
Computer Networks 31 (1999) 1563–1577

Web content adaptation to improve server overload behavior

Tarek F. Abdelzaher a,Ł, Nina Bhatti b,1

a Real-Time Computing Laboratory, EECS Department, University of Michigan, Ann Arbor, MI 48109-2122, USA
b Hewlett Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA

Abstract

This paper presents a study of Web content adaptation to improve server overload performance, as well as an
implementation of a Web content adaptation software prototype. When the request rate on a Web server increases
beyond server capacity, the server becomes overloaded and unresponsive. The TCP listen queue of the server’s socket
overflows exhibiting a drop-tail behavior. As a result, clients experience service outages. Since clients typically issue
multiple requests over the duration of a session with the server, and since requests are dropped indiscriminately, all clients
connecting to the server at overload are likely to experience connection failures, even though there may be enough capacity
on the server to deliver all responses properly for a subset of clients. In this paper, we propose to resolve the overload
problem by adapting delivered content to load conditions to alleviate overload. The premise is that successful delivery of a
less resource intensive content under overload is more desirable to clients than connection rejection or failures.

The paper suggests the feasibility of content adaptation from three different viewpoints; (a) potential for automating
content adaptation with minimal involvement of the content provider, (b) ability to achieve sufficient savings in resource
requirements by adapting present-day Web content while preserving adequate information, and (c) feasibility to apply
content adaptation technology on the Web with no modification to existing Web servers, browsers or the HTTP protocol.
 1999 Published by Elsevier Science B.V. All rights reserved.

Keywords: Web server performance; Adaptive content; Overload protection

1. Introduction

Web servers today offer poor performance un-
der overload. As the request rate increases beyond
server capacity, server response-time and connection
error rate deteriorate dramatically, potentially caus-
ing client-perceived service outage. Server overload
may occur either due to saturation of CPU band-
width or due to saturation of the communication link
capacity connecting the server to the network. This

Ł Corresponding author. E-mail: zaher@eecs.umich.edu
1 E-mail: nina@hpl.hp.com

paper introduces content adaptation as a technique
to alleviate both types of overload. We note that our
technique is designed for alleviating peak load con-
ditions, rather than cope with permanent sustained
overload. The latter case simply calls for upgrading
the server platform.

Several techniques have been proposed to allevi-
ate server overload, such as methods for distributing
the load across a number of geographically sep-
arated servers as presented in [4,5,7]. Redirection
servers were proposed in [13] to transparently redis-
tribute users’ requests. In [2] a model is presented
for dynamically scheduling HTTP requests across

1389-1286/99/$ – see front matter 1999 Published by Elsevier Science B.V. All rights reserved.
PII: S 1 3 8 9 - 1 2 8 6 (9 9) 0 0 0 3 1 - 6

1564 T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577

clusters of servers to optimize the use of resources.
Rent-a-server; a technique for server replication on
demand is presented in [15] to replicate servers on
overload.

While the above techniques essentially propose
solutions based on load balancing among multiple
servers, we concern ourselves with the problem of
overload management of an individual server. Gen-
erally, to cope with overload, servers either are over-
provisioned or use admission control. When over-
provisioning is used, administrators often allocate to
a Web server twice the normal capacity as a rule of
thumb [14]. The approach does not always prevent
overload conditions. Techniques that rely on client
admission control are explored in [10]. Admission
control improves the average latency of admitted
client requests by rejecting a subset of clients. The
premise is that consistent rejection of all requests
from a subset of clients may be better than in-
discriminate connection failures affecting all clients
alike in the absence of admission control. Operat-
ing system research has also addressed the problem
of resource allocation on server platforms, rethink-
ing fundamental OS abstractions [3] and introducing
new mechanisms [6,11]. In this paper, however, we
explore server resource management schemes imple-
mentable on top of mainstream operating systems
such as UNIX.

As an alternative to connection rejection or fail-
ures, clients may be willing to receive a degraded,
less resource intensive version of requested content.
This makes a case for replacing (or augmenting) ad-
mission control schemes with mechanisms to adapt
delivered Web content to load conditions. Under
heavier load, less resource intensive content can be
served. In addition to alleviating overload, content
adaptation will reduce the amount of server resources
wasted on eventually unsuccessful or rejected con-
nections. In our measurements, for example, when
server load (request rate) is about 3 times the maxi-
mum server capacity we observed that about 50% of
the end-system utilization is wasted on rejected con-
nections. In other words, the end-system spends half
of its time processing eventually rejected requests
(e.g., protocol stack processing, queuing, socket call
processing, etc.). This problem is akin to the receive
livelock, which has been addressed at the operating
system level [12]. In the absence of an operating

system solution, one might as well deliver an inex-
pensive version of content to the requesting clients
instead of rejecting them after consuming a large
amount of resources.

The paper proposes an architecture for content
adaptation on the Web as a means to control over-
load. We discuss content adaptation in terms of the
suitability of today’s Web content to degradation,
the required content provider involvement, the soft-
ware mechanisms needed for adaptive Web servers,
and the resulting expected impact on performance.
In addition to alleviating server overload, content
adaptation technology has other important benefits.
For example, it may be used to adapt server out-
put to client-side resource limitations, or to provide
better content to more important clients. The pro-
cessing power, connection bandwidth and display
resolution may vary significantly from one client to
another. Content adaptation can provide the most
appropriate version of content to each client in ac-
cordance with their resource constraints. Currently,
content providers are faced with fine-tuning a com-
promise version of content that hopefully will not
encumber slower clients, yet remain satisfactory to
higher-end clients. The existence of adaptation tech-
nology, such as that described in this paper, will
allow content providers to deliver higher quality con-
tent whenever possible thus enhancing their clients’
browsing experience. Service adaptation to client-
side limitations and network variability has been
proposed, for example, in [9]. While acknowledging
this benefit of adaptation technology, in this pa-
per we focus on adaptation as a means to control
server overload.

The rest of this paper is organized as follows.
Section 2 examines different ways of adapting con-
tent on the Web. Section 3 evaluates the resulting
performance impact drawn from an analysis of rep-
resentative Web sites. Section 4 describes and eval-
uates software architectures for content adaptation
from the Web server’s perspective. We focus on
software solutions that require no modifications to
the servers, browsers, or the HTTP protocol, and
we demonstrate, using test results from an imple-
mented prototype, the potential of our approach in
solving the overload problem. The paper concludes
in Section 5 with a summary of contributions and
suggestions for future work.

T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577 1565

2. Techniques for content adaptation

Web content must be adapted in a way that pre-
serves essential information yet reduces the resource
requirements of content delivery. We have verified in
a companion paper [1] that with a 100 MB network
connection, the overload bottleneck resource for typ-
ical Web server workload is usually the end-system
rather than the network. When the end-system is
overloaded, introducing an extra stage of compu-
tation, such as data filtering and compression, will
only further increase the load on the server. There-
fore, in order to eliminate extra overhead at overload,
content must be pre-processed a priori and stored in
multiple copies that differ in quality and processing
requirements. At overload, the server should be al-
lowed to switch to a pre-existing lighter version of
content.

Intervention of the content provider may be re-
quired to authorize or fine tune certain types of adap-
tation during the off-line pre-processing stage. For
adaptation technology to be cost effective, this in-
tervention has to be minimal and should not change
the ways content providers have traditionally cre-
ated the art. The cost of adapting content should
hopefully be less, for example, than the cost of alle-
viating overload by upgrading the server’s machine
and=or its network connection. One may imagine
appropriate authoring tools that allow Web content
developers to annotate parts of the content with spe-
cific adaptation tags, (e.g., expendable, degradable,
or important). These tags are preprocessed by con-

Fig. 1. Comparing a 74 KB GIF and an 8.4 KB JPG.

tent management tools to create separate standard-
HTML versions of the site. The appropriate version
will be served at run-time depending on load con-
ditions. Since the created content versions contain
only standard HTML and image formats, no modifi-
cation is required to the browsers. Default adaptation
actions may be used by the preprocessing tools on
those parts of the content that have not been tagged.
Defaults will reduce the need for explicit adapta-
tion tags thus substantially reducing the effort of
utilizing adaptation technology by content providers.
While a complete description of such tools is beyond
the scope of this paper, in the rest of this section
we present some techniques that might be used by
such tools. Viability of these techniques is consid-
ered from two standpoints; their potential for partial
automation, and their expected resource savings.
ž Image degradation by lossy compression: In a

survey we conducted in July 1998 of 80 shopping
Web sites we found that GIF and JPG images
alone constitute, on average, more than 65% of
the total bytes of a site. In many cases, these im-
ages can be significantly compressed without an
appreciable decrease in quality. To help appreciate
the potential bandwidth savings, Fig. 1 compares
a 74 KB GIF to a 8.4 KB JPG image of the
same object. Although the difference in byte size
is roughly an order of magnitude, the difference
in quality is insignificant on most clients’ dis-
plays. This demonstrates a potential to conserve
resources by degrading image quality (e.g., via
automated JPG lossy compression).

1566 T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577

ž Reduction of embedded objects per page: From
the server-side perspective, document size is not
as important as the number of embedded objects
per page. Upon retrieving a URL the client ap-
plication sends independent requests to fetch its
embedded objects. Each request to the server con-
sumes a relatively large fixed overhead in addition
to a variable document-size-dependent overhead.
On an Apache server [8] running on HP-UX we
found the end-system processing time per request
to be 1.6 ms independently of the retrieved URL
size, plus an additional 65 µs per each KB of
delivered data 2. Thus, retrieving a 1 KB file, for
example, will consume more than 50% of the end-
system’s processing resources needed to retrieve
a 25 KB file. Therefore, at overload, end-system
processing savings arising from eliminating small
cosmetic items (such as little icons, bullets, bars,
separators, and backgrounds) can be significant.
Many Web developers today use an ‘alt’ clause
to define alternate text for such items. Adaptation
tools may make use of this clause, when available,
to replace cosmetic items in less resource inten-
sive versions of content. Content providers may
tag objects that should not be removed by default
treatment.
ž Reduction in local links: Another way of adapt-

ing content is to reduce local links. This reduction
will affect user browsing behavior in a way that
tends to decrease the load on the server as users
access less content. Reduction of local links may
be automated, e.g., by limiting the Web site’s con-
tent tree to a specific depth from the top page.
Content providers may indicate, using special
tags, subtrees that should be preserved beyond
the default depth during the reduction process.
To support multiple versions of content the path

to a particular URL in a given content tree is the
concatenation of the content tree name and the URL
name, prefixed by the name of the root service di-
rectory of the Web server. For example, in the root
service directory ‘/root’ one may create two con-
tent trees, ‘/full_content’ and ‘/degraded_content’. A

2 These are HTTP 1.0 measurements taken for Apache 1.3.0
on a single-processor K460 (PA-8200 CPU) running HP-UX
10.20, with 512 MB main memory, and GSC 100-BaseT network
connection.

URL ‘/my_picture.jpg’ will be served from the di-
rectory ‘/root/full_content/my_picture.jpg’ if server
load permits. Otherwise the URL will be served
from ‘/root/degraded_content/my_picture.jpg’ thus
supplying a more economic version.

The scheme applies to dynamic content as well,
e.g., that generated by CGI scripts. Multiple content
trees may contain different versions of the named
CGI script (e.g., ‘/cgi-bin/my_script.cgi’). The script
URL is prepended by the right tree name (e.g.,
‘/full_content’ or ‘/degraded_content’) to determine
which version of the script to execute under given
load conditions. For example, the Web server can
invoke a less resource-intensive search script that
looks for only the first 5 matches under overload,
instead of one that looks for 25 matches under
normal load conditions.

Our experience indicates that serving dynamic
content is much more resource consuming than serv-
ing static content. Our adaptation mechanism allows
some dynamic content to be replaced by static con-
tent by switching to a different content tree. For
example, an on-line vendor can use a dynamically
generated version of their product catalog that in-
teracts with a stock database to display the items
currently in stock. Content adaptation mechanisms
allow the server to switch automatically, without
system administrator assistance, to a statically pre-
stored catalog version whenever bandwidth becomes
scarce thereby saving resources. The burden of creat-
ing the static version lies on the content provider and
authoring tools. For example, a given parent URL
may have a link to a dynamic CGI script in one
version and to static content in another.

In the following section we argue for the effi-
cacy of content adaptation on the Web by surveying
selected Web sites and verifying the expected perfor-
mance benefits of adapting their content.

3. Adaptation impact study

We investigate the expected impact of the afore-
mentioned content adaptation techniques in terms
of achieved performance gains. Before the gains
are described, note that, from a performance stand-
point, adaptation by switching to a different content
version may result in decreased cache performance

T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577 1567

due to initial cache misses. However, since content
switching will occur much less often than the time
it takes to cache the popular pages, the performance
benefits of adaptation are achieved. In general, as
we shall describe in Section 4.2, the server may
serve different versions of the same URL to dif-
ferent clients concurrently, in which case one may
require a slightly larger file cache on the server to
hold both the adapted and non-adapted versions of
popular pages at the same time. If the file cache is
too small, adaptation may involve some performance
penalty since it tends to require caching more files.
In the experiments conducted in this paper, however,
the server’s file cache could hold the entire working
set of popular pages. Thus, no cache performance
penalty was observed. The effect of server file cache
size will, therefore, not be discussed any further.

This section presents results of a study of the
nature of content of 80 selected Web-sites, and the
expected performance impact derived by applying
the adaptation techniques described in Section 2
to the content of surveyed sites and estimating the
resulting savings in server resource consumption.
Due to the increasing interest in e-commerce on
the Web, in this study we focus on shopping Web
sites. Today, a significantly increasing number of
businesses advertise their products on-line. Shopping
sites, in addition to their growing popularity, have
several other favorable attributes that make them a
good candidate for our analysis. These attributes are
outlined below.
ž As more users find it easier to shop online, a shop-

ping site may get a large number of hits, and thus
(unlike personal Web pages, for example) is more
susceptible to overload. Shopping sites are, there-
fore, potential customers of adaptation techniques
designed to alleviate overload conditions.
ž Businesses that advertise products online are often

not Web experts. They outsource site management
to professional Web-hosting service providers
who might be interested, for economical con-
siderations, in cohosting several sites per machine
which further increases overload potential and the
need for overload management mechanisms.
ž Shopping sites are visually intensive. The site

should attract e-shoppers attention, and depict
products in a way that encourages a purchase.
These sites can greatly benefit from adaptation

technology that allows providing a richer content
whenever possible, yet avoids overload by switch-
ing to a less resource intensive version when
needed.
In our study, we downloaded site content, de-

graded its quality, and estimated the expected perfor-
mance improvement. Performance improvement was
estimated in terms of the reduction, upon content
degradation, in consumed server utilization arising
from client access. In turn, this reduction was in-
ferred from the average decrease in delivered band-
width and request rate that clients are likely to im-
pose on the server after content has been degraded.
Performance improvement depends on the particular
way content was degraded, which may be arbitrary
and subjective. We, therefore, found it informative
to first determine an upper bound on such perfor-
mance improvement achievable by any degradation
technique.

Intuitively, the best performance improvement is
achieved if all content is reduced to mere text. Being
too severe a degradation, it serves as an upper bound
on the actual performance improvement one may
reasonably expect from using a more realistic degra-
dation approach. Performance improvement due to
adaptation further depends on the size of a client’s
cache and the length of the client’s session.
ž In the absence of client caching or for very short

sessions, server access rate and bandwidth deliv-
ered to the client will depend on the total number
of embedded objects per page, as each HTML
page access will entail downloading all its em-
bedded objects.
ž If the client has a sufficiently large cache each

object will be downloaded only once into the
client’s cache, regardless of how many accessed
URLs it is embedded in.
In the surveyed sites the difference between these

two cases was quite noticeable. We, therefore, com-
puted two estimates, an optimistic one that corre-
sponds to no caching or short sessions, and a pes-
simistic one that corresponds to an infinite cache
size and long sessions. Note that in the optimistic
estimate performance improvement stems from both
reducing the number of embedded URLs per page
and reducing average object size. In the pessimistic
estimate, on the other hand, performance improve-
ment stems mostly from reducing object size since

1568 T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577

the number of embedded objects per page does not
matter in the presence of adequate caching as men-
tioned in the bullets above. As we shall see, perfor-
mance improvement resulting from reducing object
size alone is much less than that resulting from
reducing embedded images.

3.1. The optimistic estimate

In this case we assume that the client accesses
at random one page of the site. This is an approx-
imation since some pages are more popular than
others. Ignoring document popularity in our analysis
can be partially justified by noting that more popular
pages will tend to be cached and served by proxies.
This makes page accesses on the Web server more
uniformly distributed. A valid criticism of ignoring
document popularity is that, presently, Web site de-
signers might manually optimize the most popular
pages to avoid overload making them less rich than
average. Such practice may reduce the benefits of
adaptation but is not accounted for in our analysis.
The authors note, however, that such optimization
may be an artifact of not having adaptation tech-
nology to begin with. Site designers are forced to
pre-degrade the most popular pages in anticipation
of possible overload, which is rather unfortunate.
Adaptation technology will allow popular pages to
be no less visually attractive than the rest of the site,
since content can be degraded ‘on-demand’ when
necessary. Taking this consideration into account,
the use of average page statistics with no regard to
document popularity might, in a sense, underesti-
mate adaptation gains of future Web sites.

Let the number of embedded objects per HTML
page be Emb in the site’s original content tree. Re-
trieving exactly one Web page will therefore impose,
on the average, 1 C Emb accesses on the server (1
access to retrieve the HTML file and Emb accesses to
retrieve its embedded objects). If content is degraded
to pure text, retrieval of the same page will impose
only 1 access.

To compute the savings in bandwidth resulting
from content degradation, let the average HTML file
size be H bytes, and let the average embedded object
size be I bytes. The bandwidth delivered per page is,
therefore, H C IEmb if content is not degraded, and
H if content is degraded to text.

We have experimentally verified, as discussed
later in the paper, that server utilization, U , con-
sumed at a given request rate R and delivered
bandwidth BW is well approximated by the linear
function U D aR C bBW, where a and b are mea-
surable constants that depend on the server software
and platform. The ratio of server utilization values
consumed by retrieving an average Web page before
and after degradation is thus:

Ratiooptimistic D a.1C Emb/C b.H C IEmb/

a C bH
:

This ratio reflects the performance improvement
achieved due to degradation.

3.2. The pessimistic estimate

To compute the pessimistic estimate of perfor-
mance improvement we assume the client has an
infinite cache. The longer the client’s session is,
the more pages are cached and the less is the load
imposed by the server. An infinite session will even-
tually cache all pages of the site, downloading each
exactly once. Let h be the number of HTML files
on the site, d be the number of unique embedded
objects. The performance improvement achieved by
content adaptation is the ratio of utilization values
consumed to download the site before and after
degradation. The ratio is given by:

Ratiopessimistic D a.h C d/C b.Hh C Id/

ah C bhH
:

Using simple algebraic manipulation, the above
equation can be rewritten as:

Ratiopessimistic D a.1C Embmin/C b.H C IEmbmin/

a C bH
where Embmin D d=h is the ratio of the number of em-
bedded objects to HTML files on the site. Note that
the number of embedded objects per page, Emb D
Embmin if every embedded object is referenced in
exactly one HTML file. Since some embedded ob-
jects (e.g., common icons, or backgrounds) may be
referenced in more than one HTML file, in general
Emb ½ Embmin. Thus, Ratiooptimistic ½ Ratiopessimistic.
For an arbitrary user session length and cache size, we
expect the performance improvement to lie generally
between Ratiooptimistic and Ratiopessimistic. The values d,
h, Emb, H , I above were computed for each surveyed

T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577 1569

 Optimistic Estimate
 Pessimistic Estimate

|
0

|
200

|
400

|
600

|
800

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|0

|20

|40

|60

|80

|100 |0 |200 |400 |600 |800 |1000 |1200 |1400 |1600 |1800 |2000

| 0

| 20

| 40

| 60

| 80

| 100

 Percentage Improvement

 P
er

ce
nt

ag
e

S
ite

s

 Percentage Improvement

 P
er

ce
nt

ag
e

S
ite

s

Fig. 2. Performance improvement expected from degrading to text.

site. The constants a and b were measured for our
server (Apache 1.3 running on an HP-UX platform).
The resulting estimates are shown in Fig. 2. The figure
depicts, for every achievable performance improve-
ment factor, x , the percentage of sites, P.x/, whose
performance will increase by at least x% upon adapt-
ing their content to pure text. Both the optimistic and
pessimistic percentage estimates of are shown. Thus,
for example, consider the point x D 400. The esti-
mates indicate that 30% (pessimistic curve) to 90%
(optimistic curve) of all sites will improve perfor-
mance by at least 400% (value of x). Another way of
interpreting the graph is to consider a particular per-
centage of sites P.x/, and observe the corresponding
performance improvement range. For example, con-
sider the point P.x/ D 60. The estimates indicate
that at least 60% of all sites will see a performance
improvement of 200% (pessimistic) to 700% (opti-
mistic).

3.3. A content degradation heuristic

In order to access performance improvement for
less severe degradation methods (as opposed to de-

grading to pure text) we repeated the derivation of
optimistic and pessimistic performance improvement
bounds when content is degraded using the following
default policies:
ž Remove all GIF images smaller than 1 KB. Such

images almost always constitute disposable cos-
metic icons and clipart items.
ž Degrade all images that are longer than 32 KB

by a factor of 8. As demonstrated in Fig. 1, large
images can generally be compressed by an order
of magnitude with no significant effect on quality.
ž Eliminate redundant items. Let each embedded

object be referred to from exactly one HTML
page (e.g., the most popular page in server logs
among those where the object appears).
For lack of space we skip the derivation of perfor-

mance improvement expressions used. Fig. 3 com-
pares the optimistic and pessimistic performance
improvement bounds computed in this case. The per-
formance improvement from the server’s perspective
comes mostly from reducing the number of hits on
the server, e.g., reducing the embedded objects per
page. Bandwidth (i.e., object size) reduction alone
does not play a major role as seen from the pes-

1570 T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577

 Optimistic Estimate
 Pessimistic Estimate

|
0

|
100

|
200

|
300

|
400

|
500

|
600

|
700

|
800

|
900

|
1000

|0

|20

|40

|60

|80

|100 |0 |100 |200 |300 |400 |500 |600 |700 |800 |900 |1000

| 0

| 20

| 40

| 60

| 80

| 100

 Percentage Improvement

 P
er

ce
nt

ag
e

S
ite

s

 Percentage Improvement

 P
er

ce
nt

ag
e

S
ite

s

Fig. 3. Performance improvement expected from mild degradation.

simistic estimate in Fig. 3 which relies mostly on
bandwidth reduction. This is partly because most
pictures on the Web have already been degraded to a
reasonably compressed size. Thus, there are very few
images above 32 KB, and the performance gain from
degrading them is minimal. This situation is in part
an artifact of the lack of adaptation technology. With
adaptation technology in place, it will be possible
to put higher quality images on more popular Web
pages.

The above feasibility study gives insights into
how content should be degraded for maximum per-
formance improvement, as well as estimates how
much performance can be improved. It is shown
that content adaptation can indeed lead to signifi-
cant resource savings for a large category of sites if
appropriate adaptation techniques are used.

4. Architecture for content adaptation

In this section we investigate content adaptation
support from the Web server’s perspective. Having
pre-processed the content a priori to create multiple

versions we need on-line support for load monitor-
ing and load-dependent content retrieval. We focus
on approaches that do not require rewriting exist-
ing Web server code. We describe the design of an
add-on software component, called the adaptation
agent, that executes as a separate process, inde-
pendently from the Web server, and provides the
required online adaptation support. The main goal
of this component is to determine which content
tree needs to be used at a given time. To achieve
its goal the adaptation agent performs the following
functions:
ž Load monitoring: Web server load must be mon-

itored in order to detect overload conditions.
ž Adaptation triggering: The adaptation trigger

maps the monitored load value into a decision
to invoke, undo, or change the extent of content
degradation as appropriate.
ž Content adaptation: Once the trigger fires, indi-

cating a state of server overload or underutiliza-
tion, action is required to restore server load to
desired conditions, if possible.
We describe different implementations of the

above functions within the adaptation agent, their

T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577 1571

advantages and disadvantages, as well as their im-
pact on achievable server functionality.

4.1. The minimal adaptation agent

In the simplest case, the adaptation agent toggles,
depending on load conditions, between two content
trees; one for high quality content and one for de-
graded quality content. Its architecture is depicted in
Fig. 4. It implements an instance of a load monitor,
adaptation trigger and content adaptor as follows:
ž Load monitor: A simple way of deciding whether

or not the server is overloaded is to monitor
server’s response time. The adaptation agent pe-
riodically sends HTTP requests and measures the
corresponding response time. Measured response
time is proportional to the length of the server’s
input request queue (e.g., the server’s socket lis-
ten queue in a UNIX implementation). When the
server is underloaded the queue tends to be short
(or empty) resulting in small response times. At
overload the request queue overflows making the
response time grow an order of magnitude. This
approximately bimodal behavior of the queue has
been verified by our tests and can serve as a clear
overload indicator. The advantage of estimating
queue length by monitoring response time (rather
than, say, counting queued requests) is that such a
mechanism can be implemented outside the server
requiring no modification to its code.
ž Adaptation trigger: Adaptation is triggered

when measured server response time increases
beyond a precomputed threshold, Thresh. This
threshold can be set equal to (or slightly smaller
than) the maximum server response time speci-
fied in a QoS agreement, if any, thereby causing
adaptation when the agreement is about to be vi-
olated. In the absence of such a specification, the
threshold can be derived from the preconfigured
maximum input request queue length, Q (typi-
cally stored in a Web server configuration file),
and the average request service time, S. For ex-
ample, if we consider a 90% full queue to be
an overload indication, the trigger can be set to
Thresh D 0:9QS. The parameter S can be found
by benchmarking the server.
ž Content adaptor: Once the adaptation trigger

is fired, the adaptation agent switches transpar-

ently from the high quality service tree to the
degraded quality service tree in the root service
directory. Content trees are switched by chang-
ing directory links. For example, let the root
service directory be ‘/root’, let the high qual-
ity tree name be ‘/full_content’, and let the de-
graded quality tree name be ‘/degraded_content’.
The content adaptor creates a link from ‘/root’
to ‘/root/full_content’ to be used during normal
operation. At overload, it changes that link to
point to ‘/root/degraded_content’. Thus, when the
unmodified server accesses the same file name,
such as ‘/root/my_url.html’, it retrieves either
the file ‘/root/degraded_content/my_url.html’ or
the file ‘/root/full_content/my_url.html’ depend-
ing on load conditions.
Fig. 5 compares the performance of an adaptive

and non-adaptive servers by graphing the connection
error probability versus request rate. In this exper-
iment we generated requests for 64 K images at
an increasing rate. An adapted 8 K version of the
images was available in the degraded content tree.
As shown in the figure, the traditional server suffers
an increasing error rate when offered load exceeds
capacity at about 160 requests=s. In contrast, our
adaptive server switches to less resource-intensive
content thus exhibiting almost no errors up to about
3 times the above rate. In general, the extent of per-
formance improvement will depend on workload and
the type of adaptation techniques employed during
content pre-processing.

4.2. An enhanced adaptive server

While increasing maximum throughput, as shown
in Fig. 5, the above described adaptation solution
has some limitations. For example, it is not obvi-
ous when to switch back from degraded content to
high quality content, and the server may become
underutilized. Our measurements indicate that server
response time is not particularly indicative of the
degree of underutilization. The input request queue
tends to be identically small as long as the server
is operating below capacity. It is, therefore, diffi-
cult to tell whether or not reverting to high quality
content at a particular time will result in overload.
This limitation can be circumvented by measuring
the load on the server instead of server response

1572 T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577

Adapt.

Tree Tree
Full Content Degraded Content

Laod
Monitor

Content
Adaptor

Server
Web

Storage
Switch

Queue

Responses

Requests

Request

Trigger

Fig. 4. The minimal adaptive server.

time. The measurement should give an idea of how
underutilized the server or its communication link
is. When server=link utilization decreases below a
configurable value, the server may revert to non-
degraded content.

CPU utilization alone is an insufficient load met-
ric, since the bottleneck resource may be the com-
munication bandwidth and not the CPU. Depending
on the ratio of the platform’s CPU bandwidth to
the communication bandwidth a server may become
overloaded due to communication bandwidth satura-
tion at low CPU usage. Furthermore, the bottleneck

 No Adaptation
 Adaptation

|
0

|
100

|
200

|
300

|
400

|
500

|
600

|0

|20

|40

|60

|80

|100 |0 |100 |200 |300 |400 |500 |600

| 0

| 20

| 40

| 60

| 80

| 100

 Request Rate (req/s)

 P
er

ce
nt

ag
e

of
 C

on
ne

ct
io

n
Fa

ilu
re

s

 Request Rate (req/s)

 P
er

ce
nt

ag
e

of
 C

on
ne

ct
io

n
Fa

ilu
re

s

Fig. 5. Adaptation and connection failure probability.

resource can fluctuate between the CPU and the net-
work depending on the load mix. We observed on
our test platform that a large number of requests
for small objects tends to saturate the CPU while a
smaller number of requests for larger objects tends
to saturate the network.

We, therefore, developed two different mecha-
nisms for measuring the load on the bottleneck re-
source. The methods can be implemented at any
software layer where server requests and responses
are visible. For example, they can be implemented in
a process (possibly residing on a different machine)

T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577 1573

that listens to the Web server’s subnet in promiscu-
ous mode and observes all traffic to and from the
Web server. Alternatively, it can be implemented in a
middleware layer such as a socket library that trans-
parently performs server request rate and outgoing
bandwidth statistics in the read() and write() socket
library calls. These server utilization measurement
mechanisms are described in the following section.

4.2.1. Bottleneck resource utilization measurement
Measured bottleneck resource utilization should

reflect load by quantifying the consumed percent-
age of bottleneck resource capacity. We developed
two methods for measuring utilization that have the
aforementioned property.

(1) The linear approximation method: We have
established that bottleneck resource utilization, U ,
consumed by processing client requests can be gen-
erally approximated by a linear function of measured
request rate R, and delivered bandwidth, BW , such
that:

U D aR C bBW

where constants a and b can be computed by either
on-line or off-line profiling and regression analysis.
The function is good for estimating offered load as
long as it does not exceed server capacity. When
capacity is exceeded either due to communication
bandwidth saturation or CPU overload, the server
will spend most of its time either blocked on com-
munication I=O or busy with CPU execution. As
a results the input request queue (the server’s TCP
socket listen queue) overflows and some requests
are dropped. The dropped request rate consumes
resources but cannot be measured outside the OS
posing difficulty in measuring R accurately in the
above equation under overload. We, therefore, com-
bine the aforementioned linear approximation with
response time monitoring to determine the load on
the server. The idea is to separate out the overload
condition, and use the linear approximation only
when the server is underloaded. The combined uti-
lization measurement function is as follows:
ž If measured response time is above threshold

(overload) then let U D 100%;
ž If measured response time is below threshold (no

overload) then let U D aR C bBW
where U is the utilization of the bottleneck re-

source, which may be the communication link band-
width.One advantage of this method is that it is
easy to implement in middleware. We replace the
normal read() and write() socket library calls with
our augmented versions. These library routines run
in the context of each server process or thread, Tj ,
and record the observed request rate R j , delivered
bandwidth BW j , and computed utilization U j , then
write it periodically to the adaptation agent process,
e.g., via shared memory. The adaptation agent pro-
cess reads and sums up the recorded values to obtain
the aggregate request rate R, bandwidth BW , and
utilization U of the server. Access synchronization
to shared data structures is not required since there
is only one writer to any piece of recorded data.
The scheme can be implemented transparently to the
server with the help of an appropriately modified
socket library.

The method provides means for converting a de-
sired request rate and bandwidth into a correspond-
ing resource capacity allocation that can be used by
the adaptation agent to decide which tree to serve
content from. On the disadvantage side, it requires
computing the constants a and b via profiling.

(2) The gap estimation method: A simpler
method for estimating bottleneck resource utiliza-
tion is to increment, in middleware, a global counter
upon every request arrival and decrement it upon
every response departure. Essentially, the counter
keeps track of the number of requests being served
concurrently at any given time. The counter will
return to its initial (zero) value only when a gap
is present, i.e., when all current requests have been
served, and no additional requests have arrived yet.
The gap ends with the arrival of the next request.
The algorithm timestamps the beginning and end of
each gap. The counter and gap timestamps are main-
tained in shared memory accessible to the adaptation
agent. Gap beginning=end timestamps are used by
the adaptation agent to compute the total idle time,
G, in an observation period, T , where idle time is the
time where no requests were pending. Bottleneck re-
source utilization is estimated as U D .T �G/=T . It
is very important to note that this utilization includes
the time the server is blocked on I=O. For example, if
the communication link is the bottleneck, the server
will spend most of its time blocked, waiting for low
bandwidth TCP connections to complete the sending

1574 T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577

0

2

4

Time

Request
Service
Times

Number

Request 5

of Pending
Requests0

2

4

Busy Busy

Gap Gap Gap

Request 1

Request 2

Request 3

Request 4

Fig. 6. Measuring utilization via gap estimation.

of response data. Since this waiting time occurs be-
tween request arrival and completion of response, it
will be counted towards ‘busy time’ in our utilization
measurements. Thus the utilization can reflect over-
load of the bottleneck resource even when it’s not
the CPU. The method is illustrated in Fig. 6, which
shows concurrent processing of request bursts sep-
arated with idle time. The method does not require
a priori profiling, and does not require monitoring
response time. However, it has the disadvantage of
using a global counter that may be updated by multi-
ple writers and thus requires some form of locking or
access synchronization between server processes and
the adaptation agent process. Such synchronization
may offer a performance penalty.

4.2.2. Bottleneck resource utilization control
Adaptation software described so far implements

mechanisms for measuring server load that can be
used to toggle between two modes of operation; a
high quality delivered content mode, and a degraded
content mode. This bi-modal nature makes it im-
possible to achieve adequate server utilization when
adaptation takes place. When overload is detected
all client requests are adapted potentially making the
server underloaded. This effect is shown in Fig. 7
by comparing the delivered bandwidth of our server
to that of a non-adaptive server for different re-
quests rates. Requests were for 64 KB URLs, whose
adapted version was only 8 KB. Each data point in
this figure represents a separate experiment where
the two servers were subjected to a fixed request
rate (indicated on the horizontal axis) for a fixed
time duration (2 minutes). The delivered bandwidth
of each server was then averaged over the duration

of the experiment and plotted for the correspond-
ing request rate. Note that the average bandwidth
delivered by our server is much lower than that of
the non-adaptive server at higher request rates. This
is due to adaptation by switching to less resource-
intensive content. Adaptation is triggered at slightly
different times within each experiment (typically af-
ter 2–5 seconds from the start) which explains why
the lower curve is not smooth. (It includes slightly
different fractions of unadapted traffic at different
data points.) Finally, note that starting at about 460
req=s even the adapted content saturates the machine,
as noted by the decline in the delivered bandwidth
of the adaptive server after 460 req=s. Compare
this figure to Fig. 5 which shows the percentage
of failed requests for each server during the same
experiments. It can be seen that while the adaptive
server continues to serve all requests successfully
until a much higher rate, it delivers less aggregate
bandwidth thus underutilizing resources.

We would like to avoid overload without underuti-
lizing the server. Our approach to achieve this goal is
to degrade only a fraction (rather than the entire pop-
ulation) of clients. The fraction can range anywhere
from ‘no clients degraded’ to ‘all clients degraded’.
It is determined by a utilization control loop that reg-
ulates automatically the number of clients degraded
so that the desired server utilization is achieved. We
used a simple PI controller to stabilize the utilization
control loop. The set point of the control loop is the
desired server utilization. The controller compares
this set point to the measured utilization and out-
puts a number G in the range [0,1] that controls the
fraction of all clients to be degraded. The transfer
function of the controller and its tuning approach

T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577 1575

 No Adaptation
 Bi-modal Adaptation

|
100

|
200

|
300

|
400

|
500

|
600

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100 |100 |200 |300 |400 |500 |600

| 0

| 10

| 20

| 30

| 40

| 50

| 60

| 70

| 80

| 90

| 100

 Request Rate (req/s)

 D
el

iv
er

ed
 B

W
 (

M
b/

s)
 Request Rate (req/s)

 D
el

iv
er

ed
 B

W
 (

M
b/

s)

Fig. 7. Server underutilization.

are omitted for space limitations. The reader may
consult a standard controller tuning reference. The
controller is implemented in the adaptation agent
process. It is executed periodically and its output,
G, is written into shared memory. When a server
invokes the read() socket library call to receive the
next request, the call will inspect the current value of
G to decide which content tree the request should be
served from. The URL name in the request header
is then prepended by the corresponding tree name
forming the actual URL name the server will serve.
This mechanism subsumes symbolic link manipula-
tion described in Section 4.1. It is more flexible in
that it allows serving different requests concurrently
from different content trees. Below, we present two
different ways to choose a content tree for each
request in accordance with controller output, G:
ž Random (with uniform distribution): Upon the

arrival of each request a random number N is gen-
erated with uniform distribution in the range [0,1].
If N > G the requested URL will be appended by
the high quality tree name ‘/full_content’. Other-
wise it will be appended by ‘/degraded_content’.

Thus, N determines which tree the client is served
from. Since N has uniform distribution, G% of
all requests will be degraded. From the client’s
perspective this method may result in fluctua-
tions between good and degraded content over
the duration of the client’s session, as the quality
of content is determined independently for each
request in the session using a random function.
Such fluctuations may be distracting. It may be
more desirable to be consistent in the quality of
content presented to a given client.
ž Client-identifier hashing: A client can be identi-

fied using a cookie, or an IP address. A hashing
function h./ is applied to the client’s identifier
that transforms it into the number N in the range
[0,1]. As before if N > G the requested URL
will be appended by the high quality tree name
‘/full_content’. Otherwise it will be appended by
‘/degraded_content’. This method provides a con-
sistent quality of content for each client access-
ing the virtual server since each client is always
hashed into the same number. As long as the
load on the server does not change all requests

1576 T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577

 Achieved Utilization
 Desired Utilization

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|
80

|
90

|
100

|
110

|
120

|
130

|0.0

|0.1

|0.2

|0.3

|0.4

|0.5

|0.6

|0.7

|0.8

|0.9

|1.0 |0 |10 |20 |30 |40 |50 |60 |70 |80 |90 |100 |110 |120 |130

| 0.0

| 0.1

| 0.2

| 0.3

| 0.4

| 0.5

| 0.6

| 0.7

| 0.8

| 0.9

| 1.0

 Time (sec)

 G
, U

 Time (sec)

 G
, U

Fig. 8. Utilization control performance.

of a given client will always be served from the
same content tree. The method does not guarantee
that G% of the requests will be degraded but it
does ensure that when G increases the percentage
of degraded clients will monotonically increase
which is the condition needed for the self-regu-
lating action of the PI controller to stabilize the
control loop.
Fig. 8 depicts the achieved utilization of a server

that uses our utilization measurement and control
mechanisms. The degree of degradation is managed
by the PI controller. In this experiment, the re-
quest rate on the server was increased suddenly, at
t ime D 13, from zero to a rate that offers a load
equivalent to 300% of server capacity. Such a sud-
den load change is much more difficult to deal with
than small incremental changes, thereby stress-test-
ing the responsiveness of our control loop. The target
utilization, Ut, was chosen to be 85%. As shown
in Fig. 8, the controller was successful in finding
the right degree of degradation such that measured
server utilization remains successfully around the
target for the duration of the experiment. The exper-
iment demonstrates the responsiveness and efficacy
of the utilization control loop.

5. Conclusions

In this paper we evaluated the potential for con-
tent adaptation on the Web and presented a solu-

tion to the Web server overload problem that relies
on adapting delivered content. Unlike present day
non-adaptive servers, and unlike servers that imple-
ment admission control, content adaptation enables
a server to continue providing less resource-inten-
sive service to all clients during overload periods.
No modifications to existing server software is re-
quired, and adequate potential is demonstrated for
automating adaptation techniques to create degraded
content at minimal or no additional cost to the con-
tent provider. The expected resource savings may be
significant as suggested by an 80 site Web survey. In
this paper we report measurements using the HTTP
1.0 protocol version. It should be interesting to see
how persistent connections in HTTP 1.1 affect our
results. Sending small objects in bulk may achieve
high performance gains. More measurements are re-
quired to assess the potential of this approach.

References

[1] T. Abdelzaher and N. Bhatti, Adaptive content delivery for
Web server QoS, submitted to International Workshop on
Quality of Service, London, UK, May 1999.

[2] D. Andersen and T. McCune, Towards a hierarchical
scheduling system for distributed WWW server clusters,
in: Proc. of the 7th International Symposium on High Per-
formance Distributed Computing, Chicago, IL, July 1998.

[3] G. Banga, P. Druschel and J.C. Mogul, Resource contain-
ers: A new facility for resource management in server
systems, in: 3rd Symposium on Operating Systems Design
and Implementation, New Orleans, LA, February 1999.

T.F. Abdelzaher, N. Bhatti / Computer Networks 31 (1999) 1563–1577 1577

[4] M. Colajanni, P.S. Yu and D.M. Dias, Scheduling algo-
rithms for distributed Web servers, in: Proc. of the 17th
International Conference on Distributed Computing Sys-
tems, pp. 169–176, Baltimore, MD, May 1997.

[5] M. Colajanni, P.S. Yu, V. Cardellini, M.P. Papazoglou,
M. Takizawa, B. Kramer and S. Chanson, Dynamic load
balancing in geographically distributed heterogeneous Web
servers, in: Proc. of the 18th International Conference on
Distributed Computing Systems, pp. 295–302, Amsterdam,
Netherlands, May 1998.

[6] P. Druschel and Gaurav Banga, Lazy Receiver Process-
ing (LRP): A network subsystem architecture for server
systems, in: OSDI ’96, Seattle, Washington, October 1996.

[7] R.S. Engelschall, Balancing your Web site. Practical ap-
proaches for distributing HTTP traffic, WEB-Techniques
3(5) (1998) 45–52.

[8] R.T. Fielding and G. Kaiser, The Apache HTTP Server
Project, IEEE-Internet-Computing 1(4) (1997) 88–90.

[9] A. Fox, S.D. Gribble, E.A. Brewer and E. Amir, Adapting
to network and client variability via on-demand dynamic
distillation, in: Proc. of the 7th ACM Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, Cambridge, MA, October 1996.

[10] A. Iyengar, E. MacNair and T. Nguyen, An analysis of Web
server performance, GLOBECOM, Vol. 3, pp. 1943–1947,
Phoenix, AZ, November 1997.

[11] J. Mogul and K.K. Ramakrishnan, Eliminating receive live-
lock in an interrupt-driven kernel, in: USENIX ’96, San
Diego, CA, January 1996.

[12] J. Mogul and K.K. Ramakrishnan, Eliminating receive live-
lock in an interrupt-driven kernel, ACM Transactions on
Computer Systems 15(3) (1997) 217–252.

[13] A. Mourad, Huiqun-Liu, Scalable Web server architectures,
in: Proc. of the 2nd IEEE Symposium on Computer and
Communications, pp. 12–16, Alexandria, Egypt, July 1997.

[14] S. Schechter, M. Krishnan and M.D. Smith, Using path
profiles to predict HTTP requests, in: Proc. of the 7th

International World Wide Web Conference, pp. 457–467,
Brisbane, Qld, Australia, April 1998.

[15] A. Vahadat, T. Anderson, M. Dahlin, E. Belani, D. Culler, P.
Eastham, C. Yoshikawa, WebOS: operating system services
for wide area applications, in: Proc. of the 7th International
Symposium on High Performance Distributed Computing,
Chicago, IL, July 1998.

Tarek Abdelzaher received his
B.Sc. and M.Sc. degrees in Electri-
cal and Computer Engineering from
Ain Shams University, Cairo, Egypt,
in 1990 and 1994. Since 1994 he
has been a Ph.D. student and re-
search assistant in the Department
of Electrical Engineering and Com-
puter Science, at the University of
Michigan. His research interests are
in the field of QoS-provisioning,
Web server design, multimedia, and

real-time computing. He is a recipient of the Distinguished Stu-
dent Achievement Award in Computer Science and Engineering
and a member of the IEEE Computer Society.

Nina Bhatti received her A.B. de-
gree in Computer Science and Pure
Mathematics from the University of
California, Berkeley in 1985, and her
M.Sc. and Ph.D. from the Univer-
sity of Arizona, in 1990 and 1996.
Since 1996 she has been a researcher
at Hewlett–Packard Laboratories in
Palo Alto, California. Her primary
research interests are Web servers,
Internet services, quality of service,
communication protocols, and dis-

tributed systems. Nina Bhatti is a member of IEEE and ACM.

