
~ The International Journal of Time-Critical Computing Systems, 16, 127-153 (1999)
ft © 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

ARMADA Middleware and Communication
Services *
T. ABDELZAHER

S.DAWSON

w'-C.FENG

EJAHANIAN

S.JOHNSON

A.MEHRA

T.MITTON

A. SHAIKH

K. SHIN

Z.WANG

H.ZOU

M. BJORKLAND

P.MARRON
Real-Time Computing Laboratory, Department of Electrical Engineering and Computer Science, The University
of Michigan, Ann Arbor, MI48109-2122, USA

Abstract. Real-time embedded systems have evolved during the past several decades from small custom­
designed digital hardware to large distributed processing systems. As these systems become more complex,
their interoperability, evolvability and cost-effectiveness requirements motivate the use of commercial-off-the­
shelf components. This raises the challenge of constructing dependable and predictable real-time services for
application developers on top of the inexpensive hardware and software components which has minimal support
for timeliness and dependability guarantees. We are addressing this challenge in the ARMADA project.

ARMADA is set of communication and middleware services that provide support for fault-tolerance and end-to­
end guarantees for embedded real-time distributed applications. Since real-time performance of such applications
depends heavily on the communication subsystem, the first thrust of the project is to develop a predictable
communication service and architecture to ensure QoS-sensitive message delivery. Fault-tolerance is of paramount
importance to embedded safety-critical systems. In its second thrust, ARMADA aims to offload the complexity
of developing fault-tolerant applications from the application programmer by focusing on a collection of modular,
composable middleware for fault-tolerant group communication and replication under timing constraints. Finally,
we develop tools for testing and validating the behavior of our services. We give an overview of the ARMADA
project, describing the architecture and presenting its implementation status.

Keywords: distributed real-time systems, communication protocols, fault-tolerant systems

1. Introduction

ARMADA is a collaborative project between the Real-Time Computing Laboratory (RTCL)
at the University of Michigan and the Honeywell Technology Center. The goal of the
project is to develop and demonstrate an integrated set of communication and middleware

* This work is supported in part by a research grant from the Defense Advanced Research Projects Agency,
monitored by the U.S. Air Force Rome Laboratory under Grant F30602-95-1-0044.

1

128 ABDELZAHER ET AL.

services and tools necessary to realize embedded fault-tolerant and real-time services on
distributed, evolving computing platforms. These techniques and tools together compose
an environment of capabilities for designing, implementing, modifying, and integrating
real-time distributed systems. Key challenges addressed by the ARMADA project include:
timely delivery of services with end-to-end soft/hard real-time constraints; dependability
of services in the presence of hardware or software failures; scalability of computation
and communication resources; and exploitation of open systems and emerging standards in
operating systems and communication services.

ARMADA communication and middleware services are motivated by the requirements
of large embedded applications such as command and control, automated flight, shipboard
computing, and radar data processing. Traditionally, such embedded applications have
been constructed from special-purpose hardware and software. This approach results in
high production cost and poor interoperability making the system less evolvable and more
prone to local failures. A recent trend, therefore, has been to build embedded systems
using Commercial-Off-The-Shelf (COTS) components such as PC boards, Ethernet links,
and PC-based real-time operating systems. This makes it possible to take advantage of
available development tools, leverage on mass production costs, and make better use of
component interoperability. From a real-time application developer's point of view, the
approach creates the need for generic high-level software services that facilitate building
embedded distributed real-time applications on top of inexpensive widely available hard­
ware. Real-time operating systems typically implement elementary subsets of real-time
services. However, monolithically embedding higher-level support in an operating system
kernel is not advisable. Different applications have different real-time and fault-tolerance
requirements. Thus, catering to all possible requirement ranges in a single operating sys­
tem would neither be practical nor efficient. Instead, we believe that a compos able set
of services should be developed of which only a subset may need to exist for any given
application. This philosophy advocates the use of a real-time microkernel equipped with
basic real-time support such as priority-based scheduling and real-time communication, in
addition to a reconfigurable set of compos able middleware layered on top of the kernel. Ap­
propriate testing and validation tools should be independently developed to verify required
timeliness and fault-tolerance properties ofthe distributed middleware.

The ARMADA project is therefore divided into three complementary thrust areas: (i)
low-level real-time communication support, (ii) middleware services for group communi­
cation and fault-tolerance, and (iii) dependability evaluation and validation tools. Figure 1
summarizes the structuring of the ARMADA environment.

The first thrust focused on the design and development of real-time communication ser­
vices for a microkernel. A generic architecture is introduced for designing the communi­
cation subsystem on hosts so that predictability and QoS guarantees are maintained. The
architecture is independent of the particular communication service. It is illustrated in
this paper in the context of presenting the design of the real-time channel; a low-level
communication service that implements a simplex, ordered virtual connection between
two networked hosts that provides deterministic or statistical end-to-end delay guarantees
between a sender-receiver pair.

The second thrust of the project has focused on a collection of modular and composable
middleware services (or building blocks) for constructing embedded applications. A lay-

2

ARMADA MIDDLEWARE AND COMMUNICATION SERVICES

Microkcrncl

Figure I. Overview of ARMADA Environment.

APPLICA nONS

REAL-TIME
CHAN ELS

129

ered open-architecture supports modular insertion of a new service or implementation as
requirements evolve over the life-span of a system. The ARMADA middleware services
include a suite of fault-tolerant group communication services with real-time guarantees,
called RTCAST, to support embedded applications with fault-tolerance and timeliness re­
quirements. RTCAST consists of a collection of middleware including a group membership
service, a timed atomic multicast service, an admission control and schedulability module,
and a clock synchronization service. The ARMADA middleware services also include
a real-time primary-backup replication service, called RTPB, which ensures temporally
consistent replicated objects on redundant nodes.

The third thrust of the project is to build a toolset for validating and evaluating the
timeliness and fault-tolerance capabilities of the target system. Tools under development
include fault injectors at different levels (e.g. operating system, communication protocol,
and application), a synthetic real-time workload generator, and a dependability/performance
monitoring and visualization tool. The focus of the toolset research is on portability,
flexibility, and usability.

Figure 2 gives an overview of a prospective application to illustrate the utility of our
services for embedded real-time fault-tolerant systems. The application, developed at
Honeywell, is a subset of a command and control facility. Consider a radar installation
where a set of sensors are used to detect incoming threats (e.g., enemy planes or missiles in
a battle scenario); hypotheses are formed regarding the identity and positions of the threats,
and their flight trajectories are computed accordingly. These trajectories are extrapolated
into the future and deadlines are imposed to intercept them. The time intervals during
which the estimated threat trajectories are reachable from various ground defense bases
are estimated; and appropriate resources (weapons) are committed to handle the threats ;
eventually, the weapons are released to intercept the threats.

3

130 ABDELZAHER ET AL.

I~ ~ ~ ~I =-=
Sensory Input leo ~1~1:p},~I~ 1

Weapon
Release

Risk
oplrilPz'ition I Hypothesis Assessment

Testing and
t I I Threat

IdentificatioD

~ ~ 1
Plotting I Trajectory I Terrain Masking

Extrapolation

r
I Surveillance I I_T~~ Intelligence

Estimation
II.",. _II

I
-J Computing l .

. 1 Accessibility I Weapon

. 1 from Bases Assignment
and Scheduling

I Compute I
Weap~~Base

POSItIons

Figure 2. A command and control application

The services required to support writing such applications come naturally from their oper­
ating requirements. For example, for the anticipated system load, communication between
different system components (the different boxes in Figure 2) must occur in bounded time
to ensure a bounded end-to-end response from threat detection to weapon release. Our
real-time communication services compute and enforce predictable deterministic bounds
on message delays given application traffic specification. Critical system components such
as hypothesis testing and threat identification have high dependability requirements which
are best met using active replication. For such components, RTCAST exports multicast and
membership primitives to facilitate fault detection, fault handling, and consistency manage­
ment of actively replicated tasks. Similarly, extrapolated trajectories of identified threats
represent critical system state. A backup of such state needs to be maintained continually
and updated to represent the current state within a tolerable consistency (or error) margin.
Our primary-backup replication service is implemented to meet such temporal consistency
requirements. Finally, our testing tools decrease development and debugging costs of the
distributed application.

The rest of this paper is organized as follows. Section 2 describes the general approach
for integrating ARMADA services into a microkemel framework. It also presents the
experimental testbed and implementation environment of this project. The subsequent
sections focus on the architecture, design, and implementation of key communication and
middleware services in ARMADA. Section 3 introduces real-time communication service.
Section 4 presents the RTCAST suite of group communication and fault-tolerance services.

4

ARMADA MIDDLEWARE AND COMMUNICATION SERVICES 131

Section 5 describes the RTPB (real-time primary-backup) replication service. Section 6
briefly discusses the dependability evaluation and validation tools developed in this project.
Section 7 concludes the paper.

2. Platform

The services developed in the context of the ARMADA project are to augment the es­
sential capabilities of a real-time microkernel by introducing a composable collection of
communication, fault-tolerance, and testing tools to provide an integrated framework for
developing and executing real-time applications. Most of these tools are implemented as
separate multithreaded servers. Below we describe the experimental testbed and imple­
mentation environment common to the aforementioned services. A detailed description of
the implementation approach adopted for various services will be given in the context of
each particular service.

2.1. General Service Implementation Approach

One common aspect of different middleware services in a distributed real-time system
is their need to use intermachine communication. All ARMADA services either include
or are layered on top of a communication layer which provides the features required for
correct operation of the service and its clients. For example, RTCAST implements com­
munication protocols to perform multicast and integrate failure detection and handling into
the communication subsystem. Similarly, the Real-Time Channels service implements its
own signaling and data transfer protocols to reserve resources and transmit real-time data
along a communication path. Since communication seemed to warrant particular attention
in the context of this project, we developed a generic real-time communication subsys­
tem architecture. The architecture can be viewed as a way of structuring the design of
communication-oriented services for predictability, as opposed to being a service in itself.
This architecture is described in detail in Section 3 and is illustrated by an example ser­
vice: the Real-Time Channel. ARMADA communication services are generally layered
on top of IP, or UDPIIP. We do not use TCP because its main focus is reliability as opposed
to predictability and timeliness. Real-time communication protocols, on the other hand,
should be sensitive to timeliness guarantees, perhaps overriding the reliability requirement.
For example, in video conferencing and process control, occasional loss of individual data
items is preferred to receiving reliable streams of stale data. To facilitate the development of
communication-oriented services, our communication subsystem is implemented using the
x-kernel object-oriented networking framework originally developed at the University of
Arizona (Hutchinson and Peterson, 1991), with extensions for controlled allocation of sys­
tem resources (Travostino, Menze and Reynolds, 1996). The advantage of using x-kernel
is the ease of composing protocol stacks. An x-kernel communication subsystem is imple­
mented as a configurable graph of protocol objects. It allows easy reconfiguration of the
protocol stack by adding or removing protocols. More details on the x-kernel can be found
in (Hutchinson and Peterson, 1991).

Following a microkernel philosophy, argued for in Section 1, our services are designed
as user-level multithreaded servers. Clients of the service are separate processes that com-

5

132 ABDELZAHER ET AL

municate with the server via the kernel using a user library. The library exports the desired
middleware API. Communication-oriented services generally implement their own protocol
stack that lies on top of the kernel-level communication driver. The x -kernel framework per­
mits migration of multithreaded protocol stack execution into the operating system kernel.
We use this feature to implement server co-location into the microkernel. Such co-location
improves performance by eliminating extra context switches. Note that the advantages of
server co-location do not defeat the purpose of choosing a microkernel over a monolithic op­
erating system for a development platform. This is because with a microkernel co-located
servers (i) can be developed in user space which greatly reduces their development and
maintenance cost, and (ii) can be selectively included, when needed, into the kernel in
accordance with the application requirements; this is both more efficient and more sensitive
to particular application needs.

The microkernel has to support kernel threads. The priority of threads executing in kernel
space is, by default, higher than that of threads executing in user space. As a result, threads
run in a much more predictable manner, and the service does not get starved under overload.
Furthermore, the in-kernel implementation of x-kernel on our platform replaces some of
the threads in the device driver by code running in interrupt context. This feature reduces
communication latencies and makes the server less preemptable when migrated into the
microkernel. However, since code executing in interrupt context is kept to a minimum, the
reduction in preeptability has not been a concern in our experiences with co-located code.

Figure 3-a and 3-b illustrate the configurations of user-level servers and co-located servers
respectively. An example of server migration into the kernel is given in the context of the
RTCAST service in Section 4. The RTCAST server was developed in user space (as in
Figure 3-a), then reconfigured to be integrated the into the kernel (as in Figure 3-b). Whether
the server runs in user space or is co-located in the microkernel, client processes use the
same service API to communicate with it. If the service is co-located in the kernel, an
extra context switch to/from a user-level server process is saved. Automatically-generated
stubs interface the user library (implementing the service API) to the microkernel or the
server process. These stubs hide the details of the kernel's local communication mechanism
from the programmer of the real-time service, thus making service code independent from
specifics of the underlying microkernel.

2.2. Testbed and Implementation Environment

In the following sections we describe the implementation of each individual service. To
provide a common context for that description, we outline here the specifics of the under­
lying implementation platform. Our testbed comprises several Pentium-based PCs (133
MHz) connected by a Cisco 2900 Ethernet switch (10/100 Mb/s), with each PC connected
to the switch via 10 Mb/s Ethernet. We have chosen the MK 7.2 microkernel operating
system from the Open Group (OG)1 Research Institute to provide the essential underlying
real-time support for our services. The MK microkernel is originally based on release 2.5
of the Mach operating system from CMU. While not a full-fledged real-time OS, MK 7.2
supports kernel threads, priority-based scheduling, and includes several important features
that facilitate provision of QoS guarantees. For example, MK 7.2 supports x-kernel and
provides a unified framework for allocation and management of communication resources.

6

ARMADA MIDDLEWARE AND COMMUNICATION SERVICES

user

Application

Library
Stub

Microkernel

network

Server
(and protocol slack)

00
, , , ,

I I ,
-1"" I I

r I

Application

Library
Stub
f

,
'--

(a) User-level server configuration

Figure 3. Service implementation.

Application Application

Library Library
Stub Stub

user
;, ~.

Mlcrokernel ~ Colocated
Server

I

I
device driver

network

(b) Co-located server

133

This framework, known as CORDS (Communication Objects for Real-time Dependable
Systems) (Travostino, Menze and Reynolds, 1996), was found particularly useful for im­
plementing real-time communication services. Our implementation approach has been to
utilize the functionality and facilities provided in OG's environment and augment it with
our own support when necessary.

From the standpoint of portability, although MK7.2 is a research operating system,
CORDS support is also available on more mainstream operating systems such as Win­
dows NT. Thus, our software developed for the CORDS environment can easily be ported
to NT. In fact, such port is currently underway. Porting to other operating systems, such
as Linux, is more difficult. At the time the presented services were developed Linux did
not support kernel threads. Thus, it was impossible to implement multithreaded protocol
stacks inside the Linux kernel. Linux 2.2, however, is expected to have full thread support.
CORDS support may be replaced by appropriate packet filters to classify incoming traffic.
Thus, with some modifications, our services may be ported to future versions of Linux, as
well as other multithreaded operating systems such as Solaris,

3. ARMADA Real-Time Communication Architecture

ARMADA provides applications with a communication architecture and service with which
they can request and utilize guaranteed-QoS connections between two hosts. In this section,
we hilight the architectural components of the communication service that, together with a
set of user-specified policies, can implement several real-time communication models.

Common to QoS-sensitive communication service models are the following three archi­
tectural requirements: (i) performance isolation between connections or sets of connections
such that malicious behavior or overload of one does not starve resources of the other(s),

7

134 ABDELZAHER ET AL.

(ii) service differentiation, such as assigning different priorities to connections or classes
of connections, and (iii) graceful degradation in the presence of overload. We developed
a Communication Library for Implementing Priority Semantics (CLIPS), that provides
resource-management mechanisms to satisfy the aforementioned requirements. It exports
the abstraction of guaranteed-rate communication endpoints. The endpoint, called a clip,
guarantees a certain throughput in terms of the number of packets sent via it per period,
and implements a configurable buffer to accommodate bursty sources. One or more con­
nections (or sockets) may be "bound" to the same clip, in which case the clip sets aside
enough processor bandwidth and memory resources on the end-system to guarantee an
aggregate specified throughput for the entire connection set. Different clips may have dif­
ferent priorities to allow higher priority traffic to proceed first under overload conditions.
For example, traffic of a particular application or middleware service can be bound to a
high priority clip, thereby allowing that application or service to receive precedence over
other services. Each clip has an associated deadline parameter. The deadline specifies the
maximum communication subsystem response time for handling packets via the particular
clip. The CLIPS library implements a traffic policing mechanism, as well as its own default
admission control policy that can be disabled to revert to pure priority-driven scheduling or
overridden by a user-specified alternate admission control policy. More details on CLIPS
will be given below as we present the ARMADA real-time communication service we
developed for unicast communication.

3.1. Real-time Communication Service

We have used CLIPS to implement a guaranteed-QoS communication service called the
real-time channel (Ferrari and Yerman, 1990), (Kandlur, Shin and Ferrari, 1994). A real­
time channel is a unicast virtual connection between a source and destination host with
associated performance guarantees on message delay and available bandwidth. It satisfies
three primary architectural requirements for guaranteed-QoS communication (Mehra, In­
diresan and Shin, 1996): (i) maintenance of per-connection QoS guarantees, (ii) overload
protection via per-connection traffic enforcement, and (iii) fairness to best-effort traffic.
Real-time communication via real-time channels is performed in three phases. in the first
phase, the source host S (sender) creates a channel to the destination host D (receiver) by
specifying the channel's traffic parameters and QoS requirements. Signaling requests are
sent from S to D via one or more intermediate (I) nodes; replies are delivered in the reverse
direction from D to S. If successfully established, S can send messages on this channel to D;
this constitutes the second phase. When the sender is done using the channel, it must close
the channel (the third phase) so that resources allocated to this channel can be released.

Figure 4 illustrates the high-level software architecture of our guaranteed-QoS service at
end-hosts. The core functionality of the communication service is realized via three distinct
components that interact to provide guaranteed-QoS communication. Applications use the
service via the real-time communication application programming interface (RTC API);
RTCOP coordinates end-to-end signaling for resource reservation and reclamation during
connection set-up or tear-down; and CLIPS performs run-time management of resources for
QoS-sensitive data transfer. Since platform-specific overheads must be characterized before
QoS guarantees can be ensured, an execution profiling component is added to measure and

8

ARMADA MIDDLEWARE AND COMMUNICATION SERVICES 135

APPLICATIONS

VIDEO AT CONTROL AUDIO

Figure 4. Real-time communication service architecture: Our implementation consists of four primary ar­
chitectural components: an application programming interface (RTC API), a signaling and resource reservation
protocol (RTCOP), support for resource management and run-time data transfer (CLIPS), and execution profiling
support. Dashed lines indicate interactions on the control path while the data path is denoted by the solid lines.

parameterize the overheads incurred by the communication service on a particular platform,
and make these parameters available for admission control decisions. The control path taken
through the architecture during connection setup is shown in Figure 4 as dashed lines. Data
is then transferred via RTC API and CLIPS as indicated by the solid lines. Below, we
discuss the salient features of each architectural component of the service along with its
interaction with other components to provide QoS guarantees. We also describe how the
components are used to realize a particular service model.

3.2. RTC Application Inteiface

The programming interface exported to applications comprises routines for connection
establishment and teardown, message transmission and reception during data transfer on
established connections, and initialization and support routines. Table 1 lists some of the
main routines currently available in RTC API. The API has two parts: a top half that
interfaces to applications and is responsible for validating application requests and creating
internal state, and a bottom half which interfaces to RTCOP for signaling (i.e., connection
setup and teardown), and to CLIPS for QoS-sensitive data transfer.

The design of RTC API is based in large part on the well-known socket API in BSD
Unix. Each connection endpoint is a pair (IPaddr, port) formed by the IP address
of the host (IPaddr) and an unsigned 16-bit port (port) unique on the host, similar to
an INET domain socket endpoint. In addition to unique endpoints for data transfer, an
application may use several endpoints to receive signaling requests from other applications.
Applications willing to be receivers of real-time traffic register their signaling ports with

9

136 ABDELZAHER ET AL

Table 1. Routines comprising RTC API: This table shows the utility, signaling, and data transfer functions
that constitute the application interface. The table shows each function name, its parameters, the endpoint
that invokes it, and a brief description of the operation perfonned.

Routines Parameters Invoked By Function Performed

rtclnit none both service initialization

rtcGetParameter chan id, param type both query parameter on specified
real-time connection

rtcRegisterPort localport,agentfunction receiver register local port and
agent for signaling

rtcUnRegisterPort local port receiver unregister local signaling port

rtcCreateConnection remote host/port, QoS: sender create connection with given
max rate, max burst size parameters to remote
max msg size, max delay endpoint; return connection id

rtcAcceptConnection local port, chan id, receiver obtain the next connection
remote host/port already established at

specified local port

rtcDestroyConnection chan id sender destroy specified real-time
connection

rtcSendMessage chan id, buf ptr sender send message on specified
real-time connection

rtcRecvMessage chand id, buf ptr receiver receive message on specified
real-time connection

a name service or use well-known ports. Applications wishing to create connections must
first locate the corresponding receiver endpoints before signaling can be initiated.

Each of the signaling and data transfer routines in Table 1 has its counterpart in the socket
API. For example, the routine rtcRegisterPort corresponds to the invocation of bind
and listen in succession, and rtcAcceptConnection corresponds to accept. Simi­
larly, the routines rtcCreateConnection and rtcDestroyConnection correspond
to connect and close, respectively.

The key aspect which distinguishes RTC API from the socket API is that the receiving
application explicitly approves connection establishment and teardown. When registering
its intent to receive signaling requests, the application specifies an agent function that is
invoked in response to connection requests. This function, implemented by the receiving
application, determines whether sufficient application-level resources are available for the
connection and, if so, reserves necessary resources (e.g., CPU capacity, buffers, etc.) for
the new connection. It may also perform authentication checks based on the requesting
endpoint specified in the signaling request. This is unlike the establishment of a TCP
connection, for example, which is completely transparent to the peer applications.

10

ARMADA MIDDLEWARE AND COMMUNICATION SERVICES 137

REAL-TIME COMMUNICATION API
REAL-TIME COMMUNICATION API J

messages!.
CLIPS

Passive resources

tragm/ 1""'-- J comm. threads

RTCQP g CPU allocation

H JH ~.m J LOWER comm. thread resource
PROTOCOL 8chedLder Interface

LAYERS V
Link allocation

packets 1
link scheduler

J
b'ansmission/reception

DEVICE DRIVER J
I

NETWORK J

(a) RTCOP structure (b) CLIPS structure

Figure 5. Internal structures and interfaces: In this figure we show the internal functional structure of RTCOP
and CLIPS along with their respective interfaces to other components. In (a), data and control paths are represented
with solid and dashed lines, respectively.

The QoS-parameters passed to rtcCreateConnection for connection establishment
describe a linear bounded arrival traffic generation process (Cruz, 1987, Anderson, et al.
1990). They specify a maximum message size (Smax bytes), maximum message rate (Rmax
messages/second), and maximum burst size (Bmax messages). Parameters Smax and Rmax
are used to create a clip with a corresponding guaranteed throughput. The burst size, Bmax,
determines the buffer size required for the clip_ In the following we describe the end-to-end
signaling phase that coordinates end-to-end resource reservation.

3.3. Signaling and Resource Reservation with RTCOP

Requests to create and destroy connections initiate the Real-Time Connection Ordination
Protocol (RTCOP), a distributed end-to-end signaling protocol. As illustrated in Figure 5(a),
RTCOP is composed primarily of two relatively independent modules. The request and
reply handlers manage signaling state and interface to the admission control policy, and the
communication module handles the tasks of reliably forwarding signaling messages. This
separation allows simpler replacement of admission control policies or connection state
management algorithms without affecting communication functions. Note that signaling
and connection establishment are non-real-time (but reliable) functions. QoS guarantees ap­
ply to the data sent on an established connection but signaling requests are sent as best-effort
traffic_

The request and reply handlers generate and process signaling messages, interface to
RTC API and CLIPS, and reserve and reclaim resources as needed_ When processing a
new signaling request, the request handler invokes a multi-step admission control procedure
to decide whether or not sufficient resources are available for the new request. As a new
connection request traverses each node of the route from source to destination, the request
handler invokes admission control which decides if the new connection can be locally

11

138 ABDELZAHER ET AL.

admitted. Upon successful admission, the handler passes the request on to the next hop.
When a connection is admitted at all nodes on the route, the reply handler at the destination
node reserves the required end-system resources by creating a clip for the new real-time
channel, and generates a positive acknowledgment on the reverse path to the source. As
the notification is received at each hop, the underlying network-level protocol commits
network resources, such as link bandwidth, using assumed local router support. When
the acknowledgement is received at the source the reply handler notifies the application of
connection establishment and creates the source clip.

The communication module handles the basic tasks of sending and receiving signaling
messages, as well as forwarding data packets to and from the applications. Most of the
protocol processing performed by the communication module is in the control path during
processing of signaling messages. In the data path it functions as a simple transport protocol,
forwarding data packets on behalf of applications, much like UDP. As noted earlier, signaling
messages are transported as best-effort traffic, but are delivered reliably using source-based
retransmissions. Reliable signaling ensures that a connection is considered established only
if connection state is successfully installed and sufficient resources reserved at all the nodes
along the route. The communication module implements duplicate suppression to ensure
that multiple reservations are not installed for the same connection establishment request.
Similar considerations apply to connection teardown where all nodes along the route must
release resources and free connection state. Consistent connection state management at all
nodes is an essential function of RTCOP.

RTCOP exports an interface to RTC API for specification of connection establishment
and teardown requests and replies, and selection of logical ports for connection endpoints.
The RTC API uses the latter to reserve a signaling port in response to a request from the
application, for example. RTCOP also interfaces to an underlying routing engine to query
an appropriate route before initiating signaling for a new connection. In general, the routing
engine should find a route that can support the desired QoS requirements. However, for
simplicity we use static (fixed) routes for connections since it suffices to demonstrate the
capabilities of our architecture and implementation.

3.4. CLIPS-based Resource Scheduling for Data Transfer

CLIPS implements the necessary end-system resource-management mechanisms to realize
QoS-sensitive real-time data transfer on an established connection. A separate clip is created
for each of the two endpoints of a real-time channel. Internal to each clip is a message queue
to buffer messages generated or received on the corresponding channel, a communication
handler thread to process these messages, and a packet queue to stage packets waiting
to be transmitted or received. The CLIPS library implements on the end-system the key
functional components illustrated in Figure 5(b).
QoS-sensitive CPU scheduling: The communication handler thread of a clip executes
in a continuous loop either dequeuing outgoing messages from the clip's message queue
and fragmenting them (at the source host), or dequeuing incoming packets from the clip's
packet queue and reassembling messages (at the destination host). Each message must
be sent within a given local delay bound (deadline). To achieve the best schedulable
utilization, communication handlers are scheduled based on an earliest-deadline-first (EDF)

12

ARMADA MIDDLEWARE AND COMMUNICATION SERVICES 139

policy. Since most operating systems do not provide EDF scheduling, CLIPS implements
it with a user-level scheduler layered on top of the operating system scheduler. The user­
level scheduler runs at a static priority and maintains a list of all threads registered with
it, sorted by increasing deadline. At any given time, the CLIPS scheduler blocks all of
the registered threads using kernel semaphores except the one with the earliest deadline,
which it considers in the running state. The running thread will be allowed to execute
until it explicitly terminates or yields using a primitive exported by CLIPS. The scheduler
then blocks the thread on a kernel semaphore and signals the thread with the next earliest
deadline. Preemption is implemented via a CLIPS primitive invoked upon sending each
packet. The primitive yields execution to a more urgent thread if one is pending. This
arrangement implements EDF scheduling within a single protection domain.
Resource reservatiou: Communication handlers (implemented by CLIPS) execute a user­
defined protocol stack, then return to CLIPS code after processing each message or packet.
Ideally, each clip should be assigned a CPU budget to prevent a communication client
from monopolizing the CPU. Since processor capacity reserves are not available on most
operating systems, the budget is indirectly expressed in terms of a maximum number of
packets to be processed within a given period. The handler blocks itself after processing
the maximum number of packets allowed within its stated time period.
Policing: Associating a budget with each connection handler facilitates traffic enforcement.
This is because a handler is scheduled for execution only when the budget is non-zero, and
the budget is not replenished until the next (periodic) invocation of the handler. This
mechanism ensures that misbehaving connections are policed to their traffic specification.
QoS-sensitive link bandwidth allocation: Modern operating systems typically implement
FIFO packet transmission over the communication link. While we cannot avoid FIFO
queuing in the kernel's network device, CLIPS implements a dynamic priority-based link
scheduler at the bottom of the user-level protocol stack to schedule outgoing packets in
a prioritized fashion. The link scheduler implements the EDF scheduling policy using a
priority heap for outgoing packets. To prevent a FIFO accumulation of outgoing packets
in the kernel (e.g., while the link is busy), the CLIPS link scheduler does not release a new
packet until it is notified of the completion of previous packet transmission. Best-effort
packets are maintained in a separate packet heap within the user-level link scheduler and
serviced at a lower priority than those on real-time clips.

Figure 6 demonstrate traffic policing, traffic isolation and performance differentiation in
real-time channels. A more detailed evaluation is found in (Mehra, Shaikh and Abdekaher,
1998).

4. RTCAST Group Communication Services

The previous section introduced the architecture of the ARMADA real-time communication
service. This architecture sets the ground for implementing real-time services with QoS­
sensitive communication. The second thrust of the project has focused on a collection of
such services, that provide modular and composable middleware for constructing embedded
applications. The ARMADA middleware can be divided into two relatively independent
suites of services:

• RTCAST group communication services, and

13

140

300 ~m~asu~~~P-ut-(Ch-')~~--""-------~ l
--measured throughput (ch 2) 1
tr - 6. specified throughput (ch 1)
'i}- - 'V specified throughput (ch 2) j 1200 !J~ !J-~~ ~ ~--~~~~~~~1

~ 150

" i j 100 ~
t!l I

250

5:_~ __ =~_L . __ ~_~~_~ _J
80 180 280 380 480 580

Offered load on channel 1 (KBIs)

(a) Isolation between real-time channels

ABDELZAHER ET AL.

300 :-- .~ -~ ~~-~-'~~~~~'l

l 0 --D RT channel 1 1
ir---{] RT chat1nel 2

250 !s- -D. BE channel 3

+~-OT~ocl
'"' /1
1001 /' !

! I
~(1

i'-----Lr------J-------Ll----t:r------------o- -- T
o~.~~~~~~-~~~ _~~._"~ .. _~~J 50 _ _ ~ ~ ~ _

Offered load on best-effort channel (KB/s)

(b) Isolation between best-effort and real-time

Figure 6. Traffic isolation: The left graph shows that real time channel I is policed to its traffic specification,
disallowing violation of that specification. Traffic on real-time channel 1 does not affect the QoS for the other
real-time channel 2. The right graph shows that increasing best~effort load does not interfere with real-time channel
throughput.

• RTPB real-time primary-back replication service.

This section presents the RTCAST suite of group communication and fault-tolerance ser­
vices. Section 5 describes the RTPB (real-time primary-backup) replication service.

4.1. RTCAST Protocols

The QoS-sensitive communication service described in Section 3 does not support multicast
channels. Multicast is important, e.g., for efficient data dissemination to a set of destinations,
or for maintaining replicated state in fault-tolerant systems. If consistency of replicated state
is desired, a membership algorithm is also needed. RTCAST complements aforementioned
unicast communication services by mulitcast and membership services for real-time fault­
tolerant applications. RTCAST is based around the process groups paradigm.

Process groups are a widely-studied paradigm for designing distributed systems in both
asynchronous (Birman, 1993), (Amir, et al., 1992), (van Renesse, Hickey and Birman, 1994),
(Mishra, Peterson and Schlichting, 1993) and synchronous (Hermann and Grtinsteidl, 1994),
(Amir, et al., 1995), (Christian, Dancy and Dehn, 1990) environments. In this approach, a
distributed system is structured as a group of cooperating processes which provide service
to the application. A process group may be used, for example, to provide active replication
of system state or to rapidly disseminate information from an application to a collection of
processes. Two key primitives for supporting process groups in a distributed environment
are fault-tolerant multicast communication and group membership. Coordination of a pro­
cess group must address several subtle issues including delivering messages to the group
in a reliable fashion, maintaining consistent views of group membership, and detecting and
handling process or communication failures. If multicast messages are atomic and globally
ordered, consistency of replicated state will be guaranteed.

14

ARMADA MIDDLEWARE AND COMMUNICATION SERVICES 141

Unreliable Unicast Communication

Figure 7. Software architecture for the RTCAST middleware services.

RTCAST is especially designed for real-time applications. In a real-time application,
timing failures may be as damaging as processor failures. Thus, our membership algorithm
is more aggressive in ensuring timely progress of the process group. For example, while
ensuring atomicity of message delivery, RTCAST does not require acknowledgments for
every message, and message delivery is immediate without needing additional "rounds"
of message transmissions to ensure that a message was received consistently by all des­
tinations. RTCAST is designed to support hard real-time guarantees without requiring a
static schedule to be computed a priori for application tasks and messages. Instead, an
on-line schedulability analysis component performs admission control on multicast mes­
sages. We envision the proposed multicast and membership protocols as part of a larger
suite of middleware group communication services that form a composable architecture for
the development of embedded real-time applications.

As illustrated in Figure 7, the RTCAST suite of services include a timed atomic multicast,
a group membership service and an admission control service. The first two are tightly
coupled and thus are considered a single service. Clock synchronization is typically required
for real-time protocols and is enforced by the clock synchronization service. To support
portability, a virtual network interface layer exports a uniform network abstraction. Ideally,
this interface would transparently handle different network topologies, each having different
connectivity and timing or bandwidth characteristics exporting a generic network abstraction
to upper layers. The network is assumed to support unicast datagram service. Finally, the
top layer provides an application programming interface for real-time process group.

RTCAST supports bounded-time message transport, atomicity, and order for multicasts
within a group of communicating processes in the presence of processor crashes and com­
munication failures. It guarantees agreement on membership among the communicating
processors, and ensures that membership changes (e.g., resulting from processor joins or
departures) are atomic and ordered with respect to multicast messages. RTCAST assumes

15

142 ABDELZAHER ET AL.

that processes can communicate with the environment only by sending messages. Thus, a
failed process, for example, cannot adversely affect the environment via a hidden channel.
RTCAST proceeds as senders in a logical ring take turns in multicasting messages over the
network. A processor's turn comes when the logical token arrives, or when it times out
waiting for it. After its last message, each sender multicasts a heartbeat that is used for crash
detection. The heartbeat received from an immediate predecessor also serves as the logical
token. Destinations detect missed messages using sequence numbers and when a processor
detects a receive omission, it crashes. Each processor, when its turn comes, checks for
missing heartbeats and eliminates the crashed members, if any, from group membership by
multicasting a membership change message.

In a token ring, sent messages have a natural order defined by token rotation. We recon­
struct message order at the receivers using a protocol layer below RTCAST which detects
out-of-order arrival of messages and swaps them, thus forwarding them to RTCAST in
correct order. RTCAST ensures that "correct" members can reach agreement on replicated
state by formulating the problem as one of group membership. Since the state of a process
is determined by the sequence of messages it receives, a processor that detects a message
receive omission takes itself out of the group, thus maintaining agreement among the re­
maining ones. In a real-time system one may argue that processes waiting for a message
that does not arrive will miss their deadlines anyway, so it is acceptable to eliminate the
processor(s) which suffered receive omissions.2 A distinctive feature of RTCAST is that
processors which did not omit any messages can deliver messages as soon as they arrive
without compromising protocol semantics. Thus, for example, if a reliable multicast is used
to disseminate a critical message to a replicated server, and if one of the replicas suffers a
receive omission, RTCAST will eliminate that replica from the group, while delivering the
message to the remaining replicas immediately. This is in contrast to delaying delivery of
the message until all replicas have received it. The approach is motivated by the observation
that in a real-time system it may be better to sacrifice one replica in the group than delay
message delivery potentially causing all replicas to miss a hard timing constraint. Finally,
membership changes are communicated exclusively by membership change messages us­
ing our multicast mechanism. Since message multicast is atomic and ordered, so are the
membership changes. This guarantees agreement on membership view.

From an architectural standpoint, RTCAST operation is triggered by two different event
types, namely message reception, and token reception (or timeout). It is therefore logically
structured as two event handlers, one for each event type. The message reception handler
(Figure 8) detects receive omissions if any, delivers messages in order to the application,
and services protocol control messages. The token handler (Figure 9) is invoked when
the token is received or when the token timeout expires. It detects processor crashes and
sends membership change notifications, if any, as well as lets client processes send out their
messages during the processors finite token hold time.

4.2. RTCAST Design and Implementation

This section describes some of the major issues in the design and implementation of RT­
CAST; our representative group communication service. A thorough performance evalua­
tion of the service is reported on in (Abdelzaher, et aI., 1996) and (Abdelzaher, et aI., 1997).

16

ARMADA MIDDLEWARE AND COMMUNICATION SERVICES 143

1. msgJeCeptionJiandlerO

2. if state = RUNNING

3. ifmore msgs from same member

4. if missed msgs --+ CRASH else

5. deliver msg

6. else if msg from different member

7. if missed msgs --+ CRASH else

8. check for missed msgs from processors between current and last senders

9. if no missing msgs

10. deliver current msg

11. else CRASH

12. else if join msg from non-member

13. handle join request

14. if state = JOINING AND msg is a valid join-llck

15. if need more join-llcks

16. wait for additional join_acks

17. else state = RUNNING

18. end

Figure 8. Message reception handler

1. tokenJiandlerO

2. if state = RUNNING

3. for each processor p in current membership view

4. if no heartbeat seen from all predecessors inc!. p

5. remove p from group view

6. multicast new group view

7. send out all queued messages

8. mark the last msg

9. send out heartbeat msg

10. if state = JOINING

11. send out join msg

12. end

Figure 9. Token handler

17

144 ABDELZAHER ET AL

The RTCAST application was implemented and tested over a local Ethernet. Ethernet is
normally unsuitable for real-time applications due to packet collisions and the subsequent
retransmissions that make it impossible to impose deterministic bounds on communication
delay. However, since we use a private Ethernet (i.e. the RTCAST protocol has exclusive
access to the medium), only one machine can send messages at any given time (namely,
the token holder). This prevents collisions and guarantees that the Ethernet driver always
succeeds in transmitting each packet on the first attempt, making message communication
delays deterministic. The admission control service described previously can take advantage
of this predictability, e.g., by creating appropriate clips to manage end-system resources on
each host and make real-time guarantees on messages sent with RTCAST.

4.2.1. Protocol Stack Design The RTCAST protocol was designed to be modular,
so that individual services could be added, changed, or removed without affecting the
rest of the protocol. Each service is designed as a separate protocol layer within the
x-kernel (Hutchinson and Peterson, 1991) protocol framework. The x-kernel is an ideal
choice for implementing the RTCAST middleware services because application require­
ments can be easily met by simply reconfiguring the protocol stack to add or remove services
as necessary. The RTCAST implementation uses the following protocol layers:
Admission Control: The Admission Control and Schedulability Analysis (ACSA) layer
is a distributed protocol that keeps track of communication resources of the entire process
group. The protocol transparently creates a clip on each host that runs the process group
to ensure communication throughput guarantees and time-bounded message processing. It
can support multiple either prioritized or performance isolated process groups on the same
machine by creating clips of corresponding priority and corresponding minimum throughput
specification. If real-time guarantees are not needed, this layer can be omitted from the
protocol stack to reduce overhead. Communication will then proceed on best-effort basis.
RTCAST: The RTCAST protocol layer encompasses the membership, logical token ring,
and atomic ordering services described in section 4.
Multicast Transport: This protocol implements an unreliable multicast abstraction that
is independent of the underlying network. RTCAST uses the multicast transport layer to
send messages to the group without having to worry about whether the physical medium
provides unicast, broadcast, or true multicast support. The details of how the messages
are actually sent over the network are hidden from higher layers by the multicast transport
protocol, so it is the only layer that must be modified when RTCAST is run on different
types of networks.
Figure 10 shows the full protocol stack as it is implemented on our platform.

4.2.2. Integration Into the Mach Kernel As figure 10 shows, the protocol stack repre­
senting the core of the service was migrated into the Mach kernel. While actual RTCAST
development took place in user space to facilitate debugging, its final co-location within the
Mach kernel has several performance advantages. First, as with any group communication
protocol, there can be a high amount of CPU overhead to maintain the group state and
enforce message semantics. By running in the kernel, the RTCAST protocol can run at the
highest priority and minimize communication latency due to processing time. Second, in

18

ARMADA MIDDLEWARE AND COMMUNICATION SERVICES 145

APPLICATTON [SERVICE INTERFACE)
APPLICATION

(LIBRARY) l ASCA J

(INTERFACE STUB) l RTCAST
1

USER

l MCAST

l IP J

I EJ~--I
l ETHDRV J

SER u

K

- - -- - - - -- - - - -- -----J - - - - -- - - - - - --

ERNEL

I Kernel Ethernet Driver I

(a) CORDS User-level Server (b) Split In-kernel CORDS Server

Figure 10. RTCAST protocol stack as implemented

the current implementation of MK 7.2 there is no operating system support for real-time
scheduling or capacity reserve. Experience shows that processes running at the user level
can be starved for CPU time for periods of up to a few seconds, which would be disas­
trous for RTCAST's predictable communication. By running in the kernel, protocol threads
do not get starved significantly and are scheduled in a much more predictable manner by
the operating system. Finally, there is a problem with the MK 7.2 implementation of the
x-kernel, such that threads which are shepherding messages up the protocol stack can be
queued to run in a different order than the messages arrive from the network. This results in
out-of-order messages that must be buffered and re-ordered to maintain the total ordering
guarantees provided by the protocol. Having to buffer and reorder messages also delays
crash detection, since there is no way of knowing if a missing message is queued somewhere
in the protocol stack or if the sender suffered a failure. By running the protocol in the kernel,
message threads are interrupt driven and run immediately after arriving from the network,
so the message reordering problem does not occur. Protocol performance improved almost
by an order of magnitude when executed in the kernel. For example, when executed at the
user-level, the minimum token rotation time was on average 2.6 ms, 5.7 ms, and 9.6 ms
for groups with one, two, and three members respectively. When running in the kernel,
the same measurement yielded token rotation times of 0.43 ms, 1.02 ms, and 1.55 ms. We
found that this improvement extended to all aspects of protocol performance. Note that the
above figures suggest a potential scalability problem for larger group sizes (such as hundreds
of nodes). The problem is attributed to the need for software token passing. Integration
with hardware token passing schemes, such as FDDI, will yield much better performance.
Alternatively, to improve scalability, we are currently investigating an approach based on
group composition. Larger process groups are formed by a composition of smaller ones.
This research is presently underway. Initial results show that composite process groups
scale much better than monolithic ones.

19

146 ABDELZAHER ET AL.

Another important focus in developing our group communication rniddleware was de­
signing a robust API that would allow application developers to take advantage of our
services quickly and easily. RTCAST API includes (i) bandwidth reservation calls, (ii)
process group membership manipulation functions, (iii) best-effort multicast communica­
tion primitives and (iv) reliable real-time multicast. Bandwidth reservation is used on hosts
to ensure that a multicast connection has dedicated CPU capacity and network bandwidth
(i.e. a minimum token hold time). The token hold time and token rotation period specify
the communication bandwidth allotted to the node. The node can set aside enough end­
system resources to utilize its allotted communication bandwidth by creating a clip (by the
ACSA layer) of a corresponding throughput thereby providing schedulability guarantees.
The membership manipulation functions allow processes to join and leave the multicast
group, query current group membership, create groups, etc. There are two types of group
communication: real-time multicast communication that guarantees end-to-end response
time, and best-effort which does not. The advantages of using a best-effort connection is
that it is optimized for throughput as opposed to meeting individual message deadlines.
Thus, the service protocol stack is faster on the average (e.g., no per-message admission
control), but the variance in queuing delays is higher.

We collaborated with a group of researchers at the Honeywell Technology Center to im­
plement a subset of the fault-tolerant real-time distributed application described in Section 1
using the RTCAST protocol. Using the insights gained from this motivating application,
we were able to refine the API to provide the required of functionality while maintaining
a simple interface that is easy to program. Based on our experience of the application's
use of the protocol, we also designed a higher-level service library that can be linked with
the application, and which uses the RTCAST API3• It is concerned with resource manage­
ment in a fault-tolerant system and with providing higher-level abstractions of the protocol
communication primitives. The service library provides for logical processing nodes and
resource pools that transparently utilize RTCAST group communication services. These
abstractions provide a convenient way for application developers to reason about and struc­
ture their redundancy management and failure handling policies while RTCAST does the
actual work of maintaining replica consistency.

5. Real-Time Primary-backup (RTPB) Replication Service

While the previous section introduced a rniddleware service for active replication, in this
section we present the overall architecture of the ARMADA real-time primary-backup
replication service. We first give an introduction to the RTPB system, then describe the
service framework. Finally we discuss implementation of the service that we believe meets
the objectives.

5.1. 1ntroduction to RTPB

Keeping large amounts of application state consistent in a distributed system, as in the
state machine approach, may involve a significant overhead. Many real-time applications,
however, can tolerate minor inconsistencies in replicated state. Thus, to reduce redundancy
management overhead, our primary-backup replication exploits application data semantics

20

ARMADA MIDDLEWARE AND COMMUNICATION SERVICES 147

by allowing the backup to maintain a less current copy of the data that resides on the primary.
The application may have distinct tolerances for the staleness of different data objects. With
sufficiently recent data, the backup can safely supplant a failed primary; the backup can
then reconstruct a consistent system state by extrapolating from previous values and new
sensor readings. However, the system must ensure that the distance between the primary
and the backup data is bounded within a predefined time window. Data objects may have
distinct tolerances in how far the backup can lag behind before the object state becomes
stale. The challenge is to bound the distance between the primary and the backup such that
consistency is not compromised, while minimizing the overhead in exchanging messages
between the primary and its backup.

5.2. Service Framework

A very important issue in designing a replication service is its consistency semantics.
One category of consistency semantics that is particular relevant to the primary-backup
replication in a real-time environment is temporal consistency, which is the consistency
view seen from the perspective of the time continuum. Two types of temporal consistency
are often needed to ensure proper operation of a primary-backup replicated real-time data
services system. One is the external temporal consistency between an object of the external
world and its image on the servers, the other is the inter-object temporal consistency between
different objects or events.

A primary-backup system is said to satisfy the external temporal consistency for an object
i if the timestamp of i at the server is no later than a predetermined time from its timestamp
at the client (the real data). In other words, in order to provide meaningful and correct
service, the state of the primary server must closely reflect that of the actual world. This
consistency is also needed at the backup if the backup were to successfully replace the
primary when the primary fails. The consistency restriction placed on the backup may not
be as tight as that on the primary but must be within a tolerable range for the intended
applications.

The inter-object temporal consistency is maintained if for any object pair, their temporal
constraint oij (which is the temporal distance of any two neighboring updates for object i,
and j, respectively) is observed at both primary and backup.

Although the usefulness or practical application of the external temporal consistency
concept is easy to see, the same is not true for inter-object temporal consistency. To
illustrate the notion of inter-object temporal consistency, considering an airplane during
taking off. There is a time bound between accelerating the plane and the lifting of the plane
into air because the runway is of limited length and the airplane can not keep accelerating
on the runway indefinitely without lifting off. In our primary-backup replicated real-time
data service, the inter-object temporal consistency constraint between an object pair placed
on the backup can be different from that placed on the primary.

5.3. RTPB Implementation

A temporal consistency model for the Real-time Primary-backup (RTPB) replication service
has been developed (Zou and Jahanian, 1998) and a practical version of the system that

21

148 ABDELZAHER ET AL.

Primary Backup

Figure 11. RTPB architecture and server protocol stack

implements the models has been built. Following our compos ability model, the RTPB
service is implemented as an independent user-level x-kernel based server on our MK
7.2 based platform. Our system includes a primary server and a backup server. A client
application resides in the same machine as the primary. The client continuously senses the
environment and periodically sends updates to the primary. The client accesses the server
using a library that utilizes the Mach IPC-based interface. The primary is responsible for
backing up the data on the backup site and limiting the inconsistency of the data between
the two sites within some required window. The following assumptions are made in the
implementation:

• Link failures are handled using physical redundancy such that network partitions are
avoided.

• An upper bound exists on the communication delay between the primary and the backup.
Missed message deadlines are treated as communication performance failures.

• Servers are assumed to suffer crash failures only.

Figure 11 shows our system architecture and the x-kernel protocol stack for the replication
server. The bottom five layers (RTPB to ETHDRV) make up the x-kernel protocol stack. At
the top level of the stack is our real-time primary-backup (RTPB) protocol. It serves as an
anchor protocol in the x-kernel protocol stack. From above, it provides an interface to the
x-kernel based server. From below, it connects with the rest of the protocol stack through the
x-kernel uniform protocol interface. The underlying transport protocol is UDP. Since UDP
does not provide reliable delivery of messages, we need to use explicit acknowledgments
when necessary.

22

ARMADA MIDDLEWARE AND COMMUNICATION SERVICES 149

The top two layers are the primary-backup hosts and client applications. The primary
host interacts with the backup host through the underlying RTPB protocol. There are
two identical versions of the client application residing on the primary and backup hosts
respectively. Normally, only the client version on the primary is running. But when the
backup takes over in case of primary failure, it also activates the backup client version and
bring it up to the most recent state.

The client application interacts with the RTPB system through the Mach API interface
we developed for the system. The interface enables the client to create, destroy, manipulate
and query reliable objects (i.e., those backed-up by our server). Specifically, rtpb_create,
rtpbJiestroy creates objects on and destroys objects from the RTPB system; rtpb1egister
register objects with the system; rtpbJlpdate, rtpb-4uery update and query objects; finally
rtpbJist return a list of objects that are already registered with the RTPB system. Further
detail on admission control, update scheduling, failure detection and recovery appears in a
recent report (Zou and Jahanian, 1998).

5.4. RTPB Performance

The following graph shows the RTPB response time to client request and the temporal
distance between the primary and backup. Both graphs are depicted as a function of the
number of objects admitted into the system and are for four different client write rates of
100, 300, 700, and 1000 milliseconds.

400.0

_window size = 100 rna
•. _ window size = 300 rns
• • window size = 700 rns
.. .. window size"" 1 000 rns

100.0 200.0 30Q,0 400.0 500.0
Number 01 Object Accepted at Primary

(a) Response time to client

Figure 12. RTPB performance graphs

200.0

I 100.0

I
~
~ 100.0

~

I t SO.O

~

• • W = 100 milliseconds
• • W ;; 300 milliseconds
• .• W = 700 milliseconds
... ... W = 1000 milliseconds

•

I

.. .-_--:-1
- ... _.-.. -._---.--

"-c-~__cc" .• '-c-~_---':'___ .. _ ... ~ .. _. _·-"-:_~--,,l
o.~ 00.0 200.0 300.0 400.0 500.0

Number of Objects Accepted at Primary

(b) Primary-backup distance

Graph (a) shows a fast response time to client request in the range of 200 to 400 mi­
croseconds. This mainly due to the decoupling of client request process from updates to the
backups. Graph (b) shows that RTPB keeps the backup very close to the primary in terms
of the temporal distance between the corresponding data copies of the replicated objects.
In the graph, the distance ranges from 10 to 110 milliseconds which is well within the range
tolerable by most real-time applications.

23

150 ABDELZAHER ET AL.

The two graphs show that RTPB indeeds provide fast response to client requests while
maintain backup(s) very close to the primary in system state.

6. Evaluation Tools

The third thrust of the ARMADA project is to provide tools for validating and evaluating
the timeliness and fault tolerance capabilities of the target system. Two tools have been
developed to date: ORCHESTRA, a message-level fault injection tool for validation and
evaluation of communication and middleware protocols, and COGENT, a network traffic
workload generator. The following two subsections describe the two tools briefly.

6.1. ORCHESTRA

The ARMADA project has been primarily concerned with developing real-time distributed
middleware protocols and communication services. Ensuring that a distributed system or
communication protocol meets its prescribed specification is a growing challenge that con­
fronts software developers and system engineers. Meeting this challenge is particularly
important for applications with strict dependability and timeliness constraints. ORCHESTRA
is a fault injection environment which can be used to perform fault injection on com­
munication protocols and distributed applications. ORCHESTRA is based on a simple yet
powerful framework, called script-driven probing and fault injection. The emphasis of
this approach is on experimental techniques intended to identify specific "problems" in a
protocol or its implementation rather than the evaluation of system dependability through
statistical metrics such as fault coverage (e.g. (ArIat, et al. 1990)). Hence, the focus is on
developing fault injection techniques that can be employed in studying three aspects of a
target protocol: i) detecting design or implementation errors, ii) identifying violations of
protocol specifications, and iii) obtaining insights into the design decisions made by the
implementors.

In the ORCHESTRA approach, a fault injection layer is inserted into the communication
protocol stack below the protocol to be tested. As messages are exchanged between protocol
participants, they pass through the fault injection layer on their path to/from the network.
Each time a message is sent, ORCHESTRA runs a script called the send filter on the message.
In the same manner, the receive filter is invoked on each message that is received from the
network destined for the target protocol. The scripts perform three types of operations on
messages:

• Message filtering: for intercepting and examining a message.

• Message manipulation: for dropping, delaying, reordering, duplicating, or modifying
a message.

• Message injection: for probing a participant by introducing a new message into the
system.

The ORCHESTRA toolset on the MK 7.2 platform is based on a portable fault injec­
tion core, and has been developed in the CORDS-based x-kernel framework provided

24

ARMADA MIDDLEWARE AND COMMUNICATION SERVICES 151

by OpenGroup. The tool is implemented as an x-kernel protocol layer which can be
placed at any level in an x-kernel protocol stack. This tool has been used to perform ex­
periments on both the Group Interprocess Communication (GIPC) services from Open­
Group, and middleware and real-time channel services developed as part of the AR­
MADA project. Further details on ORCHESTRA can be found in several recent reports,
e.g., (Dawson, Jahanian and Mitton, 1996), (Dawson, Jahanian and Mitton, to appear).

6.2. COGENT: COntrolled GEneration of Network Traffic

In order to demonstrate the utility of the ARMADA services, it is necessary to evaluate
them under a range of operating conditions. Because many of the protocols developed rely
on the communication subsystem, it is important to evaluate them under a range of realistic
background traffic. Generating such traffic is fairly difficult since traffic characteristics can
vary widely depending on the environment in which these services are deployed. To this
end, we've developed COGENT (COntrolled GEneration of Network Traffic). COGENT is a
networked synthetic workload generator for evaluating system and network performance in
a controlled, reproducible fashion. It is based on a simple client-server model and allows
the user to flexibly model network sources in order to evaluate various aspects of network
and distributed computing.

Implemented in C++ with a lex/yacc front end, the current version of the tool takes a
high level specification of the distributed workload and generates highly portable C++
code for all of the clients and servers specified. The user can select from a number
of distributions which have been used to model a variety of network sources such as
Poisson (Paxson and Floyd, 1994), (Paxson, 1994), Log Normal (Paxson and Floyd, 1994),
Pareto (Leland, et al. 1994), (Crovella and Bestavros, 1996), (Garrett and Willinger, 1994),
and Log Extreme (Paxson, 1994). The tool then generates the necessary compilation and
distribution scripts for building and running the distributed workload.

COGENT has also been implemented in JAVA. Both the generator and the generated code
are JAVA based. Because of the portability of JAVA, this implementation simplifies both
the compilation and distribution of the workload considerably. We also plan on addressing
CPU issues in order to model common activities at the end hosts as well. Another feature
being added is the ability for a client or a server to be run in trace-driven mode. That is, to
run from a web server or a tcpdurnp (McCanne and VanJacobso, 1993) log file. Finally,
we will be implementing additional source models in order to keep up with the current
literature.

7. Conclusions

This paper presented the architecture and current status of the ARMADA project conducted
at the University of Michigan in collaboration with the Honeywell Technology Center. We
described a number of communication and middleware services developed in the context of
this project, and illustrated the general methodology adopted to design and integrate these
services. For modularity and composability, ARMADA middleware was realized as a set of
servers on top of a microkernel-based operating system. Special attention was given to the
communication subsystem since it is a common resource to middleware services developed.

25

152 ABDELZAHER ET AL

We proposed a general architecture for QoS sensitive communication, and also described a
communication service that implements this architecture.

We are currently redesigning an existing command and control application to benefit from
ARMADA middleware. The application requires bounded time end-to-end communication
delays guaranteed by our communication subsystem, as well as fault-tolerant replication and
backup services provided by our RTCAST group communication and membership support,
and the primary-backup replication service. Testing tools such as ORCHESTRA will
help assess communication performance and verify the required communication semantics.
Controlled workload generation using COGENT can assist in creating load conditions of
interest that may be difficult to exercise via regular operation of the application.

Our services and tools are designed independently of the underlying microkernel or the
communication subsystem; our choice of experimentation platform was based largely on
the rich protocol development environment provided by x-kernel and CORDS. For better
portability, we are extending our communication subsystem to provide a socket -like API. We
are also investigating the scalability of the services developed. Scaling to large embedded
systems may depend on the way the system is constructed from smaller units. We are looking
into appropriate ways of defining generic structural system components and composing
large architectures from these components such that certain desirable properties are globally
preserved. Developing the "tokens" and "operators" of such system composition will enable
building predictable analytical and semantic models of larger systems from properties of
their individual constituents.

Notes

1. Open Group is formerly known as the Open Software Foundation (OSF)

2. A lower communication layer may support a bounded number of retransmissions.

3. The APIs for both the service library and the RTCAST protocol are available at
http://www.eecs.umich.eduIRTCUarmadaJrtcastiapi.htrnl.

References

Abdelzaher, Tarek, Anees Shaikh, Scott Dawson, Farnam Jahanian, and Kang Shin. Rtcast: Lightweight multicast
for real-time process groups. in submission, available at http://www.eecs.umich.eduIRTCUarmadaJrtcasti. 1997.

Abdelzaher, Tarek, Anees Shaikh, Farnam Jahanian, and Kang Shin. RTCAST: Lightweight multicast for real­
time process groups. In Proc. IEEE Real-Time Technology and Applications Symposium (RTAS '96), pages
250-259, Boston, MA, June 1996.

Amir, Y., D. Dolev, S. Kramer, and D. Mallei. Transis: A communication sub-system for high availability.
Technical Report TR CS91-13, Dept. of Computer Science, Hebrew University, April 1992.

Amir, Y., LE. Moser, P.M. Melliar-Smith, D.A. Agarwal, and P. Ciarfella. The Totem single-ring ordering and
membership protocol. ACM Transactions on Computer Systems, \3(4):311-342, November 1995.

Anderson, D.P., S. Y. Tzou, R. Wahbe, R. Govindan, and M. Andrews. Support for continuous media in the
DASH system. In Proc. Int'l Con! on Distributed Computing Systems, pages 54-61,1990.

Arlat, Jean, Martine Aguera, Yves Crouzet, Jean-Charles Fabre, Eliane Martins, and David Powell. Experimental
evaluation of the fault tolerance of an atomic multicast system. IEEE Trans. Reliability, 39(4):455-467, October
1990.

Birman, Kenneth P. The process group approach to reliable distributed computing. Communications o/the ACM,
36(12):37-53, December 1993.

26

ARMADA MIDDLEWARE AND COMMUNICATION SERVICES 153

Cristian, E, B. Dancy, and J. Dehn. Fault-tolerance in the advanced automation system. In Proc. of Fault-Tolerant
Computing Symposium, pages 6-17, June 1990.

Crovella, Mark and Azer Bestavros. Self-similarity in world wide web traffic: Evidence and possible causes. In
SIGMETRICS '96, May 1996.

Cruz, Rene Leonardo. A Calculus for Network Delay and a Note on Topologies of Interconnection Networks.
PhD thesis, University of Illinois at Urbana-Champaign, July 1987. available as technical report UlLU-ENG-
87-2246.

Dawson, Scott, Farnam Jahanian, and Todd Mitton. Experiments on six commercial tcp implementations using a
software fault injection tool. to appear in Software Practice & Experience.

Dawson, Scott, Farnam Jahanian, and Todd Mitton. Testing of Fault-Tolerant and Real-Time Distributed Systems
via Protocol Fault Injection. In International Symposium on Fault-Tolerant Computing, pages 404-414, Sendai,
Japan, June 1996.

Ferrari, Domenico and Dinesh C. Verma. A scheme for real-time channel establishment in wide-area networks.
IEEE Journal on Selected Areas in Communications, 8(3):368-379, April 1990.

Garrett, Mark and Walter Willinger. Analysis, modeling and generation of self-similar vbr video traffic. In
SIGCOMM '94, pages 269-280,1994.

Hutchinson, Norman C. and Larry L. Peterson. Thex-Kernel: An architecture for implementing network protocols.
IEEE Trans. Software Engineering, 17(1):1-13, January 1991.

Kandlur, D. D., K. G. Shin, and D. Ferrari. Real-time communication in multi-hop networks. IEEE Trans. on
Parallel and Distributed Systems, 5(10): 1044-1056, October 1994.

Kopetz, Hermann and Giinter Griinsteidl. TTP - a protocol for fault-tolerant real-time systems. IEEE Computer,
27(1):14-23, January 1994.

Leland, Will, Murad S. Taqqu, Walter Willinger, and Daniel Wilson. On the self-similar nature of ethernet traffic
(extended version). IEEElACM Transactions on Networking, 2(1):1-15, February 1994.

McCanne, Steve and Van Jacobso. The bsd packet filter: A new architecture for user-level packet capture. In
Proceedings of the 1993 Winter USENIX Technical Conference, San Diego, CA, January 1993.

Mehra, Ashish, Atri Indiresan, and Kang Shin. Structuring communication software for quality of service
guarantees. In Proc. 17th Real-Time Systems Symposium, pages 144-/54, December 1996.

Mehra, Ashish, Anees Shaikh, Tarek Abdelzaher, Zhiqun Wang, and Kang G. Shin. Realizing services for
guaranteed-qos communication on a microkernel operating system. In Proc. Real-Time Systems Symposium,
Madrid, Spain, December 1998.

Mishra, S., L.L. Peterson, and R.D. Schlichting. Consul: A communication substrate for fault-tolerant distributed
programs. Distributed Systems Engineering Journal, 1(2):87-103, December 1993.

Paxson, Vern. Empirically-derived analytic models of wide-area tcp connections. IEEElACM Transactions on
Networking, 2(4):316-336, August 1994.

Paxson, Vern and Sally Floyd. Wide-area traffic: The failure of poisson modeling. In SIGCOMM '94, pages
257-268, August 1994.

Travostino, E E.Menze, and EReynolds. Paths: Programming with system resources in support of real-time
distributed applications. In Proc. IEEE Workshop on Object-Oriented Real-Time Dependable Systems, February
1996.

van Renesse, R., T.M. Hickey, and K.P. Birman. Design and performance of Horus: A lightweight group
communications system. Technical Report TR94-1442, Dept. of Computer Science, Cornell University,
August 1994.

Zou, Hengming and Farnam Jahanian. Real-time primary backup (RTPB) replication with temporal consis­
tency guarantees. In Proceedings Inti. Conf on Distributed Computing Systems, pages 48-56, Amsterdam,
Netherlands, May 1998.

27

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

