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Abstract 

We describe the interface between a real-time re- 
source allocation system with an AI planner in 
order to create fault-tolerant plans that are guar- 
anteed to execute in hard real-time. The plan- 
ner specifies the task set and sll execution dead- 
lines required to ensure system safety, then the 
resource allocator schedules these plans off-line 
to analyze execution platform resource utiliza- 
tion. A new interface module combines infor- 
mation from planning and resource allocation to 
enforce development of plans feasible for execu- 
tion during a variety of internal system faults. 
Plans that over-utilize any system resource trig- 
ger feedback to the planner, which then searches 
for an alternate plan. A valid plan for each spec- 
ified fault, including the nominal no-fault situ- 
ation, is stored in a plan cache for subsequent 
real-time execution. We situate this work in the 
context of CIRCA, the Cooperative Intelligent 
Real-time Control Architecture, which focuses on 
developing and scheduling plans that make hard 
real-time safety guarantees, and provide an ex- 
ample of an autonomous aircraft agent to illus- 
trate how our planner-resource allocation inter- 
face improves CIRCA performance. 

1 Introduction 

AI planners have demonstrated utility for converting domain 
knowledge into situationally-relevant plans of action, but 
execution of these plans cannot generally guarantee hard 
real-time response. Planners and plan-execution systems 
have been extensively tested on problems such as mobile 
robot control and various dynamic system simulations, but 
the majority of architectures used today employ a “best- 
effort” strategy. As such, these systems are only appropriate 
for soft real-time domains in which missing a task deadline 
does not cause total system failure. 

To control mobile robots, for example, soft real-time plan 
execution succeeds because the robot can slow down to al- 
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low increased reaction times, or even stop moving should the 
route become too hazardous. For more “unstable” applica- 
tions such as fully-automated aircraft flight, hard real-time 
response is required, and fault-tolerance is mandated. More- 
over, to achieve complete automation of such a system, some 
form of planner may be desired, particularly for selecting re- 
actions to anomalous or emergency situations. 

The real-time research community focuses its efforts on 
resource allocation and scheduling algorithms to provide 
hard real-time execution guarantees. Violating timing con- 
straints of such tasks may be catastrophic. The main goal of 
such algorithms is often the efficient utilization of resources, 
such ss multiprocessor networks and communication chan- 
nels. To date, these real-time algorithms have been tested 
by presuming the existence of complete and inflexible plans 
of action, including specific task constraints such as execu- 
tion deadlines. Developing explicit mechanisms for degrad- 
ing system performance if resource shortage does not allow 
sll constraints to be met is a major real-time research issue. 

In this paper, we describe the interface of a real-time re- 
source allocator with an AI planner to automatically create 
fault-tolerant plans that are guaranteed to execute in hard 
real-time. The planner produces an initial plan and task 
constraint set required for failure avoidance. Thii plan is 
scheduled by the resource allocator for the nominal “no-fault 
case” as well as for each specified Ynternal” fault condition, 
such as a processor or communication channel failure. If any 
resource is over-utilized, the most costly task is determined 
using a heuristic that combines utilization information with 
task priority (or value) assigned by the planner. The costly 
task is fed back to the planner, which invokes dependency- 
directed backtracking to replace thii task, or, if required, 
ignores unlikely events to generate a more schedulable task 
set. This combination of planning and resource allocation 
takes the best elements from both technologies: plans are 
created automatically and are adaptable, while plan exe- 
cution is guaranteed to be tolerant to envisioned potential 
faults in a user-specified list and capable of meeting hard 
real-time constraints. 

As a testbed for thii combination, we have augmented 
the Cooperative Intelligent Real-time Control Architecture 
(CIRCA) [l]. Originally designed to allow real-time plan 
execution guarantees, CIRCA uses a planner and a unipro 
cessor scheduler to build and schedule its plans. We have 
recently focused on the interface between planner and sched- 
uler [2]. We improve upon this work by adding fault-tolerance 
and the capability to reason about multiple resource classes 
and instances of each class, so that sll aspects relevant to 
plan execution are explicitly considered during the planning 
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phase. 
Thii paper begins by describing CIRCA and the real- 

time resource allocation algorithms that provide the basis for 
our work. Next, we present a heuristic to combine pertinent 
information from planning and resource allocation modules 
and describe an algorithm which incorporates this heuristic 
and a fault condition list to develop a set of fault-tolerant 
plans which will execute with hard real-time safety guaran- 
tees. We present a simple example of an autonomous aircraft 
agent that must be tolerant to a single-processor failure dur- 
ing plan execution to illustrate the utility of our algorithms, 
then describe related work in planning and plan-execution 
systems. We conclude with a summary and discussion of 
work required to further test our system and bridge the gap 
between the planning and hard real-time research commu- 
nities. 

2 Planning for Hard Real-time Execution 

We selected the Cooperative Intelligent Real-time Control 
Architecture (CIRCA) due to its focus on hard real-time 
plan execution and because its modular components were 
ideal for interfacing an existing planner with a standard real- 
time resource allocation algorithm. In this section, we de- 
scribe CIRCA as it has appeared in previous work, then out- 
line improvements that enable tolerance to “internal faults” 
(i.e., traditional computational system faults as opposed to 
environmental occurrences that we label “external faults”). 
We also discuss our addition of scheduling/allocation algo- 
rithms to allow multiple resource instances and classes (e.g., 
multiple processors, multiple communication channels) for 
CIRCA plan execution. 

Figure 1 shows the CIRCA architecture originally devel- 
oped by Musliner et al [l]. The CIRCA domain knowledge 
base specifies how system state may change via a set of ac- 
tion and temporal state transitions, and contains a set of 
subgoals which, when achieved in order, enable the system 
to reach its final goal. During planning, the world model is 
created incrementally based on initial state(s) and all avail- 
able transitions. The planner builds a state-transition net- 
work from initial to goal states and selects an action (if any) 
for each state based on the relative gain from performing the 
action. The planner backtracks if the action selected for any 
state does not ultimately help achieve the goal or if the sys- 
tem cannot be guaranteed to avoid failure. CIRCA’s planner 
minimizes memory and time usage by expanding only states 
produced by transitions from initial states or their descen- 
dants, and includes a probability model [3] which promotes a 
best-first state-space search as well as limiting search size via 
removal of “highly improbable” states [4]. Planning termi- 
nates when the goal has been reached while avoiding failure 
states. 

During plan construction, action transition timing con- 
straints are determined such that the system will be guar- 
anteed to avoid a.ll temporal transitions to failure (TTFs), 
any one of which would be sufficient to cause catastrophic 
system failure. The CIRCA temporal model allows com- 
putation of a minimum delay before each TTF can occur, 
then the deadline for each pre-emptive action is set to this 
minimum delay. After building each plan, CIRCA explicitly 
schedules all preemptive actions (tasks) such that the plan 
is guaranteed to meet all such deadlines, thus guaranteeing 
failure avoidance. 

In previous CIRCA work, completed plans were sched- 
uled using a uniprocessor scheduler. If scheduling was suc- 
cessful, the plan was downloaded and executed. Otherwise, 

Scheduler 
1 

Figure 1: Original CIRCA. 

the planner backtracked to select a different set of actions 
which would hopefully be easier to schedule. 

After a schedulable plan is developed, it executes on 
CIRCA’s real-time plan executor. Figure 2 shows the con- 
tents of a typical CIRCA plan. Tasks, built as TAPS (Test- 
Action Pairs) by the CIRCA planner, are divided into two 
classes: guamnteed and best-effort. Guaranteed tasks have 
hard real-time execution constraints (i.e., max-periods) to 
avoid TTFs, while best-effort tasks need only execute for 
goal achievement, thus are acceptable when cast in a “soft 
real-time” framework. Each task consists of multiple threads 
(or “modules”, the term we will use throughout this paper) 
which perform the tests required to determine if the action 
should be executed and then to execute the action, if re- 
quired. 

Figure 2: CIRCA plan composition. 

The CIRCA plan executor previously required a single- 
processor platform in which all actions were constrained to 
execute entirely on one dedicated processor, since delays 
were contained within the static worst-case execution times 
(wcets) used by the uniprocessor scheduler. Also, the sched- 
uler considered only that one processor need be scheduled, 
so neither multiple processors nor other required resources, 
such as communication channels, could be individually con- 
sidered during scheduling. As a result, not only was the 
plan-execution platform inflexible, but there was no possi- 
bility for “internal” fault-tolerance since multiple copies of 
computational resources could not exist. 

In this paper, we extend CIRCA to consider multiple re- 
sources during plan scheduling and exhibit limited tolerance 
to resource failures (i.e., “internal faults”) during plan exe- 
cution. Figure 3 shows CIRCA architectural modifications 
required to gain these new capabilities. The knowledge base 
and planner are very similar to those from previous versions 
of CIRCA. Plans are created and action timing constraints 
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are computed as before in [l] and [3]. For each planned task 
Ti E Tt,t,~, where Ttotol contains all tasks in the plan, the 
planner outputs the triplet (gi, Pi, vi). gi is the ‘guarantee 
flag” that indicates whether task Ti is guaranteed (gi = 1) 
or best-effort (gi = 0). Pi is the max-period of Ti required 
to preempt TTFs when gi = 1. Finally, vi is the “priority” 
value of task Ti and is described below in Section 4. 

Real-time Plan Executor 

Resource Allocation \ 
Plan cache 

Thmad Database 

Figure 3: Modified CIRCA. 

The planner passes (gi, Pi,K) for all Ti E Ttotol to the 
planner-resource allocation interface module, henceforth ref- 
erenced simply as the “interface”. This interface invokes 
the resource allocation analyzer to schedule all tasks (Ti E 
Ttotol, gi = 1) for each fault to be tolerated. Replacing 
CIRCA’s uniprocessor scheduler, the resource allocation an- 
alyzer accounts for multiple plan-execution resources, and 
also contains the fault library. When a “good” (schedula- 
ble) plan is found for each fault, it is downloaded to the plan 
cache, where it waits until requested by the plan executor. 

When a plan is unschedulable, the interface computes 
the most costly action, which is fed back to the planner. 
The planner attempts to remove or replace this action via 
dependency-directed backtracking to each state in which 
this action was chosen. Ideally, this action can be modi- 
fied (e.g., max-period Pi increased) or replaced, in which 
case the planner develops a new plan. If this action can- 
not be altered, the planner initially ignores the interface’s 
recommendation and modifies the next action encountered 
during chronological backtracking, the default in CIRCA. 
Minimally-modified plans developed in this manner are as- 
sessed for schedulability, with planner-resource allocation 
iteration continuing until a schedulable plan is found. If the 
planner exhaustively searches through all combinations of 
actions that pre-empt TTFs without finding a schedulable 
plan, the planner iteratively relaxes its probability threshold 
below which failure transitions are ignored until a schedula- 
ble plan is found, effectively degrading real-time guarantees 
from absolute to probabilistic-by-necessity. In [2], the latter 
technique of incrementing probability threshold was the sole 
method employed for improving plan schedulability. By rec- 
ommending a costly action for removal, we help the planner 
replace costly actions with different actions while maintain- 
ing absolute real-time guarantees whenever possible. 

The plan cache was added specifically for storing plans to 
handle system faults. As internal systems fail, the planner 

may compromise on overall plan quality to allow safety guar- 
antees, even if they are probabilistic. We store a set of plans, 
indexed by fault condition, so that the system can respond to 
faults during plan execution without replanning.’ CIRCA’s 
real-time plan-execution system has increased flexibility due 
to the capability to include multiple resources (e.g., proces- 
sors, communication channels). As is a standard practice 
in the real-time community, resources are reserved for run- 
time scheduler execution, which allows flexible utilization of 
available resources to handle faults and incrementally im- 
prove “best-effort” task execution when sufficient resources 
are available. 

3 Resource Allocation 

For a real-time computing system, a plan is a set of tasks 
T = {Z,...,T,} with resource requirements and timing 
constraints. The problem of resource allocation is to map 
the set of planned tasks onto a set of available resources 
such that all constraints are met. In CIRCA, all guaran- 
teed tasks are considered periodic, and each task Ti E T has 
worst-case computation time ci and period Pi. The worst- 
case computation time includes scheduler context-switching 
overhead. The jth invocation of Ti becomes ready for ex- 
ecution at time (j - l)Pi, called task arrival time, aili]. 
The deadline, dib], of a task invocation is usually such that 
dib] I 0ib] + P’ , since each invocation must complete its 
execution before the next one arrives. It is sufficient for the 
resource allocation algorithm to find a task schedule within 
a finite interval, L, equal to the least common multiple of 
all tasks periods, called the planning cycle in the real-time 
community. The resulting task schedule repeats itself in 
subsequent planning cycles. Each task may be composed of 
one or more separately schedulable modules (i.e., threads) 
with arbitrary precedence constraints. The resource require- 
ments of each module are known u priori since we know the 
resource profile for the application code. 

The selection of a proper resource allocation algorithm 
depends on the execution platform considered. An optimal 
resource allocation algorithm is described in [6] for unipro- 
cessors, in [7] for multiprocessors, and in [8] for distributed 
systems. Once the task assignment is fixed, an optimal off- 
line scheduling algorithm such as [9] can be used to pre- 
schedule the tasks. In this paper we use [8] for task assign- 
ment and [9] for scheduling. These algorithms are used to 
schedule ‘guaranteed tasks” (those with gi = 1). Best effort 
tasks (with gi = 0) are then fit, when possible, in the gaps 
of the produced schedule. The resulting overall schedule for 
each processor is stored in a table. 

When a prescheduled plan executes, the run-time sched- 
uler dispatches tasks in the order they appear in the table 
using an O(1) lookup operation. Different schedules (ta- 
bles) are constructed for different plans (fault conditions) 
and can be stored in each processor’s memory, indexed by 
fault condition. Fault conditions may represent processor 
failures, communication-link failures, or other resource fail- 
ures. When the condition is observed on-line, its numeric 
identifier is broadcast to all processors which then index into 
the corresponding new table. A lightweight atomic multi- 
cast and membership algorithm, such as [lo] can be used to 
ensure that all non-failed processors (i) receive the broad- 
cast of the current failure condition, and (ii) agree on the 

‘A CIRCA plan cache has been proposed in [5] for achieving timely 
reaction to “unhandled” states. The plan cache in this paper contains 
multiple plans only for fault-tolerance. 
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start time of the new schedule in bounded time despite tran- 
sient communication failures. If communication is totally 
lost with some processor, the resulting effect is indistinguish- 
able from a processor failure, and is treated as such. The 
bounded failure recovery overhead can be accounted for in 
off-line schedulability analysis to ensure that hard real-time 
constraints are met. 

4 Planning-Resource Allocation Interface 

A primary objective of the planning-resource allocation in- 
terface is to utilize existing resource allocation algorithms 
with minimal modification. In particular, the planner should 
be told whether or not the current plan is schedulable, and 
if it isn’t, which task is judged to be the most costly “bottle- 
neck.” If the plan is found schedulable by the resource allo- 
cation analyzer then its entire value is redeemed. However, 
if the plan is unschedulable, the interface module points out 
a “costly” action to reconsider during replanning. 

In our design, the planner transmits each plan to the in- 
terface via a set of triplets (gi, Pi, V;) for all tasks Ti E Ttotal, 
where Ttotar represents all planned tasks. The guarantee flag 
gi tells the interface whether the task must execute in hard 
real-time. The set Mandatory of tasks Ti E Ttotol with gi = 1 
exclusively dictates whether the plan is schedulable. Task 
max-period Pi is determined by the planner such that all 
failure transitions (TTFs) are preempted. We use a heuris- 
tic in CIRCA’s planner to compute a priority value vi for 
each task. Each vi is given by r/i = ni * moz(pi), where 
ni is the number of states in which task Ti executes and 
msz(pi) is the maximum probability of any state in which 
Ti executes. This heuristic reflects a preference to keep tasks 
chosen for the highest-probability states, as well as the fact 
that large ni will likely require many backtracking steps, 
should Ti be altered. 

The resource allocation analyzer receives input (Ti E 
T man&tory, Pi) and returns a success/failure status, and a 
utilization matrix U in which each element U(i,q) is the 
utilization consumed by task Ti of resource q. The thread 
database described earlier defines the worst-case resource us- 
age for Ti, based on the resource requirements of the mod- 
ules (threads) (Mj E Ti). Elements U(i,q) are computed 
by the resource allocation analyzer as follows. Within each 
planning cycle L the total available capacity of a resource q 
is pQL, where p is the number of instances of the resource 
and Q is the capacity of each. If module ikfk of period & 
and execution time Ck requires an amount rk,p of the re- 
source throughout its execution, then its total demand on 
that resource within the planning cycle is Tk,qCkL/Pk. The 
ratio of that demand to the total available resource capacity 
is the utilization u(lE, q) consumed by module (or thread) 
&fk of resource q. Thus, u(k,q) = rk,&k/pQPk. The uti- 
lization U(i, q) consumed by task Ti of resource q is the sum 
of the utilizations u(k, q) of all modules Mp E Ti. 

To compute the most “costly” task in cases of over- 
utilization (failure), the interface combines priorities Vi from 
the planner with the utilization matrix U from the resource 
allocation analyzer. The interface module tentatively deletes 
one action, T,, from the plan and recomputes the resulting 
aggregate utilization of each resource q by adding U(i,q) 
for all i, where i # j. Let yj(q) = xi izj U(i, q). The 
bottleneck resource qb(j) is the one for wh:lch -yj(q) is max- 
imum. The total value remaining after eliminating Tj is 
the sum of vi for all i, Sum, = xi izj vi. The total 
value gained per unit of bottleneck-resource usage is thus 
S’zLm,/yj(qs(j)). The interface recommends for removal of 

the action Tj that results in the maximum value per cost 
ratio, sUmj/yj(qb(j)). Note that the Sumj defined above 
is not exact, since removal of one action could affect the Vi 
values of other actions. Exact computation of Sum, would 
require detailed knowledge of the planning state-space after 
this action was removed, which is time consuming. 

The heuristic is used to suggest which part of the plan- 
ner’s search space to expand next, but does not prune parts 
of the search space. Since the planner’s search is exhaustive 
in the worst case, it is always guaranteed to find a feasible 
plan if one exists. The heuristic merely increases the odds 
of finding such a plan earlier in the search process. The 
problem, however, remains NP-complete. 

5 Fault-Tolerance 

We establish internal fault-tolerance (e.g., to single proces- 
sor failures) by using the planning-resource allocation ana- 
lyzer interface module to effectively manage the preset list 
of faults for which the system must be tolerant. This list, 
F total, includes the nominal “no-fault” case fe in which all 
systems work properly, and progressively describes more se- 
vere faults, terminating with the worst fault fn the system 
can tolerate. 

The CIRCA resource-allocation analyzer and plan execu- 
tion system reference fault list Ftotal, included in the Fault 
Specification List in the Thread Database from Figure 3, 
which also contains resource type/quantity descriptions for 
each fault fi E Ftotal. These values are required by the Re- 
source Allocation Analyzer to describe which resources are 
available in each fault-condition. 

Figure 4 shows the interface module algorithm used to 
control CIRCA’s inter-module data flow. To summarize, the 
interface module incorporates plan and utilization data for 
each fault to classify plans as “good” or “unschedulable.” A 
good plan is added to Fgood, then downloaded to the plan 
cache along with indices to all faults for which that plan was 
“good”. These faults are removed from the working fault list 
(placed in Fdone), since they only require one plan. For the 
first (i.e., least severe) fault that over-utilized resources, a 
“costly” task is recommended for removal using the heuris- 
tic described in the previous section, then fed back to the 
planner, which backtracks to find a safe alternate plan as 
described earlier. This procedure continues until all faults 
have been handled successfully by some schedulable plan. 

The algorithm described above enables creation and stor- 
age of (i) a set of plans that can meet all required hard real- 
time constraints when any internal fault from Ftotol occurs, 
and (ii) a pre-computed execution schedule for each plan. 
After the plan cache has been filled with “good” plans for all 
faults, the plan indexed for nominal fault condition fo is se- 
lected and begins execution according to the corresponding 
schedule. When the system detects an internal fault, plan 
execution switches to the pre-scheduled plan designated to 
handle that fault, which has previously been stored on each 
plan execution processor. Thus, response to internal faults is 
prompt, and the system does not fail due to internal faults 
except for a fault so severe it was not incorporated into 
F total. 

6 Example: Autonomous Aircraft Agent 

We consider an example drawn from automated flight, in 
which rigid hard real-time response constraints require care- 
ful resource allocation and scheduling. Our plan execution 
system includes two resource types: PTOC (processor) and 
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1. Interface receives plan with TAP&arks Ttotolr 
including marperiods Pi, gumantaa flags 9;. aad 
priorities Vi. 

2. V(js E Ftotal;.fi e Done) 

. Send 
(Pj for all Tj E Tm.nda<ory,ji) t0 FhSOlXCe 

Allocation Analyzer. which returns V(j, q). 
a If Resource Allocation Analyzer returns 

~U~CCS~ status, add ji to “good” list Fgood 
for plan ?f’toroi; add ji to FdOns. 

3. If (Fsood # @), download Ttotol with indices Fpood 
to plan cache; reset Fgood = 0. 

4. If Faonc # Ftoto~, 

a Find first element ji E Fl.t.ls.t.ji $ Fdone 

l Send to planner “costly” ta8k Tj idantifiad 
by maximum ratio SUmj/rj(,(j)). 

. Qo to step 1 

Figure 4: Planning-resource allocation interface. 

Comm (communication channel). The system contains two 
processors of type Proc and a single communication channel 
of type Comm, and we define a fault set which includes the 
nominal no-fault case (fe) and a “single processor failure” 
fault (fi), in which the number of Proc instances is reduced 
from two to one. 

For our automated flight mission, the CIRCA planner is 
given the goals of maintaining safety while following a flight 
plan (trajectory). The aircraft must follow standard sir traf- 
fic procedures and maintain communication with air traffic 
control (ATC) via the Comm channel resource, which we 
assume to have guaranteed worst-case execution properties 
in our example. In this section, we present a very simplified 
world model which illustrates how safety is maintained dur- 
ing flight, even in the presence of a single processor failure 
from the set of PTOC resources. 

In its initial phase, the planner builds the state set shown 
in Figure 5. In this plan, two failures must be avoided: an 
impact with an obstacle (e.g., the terrain or another air- 
craft), and any airspace-violation (e.g., flying in a restricted 
military area). To prevent these failure transitions, CIRCA 
selects two actions: avoid-collision and maintain-trajectory. 

Figure 5: Nominal Flight Plan. 

The decomposition of all tasks available in our flight ex- 
ample is shown in Tables 1 and 2. To detect a state with 
OB = T, task TI runs modules M;, scan-TCAS (Terminal 
Collision and Avoidance System), to sense nearby obstacles 
and Mz, monitor-trafic, to detect other air traffic based 

on ATC data. If an object is detected, the avoid-obstacle 
action is executed. The maintain-trajectory task (Tz) exe- 
cutes to detect course deviations with MJ, monitor-course 
and correct them by sending reference trajectory (7(t)) com- 
mands to the low-level controller via MS, update-controller- 
reference.2 

Table 1: Flight Task Set. 

t M- i 
Y “I 7 receive-vectors 2 1 5 

Table 2: Flight Module Worst-Case Resource Usage. 

Table 1 also includes the period (pi) and priority (vi) 
used by the CIRCA’s planner-scheduler interface. For this 
example, we set all task priorities equal (vi = 1) because 
we have not yet implemented a good priority calculation 
algorithm in the CIRCA planner. In the future, vi will be 
computed using a combination of state probability and tem- 
poral proximity to failure. Note that all actions are guar- 
anteed (gi = 1) since all states with planned actions have 
temporal transitions to failure (TTFs). 

In our example, the computing system is composed of 
two processors, each a resource of type PTOC, interconnected 
with each other and ATC by a communication bus, a re- 
source of type Comm. Once CIRCA has developed the 
initial plan, the Resource Allocation module attempts to 
schedule it for each fault. We consider two cases: the nomi- 
nal situation where the system is fully operational (fu) and 
a single processor failure (fi). The plan is given to the re- 
source allocation analyzer, which succeeds ‘in computing a 
task assignment [8] and schedule [9] for fu such that all con- 
straints are met. The resource allocation for fu is shown in 
Figure 6. The successful plan is now added to the “good” 
list, p*good, and mode fu is added to the set of handled failure 
modes Done. 

As shown in Table 3, the processor (PTOC) utilization 
exceeds a value of one for fi, thus the initial plan must 
be altered for fr. Since PTOC is the bottleneck, the inter- 
face module recommends that the planner remove TI (auoid- 
collision) due to its high PTOC utilization. 

Backtracking during replanning yields the state diagram 
shown in Figure 7, with the new task declare-emergency(T3) 

‘CIRCA relies on a traditional low-level control system to read sen- 
aor8 and compute actuator commands. This controller is presumed to 
have its own set of fault-tolerant resources since it is always required 
for autonomous operation. 
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’ Task; lJ(i, Proc, fo) u(i, PTOC, fl) u(i, Comm) 
TI 14124 14/12 4112 
T2 8124 8112 o/12 

Table 3: Utilization Matrix - Nominal Plan. 7 Related Work 

selected.3 Once the emergency is declared, ATC effectively 
takes much of the computational responsibility from the air- 
craft, clearing the airspace so that obstacles will no longer 
be a factor. Additionally, after an emergency has been de- 
clared, the efficient action follow-mdar-vectors can be se- 
lected, in which ATC specifies the course and corrections 
required for the aircraft to safely reach its destination. 

:I . . 

OB=F 
ST=N 

dedmememenq 
Y 

OC=T 
OB=F 
ST=E 

Figure 7: Reduced Flight Plan for Failed Processor (fi). 

This reduced plan (Plana) is now sent to the resource 
allocation analyzer, which finds the plan can easily be sched- 
uled even with the processor failure (fi), as computed with 
task utilizations shown in Table 4 and a valid task assign- 
ment illustrated in Figure 8. With this plan, we can now 
handle both fo and fi, so Plan2 is stored and planning ter- 
minates. 

In this section, we have identified unschedulable plans 
and made them schedulable via replanning. This is in con- 
trast to traditional resource allocation algorithms which sim- 
ply fail if a plan is unschedulable. It also contrasts with 
planning algorithms which do not consider failures of com- 
puting resources, and do not guarantee schedulability of the 
plan in the hard real-time sense. 

3All states from the nominal plan (Planl) are possible. The tem- 
poral transitions obstacle and course-deviation are not preempted 
since they may happen quickly. 

Table 4: Utilization Matrix - Reduced Action Plan. 

Figure 8: Resource Allocation with Failed Processor (fi). 

The phrase “real-time” is not new to the planning commu- 
nity, but few architectures guarantee high quality, hard real- 
time response. Planning time limits have been enforced via 
techniques ranging from anytime [ll] to design-to-time [12]. 
A variety of abstraction algorithms such as that from [13] 
allow fast, approximate planning so that a restrictive time 
limit will enable creation of the best plan possible within the 
available time. However, as domain complexity increases 
and available planning time decreases, the quality of the 
planning solution may suffer to the extent that the devel- 
oped plan cannot prevent system failure even though it is 
produced “in time.” CIRCA does not yet provide planning 
timeliness guarantees, but it explicitly separates planning 
and plan-execution functions to minimize the need for tight 
planning time restrictions. 

Plan-execution architectures such as PRS [14] and RAPS 
[15] have been developed to minimize response time by avoid- 
ing the “intractable planning” problem. Each is structured 
so that, if available, the appropriate reaction is discovered 
quickly on average, employing hierarchical techniques to limit 
the steps required for each search process. Although these 
techniques are popular in the robotics community due to 
their efficiency and representational power, they cannot pro- 
vide absolute real-time response guarantees without strict 
limitations to database size (e.g., number of RAPS), which 
must be computed by the user in advance based on the min- 
imum response time and worst-case search time that may 
be required. 

The CIRCA plan cache is of minimal size relative to PRS 
and RAPS databases because the CIRCA cache is popu- 
lated only with plans required for the particular mission at 
hand. However, CIRCA must still be able to guarantee that 
this size is sufficiently small to allow hard real-time retrieval 
times. To accomplish such guaranteed behavior, all plan 
cache searches are incorporated into scheduled tasks within 
each executing plan that, for “internal” fault-tolerance, are 
activated when the system must switch to a plan to han- 
dle one of the listed system faults (fo,fi,...). The maximum 
size of the cache partition that must be searched when a 
fault occurs is equal to the number of user-specified faults, 
so the worst-case time to search for and switch to a new plan 
is easily predicted and automatically incorporated into the 
schedule for the executing plan, thereby allowing the hard 
real-time plan retrieval guarantees we require in CIRCA. 

Architectures such as CYPRESS [16] and SOAR [17] 
have demonstrated the ability to succeed in real-time en- 
vironments. These systems combine efficiency with flexi- 
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bility by using a reactive plan-execution system whenever 
a response is available and performing dynamic planning 
otherwise. However, neither explicitly reasons about task 
deadlines or worst-case resource utilization, so they fall un- 
der the classification of “coincidentally” real-time systems, 
which are appropriate only if catastrophic failure does not 
result when a response is too slow. 

Other systems, such as the AI system to control the Deep 
Space One (DS-1) spacecraft [18] and the conditional sched- 
ules demonstrated on an aircraft avionics problem in [19], 
do provide timeliness guarantees during plan execution, but 
incorporate neither “internal” fault-tolerance nor the flexi- 
bility to perform allocation and scheduling in a variety of 
multi-resource environments. 

8 Summary and Future Work 

We have presented an architecture that combines planning 
and resource allocation algorithms to produce a set of plans 
which execute in hard real-time on a multi-resource plat- 
form and exhibit tolerance to a user-specified set of internal 
systems faults. We concentrate on the interface between a 
state-space planner and resource allocation analyzer, which 
effectively provides a method for standard planning and real- 
time allocation algorithms to work synergistically. This in- 
terface manages a list of faults to which tolerance is required, 
and uses a heuristic cost function based on task priority and 
resource utilization to select “costly” actions for guiding the 
planner during backtracking should scheduling constraints 
be impossible to satisfy. 

This work was done using the Cooperative Intelligent 
Real-time Control Architecture (CIRCA), which was orig- 
inally designed to build plans that execute with real-time 
CPU utilization guarantees on a uniprocessor plan execu- 
tion platform. We described the augmentation of CIRCA 
to accommodate multiple plan execution resources and to 
exhibit fault-tolerance during plan execution, and provided 
an example illustrating the utility of our approach. 

We have focused on the basic mechanisms required for 
interfacing planning and resource allocation. However, in 
most real-world systems, on-line (re)planning may require 
that real-time bounds be placed on both planner and re- 
source allocation modules, not just the plan-execution sys- 
tem. As proposed in [5], CIRCA may be augmented to use 
the plan cache to “buy time” so that real-time constraints 
on planning and resource allocation are as relaxed as pos- 
sible, but still assumptions of “indefinite replanning time” 
may be inappropriate. By introducing the new iterative in- 
terface module, we have made resource-bounded planning 
even more difficult to achieve. We hope to address this 
formidable problem by using efficient resource allocation al- 
gorithms with bounded execution constraints, incorporating 
anytime [ll] techniques to planning, and limiting replanning 
iterations to accommodate a subset of the faults from Ftotal, 
if required. 

Experimental validation of our CIRCA algorithms is in 
progress with the University of Michigan Uninhabited Aerial 
Vehicle (UAV) Project, described in [20]. Our UAV is a 
radio-controlled (R/C) aircraft with onboard and ground- 
based processing systems. It is fully-instrumented with sen- 
sors including GPS, IMU (inertial measurement unit), air 
data system, tachometer, and control surface displacement 
sensors that will allow autonomous operation via low-level 
control software that we are connecting to CIRCA for higher- 
level mission planning tasks. We plan to incorporate CIRCA 
along with adaptive model identification algorithms to study 

aircraft response to a variety of situations including both 
environmentally-induced emergencies (e.g., engine failure, 
airframe icing) and internal faults (e.g., sensor, communi- 
cation, or processor failures). We are confident that testing 
the UAV in these situations will reveal means of improv- 
ing both CIRCA and adaptive control algorithms, and will 
clearly demonstrate the utility of a system that has the flex- 
ibility to build plans from a knowledge base but can still 
guarantee hard real-time response characteristics and fault 
tolerance. 
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