
Planning and Resource Allocation for
Hard Real-time, Fault-Tolerant Plan Execution

Ella M. Atkins Tarek F. Abdelzaher Kang G. Shin Edmund H. Durfee
Department of Electrical Engineering and Computer Science

The University of Michigan
1101 Beal Ave.

Ann Arbor, MI 48109-2110
{marbles,. zaher, kgshin, durfee}Oumich.edu

Abstract

We describe the interface between a real-time re-
source allocation system with an AI planner in
order to create fault-tolerant plans that are guar-
anteed to execute in hard real-time. The plan-
ner specifies the task set and sll execution dead-
lines required to ensure system safety, then the
resource allocator schedules these plans off-line
to analyze execution platform resource utiliza-
tion. A new interface module combines infor-
mation from planning and resource allocation to
enforce development of plans feasible for execu-
tion during a variety of internal system faults.
Plans that over-utilize any system resource trig-
ger feedback to the planner, which then searches
for an alternate plan. A valid plan for each spec-
ified fault, including the nominal no-fault situ-
ation, is stored in a plan cache for subsequent
real-time execution. We situate this work in the
context of CIRCA, the Cooperative Intelligent
Real-time Control Architecture, which focuses on
developing and scheduling plans that make hard
real-time safety guarantees, and provide an ex-
ample of an autonomous aircraft agent to illus-
trate how our planner-resource allocation inter-
face improves CIRCA performance.

1 Introduction

AI planners have demonstrated utility for converting domain
knowledge into situationally-relevant plans of action, but
execution of these plans cannot generally guarantee hard
real-time response. Planners and plan-execution systems
have been extensively tested on problems such as mobile
robot control and various dynamic system simulations, but
the majority of architectures used today employ a “best-
effort” strategy. As such, these systems are only appropriate
for soft real-time domains in which missing a task deadline
does not cause total system failure.

To control mobile robots, for example, soft real-time plan
execution succeeds because the robot can slow down to al-

Permission to make digital or hard copies of all or part of this work for
personal or classroom we is granted without fee provided that copies
are not made or distributed for prolit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise. to republish, to post on servers or to redistribute to lists,
requires prior specific permission and!or a fee.
Autonomous Agents ‘99 Seattle WA USA
Copyright ACM 1999 I-581 13-066~x/99/05...$5.00

low increased reaction times, or even stop moving should the
route become too hazardous. For more “unstable” applica-
tions such as fully-automated aircraft flight, hard real-time
response is required, and fault-tolerance is mandated. More-
over, to achieve complete automation of such a system, some
form of planner may be desired, particularly for selecting re-
actions to anomalous or emergency situations.

The real-time research community focuses its efforts on
resource allocation and scheduling algorithms to provide
hard real-time execution guarantees. Violating timing con-
straints of such tasks may be catastrophic. The main goal of
such algorithms is often the efficient utilization of resources,
such ss multiprocessor networks and communication chan-
nels. To date, these real-time algorithms have been tested
by presuming the existence of complete and inflexible plans
of action, including specific task constraints such as execu-
tion deadlines. Developing explicit mechanisms for degrad-
ing system performance if resource shortage does not allow
sll constraints to be met is a major real-time research issue.

In this paper, we describe the interface of a real-time re-
source allocator with an AI planner to automatically create
fault-tolerant plans that are guaranteed to execute in hard
real-time. The planner produces an initial plan and task
constraint set required for failure avoidance. Thii plan is
scheduled by the resource allocator for the nominal “no-fault
case” as well as for each specified Ynternal” fault condition,
such as a processor or communication channel failure. If any
resource is over-utilized, the most costly task is determined
using a heuristic that combines utilization information with
task priority (or value) assigned by the planner. The costly
task is fed back to the planner, which invokes dependency-
directed backtracking to replace thii task, or, if required,
ignores unlikely events to generate a more schedulable task
set. This combination of planning and resource allocation
takes the best elements from both technologies: plans are
created automatically and are adaptable, while plan exe-
cution is guaranteed to be tolerant to envisioned potential
faults in a user-specified list and capable of meeting hard
real-time constraints.

As a testbed for thii combination, we have augmented
the Cooperative Intelligent Real-time Control Architecture
(CIRCA) [l]. Originally designed to allow real-time plan
execution guarantees, CIRCA uses a planner and a unipro
cessor scheduler to build and schedule its plans. We have
recently focused on the interface between planner and sched-
uler [2]. We improve upon this work by adding fault-tolerance
and the capability to reason about multiple resource classes
and instances of each class, so that sll aspects relevant to
plan execution are explicitly considered during the planning

244

phase.
Thii paper begins by describing CIRCA and the real-

time resource allocation algorithms that provide the basis for
our work. Next, we present a heuristic to combine pertinent
information from planning and resource allocation modules
and describe an algorithm which incorporates this heuristic
and a fault condition list to develop a set of fault-tolerant
plans which will execute with hard real-time safety guaran-
tees. We present a simple example of an autonomous aircraft
agent that must be tolerant to a single-processor failure dur-
ing plan execution to illustrate the utility of our algorithms,
then describe related work in planning and plan-execution
systems. We conclude with a summary and discussion of
work required to further test our system and bridge the gap
between the planning and hard real-time research commu-
nities.

2 Planning for Hard Real-time Execution

We selected the Cooperative Intelligent Real-time Control
Architecture (CIRCA) due to its focus on hard real-time
plan execution and because its modular components were
ideal for interfacing an existing planner with a standard real-
time resource allocation algorithm. In this section, we de-
scribe CIRCA as it has appeared in previous work, then out-
line improvements that enable tolerance to “internal faults”
(i.e., traditional computational system faults as opposed to
environmental occurrences that we label “external faults”).
We also discuss our addition of scheduling/allocation algo-
rithms to allow multiple resource instances and classes (e.g.,
multiple processors, multiple communication channels) for
CIRCA plan execution.

Figure 1 shows the CIRCA architecture originally devel-
oped by Musliner et al [l]. The CIRCA domain knowledge
base specifies how system state may change via a set of ac-
tion and temporal state transitions, and contains a set of
subgoals which, when achieved in order, enable the system
to reach its final goal. During planning, the world model is
created incrementally based on initial state(s) and all avail-
able transitions. The planner builds a state-transition net-
work from initial to goal states and selects an action (if any)
for each state based on the relative gain from performing the
action. The planner backtracks if the action selected for any
state does not ultimately help achieve the goal or if the sys-
tem cannot be guaranteed to avoid failure. CIRCA’s planner
minimizes memory and time usage by expanding only states
produced by transitions from initial states or their descen-
dants, and includes a probability model [3] which promotes a
best-first state-space search as well as limiting search size via
removal of “highly improbable” states [4]. Planning termi-
nates when the goal has been reached while avoiding failure
states.

During plan construction, action transition timing con-
straints are determined such that the system will be guar-
anteed to avoid a.ll temporal transitions to failure (TTFs),
any one of which would be sufficient to cause catastrophic
system failure. The CIRCA temporal model allows com-
putation of a minimum delay before each TTF can occur,
then the deadline for each pre-emptive action is set to this
minimum delay. After building each plan, CIRCA explicitly
schedules all preemptive actions (tasks) such that the plan
is guaranteed to meet all such deadlines, thus guaranteeing
failure avoidance.

In previous CIRCA work, completed plans were sched-
uled using a uniprocessor scheduler. If scheduling was suc-
cessful, the plan was downloaded and executed. Otherwise,

Scheduler
1

Figure 1: Original CIRCA.

the planner backtracked to select a different set of actions
which would hopefully be easier to schedule.

After a schedulable plan is developed, it executes on
CIRCA’s real-time plan executor. Figure 2 shows the con-
tents of a typical CIRCA plan. Tasks, built as TAPS (Test-
Action Pairs) by the CIRCA planner, are divided into two
classes: guamnteed and best-effort. Guaranteed tasks have
hard real-time execution constraints (i.e., max-periods) to
avoid TTFs, while best-effort tasks need only execute for
goal achievement, thus are acceptable when cast in a “soft
real-time” framework. Each task consists of multiple threads
(or “modules”, the term we will use throughout this paper)
which perform the tests required to determine if the action
should be executed and then to execute the action, if re-
quired.

Figure 2: CIRCA plan composition.

The CIRCA plan executor previously required a single-
processor platform in which all actions were constrained to
execute entirely on one dedicated processor, since delays
were contained within the static worst-case execution times
(wcets) used by the uniprocessor scheduler. Also, the sched-
uler considered only that one processor need be scheduled,
so neither multiple processors nor other required resources,
such as communication channels, could be individually con-
sidered during scheduling. As a result, not only was the
plan-execution platform inflexible, but there was no possi-
bility for “internal” fault-tolerance since multiple copies of
computational resources could not exist.

In this paper, we extend CIRCA to consider multiple re-
sources during plan scheduling and exhibit limited tolerance
to resource failures (i.e., “internal faults”) during plan exe-
cution. Figure 3 shows CIRCA architectural modifications
required to gain these new capabilities. The knowledge base
and planner are very similar to those from previous versions
of CIRCA. Plans are created and action timing constraints

245

are computed as before in [l] and [3]. For each planned task
Ti E Tt,t,~, where Ttotol contains all tasks in the plan, the
planner outputs the triplet (gi, Pi, vi). gi is the ‘guarantee
flag” that indicates whether task Ti is guaranteed (gi = 1)
or best-effort (gi = 0). Pi is the max-period of Ti required
to preempt TTFs when gi = 1. Finally, vi is the “priority”
value of task Ti and is described below in Section 4.

Real-time Plan Executor

Resource Allocation \
Plan cache

Thmad Database

Figure 3: Modified CIRCA.

The planner passes (gi, Pi,K) for all Ti E Ttotol to the
planner-resource allocation interface module, henceforth ref-
erenced simply as the “interface”. This interface invokes
the resource allocation analyzer to schedule all tasks (Ti E
Ttotol, gi = 1) for each fault to be tolerated. Replacing
CIRCA’s uniprocessor scheduler, the resource allocation an-
alyzer accounts for multiple plan-execution resources, and
also contains the fault library. When a “good” (schedula-
ble) plan is found for each fault, it is downloaded to the plan
cache, where it waits until requested by the plan executor.

When a plan is unschedulable, the interface computes
the most costly action, which is fed back to the planner.
The planner attempts to remove or replace this action via
dependency-directed backtracking to each state in which
this action was chosen. Ideally, this action can be modi-
fied (e.g., max-period Pi increased) or replaced, in which
case the planner develops a new plan. If this action can-
not be altered, the planner initially ignores the interface’s
recommendation and modifies the next action encountered
during chronological backtracking, the default in CIRCA.
Minimally-modified plans developed in this manner are as-
sessed for schedulability, with planner-resource allocation
iteration continuing until a schedulable plan is found. If the
planner exhaustively searches through all combinations of
actions that pre-empt TTFs without finding a schedulable
plan, the planner iteratively relaxes its probability threshold
below which failure transitions are ignored until a schedula-
ble plan is found, effectively degrading real-time guarantees
from absolute to probabilistic-by-necessity. In [2], the latter
technique of incrementing probability threshold was the sole
method employed for improving plan schedulability. By rec-
ommending a costly action for removal, we help the planner
replace costly actions with different actions while maintain-
ing absolute real-time guarantees whenever possible.

The plan cache was added specifically for storing plans to
handle system faults. As internal systems fail, the planner

may compromise on overall plan quality to allow safety guar-
antees, even if they are probabilistic. We store a set of plans,
indexed by fault condition, so that the system can respond to
faults during plan execution without replanning.’ CIRCA’s
real-time plan-execution system has increased flexibility due
to the capability to include multiple resources (e.g., proces-
sors, communication channels). As is a standard practice
in the real-time community, resources are reserved for run-
time scheduler execution, which allows flexible utilization of
available resources to handle faults and incrementally im-
prove “best-effort” task execution when sufficient resources
are available.

3 Resource Allocation

For a real-time computing system, a plan is a set of tasks
T = {Z,...,T,} with resource requirements and timing
constraints. The problem of resource allocation is to map
the set of planned tasks onto a set of available resources
such that all constraints are met. In CIRCA, all guaran-
teed tasks are considered periodic, and each task Ti E T has
worst-case computation time ci and period Pi. The worst-
case computation time includes scheduler context-switching
overhead. The jth invocation of Ti becomes ready for ex-
ecution at time (j - l)Pi, called task arrival time, aili].
The deadline, dib], of a task invocation is usually such that
dib] I 0ib] + P’ , since each invocation must complete its
execution before the next one arrives. It is sufficient for the
resource allocation algorithm to find a task schedule within
a finite interval, L, equal to the least common multiple of
all tasks periods, called the planning cycle in the real-time
community. The resulting task schedule repeats itself in
subsequent planning cycles. Each task may be composed of
one or more separately schedulable modules (i.e., threads)
with arbitrary precedence constraints. The resource require-
ments of each module are known u priori since we know the
resource profile for the application code.

The selection of a proper resource allocation algorithm
depends on the execution platform considered. An optimal
resource allocation algorithm is described in [6] for unipro-
cessors, in [7] for multiprocessors, and in [8] for distributed
systems. Once the task assignment is fixed, an optimal off-
line scheduling algorithm such as [9] can be used to pre-
schedule the tasks. In this paper we use [8] for task assign-
ment and [9] for scheduling. These algorithms are used to
schedule ‘guaranteed tasks” (those with gi = 1). Best effort
tasks (with gi = 0) are then fit, when possible, in the gaps
of the produced schedule. The resulting overall schedule for
each processor is stored in a table.

When a prescheduled plan executes, the run-time sched-
uler dispatches tasks in the order they appear in the table
using an O(1) lookup operation. Different schedules (ta-
bles) are constructed for different plans (fault conditions)
and can be stored in each processor’s memory, indexed by
fault condition. Fault conditions may represent processor
failures, communication-link failures, or other resource fail-
ures. When the condition is observed on-line, its numeric
identifier is broadcast to all processors which then index into
the corresponding new table. A lightweight atomic multi-
cast and membership algorithm, such as [lo] can be used to
ensure that all non-failed processors (i) receive the broad-
cast of the current failure condition, and (ii) agree on the

‘A CIRCA plan cache has been proposed in [5] for achieving timely
reaction to “unhandled” states. The plan cache in this paper contains
multiple plans only for fault-tolerance.

246

start time of the new schedule in bounded time despite tran-
sient communication failures. If communication is totally
lost with some processor, the resulting effect is indistinguish-
able from a processor failure, and is treated as such. The
bounded failure recovery overhead can be accounted for in
off-line schedulability analysis to ensure that hard real-time
constraints are met.

4 Planning-Resource Allocation Interface

A primary objective of the planning-resource allocation in-
terface is to utilize existing resource allocation algorithms
with minimal modification. In particular, the planner should
be told whether or not the current plan is schedulable, and
if it isn’t, which task is judged to be the most costly “bottle-
neck.” If the plan is found schedulable by the resource allo-
cation analyzer then its entire value is redeemed. However,
if the plan is unschedulable, the interface module points out
a “costly” action to reconsider during replanning.

In our design, the planner transmits each plan to the in-
terface via a set of triplets (gi, Pi, V;) for all tasks Ti E Ttotal,
where Ttotar represents all planned tasks. The guarantee flag
gi tells the interface whether the task must execute in hard
real-time. The set Mandatory of tasks Ti E Ttotol with gi = 1
exclusively dictates whether the plan is schedulable. Task
max-period Pi is determined by the planner such that all
failure transitions (TTFs) are preempted. We use a heuris-
tic in CIRCA’s planner to compute a priority value vi for
each task. Each vi is given by r/i = ni * moz(pi), where
ni is the number of states in which task Ti executes and
msz(pi) is the maximum probability of any state in which
Ti executes. This heuristic reflects a preference to keep tasks
chosen for the highest-probability states, as well as the fact
that large ni will likely require many backtracking steps,
should Ti be altered.

The resource allocation analyzer receives input (Ti E
T man&tory, Pi) and returns a success/failure status, and a
utilization matrix U in which each element U(i,q) is the
utilization consumed by task Ti of resource q. The thread
database described earlier defines the worst-case resource us-
age for Ti, based on the resource requirements of the mod-
ules (threads) (Mj E Ti). Elements U(i,q) are computed
by the resource allocation analyzer as follows. Within each
planning cycle L the total available capacity of a resource q
is pQL, where p is the number of instances of the resource
and Q is the capacity of each. If module ikfk of period &
and execution time Ck requires an amount rk,p of the re-
source throughout its execution, then its total demand on
that resource within the planning cycle is Tk,qCkL/Pk. The
ratio of that demand to the total available resource capacity
is the utilization u(lE, q) consumed by module (or thread)
&fk of resource q. Thus, u(k,q) = rk,&k/pQPk. The uti-
lization U(i, q) consumed by task Ti of resource q is the sum
of the utilizations u(k, q) of all modules Mp E Ti.

To compute the most “costly” task in cases of over-
utilization (failure), the interface combines priorities Vi from
the planner with the utilization matrix U from the resource
allocation analyzer. The interface module tentatively deletes
one action, T,, from the plan and recomputes the resulting
aggregate utilization of each resource q by adding U(i,q)
for all i, where i # j. Let yj(q) = xi izj U(i, q). The
bottleneck resource qb(j) is the one for wh:lch -yj(q) is max-
imum. The total value remaining after eliminating Tj is
the sum of vi for all i, Sum, = xi izj vi. The total
value gained per unit of bottleneck-resource usage is thus
S’zLm,/yj(qs(j)). The interface recommends for removal of

the action Tj that results in the maximum value per cost
ratio, sUmj/yj(qb(j)). Note that the Sumj defined above
is not exact, since removal of one action could affect the Vi
values of other actions. Exact computation of Sum, would
require detailed knowledge of the planning state-space after
this action was removed, which is time consuming.

The heuristic is used to suggest which part of the plan-
ner’s search space to expand next, but does not prune parts
of the search space. Since the planner’s search is exhaustive
in the worst case, it is always guaranteed to find a feasible
plan if one exists. The heuristic merely increases the odds
of finding such a plan earlier in the search process. The
problem, however, remains NP-complete.

5 Fault-Tolerance

We establish internal fault-tolerance (e.g., to single proces-
sor failures) by using the planning-resource allocation ana-
lyzer interface module to effectively manage the preset list
of faults for which the system must be tolerant. This list,
F total, includes the nominal “no-fault” case fe in which all
systems work properly, and progressively describes more se-
vere faults, terminating with the worst fault fn the system
can tolerate.

The CIRCA resource-allocation analyzer and plan execu-
tion system reference fault list Ftotal, included in the Fault
Specification List in the Thread Database from Figure 3,
which also contains resource type/quantity descriptions for
each fault fi E Ftotal. These values are required by the Re-
source Allocation Analyzer to describe which resources are
available in each fault-condition.

Figure 4 shows the interface module algorithm used to
control CIRCA’s inter-module data flow. To summarize, the
interface module incorporates plan and utilization data for
each fault to classify plans as “good” or “unschedulable.” A
good plan is added to Fgood, then downloaded to the plan
cache along with indices to all faults for which that plan was
“good”. These faults are removed from the working fault list
(placed in Fdone), since they only require one plan. For the
first (i.e., least severe) fault that over-utilized resources, a
“costly” task is recommended for removal using the heuris-
tic described in the previous section, then fed back to the
planner, which backtracks to find a safe alternate plan as
described earlier. This procedure continues until all faults
have been handled successfully by some schedulable plan.

The algorithm described above enables creation and stor-
age of (i) a set of plans that can meet all required hard real-
time constraints when any internal fault from Ftotol occurs,
and (ii) a pre-computed execution schedule for each plan.
After the plan cache has been filled with “good” plans for all
faults, the plan indexed for nominal fault condition fo is se-
lected and begins execution according to the corresponding
schedule. When the system detects an internal fault, plan
execution switches to the pre-scheduled plan designated to
handle that fault, which has previously been stored on each
plan execution processor. Thus, response to internal faults is
prompt, and the system does not fail due to internal faults
except for a fault so severe it was not incorporated into
F total.

6 Example: Autonomous Aircraft Agent

We consider an example drawn from automated flight, in
which rigid hard real-time response constraints require care-
ful resource allocation and scheduling. Our plan execution
system includes two resource types: PTOC (processor) and

247

1. Interface receives plan with TAP&arks Ttotolr
including marperiods Pi, gumantaa flags 9;. aad
priorities Vi.

2. V(js E Ftotal;.fi e Done)

. Send
(Pj for all Tj E Tm.nda<ory,ji) t0 FhSOlXCe

Allocation Analyzer. which returns V(j, q).
a If Resource Allocation Analyzer returns

~U~CCS~ status, add ji to “good” list Fgood
for plan ?f’toroi; add ji to FdOns.

3. If (Fsood # @), download Ttotol with indices Fpood
to plan cache; reset Fgood = 0.

4. If Faonc # Ftoto~,

a Find first element ji E Fl.t.ls.t.ji $ Fdone

l Send to planner “costly” ta8k Tj idantifiad
by maximum ratio SUmj/rj(,(j)).

. Qo to step 1

Figure 4: Planning-resource allocation interface.

Comm (communication channel). The system contains two
processors of type Proc and a single communication channel
of type Comm, and we define a fault set which includes the
nominal no-fault case (fe) and a “single processor failure”
fault (fi), in which the number of Proc instances is reduced
from two to one.

For our automated flight mission, the CIRCA planner is
given the goals of maintaining safety while following a flight
plan (trajectory). The aircraft must follow standard sir traf-
fic procedures and maintain communication with air traffic
control (ATC) via the Comm channel resource, which we
assume to have guaranteed worst-case execution properties
in our example. In this section, we present a very simplified
world model which illustrates how safety is maintained dur-
ing flight, even in the presence of a single processor failure
from the set of PTOC resources.

In its initial phase, the planner builds the state set shown
in Figure 5. In this plan, two failures must be avoided: an
impact with an obstacle (e.g., the terrain or another air-
craft), and any airspace-violation (e.g., flying in a restricted
military area). To prevent these failure transitions, CIRCA
selects two actions: avoid-collision and maintain-trajectory.

Figure 5: Nominal Flight Plan.

The decomposition of all tasks available in our flight ex-
ample is shown in Tables 1 and 2. To detect a state with
OB = T, task TI runs modules M;, scan-TCAS (Terminal
Collision and Avoidance System), to sense nearby obstacles
and Mz, monitor-trafic, to detect other air traffic based

on ATC data. If an object is detected, the avoid-obstacle
action is executed. The maintain-trajectory task (Tz) exe-
cutes to detect course deviations with MJ, monitor-course
and correct them by sending reference trajectory (7(t)) com-
mands to the low-level controller via MS, update-controller-
reference.2

Table 1: Flight Task Set.

t M- i
Y “I 7 receive-vectors 2 1 5

Table 2: Flight Module Worst-Case Resource Usage.

Table 1 also includes the period (pi) and priority (vi)
used by the CIRCA’s planner-scheduler interface. For this
example, we set all task priorities equal (vi = 1) because
we have not yet implemented a good priority calculation
algorithm in the CIRCA planner. In the future, vi will be
computed using a combination of state probability and tem-
poral proximity to failure. Note that all actions are guar-
anteed (gi = 1) since all states with planned actions have
temporal transitions to failure (TTFs).

In our example, the computing system is composed of
two processors, each a resource of type PTOC, interconnected
with each other and ATC by a communication bus, a re-
source of type Comm. Once CIRCA has developed the
initial plan, the Resource Allocation module attempts to
schedule it for each fault. We consider two cases: the nomi-
nal situation where the system is fully operational (fu) and
a single processor failure (fi). The plan is given to the re-
source allocation analyzer, which succeeds ‘in computing a
task assignment [8] and schedule [9] for fu such that all con-
straints are met. The resource allocation for fu is shown in
Figure 6. The successful plan is now added to the “good”
list, p*good, and mode fu is added to the set of handled failure
modes Done.

As shown in Table 3, the processor (PTOC) utilization
exceeds a value of one for fi, thus the initial plan must
be altered for fr. Since PTOC is the bottleneck, the inter-
face module recommends that the planner remove TI (auoid-
collision) due to its high PTOC utilization.

Backtracking during replanning yields the state diagram
shown in Figure 7, with the new task declare-emergency(T3)

‘CIRCA relies on a traditional low-level control system to read sen-
aor8 and compute actuator commands. This controller is presumed to
have its own set of fault-tolerant resources since it is always required
for autonomous operation.

248

’ Task; lJ(i, Proc, fo) u(i, PTOC, fl) u(i, Comm)
TI 14124 14/12 4112
T2 8124 8112 o/12

Table 3: Utilization Matrix - Nominal Plan. 7 Related Work

selected.3 Once the emergency is declared, ATC effectively
takes much of the computational responsibility from the air-
craft, clearing the airspace so that obstacles will no longer
be a factor. Additionally, after an emergency has been de-
clared, the efficient action follow-mdar-vectors can be se-
lected, in which ATC specifies the course and corrections
required for the aircraft to safely reach its destination.

:I . .

OB=F
ST=N

dedmememenq
Y

OC=T
OB=F
ST=E

Figure 7: Reduced Flight Plan for Failed Processor (fi).

This reduced plan (Plana) is now sent to the resource
allocation analyzer, which finds the plan can easily be sched-
uled even with the processor failure (fi), as computed with
task utilizations shown in Table 4 and a valid task assign-
ment illustrated in Figure 8. With this plan, we can now
handle both fo and fi, so Plan2 is stored and planning ter-
minates.

In this section, we have identified unschedulable plans
and made them schedulable via replanning. This is in con-
trast to traditional resource allocation algorithms which sim-
ply fail if a plan is unschedulable. It also contrasts with
planning algorithms which do not consider failures of com-
puting resources, and do not guarantee schedulability of the
plan in the hard real-time sense.

3All states from the nominal plan (Planl) are possible. The tem-
poral transitions obstacle and course-deviation are not preempted
since they may happen quickly.

Table 4: Utilization Matrix - Reduced Action Plan.

Figure 8: Resource Allocation with Failed Processor (fi).

The phrase “real-time” is not new to the planning commu-
nity, but few architectures guarantee high quality, hard real-
time response. Planning time limits have been enforced via
techniques ranging from anytime [ll] to design-to-time [12].
A variety of abstraction algorithms such as that from [13]
allow fast, approximate planning so that a restrictive time
limit will enable creation of the best plan possible within the
available time. However, as domain complexity increases
and available planning time decreases, the quality of the
planning solution may suffer to the extent that the devel-
oped plan cannot prevent system failure even though it is
produced “in time.” CIRCA does not yet provide planning
timeliness guarantees, but it explicitly separates planning
and plan-execution functions to minimize the need for tight
planning time restrictions.

Plan-execution architectures such as PRS [14] and RAPS
[15] have been developed to minimize response time by avoid-
ing the “intractable planning” problem. Each is structured
so that, if available, the appropriate reaction is discovered
quickly on average, employing hierarchical techniques to limit
the steps required for each search process. Although these
techniques are popular in the robotics community due to
their efficiency and representational power, they cannot pro-
vide absolute real-time response guarantees without strict
limitations to database size (e.g., number of RAPS), which
must be computed by the user in advance based on the min-
imum response time and worst-case search time that may
be required.

The CIRCA plan cache is of minimal size relative to PRS
and RAPS databases because the CIRCA cache is popu-
lated only with plans required for the particular mission at
hand. However, CIRCA must still be able to guarantee that
this size is sufficiently small to allow hard real-time retrieval
times. To accomplish such guaranteed behavior, all plan
cache searches are incorporated into scheduled tasks within
each executing plan that, for “internal” fault-tolerance, are
activated when the system must switch to a plan to han-
dle one of the listed system faults (fo,fi,...). The maximum
size of the cache partition that must be searched when a
fault occurs is equal to the number of user-specified faults,
so the worst-case time to search for and switch to a new plan
is easily predicted and automatically incorporated into the
schedule for the executing plan, thereby allowing the hard
real-time plan retrieval guarantees we require in CIRCA.

Architectures such as CYPRESS [16] and SOAR [17]
have demonstrated the ability to succeed in real-time en-
vironments. These systems combine efficiency with flexi-

249

bility by using a reactive plan-execution system whenever
a response is available and performing dynamic planning
otherwise. However, neither explicitly reasons about task
deadlines or worst-case resource utilization, so they fall un-
der the classification of “coincidentally” real-time systems,
which are appropriate only if catastrophic failure does not
result when a response is too slow.

Other systems, such as the AI system to control the Deep
Space One (DS-1) spacecraft [18] and the conditional sched-
ules demonstrated on an aircraft avionics problem in [19],
do provide timeliness guarantees during plan execution, but
incorporate neither “internal” fault-tolerance nor the flexi-
bility to perform allocation and scheduling in a variety of
multi-resource environments.

8 Summary and Future Work

We have presented an architecture that combines planning
and resource allocation algorithms to produce a set of plans
which execute in hard real-time on a multi-resource plat-
form and exhibit tolerance to a user-specified set of internal
systems faults. We concentrate on the interface between a
state-space planner and resource allocation analyzer, which
effectively provides a method for standard planning and real-
time allocation algorithms to work synergistically. This in-
terface manages a list of faults to which tolerance is required,
and uses a heuristic cost function based on task priority and
resource utilization to select “costly” actions for guiding the
planner during backtracking should scheduling constraints
be impossible to satisfy.

This work was done using the Cooperative Intelligent
Real-time Control Architecture (CIRCA), which was orig-
inally designed to build plans that execute with real-time
CPU utilization guarantees on a uniprocessor plan execu-
tion platform. We described the augmentation of CIRCA
to accommodate multiple plan execution resources and to
exhibit fault-tolerance during plan execution, and provided
an example illustrating the utility of our approach.

We have focused on the basic mechanisms required for
interfacing planning and resource allocation. However, in
most real-world systems, on-line (re)planning may require
that real-time bounds be placed on both planner and re-
source allocation modules, not just the plan-execution sys-
tem. As proposed in [5], CIRCA may be augmented to use
the plan cache to “buy time” so that real-time constraints
on planning and resource allocation are as relaxed as pos-
sible, but still assumptions of “indefinite replanning time”
may be inappropriate. By introducing the new iterative in-
terface module, we have made resource-bounded planning
even more difficult to achieve. We hope to address this
formidable problem by using efficient resource allocation al-
gorithms with bounded execution constraints, incorporating
anytime [ll] techniques to planning, and limiting replanning
iterations to accommodate a subset of the faults from Ftotal,
if required.

Experimental validation of our CIRCA algorithms is in
progress with the University of Michigan Uninhabited Aerial
Vehicle (UAV) Project, described in [20]. Our UAV is a
radio-controlled (R/C) aircraft with onboard and ground-
based processing systems. It is fully-instrumented with sen-
sors including GPS, IMU (inertial measurement unit), air
data system, tachometer, and control surface displacement
sensors that will allow autonomous operation via low-level
control software that we are connecting to CIRCA for higher-
level mission planning tasks. We plan to incorporate CIRCA
along with adaptive model identification algorithms to study

aircraft response to a variety of situations including both
environmentally-induced emergencies (e.g., engine failure,
airframe icing) and internal faults (e.g., sensor, communi-
cation, or processor failures). We are confident that testing
the UAV in these situations will reveal means of improv-
ing both CIRCA and adaptive control algorithms, and will
clearly demonstrate the utility of a system that has the flex-
ibility to build plans from a knowledge base but can still
guarantee hard real-time response characteristics and fault
tolerance.

9 Acknowledgements

This work was partially supported by the NSF under Grant
IRI-9209031 and by the ONR under Grant N00014-94-l-
0229.

References

PI

PI

PI

[41

151

[61

[71

PI

PI

[W

D. J. Musliner, E. H. Durfee, and K. G. Shin, “World
modeling for the dynamic construction of real-time con-
trol plans,” Artificial Intelligence, vol. 74, pp. 83-127,
1995.

C. B. McVey, E. M. Atkins, E. H. Durfee, and K. G.
Shin, “Development of iterative real-time scheduler to
planner feedback,” in Proceedings of the Fourteenth In-
ternational Joint Conference on Artificial Intelligence,
pp. 1267-1272, August 1997.

E. M. Atkins, E. H. Durfee, and K. G. Shin, “Plan
development using local probabilistic models,” in Pro-
ceedings of the Twelfth Conference on Uncertainty in
Artificial Intelligence, pp. 49-56, July 1996.

E. M. Atkins, E. H. Durfee, and K. G. Shin, “Detecting
and reacting to unplanned-for states,” in Proceedings of
the Fourteenth National Conference on Artificial Intel-
ligence, pp. 571-576, July 1997.

E. M. Atkins, E. H. Durfee, and K. G. Shin, “Buy-
ing time for resource-bounded planning,” in AAAI-97
Workshop: Building Resource-Bounded Reasoning Sya-
terns Technical Report, pp. 7-11, July 1997.

J. Xu and D. L. Parnas, “Scheduling processes with re-
lease times, deadlines, precedence, and exclusion rela-
tions,” IEEE Trans. Software Engineering, vol. SE-16,
no. 3, pp. 360-369, March 1990.

J. Xu, “Multiprocessor scheduling of processes with re-
lease times, deadlines, precedence, and exclusion re-
lations,” IEEE Transactions on Software Engineering,
vol. 19, no. 2, pp. 139-154, February 1993.

D.-T. Peng, K. G. Shin, and T. F. Abdelzaher, “Assign-
ment and scheduling of communicating periodic tasks
in distributed real-time systems,” IEEE Transactions
on Pamllel and Distributed Systems, vol. 8, no. 12, ,
December 1997.

T. F. Abdelzaher and K. G. Shin, “Optimal com-
bined task and message scheduling in distributed real-
time systems,” in IEEE Real-Time Systems Sympo-
sium, Piza, Italy, December 1995.

T. Abdelzaher, A. Shaikh, F. Jahanian, and K. Shin,
“RTCAST: Lightweight multicast for real-time proces
groups,” in IEEE Real-Time Technology and Applico-
tiona Symposium, Boston, MA, June 1996.

250

[ll] T. Dean, L. P. Kaelbling, J. Kirman, and A. Nichol-
son, “Planning with deadlines in stochastic domains,”
in Proceedings of the Eleventh National Conference on
Artificial Intelligence, pp. 574-579, July 1993.

[12] A. J. Garvey and V. R. Lesser, “Design-to-time real-
time scheduling,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 23, no. 6, pp. 1491-1502, 1993.

[13] C. BoutiIier and R. Dearden, “Using abstractions for
decision-theoretic planning with time constraints,” in
Proceedings of the Twelfth National Conference on Ar-
tificial Intelligence, pp. 1016-1022, July 1994.

[14] F. F. Ingrand and M. P. Georgeff, “Managing deliber-
ation and reasoning in real-time AI systems,” in Proc.
of the Workshop on Innovative Approaches to Planning,
Scheduling, and Control, pp. 284-291, November 1990.

[15] R. J. Firby, “An investigation into reactive planning in
complex domains,” in Proceedings of the National Con-
ference on Artificial Intelligence, pp. 202-206, August
1987.

[16] D. E. Wilkins, K. L. Myers, and J. D. Lowrance, “Plan-
ning and reacting in uncertain and dynamic environ-
ments,” Journal of Experimental and Theoretical AI,
vol. 7, no. 1, pp. 197-227, 1995.

[17] J. E. Laird, A. N ewe& and P. S. Rosenbloom, “SOAR:
An architecture for general intelligence,” Artificial In-
telligence, vol. 33, pp. l-64, 1987.

[18] B. PeII, E. Gat, R. Keesing, N. Muscettola, and
B. Smith, “Plan execution for autonomous spacecraft,”
in AAAI-96 Fall Symposium on Plan Execution: Prob-
lems and Issues Tech. Report, pp. 109-116, November
1996.

[19] L. GreenwaId and T. Dean, “Solving time-critical
decision-making problems with predictable computa-
tional demands,” in Proceedings of the Second Inter-
national Conference on AI Planning Systems, 1994.

!O] E. M. Atkins, R. H. Miller, T. VanPelt, K. D. Shaw,
W. B. Ribbens, P. D. Washabaugh, and D. S. Bern-
stein, “Solus: An autonomous aircraft for flight control
and trajectory planning research,” in Proceedings of the
American Control Conference, volume 2, pp. 689-693,
June 1998.

251

