhole
or virtual cut-through switching, depending on the packet
header. Each packet includes a tree of one-word routing
headers to encode the nodes in the tree and the routing-
switching scheme at each hop in the route, as shown in
Fig. 7a. As the packet arrives at a node, the routing engine
discards header words until reaching a word tagged with
its one-byte node identifier. The second byte of the header
word selects between virtual cut-through and wormhole
switching, while the last two bytes determine where the
receiver should forward the remainder of the incoming
packet. Under wormhole switching, the receiver reserves all
of the selected slave devices before forwarding the packet,
whereas the virtual cut-through scheme immediately di-
rects the incoming packet to any available slaves.

70 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 1, JANUARY 1999

Register Function

nid3 Node identifier

nid2 Switching scheme
1 = wormhole

nidi 7-bit address bit mask
{hOSf;, 032“020}

nido 6-bit address bit mask
{012..000}

@

1 init:

2 < initialization code >

3 1dc our_node_id, reg2;

4

) strip_header:

6 wait ni2, trap0(nil), trapl(nio0);
7 alu nid3 - reg2;

8 jump “zero, strip_header;

9

10 route_packet:

11 alu nid2;

12 jump “zero, wh_routing;

13 < code for virtual cut-through >
14 wh_routing:

15 < code for wormhole >

(b)

Fig. 7. Example of parsing a multicast source-list header. (a) Header format, (b) pseudocode implementation.

cut-through

store-and
-forward

jump <first cand free>, resv_first;
jump <next cand free>, resv_next;

jump <last cand free>, resv_last;

wormhol

cut-through

virtual

<issue "wait-for-one" RTP>

<load ADDR with wait-for mask>

<set ADDR to buffer>
<issue "reserved" RTP>

Fig. 8. Template for a switching operation.

4.3.4 Switching

Once the routing engine has committed to a routing deci-
sion for a packet, it needs to either reserve one or more
outbound channels, or return control to the incoming
channel (for buffering or a stall). During this stage, the
reservation status flags are typically used to trigger ap-
propriate microcode branches. Fig. 8 shows a template for
the switching operation, where the microprogram checks
candidate outbound channels in descending order of pri-
ority; if no candidate is available, the switching scheme
determines the form of routing primitive issued to the
incoming channel.

Unfortunately, parsing a bit-mask of one or more chan-
nels from a source-list routing scheme is complicated and
time-consuming. Accordingly, the switch status module al-
lows address masks to be checked with a single operation.
Two address mask operations are provided: a conflict check
and an as-many-of update. Since the as-many-of check can
potentially return a null mask, a flag for this condition is
also provided.

5 AN EXAMPLE OF FLEXIBLE ROUTING

The PRC'’s flexibility can support a variety of routing and
switching schemes. In particular, it can implement hybrid
switching [22], [29], which dynamically combines both
virtual cut-through and wormhole switching to provide
higher achievable throughput than wormhole or virtual
cut-through alone, and flexible routing which tailors rout-
ing schemes to the underlying application traffic pattern.
Applications are known to generate bimodal traffic loads
with diverse quality of service (QoS) requirements, such as
a mixture of short control packets and long data packets, or
a mixture of real-time and best-effort packets. Flexible
routing in the PRC enables selection of routing and
switching schemes on a per-packet or per-channel basis to
adapt its performance to the traffic load and the application
QoS requirement.

To evaluate the PRC architecture in a variety of network
configurations, we have developed a cycle-level simulation
model that captures the details of flow control, resource

DANIEL ET AL.: A ROUTER ARCHITECTURE FOR FLEXIBLE ROUTING AND SWITCHING IN MULTIHOP POINT-TO-POINT NETWORKS 71

750.0

g &——=6 VCA-1/WHO-2 (Seg)
% =——1~0 VCA-3/WHA-3
< 5000 | |
[&]
C)
=)
Q =
@ .
S /;,%)f:j:/—ef/——/A\;\— -
: g =
: §iis e
o 250.0 . |
S —
o
>
<
0.0 ‘ ‘ ‘
0.00 0.15 0.30 0.45 e u)
Applied load

@

2000.0 T

o—6 VCA-1/WHO-2 (Seg) ¢

@
()]
9 150001 £ 5VCA-3WHA-3 8]
A / ~
> /,/
Q %) e
< 7 -
L / =
| z
5 10000 | e 1
X BT
Q
]
o e
% =
© 5000 1
>
k3
0.9 ; :
0.00 0.15 0.30 0.45 0.60 0.75
Applied load
(b)

Fig. 9. Comparison of Segment router traffic partitioning with VCA-3/WHA-3. (a) 64-byte packets, (b) 256-byte packets.

arbitration, and microcode execution. Implemented in the
pp-mess-sim Simulation environment [20], [30], [31], this
cycle-level model captures the details of flow control, re-
source arbitration and microcode execution. We have em-
ployed pp-mess-sim to study the PRC under a wide range
of network topologies, application workloads, and routing-
switching schemes [8], [9], [20], [21], [22], [29]. Most of these
studies have focused on the benefits of hybrid switching
and flexible routing, but this section presents an example
showing how applications can benefit from tailored routing
schemes.

Specifically, we evaluate the use of adaptive routing,
cut-through switching, and virtual channels to improve
performance in a network that carries a mixture of short
control packets and long data packets; such bimodal
length distributions are common in multicomputer ap-
plications [2], [6], [7]. Several researchers have proposed
methods for handling these bimodal traffic patterns. Kim
and Chien [6] proposed adding virtual channels and
adaptivity to eliminate the interference of long packets
on short ones in wormhole-switched networks. Konstan-
tinidou [7], as part of his Segment Router Architecture,
proposed dividing the network into two distinct virtual
networks, with a distinct switching scheme for each.
Short packets would use one virtual network with vir-
tual cut-through switching, while long packets employ
wormhole switching on the other virtual network. This
allows short packets to avoid the long delays incurred
from blocking behind longer packets, without requiring
large buffers for storing blocked data packets. Thanks to
the PRC’s flexibility, one can partition traffic into a wide
range of (instead of just two) traffic classes.

Konstantinidou’s Segment Router improves the per-
formance of short packets by segregating them onto a sepa-
rate virtual network using adaptive virtual cut-through, but
long packets still use oblivious wormhole routing [7]. Thus,
short packets use adaptive virtual cut-through on one
channel (VCA-1), while long packets use oblivious worm-
hole routing on other two channels (WHO-2) in the Seg-
ment Router. This partitioned VCA-1/WHO-2 scheme can

also tailor routing and switching on a per-channel basis or
per-message basis in the PRC.

A possible way of improving the overall system per-
formance would be to differentiate the switching schemes
used by different traffic classes without segregating them
onto different virtual networks. For example, we can have
short packets employ adaptive virtual cut-through on all
three channels (VCA-3), while having long packets use
adaptive wormhole routing on all three channels (WHA-3)
to reduce the buffer requirement. This VCA-3/WHA-3
scheme can tailor routing and switching on a per-message
basis in the PRC.

Let’s investigate how these two schemes using PRC im-
pact performance for both traffic classes. The experiments
are done on an 8 x 8 torus network of PRCs with three vir-
tual channels on each physical link. Network traffic consists of
an even mixture of short, 64-byte packets and long, 256-byte
packets; hence, small packets account for 20 percent of the
traffic load. Each node generates traffic independently, with
uniform random selection of destinations and exponen-
tially-distributed interarrival times.

Fig. 9 shows the relative performance of the VCA-3/WHA-3
scheme to the Segment Router scheme—the average latency
for short packets is only slightly higher, even under heavy
loads. Longer packets, on the other hand, benefit signifi-
cantly from the increased routing adaptivity and the ex-
tra virtual channel. Thus, given the major constraint of
the PRC architecture—three virtual channels per link—
the VCA-3/WHA-3 scheme outperforms the partitioned
VCA-1/WHA-2 scheme.

6 CONCLUSION

We have examined how network performance may be im-
proved through hardware support for multiple routing and
switching schemes that may be selected on a per-packet or
per-channel basis. We demonstrated several key benefits of a
flexible router architecture. First, no routing and/or switch-
ing scheme performs best for all workloads—a flexible router
architecture allows the router policies to be tailored to the

72 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 1, JANUARY 1999

underlying application needs. Second, since applications are
known to generate bimodal workloads with diverse quality
of service requirements, traffic partitioning combined with
flexible policy selection is crucial to meeting the needs of all
applications. Unlike the PRC, most existing routers do not
offer this capability.

To this end, we have explored both the benefits and
costs of providing flexibility in low-level network policies.
While we have focused on multicomputer networks,
many of the results are applicable in other network do-
mains, such as ATM and multistage networks. We decom-
posed the general problem of packet routing into several
steps: header parsing, route computation and selection,
and switching. Using this decomposition, we then pro-
posed an architecture for a flexible router that incorpo-
rates small, programmable devices for processing incom-
ing packet headers. To make this scheme cost-effective, we
provided programmable control of the shorter, more com-
plex steps that is shared amongst several channels; this
also necessitated developing mechanisms for offloading
the time-consuming steps to channel-specific state ma-
chines. Finally, we have designed, implemented and fabri-
cated the PRC to further explore and utilize this flexible
architecture.

APPENDIX
ROUTING-SWITCHING MICROPROGRAMS

The routing engines can be used to tailor routing-switching
policies to application characteristics and performance re-
quirements. Microprograms can parse a variety of header
formats, making the routing engines more flexible than ta-
ble-lookup schemes. The sample microprogram in this sec-
tion is written for receiver module #2, which receives pack-
ets traveling in the +x direction.

Fig. 11 shows an example of an adaptive, minimal-path
routing algorithm for regular networks, such as the square
mesh. To avoid deadlock, the virtual channels on each link
are partitioned into the “low” and “high” channels: Pack-
ets received on a low channel (channel 0) must use oblivi-
ous dimension-ordered routing. Packets using the high
channels (channels 1 and 2) use an adaptive, diagonal-
biased routing scheme, e.g., the routing engine tries to
reduce the offset with the largest magnitude first. A pseu-
docode implementation of the adaptive algorithm is
shown in Fig. 10.

Fig. 11 shows a microcode implementation of this al-
gorithm. The complete program requires 143 instruc-
tions; no execution path, however, will actually access all
of these instructions. The minimal time to route the
packet is seven instructions in eight clock cycles for a
packet arriving on channel 0 with x < 0. Packets using
adaptive routing take longer to route; for example, a
packet with x < 0 and y = 0 may be routed in 19 clock
cycles, not including the time required to access the
switch to reserve a transmitter.

Al Initialization and Header Wait

The init routine initializes internal registers and waits
for a packet header to arrive. For example, line 2 sets a

1 x=x+1

2 if ((x = 0) && (y > 0)) then

3 if (abs(x) > abs{(y)) then

4 route (+x, -y)

] else

6 route (-y, +x)

7 else if ((x !'= 0) && (y < 0)) then
8 if (abs(x) > abs(y)) then

9 route (+x, +y)

10 else

11 route (+y, +x)

12 else if ({x !'= 0) && (y == 0)) then
13 route (+x)

14 else if ((x == 0) && (y > 0)) then
15 route (-y)

16 else if ((x == 0) && (y < 0)) then
17 route (+y)

18 else /# x == 0 &k y == 0 */

19 buffer;

Fig. 10. Pseudocode implementation of diagonal-biased minimal-path
adaptive routing algorithm.

bit mask for checking the sign of the y offset, used later
to decide if the packet should travel in the positive or
negative y-direction. The init routine then sets the trap
registers for the subsequent wait instruction; the high
channels (I,; and 1,,) use the adaptive handler, while the
low channel must use the dimension-ordered dimorder
routine. Once a packet header arrives, the wait instruc-
tion latches the header word into the nid registers and
branches to the appropriate routine. Finally, the y-offset
is transferred to the output registers; since all later code
branches eventually need this step, it is performed first
to minimize code size.

A2 Header Parsing and Route Computation

The next step is to parse the packet’s routing header us-
ing the algorithm in Fig. 10. The handler first increments
the header’s x offset (received in nid2) to reflect the
packet’s previous hop before forwarding the header field
to the ctdz2 register in the data output module. The next
step (if x # 0) is to check the y-offset (in nid1). If both x
and y are zero, they are checked to see which has the
larger magnitude; this determines which dimension to
access first.

A3 Switching

Once the routing engine has determined which channels
the packet can use, it begins checking which of these
channels are free. The order in which the channels are
checked indicates their priority—e.g., high channels are
generally preferred to low channels. If a channel is free, it
attempts to reserve it before checking the next. How this
process is implemented varies according to the current
needs of the program.

A4 Packet Buffering

The buffer_packet routine configures the NIRX to write to
the memory interface. The routing engine sets the address

DANIEL ET AL.: A ROUTER ARCHITECTURE FOR FLEXIBLE ROUTING AND SWITCHING IN MULTIHOP POINT-TO-POINT NETWORKS 73

1 init:

2 ldc 0x80, reg0;

3 ldc ctcmd_resv, ctctl;

4 ldc dimorder, trapi;

5 ldc adaptive, trapO;

6 /* now wait for a packet header */
7 handler:

8 wait ni2, trapO(mil), trapl(ni0);
9 xfer nidl, ctdi;

10

11 /% check x offset */

12 alu nid2 + 1;

13 xfer acc, ctd2;

14 jump zero, y_only;

15 /% check y offset */

16 alu nidi;

17 jump zero, x_only;

18 - alu nidl & reg0;

19 jump zero, y_is_neg;

20 /* compare magnitudes; x<0,y>0 */
21 xfer nidl,regl;

22 alu nid2 + regi;

23 alu acc & reg0O; /* check sign */
24 jump zero, y_first;

25

26 /% check +x link */

27 jump “resvdlOc2, get_10c¢2, link;
28 jump “resvdlOcl, get_10ci, link;
29 /# check -y link */

30 jump “resvdl3c2, get_13c2, link;
31 jump “resvdl3ci, get_13cl, link;
32 /% check low channels */

33 jump “resvdl3cO, get_13cO, link;
34 jump “resvdlOcO, get _10cO, link;
35 block._1310:/* block on +x, -y links */
36 ldc ctaddr_10, ctaddrO;

37 ldc ctaddr_13, ctaddri;

38 ldc rtp_wait_one, ctctl, go rtp;
39 jump true, init;

40

41 y_first:

42 /* check -y link */

43 jump “resvdl3c2, get_13c2, link;
44 jump “resvdl3ci, get_13ci, link;
45 /* check +x link */

46 jump “resvdlOc2, get_10c2, link;
47 jump "resvdlOcl, get_10cl, link;
48 /% check low channels */

49 jump “resvdl3cO, get_13c0, link;
50 jump “resvdlOcO, get_10cO, link;
51 jump true, block_1310;

92 get.10c0: ‘

53 ldc Ox0, ctaddrl, go ctbus;

54 ldc ctaddr_10cO, cfaddro, go ctbus;
5b return “ack;

56 ldc rtp_resvd_nocrc, ctctl, go rtp;
57 jump true, init;

58

99 buffer_packet:

60 ldc 0x0, ctaddrO;

61 ldc ctaddr_buff, ctaddri;

62 ldc rtp_resvd._nocrc, ctctl, go rtp;
63 jump true, init;

64

65 x_only:

66 jump “resvdlQc2, get. 10c¢2, link;
67 jump “resvdlOcl, get_10cl, link;
68 jump “resvdlOcO, get_10c0, link;
69 ldc ctaddr_10, ctaddrO; /* block 10 */
70 ldc rtp_wait_one, ctctl, go rtp;
71 jump true, init;

72

73 y_only:

74 alu nidi1;

75 jump zero, buffer_packet;

76 alu nidl & reg0;

77 jump zero, neg_y_only;

78 /* check +y link */

79 jump “resvdlic2, get_l1c2, link;
80 jump "resvdlici, get_llcl, link;
81 jump “resvdlicO, get_11c0, link;
82 ldc ctaddr_11, ctaddrQ; /* block 11 */
83 lde rtp_wait_one, ctctl, go rtp;
84 jump true, init; -

85

86 dimorder:

87 xfer nidl, ctdi;

88 alu nid2 + t;

89 xfer acc, ctd2;

90 jump zero, dim_y;

91 dim_x:

92 ldc ctaddr_10c0, ctaddr(;

93 ldc rtp_wait_one, ctctl, go rtp;
94 jump true, init;

95 dim_y:

96 alu nidi;

97 jump zero, buffer_packet;

98 alu nidi & reg0;

99 jump "zero, dim_y_neg;

100 ldc ctaddr_11c0, ctaddr0;

101 ldc rtp_wait_one, ctctl, go rtp;
102 jump true, init;

Fig. 11. Minimal-path adaptive routing example.

mask to buffer the packet, and loads the ctctl field of the
routing primitive. The go rtp qualifier in the 1dec command
triggers the NIRX to handle the remainder of packet reception.
Consequently, the next instruction jumps to the initialization
routine to reset the routing engine for the next arriving packet.

A5 Reserving an NITX

The get_10c0 routine tries to acquire Oy, by triggering a
reservation command (ctcmd_resv was set in init); the
other routines are similar. The routine first loads the ad-
dress registers to select Oy, and triggers the reservation

74 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 1, JANUARY 1999

attempt (the command register was set during initializa-
tion) with the go ctbus directive. The success of the at-
tempt is checked by the return instruction, which auto-
matically blocks until the REsv attempt completes. If some
other device reserves the NITX first, the REsv command
can fail, as indicated by the ack flag; upon failure, the pro-
gram returns to the calling routine. Otherwise, the routing
engine configures the NIRX to execute the cut-through op-
eration before jumping to init.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by the
U.S. National Science Foundation under grant MIP-9203895
and by the KOSEF under the postdoctoral fellowship. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this paper are those of the authors and do not nec-
essarily reflect the views of the U.S. National Science Founda-
tion. We would like to thank James Dolter (one of the original
PRC architects) and Jennifer Rexford for their invaluable con-
tributions to this work, and Sung-Whan Moon for testing the
fabricated PRC.

REFERENCES

[1] J.-M. Hsu and P. Banerjee, “Performance Measurement and Trace
Driven Simulation of Parallel CAD and Numeric Applications on
a Hypercube Multicomputer,” IEEE Trans. Parallel and Distributed
Systems, vol. 3, pp. 451-464, July 1992.

[2] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina, “Architec-
tural Requirements of Parallel Scientific Applications with Explicit
Communication,” Proc. Int’l Symp. Computer Architecture, pp. 2-13,
May 1993.

[3] D. Ferrari, “Client Requirements for Real-Time Communication
Services,” IEEE Comm. Magazine, pp. 65-72, Nov. 1990.

[4] S.W. Daniel, “Flexible Router Architectures for Point-to-Point
Networks,” PhD thesis, Univ. of Michigan, May 1996.

[5] F. Hady and D. Smitley, “Adaptive vs. Non-Adaptive Routing:
An Application Driven Case Study,” Technical Report SRC-
TR-93-099, Supercomputing Research Center, Bowie, Md.,
Mar. 1993.

[6] J.H. Kim and A.A. Chien, “Evaluation of Wormhole Routed Net-
works under Hybrid Traffic Loads,” Proc. Hawaii Int’l Conf. System
Sciences, pp. 276-285, Jan. 1993.

[7]1 S. Konstantinidou, “Segment Router: A Novel Router Design for
Parallel Computers,” Proc. Symp. Parallel Algorithms and Architec-
tures, June 1994.

[8] J. Rexford, J. Dolter, and K.G. Shin, “Hardware Support for Con-
trolled Interaction of Guaranteed and Best-Effort Communica-
tion,” Proc. Workshop Parallel and Distributed Real-Time Systems,
pp. 188-193, Apr. 1994,

[91 W. Feng, J. Rexford, S. Daniel, A. Mehra, and K. Shin, “Tailoring
Routing and Switching Schemes to Application Workloads in
Multicomputer Networks,” Computer Science and Eng. Technical
Report CSE-TR-239-95, Univ. of Michigan, May 1995.

[10] R. Boppana and S. Chalasani, “A Comparison of Adaptive Worm-
hole Routing Algorithms,” Proc. Int’l Symp. Computer Architecture,
pp. 351-360, 1993.

[11] W. Dally and H. Aoki, “Deadlock-Free Adaptive Routing in
Multicomputer Networks Using Virtual Channels,” IEEE Trans.
Parallel and Distributed Systems, vol. 4, no. 4, pp. 466-475, Apr.
1993.

[12] P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New Com-
puter Communication Switching Technique,” Computer Networks,
vol. 3, pp. 267-286, Sept. 1979.

[13] W.J. Dally and C.L. Seitz, “The Torus Routing Chip,” J. Distributed
Computing, vol. 1, no. 3, pp. 187-196, 1986.

[14] W. Feng and K. Shin, “Impact of Selection Functions on Routing
Algorithm Performance in Multicomputer Networks,” Technical
Report CSE-TR-287-96, Univ. of Michigan, Mar. 1996.

[15] S. Ramany and D. Eager, “The Interaction Between Virtual
Channel Flow Control and Adaptive Routing in Wormhole
Networks,” Proc. Int’l Conf. Supercomputing, pp. 136-145, July
1994,

[16] S. Konstantinidou and L. Snyder, “The Chaos Router,” IEEE Trans.
Computers, vol. 43, no. 12, pp. 1,386-1,397, Dec. 1994.

[17] D.D. Kandlur and K.G. Shin, “Reliable Broadcast Algorithms for
HARTS,” ACM Trans. Computer Systems, vol. 9, pp. 374-398, Nov.
1991.

[18] L.M. Ni, “Should Scalable Parallel Computers Support Efficient
Hardware Multicast?” Technical Report MSU-CPS-ACS-107,
Michigan State Univ., Lansing, Mich., Apr. 1995.

[19] W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,” IEEE Trans. Comput-
ers, vol. 36, no. 5, pp. 547-553, May 1987.

[20] J. Dolter, “A Programmable Routing Controller Supporting Multi-
Mode Routing and Switching in Distributed Real-Time Systems,”
PhD thesis, Univ. of Michigan, Sept. 1993.

[21] W. Feng, J. Rexford, A. Mehra, S. Daniel, J. Dolter, and K. Shin,
“Architectural Support for Managing Communication in Point-
To-Point Distributed Systems,” Technical Report CSE-TR-197-94,
Univ. of Michigan, Mar. 1994.

[22] K.G. Shin and S.W. Daniel, “Analysis and Implementation of
Hybrid Switching,” Proc. Int’l Symp. Computer Architecture, pp. 211—
219, June 1995.

[23] H.S. Lee, HW. Kim, J. Kim, and S. Lee, “Adaptive Virtual Cut-
Through as an Alternative to Wormhole Routing,” Proc. Int’l Conf.
Parallel Processing, pp. 1-68-1-75, 1995.

[24] K. Bolding, S.-C. Cheung, S.-E. Choi, C. Ebeling, S. Hassoun,
T.A. Ngo, and R. Wille, “The Chaos Router Chip: Design and
Implementation of an Adaptive Router,” Proc. VLSI, Sept.
1993.

[25] J. Dolter, S. Daniel, A. Mehra, J. Rexford, W. Feng, and K. Shin,
“SPIDER: Flexible and Efficient Communication Support for
Point-To-Point Distributed Systems,” Proc. Int’l Conf. Distributed
Computer Systems, pp. 574-580, June 1994.

[26] S. Daniel, J. Rexford, J. Dolter, and K. Shin, “A Programmable
Routing Controller for Flexible Communications in Point-To-
Point Networks,” Proc. IEEE Int’l Conf. Computer Design, pp. 320—
325, Oct. 1995.

[27] C.-M. Chiang and L.M. Ni, “Multi-Address Encoding for Multi-
cast,” Proc. Parallel Computer Routing and Comm. Workshop, pp. 146-
160, May 1994.

[28] Am79168/Am79169 TAXI-275 Technical Manual, ban-0.1m-1/93/0
17490a ed. Sunnyvale, Calif.: Advanced Micro Devices, 1993.

[29] K.G. Shin and S.W. Daniel, “Analysis and Implementation of
Hybrid Switching,” IEEE Trans. Computers, vol. 45, no. 6, pp. 684-
692, June 1996.

[30] J. Rexford, J. Dolter, W. Feng, and K.G. Shin, “PP-MESS-SIM: A
Simulator for Evaluating Multicomputer Interconnection Net-
works,” Proc. Simulation Symp., pp. 84-93, Apr. 1995.

[31] J. Rexford, J. Hall, and K.G. Shin, “A Router Architecture for Real-
Time Point-To-Point Networks,” Proc. Int’l Symp. Computer Archi-
tecture, pp. 237-246, May 1996.

DANIEL ET AL.: A ROUTER ARCHITECTURE FOR FLEXIBLE ROUTING AND SWITCHING IN MULTIHOP POINT-TO-POINT NETWORKS 75

Stuart W. Daniel received the BE degree in elec-
trical engineering and computer science from
Vanderbilt University in 1989 and the ME and PhD
degrees in computer engineering from the Univer-
sity of Michigan in 1994 and 1996. He is an engi-
neer at Lexmark International, where he is work-
ing in software research and development.

Kang G. Shin received the BS degree in elec-
tronics engineering from Seoul National Univer-
sity, Seoul, Korea in 1970, and the MS and PhD
degrees in electrical engineering from Cornell
University, Ithaca, New York, in 1976 and 1978,
respectively. From 1978 to 1982, he was on the
faculty of Rensselaer Polytechnic Institute, Troy,
New York. He has held visiting positions at the
U.S. Airforce Flight Dynamics Laboratory, AT&T
Bell Laboratories, the Computer Science Division
within the Department of Electrical Engineering
and Computer Science at U.C. Berkeley, and the International Com-
puter Science Institute, Berkeley, California, IBM T.J. Watson Research
Center, and Software Engineering Institute at Carnegie Mellon Univer-
sity. He also chaired the Computer Science and Engineering Division,
EECS Department, The University of Michigan for three years begin-
ning in January 1991. He is a professor and director of the Real-Time
Computing Laboratory, Department of Electrical Engineering and
Computer Science, The University of Michigan, Ann Arbor, Michigan.

He has authored/coauthored more than 600 technical papers and
numerous book chapters in the areas of distributed real-time comput-
ing and control, computer networking, fault-tolerant computing, and
intelligent manufacturing. He has coauthored (jointly with C.M. Krishna)
a textbook, Real-Time Systems (McGraw Hill, 1997). In 1987, he re-
ceived the Outstanding IEEE Transactions on Automatic Control Paper
Award and, in 1989, Research Excellence Award from The University
of Michigan. In 1985, he founded the Real-Time Computing Laboratory,
where he and his colleagues are investigating various issues related to
real-time and fault-tolerant computing.

His current research focuses on Quality of Service (QoS) sensitive
computing and networking with emphasis on timeliness and depend-
ability. He has also been applying the basic research results to tele-
communication and multimedia systems, intelligent transportation
systems, embedded systems, and manufacturing applications.

He is an IEEE fellow, was the program chairman of the 1986 |IEEE
Real-Time Systems Symposium (RTSS), the general chairman of the
1987 RTSS, the guest editor of the 1987 August special issue of
IEEE Transactions on Computers on Real-Time Systems, a program
co-chair for the 1992 International Conference on Parallel Process-
ing, and served on numerous technical program committees. He also
chaired the IEEE Technical Committee on Real-Time Systems during
1991-1993, was a distinguished visitor of the Computer Society of
the IEEE, an editor of IEEE Transactions on Parallel and Distributed
Computing, and an area editor of International Journal of Time-
Critical Computing Systems.

Sang Kyun Yun received the BS degree in
electronics engineering from the Seoul National
University, Korea, in 1984, and the MS and PhD
degrees in electrical engineering from Korea
Advanced Institute of Science and Technology
(KAIST), Korea, in 1986 and 1995, respectively.
He is currently an associate professor in the
Department of Computer Science, Seowon Uni-
versity, Cheongju, Korea. He worked at Hyundai
Electronics Industries, Korea, from 1986 to 1990.
He was a visiting researcher at the Real-Time
Computing Laboratory in the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, during 1998. His
interests include interconnection network, parallel processing, com-
puter architecture, and computer network.

