
Autonomous Agents and Multi-Agent Systems, 4, 57–78, 2001
© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Planning and Resource Allocation for
Hard Real-time, Fault-Tolerant Plan Execution

ELLA M. ATKINS atkins@eng.umd.edu
University of Maryland

TAREK F. ABDELZAHER zaher@eecs.umich.edu
University of Virginia

KANG G. SHIN AND EDMUND H. DURFEE �kgshin, durfee�@umich.edu
University of Michigan

Abstract. We describe the interface between a real-time resource allocation system with an AI planner
in order to create fault-tolerant plans that are guaranteed to execute in hard real-time. The planner
specifies the task set and all execution deadlines required to ensure system safety, then the resource
utilization. A new interface module combines information from planning and resource allocation to
enforce development of plans feasible for execution during a variety of internal system faults. Plans that
over-utilize any system resource trigger feedback to the planner, which then searches for an alternate
plan. A valid plan for each specified fault, including the nominal no-fault situation, is stored in a plan
cache for subsequent real-time execution. We situate this work in the context of CIRCA, the Cooperative
Intelligent Real-time Control Architecture, which focuses on developing and scheduling plans that make
hard real-time safety guarantees, and provide an example of an autonomous aircraft agent to illustrate
how our planner-resource allocation interface improves CIRCA performance.

Keywords: AI architectures, planning, real-time scheduling, fault-tolerance

1. Introduction

AI planners have demonstrated utility for converting domain knowledge into
situationally-relevant plans of action, but execution of these plans cannot gener-
ally guarantee hard real-time response. Planners and plan-execution systems have
been extensively tested on problems such as mobile robot control and various
dynamic system simulations, but the majority of architectures used today employ a
“best-effort” strategy. As such, these systems are only appropriate for soft real-time
domains in which missing a task deadline does not cause total system failure.

To control mobile robots, for example, soft real-time plan execution succeeds
because the robot can slow down to allow increased reaction times, or even stop
moving should the route become too hazardous. For more “unstable” applications
such as fully-automated aircraft flight, hard real-time response is required, and fault-
tolerance is mandated. Moreover, to achieve complete automation of such a system,
some form of planner may be desired, particularly for selecting reactions to anoma-
lous or emergency situations.



58 atkins et al.

Violating response timing constraints in safety-critical systems may be catas-
trophic. The real-time research community focuses its efforts on resource alloca-
tion and scheduling algorithms to provide hard real-time execution guarantees.
The main goal of such algorithms is often the efficient utilization of resources such
as multiprocessor networks and communication channels. To date, these real-time
algorithms have been tested by presuming the existence of complete and inflexi-
ble plans of action, including specific task constraints such as execution deadlines.
Developing explicit mechanisms for degrading system performance if resource
shortage does not allow all constraints to be met is a major real-time research
issue.

In this paper, we describe the interface of a real-time resource allocator with an
AI planner to automatically create fault-tolerant plans that are guaranteed to exe-
cute in hard real-time. The planner produces an initial plan and task constraint
set required for failure avoidance. This plan is scheduled by the resource allocator
for the nominal “no-fault case” as well as for each specified “internal” fault con-
dition, such as a processor or communication channel failure. If any resource is
over-utilized, the most costly task is determined using a heuristic that combines uti-
lization information with task priority (or value) assigned by the planner. The costly
task is fed back to the planner, which invokes dynamic backtracking to replace this
task, or, if required, ignores unlikely events to generate a more schedulable task
set. This combination of planning and resource allocation takes the best elements
from both technologies: plans are created automatically and are adaptable, while
plan execution is guaranteed to be tolerant to potential faults from a user-specified
list and capable of meeting hard real-time constraints.

As a testbed for this combination, we have augmented the Cooperative Intelli-
gent Real-time Control Architecture (CIRCA) [19] and have entitled the updated
version CIRCA-II. Originally designed to allow real-time plan execution guaran-
tees, CIRCA uses a planner and a uniprocessor scheduler to build and schedule
its plans. We have recently focused on the interface between planner and sched-
uler [17]. We improve upon this work by adding fault-tolerance and the capability
to reason about multiple resource classes and instances of each class, so that all
aspects relevant to plan execution are explicitly considered during the planning
phase.

This paper begins by describing CIRCA and its evolution into CIRCA-II, fol-
lowed by a description of the real-time resource allocation algorithms that provide
the basis for our work. Next, we present a heuristic to combine pertinent informa-
tion from planning and resource allocation modules. The resulting “bottleneck” task
information is used to guide planner backtracking when scheduling conflicts arise.
We then describe an algorithm which incorporates this heuristic and a fault condi-
tion list to develop a set of fault-tolerant plans which will execute with hard real-time
safety guarantees. We illustrate the utility of our algorithms with a simple example
of an autonomous aircraft agent that must be tolerant to a single-processor failure
during plan execution, then describe related work in the development of planning
and plan-execution agent architectures. We conclude with a summary and discus-
sion of future work required to further bridge the gap between the planning and
hard real-time research communities.



planning and resource allocation 59

2. Building plans for hard real-time execution

We selected the Cooperative Intelligent Real-time Control Architecture (CIRCA)
for this research due to its focus on hard real-time plan execution and because its
modular components were ideal for interfacing an existing planner with a standard
real-time resource allocation algorithm. In this section, we briefly review CIRCA as
it has appeared in previous work. Next, we describe CIRCA-II, specifically focus-
ing on its methods for efficiently converging on schedulable plans and for tolerating
computational resource faults when plans are executed on a multi-resource plat-
form. Although the CIRCA-II state-space planner is similar to the CIRCA planner,
we have modified its backtracking to display a bias toward the production of schedu-
lable real-time plans. We close this section with a discussion of CIRCA-II replanning
when scheduling fails.

2.1. CIRCA background

Figure 1 shows the CIRCA architecture originally developed by Musliner et al.
[19]. The CIRCA domain knowledge base specifies how system state may change
via a set of action and temporal state transitions, and contains a set of subgoals
which, when achieved in order, enable the system to reach its final goal. During
planning, the world model is created incrementally based on initial state(s) and all
available transitions. The planner builds a state-transition network from initial to
goal states and selects an action (if any) for each state based on the relative gain
from performing the action. The planner backtracks if the action selected for any
state does not ultimately help achieve the goal or if the system cannot be guaranteed
to avoid failure. CIRCA’s planner minimizes memory and time usage by expanding
only states produced by transitions from initial states or their descendants, and
includes a probability model [5] which promotes a best-first state-space search as
well as limiting search size via removal of “highly improbable” states [7]. Planning
terminates when the goal has been reached while avoiding failure states.

During plan construction, action transition timing constraints are determined
such that the system will be guaranteed to avoid all temporal transitions to failure
(TTFs), any one of which would be sufficient to cause catastrophic system failure.
The CIRCA temporal model allows computation of a minimum delay before each
TTF can occur; then the deadline for each pre-emptive action is set to this mini-
mum delay. After building each plan, CIRCA explicitly schedules all pre-emptive
actions (tasks) such that the plan is guaranteed to meet all such deadlines, thus
guaranteeing failure avoidance.

In previous CIRCA work, completed plans were scheduled using a uniprocessor
scheduler. If scheduling was successful, the plan was downloaded and executed.
Otherwise, the planner backtracked to select a different set of actions which would
hopefully be easier to schedule.

After a schedulable plan is developed, it executes on CIRCA’s real-time plan
executor. Figure 2 shows the contents of a typical CIRCA plan. Tasks, built as TAPs
(Test-Action Pairs) by the CIRCA planner, are divided into two classes: guaranteed



60 atkins et al.

Figure 1. Original CIRCA.

and best-effort. Guaranteed tasks have hard real-time maximum separation con-
straints to avoid TTFs, while best-effort tasks need only execute for goal achieve-
ment, thus are acceptable when cast in a “soft real-time” framework. Each task
consists of multiple threads (or “modules,” the term we will use throughout this
paper) which perform the tests required to determine if the action should be exe-
cuted and then to execute the action, if required.

The CIRCA plan executor previously required a single-processor platform in
which all actions were constrained to execute entirely on one dedicated proces-
sor, since delays were contained within the static worst-case execution times (wcets)
used by the uniprocessor scheduler. Also, the scheduler considered only that one
processor need be scheduled, so neither multiple resource instances (e.g., multiple

Figure 2. CIRCA plan composition.



planning and resource allocation 61

processors) nor multiple resource classes (e.g., processors and communication chan-
nels) could be considered during scheduling. As a result, not only was the plan-
execution platform inflexible, but there was no possibility for computational system
fault-tolerance since multiple copies of a resource could not exist.

2.2. CIRCA-II architecture

In this paper, we extend CIRCA to consider multiple resources during plan schedul-
ing and exhibit limited tolerance to resource failures (i.e., “internal faults”) during
plan execution. Figure 3 shows the CIRCA-II architecture, which includes the mod-
ifications required to gain these new capabilities. The CIRCA-II knowledge base
and planner are very similar to those from CIRCA. Plans are created and action
timing constraints are computed as before in [19] and [5]. For each planned task
Ti ∈ Ttotal, where Ttotal contains all tasks in the plan, the planner outputs the triplet
�gi; Pi; Vi�. gi is the “guarantee flag” that indicates whether task Ti is guaranteed
(gi = 1) or best-effort (gi = 0). Pi is the period of Ti required to preempt TTFs
when gi = 1.1 Finally, Vi is the “priority” value of task Ti and is described below in
Section 4.

The planner passes �gi; Pi; Vi� for all Ti ∈ Ttotal to the planner-resource allocation
interface module, henceforth referenced simply as the “interface.” This interface
invokes the resource allocation analyzer to schedule all tasks �Ti ∈ Ttotal; gi = 1� for
each fault to be tolerated. Replacing CIRCA’s uniprocessor scheduler, the resource
allocation analyzer accounts for multiple plan-execution resources, and also contains
the fault library. When a “good” (schedulable) plan is found for each fault, it is
downloaded to the plan cache, where it waits until required for execution.

The plan dispatcher/cache modules shown in Figure 3 allow offline storage of
plans that may be required to handle either “unexpected” environmental situations
[4] or computational resource faults. In this paper, we describe the production of
plan sets for the cache that allow CIRCA-II to respond in real-time to computational
system faults by retrieving a plan built specifically for that fault (or fault set). Details
of the current Plan Execution Subsystem design and implementation are provided
in [4]. Due to the complexity of the algorithms required for real-time fault detection
and run-time scheduling, significant discussion of the multi-resource Real-time Plan
Executor is reserved for future publication.2

In subsequent sections, we will discuss the details of the resource allocation, feed-
back generation, and fault-tolerant plan production algorithms. First, however, we
focus on the backtracking procedure that enables the CIRCA-II planner to actually
utilize this feedback.

2.3. Converging on a “Schedulable” plan in CIRCA-II

Whenever a proposed plan is deemed unschedulable, the interface module heuris-
tically computes the most costly action (task Tbottleneck), which it then feeds back
to the planner. The planner attempts to remove or replace this action via dynamic



62 atkins et al.

Plan-Execution Subsystem

Planning Subsystem

Planner-Res. Alloc.
Interface

Environment

Knowledge Base

Planner

Run-time Scheduler

Plan Dispatcher

Plan Cache Resource Requirements

Precedence Constraints

Exclusion Constraints

Thread Database

Fault Specification List

{plan,fault}

Resource Allocation
Analyzer

Utilization

Real-time Plan Executor

Matrix U
Feedback

State TAP
Plans

Plans "Costly" Actions

"Good" Plans {plan, fault}
and Schedules

State & Plan
Feedback

Figure 3. CIRCA-II architecture.

backtracking [13] to each state in which the Tbottleneck action was both chosen and
guaranteed (gi = 1). Figure 4 describes the current algorithm used by the CIRCA-II
planner during backtracking.3 Ideally, the action from Tbottleneck can be modified (i.e.,
max-period Pi increased) or replaced in every state sk to which the planner back-
tracks. If the plan produced after dynamic backtracking over all sk is potentially less
restrictive (see definition below) than all previous plans, it is proposed for schedul-
ing. Otherwise, the planner continues to search for a new plan via a combination
of alternative backtracking methods.

Definition: We define plan1 as potentially less restrictive than plan2 if one of the
following criteria is met:

1. All tasks T1i ∈ plan1 form a proper subset of the tasks T2j ∈ plan2.
2. ∃i; j��T1i = T2j�and�P1i > P2j��, where Pki represents the period assigned to task
Tki in plank.

As shown in Figure 4, our dynamic backtracking algorithm cannot alone guar-
antee the production of a schedulable plan. Thus we have combined dynamic with



planning and resource allocation 63

Figure 4. CIRCA-II planner backtracking.

other backtracking techniques, the choice of which derives from the following three
alternatives:

Method 1: Perform chronological backtracking each time dynamic backtracking
fails to produce an alternate plan. This method is incapable of incorporating inter-
face feedback and reverts to the original CIRCA approach. It is, however, capable
of quickly proposing alternative plans.

Method 2: Request the next-most costly task T2bottleneck from the interface. Per-
form dynamic backtracking with T2bottleneck, and continue (e.g., with the third most
costly task; : : :) until dynamic backtracking has been performed on each individual
task. This method is desirable in that all available interface feedback is utilized.



64 atkins et al.

However, backtracking is far from exhaustive because each iteration focuses on
modifying only a single task Tibottleneck.

Method 3: Increment a state probability threshold Pthresh for removing unlikely
states as described in [17], then repeat dynamic backtracking with Tbottleneck. This
method is desirable only when state(s) that previously produced the backtracking
failure are relatively improbable.

Each of these three methods is a possible candidate, and we are still assess-
ing which combination of these or other techniques will provide the best backup
when dynamic backtracking over Tbottleneck fails. Currently, as referenced in Figure
4, we utilize a combination of Method 1 and Method 3. With this approach, when
dynamic backtracking initially fails, chronological backtracking progresses until pro-
ducing a less-restrictive alternative plan. If planning progresses until even chrono-
logical backtracking fails, the planner iteratively relaxes its probability threshold
Pthresh below which states are ignored until ultimately the planner and resource allo-
cator can together construct a schedulable plan. A non-zero Pthresh value effectively
degrades real-time guarantees from absolute to probabilistic. We consider this result
far preferable to the alternative of CIRCA-II planning subsystem failure.

3. Resource allocation

From the perspective of a real-time computing system, a plan is a set of tasks
T = �T1; : : : ; Tn� with resource requirements and timing constraints. The problem
of resource allocation is to map the set of planned tasks onto a set of available
resources such that all constraints are met. In CIRCA, all guaranteed tasks are
considered periodic, and each task Ti ∈ T has worst-case computation time ci and
period Pi. The worst-case computation time includes scheduler context-switching
overhead. The jth invocation of Ti becomes ready for execution at time �j − 1�Pi,
called task arrival time, ai�j�. The deadline, di�j�, of a task invocation is usually such
that di�j� ≤ ai�j� + Pi since each invocation must complete its execution before the
next one arrives. It is sufficient for the resource allocation algorithm to find a task
schedule within a finite interval, L, equal to the least common multiple of all tasks
periods, called the planning cycle in the real-time community. The resulting task
schedule repeats itself in subsequent planning cycles. Each task may be composed
of one or more separately schedulable modules (i.e., threads) with arbitrary prece-
dence constraints. The resource requirements of each module are known a priori
since we know the resource profile for the application code.

We do not constrain how tasks are divided into modules but we assume that
each module needs its resources throughout its execution. The selection of a proper
resource allocation algorithm depends on the execution platform considered. An
optimal resource allocation algorithm is described in [24] for uniprocessors, in [23]
for multiprocessors, and in [21] for distributed systems. Once the task assignment
is fixed, an optimal off-line scheduling algorithm such as [2] can be used to pre-
schedule the tasks. In this paper we use [21] for task assignment and [2] for schedul-
ing. These algorithms are used to schedule “guaranteed tasks” (those with gi = 1).



planning and resource allocation 65

Best effort tasks (with gi = 0) are then fit, when possible, in the gaps of the pro-
duced schedule. The resulting overall schedule for each processor is stored in a
table. If no such assignment and schedule can be found, the plan is unschedulable.

When a prescheduled plan executes, the run-time scheduler dispatches tasks in
the order they appear in the table using an O�1� lookup operation. Different sched-
ules (tables) are constructed for different plans (fault conditions) and can be stored
in each processor’s memory, indexed by fault condition. Fault conditions may rep-
resent processor failures, communication-link failures, or other resource failures.
When the condition is observed on-line, its numeric identifier is broadcast to all
processors which then index into the corresponding new table. A lightweight atomic
multi-cast and membership algorithm, such as [1] can be used to ensure that all
non-failed processors (i) receive the broadcast of the current failure condition, and
(ii) agree on the start time of the new schedule in bounded time despite transient
communication failures. If communication is totally lost with some processor, the
resulting effect is indistinguishable from a processor failure, and is treated as such.
The bounded failure recovery overhead can be accounted for in off-line schedula-
bility analysis to ensure that hard real-time constraints are met.

For completeness, in the remainder of this section we give the essential features
of the resource allocation algorithm. The two main resources considered are pro-
cessors and communication links. It is assumed that other resources are consumed
only in conjunction with the consumption of either the processor or the commu-
nication link. For example, a module may access a common sensor while running
on the processor, but presumably it cannot access the sensor if it’s not running in
the first place. Thus all resources other than the processor and communication link
are treated as additional constraints on processor and communication link schedul-
ing. These constraints can be precedence constraints (e.g., module A has to finish
before module B can start), or mutual exclusion constraints (can’t execute module
A and B concurrently because they need the same additional resource and must
access it one at a time). Precedence and exclusion constraints are generally called
synchronization constraints.

The task assignment algorithm considers the problem of assigning m periodic
tasks with known execution times, periods, and deadlines to n processors with arbi-
trary processing speeds such that each task meets its timing, resource, and synchro-
nization constraints. Tasks are allowed to have allocation constraints as well, such
as the constraint that two tasks must be colocated on the same processor, the con-
straint that two tasks must be assigned to different processors, or the constraint that
a task should not be assigned to a particular processor. Each invocation of each task
is composed of several modules which may represent different actions performed
by the task.

The algorithm is cast as a branch-and-bound (B&B) search, by implicit enumera-
tion, for a task allocation that minimizes maximum task lateness, where task lateness
is defined as the difference between task completion time and task deadline. For
an allocation in which all deadlines are met the maximum task lateness should be
non-positive.

The algorithm considers the tasks, one at a time, for allocation to one of the
processors. The root of the search is the null allocation in which no tasks have been



66 atkins et al.

assigned. It is expanded by considering all possible assignments of the first task.
The number of such assignments is equal to the number of processors to which the
task may be assigned. Each subsequent level in the tree corresponds to assigning the
next task. Thus, a vertex at level k in the tree represents an assignment of the first k
tasks. Since there are m tasks in the system, vertices at level m are the leaves of
the tree. They correspond to the possible solutions to the task allocation problem.

An efficient bounding function is essential for an optimal solution to be found in
reasonable time. The bounding function computes a lower bound on task lateness
of all allocations that include the partial allocation represented by the vertex under
consideration. This lower bound for a vertex is computed in three steps:

Step 1: Compute the minimum computational load imposed on each processor by
tasks already assigned in this search vertex.

Step 2: Estimate the minimum additional load to be imposed on each processor
due to those tasks not yet assigned.

Step 3: Optimally schedule the combined load at each processor and compute the
resulting lateness.

The exact formulae employed in these steps are described at length in [21]. Once
a task assignment is reached, we use an optimal scheduling algorithm to find the
minimum lateness schedule. The scheduling problem can be viewed as another B&B
search. Each point in the search space represents a task schedule on processors
and a message schedule on the communication links computed subject to timing
and synchronization constraints. The root vertex of the search tree represents the
space of all possible schedules. Branching from a vertex is a subdivision of the
solution space of the parent among the set of child vertices. This is achieved by
adding scheduling constraints to each child in order to limit the solution subspace
represented by it.

Bounding a vertex is the estimation of a lower-bound on lateness of all the sched-
ules in the solution subspace represented by the vertex. Bounding allows us to prune
vertices whose bounds are higher (i.e., worse) than the lateness of the best sched-
ule found so far. To enable pruning, a schedule is generated at each visited vertex
out of the set of schedules in the solution subspace represented by the vertex. This
is done using the earliest-deadline-first (EDF) scheduling policy. The policy gen-
erates an optimal schedule (in the sense of minimizing maximum lateness) if no
exclusion constraints are present between tasks and no tasks have remote prede-
cessors. Since the initial constraint set in the problem statement may contain both
exclusion constraints and interprocessor precedence constraints, optimality of EDF
is not guaranteed. Branching is therefore used to replace “unwanted” constraints
by equivalent precedence constraints thus incrementally restoring the optimality of
EDF. For example, assume that a pair of tasks T1 and T2 in the parent’s schedule
have a mutual exclusion constraint. To replace the mutual exclusion constraint, two
children are generated, one with the added constraint T1 precedes T2 and the other
with the added constraint T2 precedes T1. Since one of these precedence constraints



planning and resource allocation 67

is necessarily satisfied in any schedule that respects the original mutual exclusion
constraint, the exclusion constraint between T1 and T2 can be removed without
affecting the space of possible solutions. Furthermore, the subsets of the solution
space represented by the children are a partition of the set of schedules represented
by the parent. Without proof we mention that interprocessor precedence constraints
can similarly be “replaced” by modifying the deadline of the predecessor such that
it inherits the lateness of its successor. The algorithm continues replacing unwanted
constraints until an optimal schedule is found, i.e., all vertices have been pruned
except one and no further branching is possible. Note that since branching is always
possible as long as more mutual exclusion constraints or interprocessor precedence
constraints are present, the latter condition implies that the EDF schedule found
for the surviving vertex is optimal. More details on the algorithm are found in [3].

The combination of the task assignment algorithm and the task scheduling algo-
rithm finds an optimal task allocation and schedule in the sense of minimizing
maximum task lateness subject to individual module timing, resource, precedence,
exclusion, and communication constraints. It therefore provides a powerful tool for
optimal resource management in time-critical systems. We utilize this tool for pre-
scheduling the execution of CIRCA-II plans in a distributed system such that they
may execute correctly to completion subject to timing and resource constraints.

4. Planning-resource allocation interface

The primary objective of the planning-resource allocation interface is to utilize exist-
ing planning and resource allocation algorithms with minimal modification. In par-
ticular, the planner should be told whether or not the current plan is schedulable,
and if it isn’t, which task is judged to be the most costly “bottleneck.” If the plan
is found schedulable by the resource allocation analyzer then its entire value is
redeemed. However, if the plan is unschedulable, the interface module points out
a “costly” action to reconsider during replanning.

In our design, the planner transmits each plan to the interface via a set of triplets
�gi; Pi; Vi� for all tasks Ti ∈ Ttotal, where Ttotal represents all planned tasks. The
guarantee flag gi tells the interface whether the task must execute in hard real-
time. The set Tmandatory of tasks Ti ∈ Ttotal with gi = 1 exclusively dictates whether
the plan is schedulable. Task period Pi is determined by the planner such that all
failure transitions (TTFs) are preempted. The CIRCA-II planner assigns a priority
value Vi for each task. Each Vi is given by Vi = ni ∗max�pi�, where ni is the number
of states in which task Ti executes and max�pi� is the maximum probability of any
state in which Ti executes. This heuristic reflects a preference to keep tasks chosen
for the highest-probability states, as well as the fact that large ni will likely require
many backtracking steps, should Ti be altered.

The resource allocation analyzer receives input �Ti ∈ Tmandatory; Pi� then returns a
success/failure status and a utilization matrix U in which each element U�i; q� is the
utilization consumed by task Ti of resource q. The thread database described earlier
defines the worst-case resource usage for Ti, based on the resource requirements of
the modules �Mj ∈ Ti�. Elements U�i; q� are computed by the resource allocation



68 atkins et al.

analyzer as follows. Within each planning cycle L the total available capacity of a
resource q is pQL, where p is the number of instances of the resource and Q is
the capacity of each. If module Mk of period Pk and execution time Ck requires an
amount rk; q of the resource throughout its execution, then its total demand on that
resource within the planning cycle is rk; qCkL/Pk. The ratio of that demand to the
total available resource capacity is the utilization u�k; q� consumed by module (or
thread) Mk of resource q as shown in Equation 1. The utilization U�i; q� consumed
by task Ti of resource q is the sum of the utilizations u�k; q� of all modules Mq ∈ Ti,
as shown in Equation 2.

u�k; q� = rk; qCk
pQPk

(1)

U�i; q� = ∑
∀k;Mk∈Ti

u�k; q� (2)

To compute the most “costly” task in cases of over-utilization (failure), the inter-
face combines priorities Vi from the planner with the utilization matrix U from the
resource allocation analyzer. The interface module tentatively deletes one action,
Tj , from the plan and recomputes the resulting aggregate utilization γj�q� of each
resource by adding U�i; q� for all i 6= j. The bottleneck resource qb�j� for task Tj
is the one for which γj�q� is maximum, as shown in Equation 3.

qb�j� = maxq�γj�q�� = maxq
(∑
i; i 6=j

U�i; q�
)

(3)

The total value Sumj remaining after eliminating Tj is the sum of Vi, as shown
in Equation 4. The total value gained per unit of bottleneck-resource usage is thus
Sumj/γj�qb�j��. The interface recommends for removal of the action Tj that results
in the maximum value per cost ratio, as shown in Equation 5. Note that the Sumj

defined above is not exact, since removal of one action could affect the Vi values of
other actions. Exact computation of Sumj would require detailed knowledge of the
planning state-space after this action was removed, which is time consuming.

Sumj =
∑
i; i 6=j

Vi (4)

Tbottleneck = maxj
(

Sumj

γj�qb�j��
)

(5)

The heuristic is used to suggest which part of the planner’s search space to expand
next via dynamic backtracking to each state in which Tbottleneck was guaranteed to
preempt a tt f. However, it does not actually prune parts of the search space. Since
the planner’s search is exhaustive in the worst case, it is always guaranteed to find
a feasible plan if one exists. The heuristic merely increases the odds of finding such
a plan earlier in the search process.



planning and resource allocation 69

Table 1. Example utilization matrix U�i; q�

T1 T2 T3 T4

q1 0.1 0.35 0.4 0.05
q2 0.25 0.3 0.1 0.15
q3 0.15 0.4 0.25 0.3

4.1. Example: selecting a bottleneck task in an unschedulable plan

We illustrate the computation of Tbottleneck with a simple example. Assume the plan
as downloaded from the planner consists of four tasks, Ttotal = �T1; T2; T3; T4�,
and that all of these tasks are guaranteed (gi = 1) since best-effort tasks are not
considered by the interface module. Further, assume all tasks have priority value
Vi = 1:0 for simplicity, thus the bottleneck task will be determined strictly from
utilization considerations.

Let Table 1 describe the utilization matrix U�i; q� returned from the resource
allocator, where the columns represent utilization values for the four guaranteed
tasks and the rows represent utilization values for the three available resource
classes. As can be observed from U�i; q�, resource q3 is certainly over-utilized since
the sum of individual task utilizations is greater than 1. Thus, scheduling has failed
and a bottleneck task must be identified.

Table 2 shows the aggregate utilization values γj�q� and bottleneck resource qb�j�
after the removal of each task Tj as computed from Equation 3. In this example,
the value Sumj remaining after eliminating any one task is always the same (equal
to 3, the number of tasks remaining, since Vi = 1 for all tasks). Table 2 also shows
the value-to-cost ratios after removal of each task. The maximum value-to-cost ratio
remains after removing task T2, thus Tbottleneck = T2, which is then fed back to the
planner for dynamic backtracking.

5. Fault-tolerance

We establish internal fault-tolerance (e.g., to single processor failures) by using the
planning–resource allocation analyzer interface module to effectively manage the
preset list of faults for which the system must be tolerant. This list, Ftotal, includes
the nominal “no-fault” case f0 in which all systems work properly, and progressively

Table 2. Values used for computation of Tbottleneck

T1 removed T2 removed T3 removed T4 removed

γ1�q1� 0.8 0.55 0.5 0.85
γ1�q2� 0.55 0.5 0.7 0.65
γ1�q3� 0.95 0.7 0.85 0.8
qb�j� q3 q3 q3 q1

value/cost 3.16 4.29 3.53 3.75



70 atkins et al.

describes more severe faults, terminating with the worst fault fn the system can
tolerate.

The CIRCA-II resource-allocation analyzer and plan execution system reference
fault list Ftotal, included in the Fault Specification List in the Thread Database from
Figure 3, which also contains resource type/quantity descriptions for each fault fi ∈
Ftotal. These values are required by the Resource Allocation Analyzer to describe
which resources are available in each fault-condition.

Figure 5 shows the interface module algorithm used to control CIRCA-II inter-
module data flow. To summarize, the interface module incorporates plan and uti-
lization data for each fault to classify plans as “good” or “unschedulable.” A good
plan is added to Fgood, then downloaded to the plan cache along with indices to
all faults for which that plan was “good.” These faults are removed from the work-
ing fault list (placed in Fdone), since they only require one plan. For the first (i.e.,
least severe) fault that over-utilized resources, a “costly” task is recommended for
removal using the heuristic described in the previous section, then fed back to the
planner, which backtracks to find a safe alternate plan as described earlier. This pro-
cedure continues until all faults have been handled successfully by some schedulable
plan.

The algorithm described above enables creation and storage of (i) a set of plans
that can meet all required hard real-time constraints when any internal fault from
Ftotal occurs, and (ii) a pre-computed execution schedule for each plan. After the
plan cache has been filled with “good” plans for all faults, the plan indexed for
nominal fault condition f0 is selected and begins execution according to the cor-
responding schedule. When the system detects an internal fault, plan execution
switches to the pre-scheduled plan designated to handle that fault, which has pre-
viously been stored on each plan execution processor. Thus, response to internal

Figure 5. Planning-resource allocation interface.



planning and resource allocation 71

faults is prompt, and the system does not fail due to internal faults except for a
fault so severe it was not incorporated into Ftotal.

6. Example: autonomous aircraft agent

We consider an example drawn from automated flight, in which rigid hard real-
time response constraints require careful resource allocation and scheduling. Our
plan execution system includes two resource types: Proc (processor) and Comm
(communication channel). The system contains two processors of type Proc and
a single communication channel of type Comm, and we define a fault set which
includes the nominal no-fault case (f0) and a “single processor failure” fault (f1),
in which the number of Proc instances is reduced from two to one.

For our automated flight mission, the CIRCA-II planner is given the goals of
maintaining safety while following a flight plan (trajectory). The aircraft must fol-
low standard air traffic procedures and maintain communication with air traffic
control (ATC) via the Comm channel resource, which we assume to have guaran-
teed worst-case execution properties in our example. In this section, we present a
very simplified world model which illustrates how safety is maintained during flight,
even in the presence of a single processor failure from the set of Proc resources.

In its initial phase, the planner builds the state set shown in Figure 6. In this
plan, two failures must be avoided: an impact with an obstacle (e.g., the terrain or
another aircraft), and any airspace-violation (e.g., flying in a restricted military area).
To prevent these failure transitions, CIRCA-II selects two actions: avoid-collision
and maintain-trajectory.

The decomposition of all tasks available in our flight example is shown in Tables 3
and 4. To detect a state with OB = T , task T1 runs modules M1, scan-TCAS (Ter-
minal Collision and Avoidance System), to sense nearby obstacles and M2, monitor-

OC = T
OB = T
ST = N

OC = F
OB = F
ST = N

FAILURE

OC = F
OB = T
ST = N

T = True
F = False
N = Normal
E = Emergency

Feature Values:

OC = On-Course
OB = Obstacle
ST = Flight Status

Features:

action

temporal

Transition key:

obstacle avoid-collision

maintain-trajectory

course-deviation

obstacle

airspace-violation

impact

impact

OC = T
OB = F
ST = N avoid-collision

Figure 6. Nominal flight plan.



72 atkins et al.

Table 3. Flight task set

Taski Pi Vi Modules

Avoid-collision (T1) 6 1 M1, M2, M3

Maintain-trajectory (T2) 12 1 M4, M5

Declare-emergency (T3) 6 1 M6

Follow-radar-vectors (T4) 12 1 M7, M5

traffic, to detect other air traffic based on ATC data. If an object is detected, the
avoid-obstacle action is executed. The maintain-trajectory task (T2) executes to detect
course deviations with M4, monitor-course and correct them by sending reference
trajectory (r�t�) commands to the low-level controller via M5, update-reference.4

Table 3 also includes the period (Pi) and priority (Vi) used by the CIRCA-II
planner-scheduler interface. For this example, we set all task priorities equal (Vi =
1) because we have not yet implemented a good priority calculation algorithm in the
CIRCA-II planner. In the future, Vi will be computed using a combination of state
probability and temporal proximity to failure. Note that all actions are guaranteed
(gi = 1) since all states with planned actions have temporal transitions to failure
(TTFs).

In our example, the computing system is composed of two processors, each a
resource of type Proc, interconnected with each other and ATC by a communication
bus, a resource of type Comm. Once CIRCA-II has developed the initial plan, the
Resource Allocation module attempts to schedule it for each fault. We consider two
cases: the nominal situation where the system is fully operational (f0) and a single
processor failure (f1). The plan is given to the resource allocation analyzer, which
succeeds in computing a task assignment [21] and schedule [2] for f0 such that all
constraints are met. The resource allocation for f0 is shown in Figure 7. Note that
this allocation was obtained by considering modules M1 through M5 one at a time
for assignment on the two processors thus generating a search tree leading to 32
possible allocations. An optimal (EDF) schedule is computed for each allocation
and the vertex which results in the least maximum lateness is retained as the optimal
solution. The successful plan is now added to the “good” list, Fgood, and mode f0 is
added to the set of handled failure modes Fdone.

Next resource allocation is attempted for the case of one processor failure, f1.
As shown in Table 5, the processor (Proc) utilization exceeds a value of one for f1,

Table 4. Flight module worst-case resource usage

Module Function ci on Proc Comm

M1 scan-TCAS 2 —
M2 monitor-traffic 3 2
M3 avoid-obstacle 4 —
M4 monitor-course 4 —
M5 update-reference 4 —
M6 declare-emergency 1 1
M7 receive-vectors 2 5



planning and resource allocation 73

2 4 6 9 10 120 31 5 7 8 11

2 4 6 9 10 120 31 5 7 8 11

2 4 6 9 10 120 31 5 7 8 11

Proc1

Proc2

Comm

M3

M2’s msg

M5M1M4M1

M2 M2 M3

M2’s msg

Figure 7. Nominal plan resource allocation (f0).

thus the initial plan must be altered for f1. The interface discovers that Proc is the
bottleneck resource qb for both tasks, and the interface module recommends that
costly task T1 (avoid-collision) be removed due to its high Proc utilization.

Upon dynamic backtracking to the two states where Tbottleneck = T1 was selected,
the planner determines that its only other possibility is to select task T3 (declare-
emergency) for these states so that ATC will re-direct traffic “obstacles” away from
the aircraft. However, since task T2 requires normal flight status, the planner also
requires the addition of T4 to handle course deviations after an emergency has been
declared. The plan consisting of �T2; T3; T4� also over-utilizes the one processor
available with f1. Again, the processor is the bottleneck resource qb, and this time,
the interface selects T2 as Tbottleneck due to its relatively intensive processor use.

The second dynamic backtracking iteration in the CIRCA-II planner yields the
state diagram shown in Figure 8, with task T3 now selected for response to either
an obstacle or course-deviation when the aircraft status is normal. By declaring an
emergency when fault f1 occurs, the aircraft effectively prompts ATC to assume
much of the computational responsibility. First, ATC clears the airspace so that
[man-made] obstacles will no longer be a factor. Additionally, after the emer-
gency is declared, the efficient action follow-radar-vectors can be utilized, in which
ATC specifies the course corrections required for the aircraft to safely reach its
destination.

This reduced plan (Plan2) shown in Figure 8 is now sent to the resource alloca-
tion analyzer, which finds the plan can easily be scheduled even with the processor
failure (f1), as computed with task utilizations shown in Table 6 and a valid task

Table 5. Utilization matrix—nominal plan

Taski U�i; Proc; f0� U�i; Proc; f1� U�i; Comm�

T1 14/24 14/12 4/12
T2 8/24 8/12 0/12



74 atkins et al.

OC = F
OB = F
ST = N

OC = F
OB = T
ST = N

FAILURE

OC = T
OB = T
ST = N

OC = T
OB = F
ST = E

deviation
course-

obstacle

obstacle

Plan 1 States

declare-emergency

declare-emergency

declare-emergency

course-deviation

follow-radar-vectors

unrecoverably-
off-course

OC = T
OB = F
ST = N

declare-emergency

OB = F
ST = E

OC = F

airspace- violation

impact impact

Figure 8. Reduced flight plan for failed processor (f1).

assignment illustrated in Figure 9. With this plan, CIRCA-II is prepared to handle
f0 and f1, so Plan2 is stored and planning terminates.

In this section, we have identified unschedulable plans and made them schedu-
lable via planner-scheduler iteration. This is in contrast to traditional resource
allocation algorithms which simply fail if a plan is unschedulable. It also contrasts
with planning algorithms which do not consider failures of computing resources,
and do not guarantee schedulability of the plan in the hard real-time sense.

7. Related work

The phrase “real-time” is not new to the planning community, but few architec-
tures guarantee high quality, hard real-time response. Planning time limits have
been enforced via techniques ranging from anytime [10] to design-to-time [12]. A
variety of abstraction algorithms such as that from [9] allow fast, approximate plan-
ning so that a restrictive time limit will enable creation of the best plan possible
within the available time. However, as domain complexity increases and available

Table 6. Utilization matrix—reduced action plan

Taski U�i; Proc; f1� U�i; comm�

T3 2/12 2/12
T4 6/12 5/12



planning and resource allocation 75

2 4 6 9 10 120 31 5 7 8 11

Comm

Proc1

M7 M6M6 M5

M6’s msgM6’s msg

2 4 6 9 10 120 31 5 7 8 11

M7’s msg

Figure 9. Resource allocation with failed processor (f1).

planning time decreases, the quality of the planning solution may suffer to the extent
that the developed plan cannot prevent system failure even though it is produced
“in time.” CIRCA-II does not yet provide planning timeliness guarantees, but it
explicitly separates planning and plan-execution functions to minimize the need for
tight planning time restrictions.

Plan-execution architectures such as PRS [15] and RAPS [11] have been devel-
oped to minimize response time by avoiding the “intractable planning” problem.
Each is structured so that, if available, the appropriate reaction is discovered quickly
on average, employing hierarchical techniques to limit the steps required for each
search process. Although these techniques are popular in the robotics community
due to their efficiency and representational power, they cannot provide absolute
real-time response guarantees without strict limitations to database size (e.g., num-
ber of RAPs), which must be computed by the user in advance based on the mini-
mum response time and worst-case search time that may be required.

The CIRCA-II plan cache is of minimal size relative to PRS and RAPS databases
because the CIRCA-II cache is populated only with plans required for the partic-
ular mission at hand. However, CIRCA-II must still be able to guarantee that this
size is sufficiently small to allow hard real-time retrieval times. To accomplish such
guaranteed behavior, all plan cache searches are incorporated into scheduled tasks
within each executing plan that, for “internal” fault-tolerance, are activated when
the system must switch to a plan to handle one of the listed system faults (f0,f1; : : :).
The maximum size of the cache partition that must be searched when a fault occurs
is equal to the number of user-specified faults, so the worst-case time to search for
and switch to a new plan is easily predicted and automatically incorporated into the
schedule for the executing plan, thereby allowing the hard real-time plan retrieval
guarantees we require in CIRCA.

Architectures such as CYPRESS [22], SOAR [16], and the New Millennium
Remote Architecture (NMRA) aboard the Deep Space One (DS-1) spacecraft [20]
have demonstrated the ability to succeed in real-time environments. These systems
combine efficiency with flexibility by using a reactive plan-execution system when-
ever a response is available and performing dynamic planning otherwise. However,
neither explicitly reasons about task deadlines or worst-case resource utilization,
so they fall under the classification of “coincidentally” real-time systems, which are
appropriate only if catastrophic failure does not result when a response is too slow.



76 atkins et al.

CIRCA and CIRCA-II are not the only systems to provide hard real-time plan
execution guarantees. A notable exception is the conditional schedule approach
demonstrated on an aircraft avionics problem in [14]. However, CIRCA-II extends
beyond this and other comparable agent architectures by combining the flexibility
of mission-specific planning with hard real-time guarantees that are met even in the
presence of critical computational resource failures.

8. Summary and future work

We have presented an architecture that combines planning and resource allocation
algorithms to produce a set of plans which execute in hard real-time on a multi-
resource platform and exhibit tolerance to a user-specified set of internal systems
faults. We concentrate on the interface between a state-space planner and resource
allocation analyzer, which effectively provides a method for standard planning and
real-time allocation algorithms to work synergistically. This interface manages a list
of faults to which tolerance is required, and uses a heuristic cost function based
on task priority and resource utilization to select “costly” actions for guiding the
planner during backtracking should scheduling constraints be impossible to satisfy.

This work was done using a new version (CIRCA-II) of the Cooperative Intelli-
gent Real-time Control Architecture (CIRCA), which was designed to build plans
that execute with real-time CPU utilization guarantees on a uniprocessor plan exe-
cution platform. In this paper, we have described the CIRCA-II algorithms required
to reason about multiple resources during plan scheduling and to develop plans that
exhibit tolerance to computational resource failures. Finally, we illustrated the util-
ity of our approach with a simple autonomous aircraft example.

We have focused on the basic mechanisms required for interfacing planning and
resource allocation. However, in most real-world systems, on-line (re)planning may
require that real-time bounds be placed on both planner and resource allocation
modules, not just the plan-execution system. As proposed in [5], CIRCA-II may
utilize its plan cache to “buy time” so that real-time constraints on planning and
resource allocation are as relaxed as possible, but still assumptions of “indefinite
replanning time” may be inappropriate. By introducing the new iterative interface
module, we have made resource-bounded planning even more difficult to achieve.
We hope to address this formidable problem by using efficient resource allocation
algorithms with bounded execution constraints, incorporating anytime [10] tech-
niques to planning, and limiting replanning iterations to accommodate a subset of
the faults from Ftotal, if required.

Experimental validation of our algorithms is in progress with the University of
Michigan Uninhabited Aerial Vehicle (UAV) Project, described in [8]. Our UAV
is a radio-controlled (R/C) aircraft with onboard and ground-based processing sys-
tems. It is sufficiently instrumented to ultimately allow autonomous operation via
low-level control software that we are connecting to CIRCA-II for higher-level mis-
sion planning tasks. We plan to incorporate CIRCA-II along with adaptive model
identification algorithms to study aircraft response to a variety of situations includ-
ing both environmentally-induced emergencies (e.g., engine failure, airframe icing)



planning and resource allocation 77

and internal faults (e.g., sensor, communication, or processor failures). We are con-
fident that testing the UAV in these situations will reveal means of improving both
CIRCA-II and adaptive control algorithms, and will clearly demonstrate the utility
of a system that has the flexibility to build plans from a knowledge base but can
still guarantee hard real-time response characteristics and fault tolerance.

Acknowledgments

This work was partially supported by the NSF under Grant IRI-9209031 and by the
ONR under Grant N00014-94-1-0229.

Notes

1. To allow use of the well-developed set of real-time scheduling algorithms for periodic tasks, we have
converted CIRCA’s task separation constraints into task periods Pi. As described in [18], task periods
must be artificially set below their optimal values to guarantee meeting the former task separation
constraints. We are working to better represent task periods in future CIRCA-II work.

2. In fact, we are still in the process of implementing the full multi-resource run-time scheduler within
the Real-time Plan Executor. Thus, in this paper we present multi-resource plans, not post-execution
results.

3. Backtracking not induced by plan scheduling failures utilizes different algorithms described in [4, 19]
4. CIRCA-II relies on a traditional low-level control system to read sensors and compute actuator

commands. This controller is presumed to have its own set of fault-tolerant resources since it is
always required for autonomous operation.

References

1. T. Abdelzaher, A. Shaikh, F. Jahanian, and K. Shin, “RTCAST: lightweight multicast for real-time
process groups,” in IEEE Real-Time Technol. Applicat. Symp., Boston, MA, 1996.

2. T. F. Abdelzaher, and K. G. Shin, “Optimal combined task and message scheduling in distributed
real-time systems,” in IEEE Real-Time Syst. Symp., Pisa, Italy, 1995.

3. T. F. Abdelzaher, and K. G. Shin, “Combined task and message scheduling in distributed real-time
systems,” IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 11, 1999, pp. 1179–1191.

4. E. M. Atkins, “Plan generation and hard real-time execution with application to safe, autonomous
flight,” Ph.D. dissertation, University of Michigan, 1999.

5. E. M. Atkins, E. H. Durfee, and K. G. Shin, “Plan development using local probabilistic models,”
in Proc. Twelfth Conf. Uncertainty Artif. Intell., 1996, pp. 49–56.

6. E. M. Atkins, E. H. Durfee, and K. G. Shin, “Buying time for resource-bounded planning,” in
AAAI-97 Workshop: Building Resource-Bounded Reasoning Systems Technical Report, 1997, pp. 7–11.

7. E. M. Atkins, E. H. Durfee, and Kang G. Shin, “Detecting and reacting to unplanned-for states,”
in Proc. Fourteenth Nat. Conf. Artif. Intell., 1997, pp. 571–576.

8. E. M. Atkins, R. H. Miller, T. VanPelt, K. D. Shaw, W. B. Ribbens, P. D. Washabaugh, and D. S.
Bernstein, “Solus: an autonomous aircraft for flight control and trajectory planning research,” in
Proc. Am. Contr. Conf., vol. 2, 1998, pp. 689–693.

9. C. Boutilier, and R. Dearden, “Using abstractions for decision-theoretic planning with time con-
straints,” in Proc. Twelfth Nat. Conf. Artif. Intell., 1994, pp. 1016–1022.

10. T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson, “Planning with deadlines in stochastic
domains, in Proc. Eleventh Nat. Conf. Artif. Intell., 1993, pp. 574–579.



78 atkins et al.

11. R. J. Firby, “An investigation into reactive planning in complex domains,” in Proc. Natl. Conf. Artif.
Intell., 1987, pp. 202–206.

12. A. J. Garvey and V. R. Lesser, “Design-to-time real-time scheduling,” IEEE Trans. Syst. Man Cyber-
net. vol. 23, no. 6, pp. 1491–1502, 1993.

13. M. L. Ginsberg, “Dynamic backtracking,” J. Artif. Intell. Res. vol. 1, pp. 25–46, 1993.
14. L. Greenwald, and T. Dean, “Solving time-critical decision-making problems with predictable com-

putational demands,” in Proc. Second Int. Conf. AI Planning Syst., 1994.
15. F. F. Ingrand, and M. P. Georgeff, “Managing deliberation and reasoning in real-time AI systems,”

in Proc. Workshop on Innovative Approaches to Planning, Scheduling, Control, 1990, pp. 284–291.
16. J. E. Laird, A. Newell, and P. S. Rosenbloom, “SOAR: an architecture for general intelligence,”

Artif. Intell., vol. 33, pp. 1–64, 1987.
17. C. B. McVey, E. M. Atkins, E. H. Durfee, and K. G. Shin, “Development of iterative real-time

scheduler to planner feedback,” in Proc. Fourteenth Int. Joint Conf. Artif. Intell., 1997, pp. 1267–1272.
18. D. J. Musliner, “Scheduling issues arising from automated real-time system design,” University of

Maryland Department of Computer Science Technical Report CS-TR 3364, UMIACS-TR-94-118,
1994.

19. D. J. Musliner, E. H. Durfee, and K. G. Shin, “World modeling for the dynamic construction of
real-time control plans,” Artif. Intell. vol. 74, pp. 83–127, 1995.

20. B. Pell, E. Gat, R. Keesing, N. Muscettola, and Ben Smith, “Plan execution for autonomous space-
craft,” in AAAI-96 Fall Symp. Plan Execution: Problems and Issues Technical Report, 1996, pp. 109–
116.

21. D.-T. Peng, and K. G. Shin, and T. F. Abdelzaher, “Assignment and scheduling of communicating
periodic tasks in distributed real-time systems,” IEEE Trans. Parallel Distrib. Syst. vol. 8, no. 12, 1997.

22. D. E. Wilkins, K. L. Myers, and J. D. Lowrance, “Planning and reacting in uncertain and dynamic
environments,” J. Exp. Theor. AI vol. 7, no. 1, pp. 197–227, 1995.

23. J. Xu, “Multiprocessor scheduling of processes with release times, deadlines, precedence, and exclu-
sion relations,” IEEE Trans. Software Eng. vol. 19, no. 2, pp. 139–154, 1993.

24. J. Xu and D. L. Parnas, “Scheduling processes with release times, deadlines, precedence, and exclu-
sion relations,” IEEE Trans. Software Eng. SE-vol. 16, no. 3, pp. 360–369, 1990.


