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Abstract 
The Internet is undergoing substantial changes from 
a communication and browsing infrastructure to a 
medium for conducting business and selling a myr- 
iad of emerging services. The World Wide Web pro- 
vides a uniform and widely-accepted application in- 
terface used by these services to reach multitudes of 
clients. These changes place the web server at the 
center of a gradually emerging e-service infrastructure 
with increasing requirements for service quality, reli- 
ability, and security guarantees in an unpredictable 
and highly dynamic environment. Towards that end, 
we introduce a web server QoS provisioning architec- 
ture for performance differentiation among classes of 
clients, performance isolation among independent ser- 
vices, and capacity planning to provide QoS guaran- 
tees on request rate and delivered bandwidth. We 
present a new approach to web server resource man- 
agement based on web content adaptation. This ap- 
proach subsumes traditional admission control based 
techniques and enhances server performance by selec- 
tively adapting content in accordance with both load 
conditions and QoS requirements. Our QoS manage- 
ment solutions can be implemented either in middle- 
ware transparent to the server or by direct modifica- 
tion of the server software. We present experimental 
data to illustrate the practicality of our approach. 

1 Introduction 
The Internet is gradually becoming a medium for 
conducting business and selling services. The web 
presents a convenient interface for the emerging 
performance-critical applications, placing more strin- 
gent QoS requirements on the web server. A web 
server today might host several sites on behalf of par- 
ties with potentially conflicting interests, and may 
need to protect each party from possible overload or 
malicious behavior caused by another. We call this 
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requirement performance isolation. In addition, the 
server may need to give preferential treatment to more 
important clients, which we call sererice diflerentia- 
t ion.  Unfortunately, today’s web servers offer poor 
performance under overload, have no means for pri- 
oritizing requests, and have no mechanism for pre- 
allocating end-system capacity to a particular site or 
hosted service. Web administrators usually resort to 
overdesign [l] to achieve overload protection. How- 
ever, if the aggregate request rate increases beyond 
total capacity, server response-time and connection er- 
ror rate deteriorate dramatically, indiscriminately af- 
fecting all clients. This paper proposes web content 
adaptation as a new approach to control server re- 
sources, prevent overload, and achieve performance 
isolation and service differentiation. As a first step 
towards a more general scheme, we concern ourselves 
with adapting static web content only. For specificity 
we offer web hosting as an example of a web service 
that requires QoS guarantees. 

Load balancing [2, 3, 41 and admission control [5] 
have often been used for overload protection. While 
admission control improves server performance by pre- 
venting overload, it offers no service to rejected con- 
nections, and cannot recover the resources wasted in 
the communication protocol stack on client requests 
eventually rejected by the server. This wasted kernel 
overhead may be significant at overload. Our experi- 
ences with Apache on an HP-UX platform show that 
as much as half of the end-system’s processing capac- 
ity is wasted on eventually rejected requests when the 
load is only 3 times the server capacity. 

As an alternative to rejection by admission control, 
web server load can be reduced by using multicast to 
distribute commonly requested pages [6]. A different 
approach is investigated in [7], where we survey an 
important category of today’s e-commerce sites and 
present evidence of its suitability for content adapta- 
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tion to reduce overload. GIF and JPG images alone 
constitute, on average, more than 65% of the total 
bytes surveyed. In many cases, these images can be 
significantly compressed without an appreciable de- 
crease in quality. Reducing the number of embedded 
objects per page on those sites (such as little icons, 
bullets, bars, separators, and backgrounds) can result 
in significant additional resource savings. Reducing 
local links is another way of adapting site content. 
This reduction will affect user browsing behavior in a 
way that tends to decrease the load on the server as 
users access less content. The latter approach is some- 
times followed manually by administrators of larger 
sites such as www.cnn.com of the Cable News Net- 
work (CNN), e.g., upon overload caused by important 
breaking news. 

When the server is overloaded adapted content 
must be available at no extra cost. Thus, in this 
paper we assume that content is preprocessed a 
priori  and stored in multiple copies that differ in 
quality and size. Since a typical web site is usu- 
ally in the megabyte range, storing multiple copies 
is cheap in terms of disk space. Multiple content 
trees, e.g., “/full-content” and “/degraded-content” 
are populated with the appropriate content off line. 
A URL, such as, “/mypicture.jpg” is then served 
from either “/full-content/mypicture.jpg” or “/de 
graded-content/my-picture.jpg” depending on load 
conditions. The convention applies to dynamic con- 
tent as well, e.g., that generated by CGI scripts. Mul- 
tiple content trees may contain different versions of the 
named CGI script that vary in resource requirements. 

In the rest of this paper, we describe how the 
“right” content tree is selected. Section 2 describes 
the main adaptation architecture that allows content 
to be adapted in accordance with load conditions. Sec- 
tion 3 describes QoS management extensions, such as 
performance isolation and client prioritization made 
possible by the mechanism presented in Section 2. Im- 
plementation details are discussed in Section 4. The 
presented architecture is evaluated in Section 5 using a 
working prototype. The paper concludes in Section 6 
with a summary of contributions and suggestions for 
future work. 

2 QoS Adaptation Architecture 
We propose to control web server load via content 
adaptation. In order to do so, we interpose a software 
layer between the server processes and the communi- 
cation subsystem. The layer has access to the HTTP 
requests received by the server and the responses sent. 
It intercepts each request and prepends the requested 

URL name by the name of the “right” content tree 
from which it should be served in accordance with 
load conditions. To decide on the “right” content 
tree for each client the interposed content adaptation 
layer must measure the current degree of server uti- 
lization, and decide on extent of adaptation that will 
prevent underutilization or overload. We call these 
functions server load monitoring and server utilization 
control respectively. These components are described 
in the following subsections for the simple case when 
all clients have the same priority. Issues of QoS man- 
agement in the presence of multiple hosted sites, or 
clients of different priority are discussed in Section 3. 

2.1 Load Monitoring 
The objective of load monitoring is to quantify server 
utilization with a single value that summarizes re- 
source consumption on the scale described above. We 
noticed that the service time of a request can be de- 
composed into a fixed overhead component and data- 
size-dependent overhead component. Thus, if a URL 
of size x is requested, the request service time can 
be approximated by T(x) = a + bx, where a and b 
are platform constants. Summing the service times of 
all requests in a particular observation period and di- 
viding by the length of the period we obtain system 
utilization, U. Using some algebraic manipulation we 
can prove that: 

U = aR+ bW. (1) 
where R is the observed request rate, and W is the 
aggregate delivered bandwidth. The load monitor pe- 
riodically measures R and W online, and returns the 
corresponding utilization value. The constants a and b 
in Equation 1 are independent of workload and as such 
can be determined for the server platform a priori .  

To compute a and b the server must be profiled. 
A simple way of profiling the server is to subject it 
to an increasing request rate and estimate its max- 
imum processing capacity. Let us fix the requested 
URL size x and increase server request rate gradually 
until connection errors are observed. The maximum 
achievable request rate, &,, , for which no connection 
errors occurs1 is recorded, as well as the correspond- 
ing total delivered bandwidth, W,,,. Let us repeat 
the experiment with a different requested URL size, 
and record the new maximum rate and bandwidth. 
In every case the maximum request rate corresponds 
(for our purposes) to a fully utilized server, i.e., U 
= 100%. Thus, each experiment yields a different 
data point (La,, W,,,,,) that satisfies the equation 

We take “no errors’’ to mean an error rate of less that 0.1% 
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100 = aR,,,or+bWmoz in the unknowns Q and b. Using 
linear regression coefficients Q and b are found. In our 
implementation, these constants are obtained off-line 
and written into a configuration file used at run-time 
by the load monitor to substitute in Equation 1. 

2.2 Utilization Control 
Ideally, when server utilization is low, all clients re- 
ceive the best available content. When server utiliza- 
tion approaches saturation a fraction of clients must 
be degraded (i.e., will be delivered degraded content) 
in order to avoid server overload and connection fail- 
ures. The fraction of clients affected and the adapta- 
tion action taken on them are determined by a self- 
regulating utilization control loop. The utilization 
control loop determines the severity and scope of the 
adaptation action required, and implements the action 
on the clients’ requests. The following subsections de- 
scribe its two main components; the content adaptor 
which causes content adaptation, and the utilization 
controller which tells the adaptor how much to adapt 
by selecting one of a range of content trees. 

2.2.1 The Content Adaptor 
Let there be M content tress, numbered from 1 to M 
in increasing order of quality. (For a typical adaptive 
server we expect that M = 2.) We use an abstract 
parameter G to represent the severity of the adapta- 
tion action required from the adaptor. The adaptor 
accepts input G in the range [O,M]. The upper ex- 
treme, G = M ,  indicates that all requests are to be 
served the highest quality content (i.e., served from 
tree M ) .  This is the nominal operating mode of the 
server. The lower extreme, G = 0, means all requests 
must be rejected. The content adaptor, thus, super- 
sedes and extends admission control by offering adap- 
tation as an additional alternative, hopefully minimiz- 
ing the need for rejection. The parameter G controls 
server load, where lowering G reduces the the load on 
the server. A non-zero integer value of G, say G = I ,  
indicates that all requests must be served from tree I .  
In general, G may be a fractional number. Let I be 
the integral part of G, and F be the fractional part. 
The following rules are used by the content adaptor 
to determine which tree to serve an incoming request 
from: 

0 If G is an integer (i.e., G = I, F = 0), the request 
is served from tree I .  

0 If G is not an integer, a pseudo-random value N is 
computed by a hashing function H ( )  that hashes 
the client’s id (e.g., its IP address) into a number 
in the range [0, 11 upon the receipt of the request. 
If N < F the request i s  served from tree I + 1. 
Otherwise it is served from tree I .  

The second rule ensures that when G increases, the 
likelihood of serving a client from a “better” tree in- 
creases, and vice versa. As mentioned above, choos- 
ing the non-existing tree 0 means that the request is 
rejected. Figure 1 illustrates the achieved degrada- 
tion spectrum (shown as a horizontal slide-bar). It 
ranges from serving all requests from the highest qual- 
ity content tree to rejecting all requests, as specified 
by the continuous tunable parameter, G .  The Fig- 
ure 1 shows how a given value of G determines both 
the trees from which requests are served and the frac- 
tion of requests served from each tree. All requests 
originating from the same client must be served from 
the same tree whenever possible. For that purpose, 
the hashing function, H ( ) ,  maps a given client id to 
the same number every time. Thus, all requests from 
the same client will always be served from the same 
tree for the same load conditions. 

Figure 1: The Degradation Range 

2.2.2 The Utilization Controller 
This section presents how the parameter G is tuned 
dynamically in a self-regulating fashion to achieve con- 
stant maximum server utilization in the presence of 
variable load. The maximum server utilization is an 
arbitrary specified bound that we do not wish server 
utilization to exceed. A good value would be 85%. Let 
U’ be the desired “optimal” utilization of the server. 
Let U be the current utilization computed by the load 
monitor as described in Section 2.1. Let E be the 
“utilization error”, E = U* - U .  The adaptation con- 
troller samples the current utilization U ,  and com- 
putes the corresponding error E at k e d  time inter- 
vals, then produces an output, G, that regulates the 
extent of adaptation. We use the well-known integral 
controller to produce the control output. The basic 
integral controller produces an output that is propor- 
tional to the sum of the observed input samples since 
system startup. At each sampling time the controller 
performs the following computation: 

G = G +  hE; If (G < 0) then G = 0; If (G > M )  
then G = M ;  where k is a constant. 
Intuitively, if the server is overloaded (i.e., U > U * )  
the negative error E results in a decrease in G. As a re- 
sult the fraction of degraded requests increases which 
decreases server utilization (and vice versa). When 
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the server reaches target utilization (i.e., U = U*), 
the error E becomes zero, and this G is fixed. 

Classic control literature proposes analytic tech- 
niques to tune the integral controller, i.e., set the value 
of k in the above equation for best convergence. More 
sophisticated versions of that controller include the 
proportional integral (PI) controller and the propor- 
tional integral differential (PID) controller. We use 
a PI controller in our loop, tuned for quarter ampli- 
tude damping, which is a traditional industrial control 
practice. The controller is modeled by the differential 
equation characterizing the PI control action [8]. The 
controlled process is modeled as a dead time element of 
value equal to half the sampling time of the controller. 
For space limitations, we omit the details of controller 
tuning in this paper. An interested reader is referred 
to any of several classic control theory textbooks [SI. 

The control loop is depicted in Figure 2. The fig- 
ure summarizes the elements of our content adapta- 
tion architecture and their interaction; The load mon- 
itor measures current request rate and delivered band- 
width, and translates them into a single utilization 
value, U. The utilization controller compares U to the 
specified desired server utilization, U* , and computes 
the required extent of adaptation G. The content 
adaptor interprets G and degrades or rejects a fraction 
of requests accordingly by modifying their requested 
URL names. The server serves the URL names modi- 
fied by the content adaptor. The load monitor updates 
its load estimate thereby closing the control loop. 

Requests 
I 

Estmated Utilization 
U 

Figure 2: The Utilization Control Loop 

Figure 3 depicts the efficacy of the control loop to 
achieve a desired target server utilization. In this ex- 
periment, the request rate on the server was increased 
suddenly, at t i m e  = 13, from zero to a rate that offers 
a load equivalent to 300% of server capacity. Such a 
sudden load change is much more difficult to deal with 
than small incremental changes, thereby stress-testing 
the responsiveness of our control loop. The target uti- 
lization, U*, was chosen to be 85%. As shown in Fig- 
ure 3, the controller was successful in finding the right 
degree of degradation such that measured server uti- 
lization remains successfully around the target for the 
duration of the experiment. The experiment demon- 
strates the responsiveness and efficacy of the utiliza- 

tion control loop. 
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Figure 3: Utilization Control Performance 
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3 QoS Management 
In this section we describe how the general architec- 
ture described in Section 2 is extended to support the 
following important features: 

e Performance isolation and QoS guarantees: A 
web server can host multiple independent sites. 
We associate a virtual server with each hosted 
site. The virtual server guarantees a maximum 
request rate and maximum delivered bandwidth 
for the site independently of the load on other 
sites thereby achieving performance isolation. 

e Service dinerentiation: Clients may have different 
priorities. In addition to achieving performance 
isolation and QoS guarantees, each virtual server 
supports request prioritization. Upon overload, 
lower priority requests are degraded first. 

e Excess capacity sharing: While each virtual 
server adapts content under overload to remain 
within its individual capacity allocation, if some 
virtual server does not consume all its allotted re- 
sources, the excess capacity is made available to 
other virtual servers allowing them to exceed their 
capacity allocation if so needed to avoid client 
degradation. 

3.1 Performance Isolation 
We export the abstraction of virtual servers. A virtual 
server is configured for a specified maximum request 
rate R,,, and a specified maximum delivered band- 
width W,,, . The configuration expresses an agree- 
ment whereby the server guarantees the ability to de- 
liver an aggregate bandwidth of up to w,,, as long 
as the aggregate request rate does not exceed &a,. 
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If the request rate condition is violated (i.e., exceeds 
the bandwidth guarantee is revoked. The vir- 

tual server adapts delivered content to achieve the 
maximum possible bandwidth delivery for the given 
request rate without overrunning its capacity alloca- 
tion. The following provisions in our architecture co- 
operate to export the virtual server abstraction and 
achieve performance isolation: 

e Capacity planning: The maximum maintainable 
request rate kaXi and the maximum delivered 
bandwidth Wmax, specification of each virtual 
server i are converted into a corresponding tar- 
get capacity allocation, U: = a&ax, + bWmaxi. 
The target utilization sum xi U: over all virtual 
servers residing on the same machine should be 
less than 100% for the guarantees to be realiz- 
able. This is checked each time the adaptation 
software parses its configuration file. If the ad- 
ministrator configures a new virtual server that 
makes xi U? > loo%, a capacity planning error 
is returned. 

e Load classification: A load classifier intercepts in- 
put requests and classifies them to identify the 
virtual server responsible for serving each request. 
Request classification can be done based on the 
requested content, addressed site, or other infor- 
mation depending on system administrator’s pol- 
icy. If each virtual server is associated with a 
hosted site, requests are classified based on the 
site name embedded in the URL string. Load 
classification allows proper load bookkeeping for 
each virtual server independently to achieve per- 
formance isolation. 

e Utilization control: When requests are classified, 
the request rate and delivered bandwidth Wi 
can be computed individually for each virtual 
server i, from which a corresponding utilization 
value, Ui = aR, + bWi, is obtained. The uti- 
lization Ui of each virtual server is controlled 
by a separate instance of the utilization control 
loop described in Section 2.2. Each control loop 
achieves the degree of content degradation nec- 
essary to keep Ui of its virtual server at or b e  
low its target value, U:, thereby achieving the 
server’s individual performance guarantees, while 
preventing overload. The architecture is depicted 
in Figure 4. 

3.2 Service Differentiation 
In this section we describe how service differentiation 
is incorporated into our architecture for adaptive con- 

I 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I  

Modify URI 
I 

Requests 

Figure 4: Architecture for Performance Isolation 

tent delivery. The goal is to support client prioritiza- 
tion such that lower priority clients are degraded first. 
Consider a virtual server that supports client prioriti- 
zation. Let there be rn priority classes defined within 
that server, such that priority 1 is highest, and priority 
rn is lowest. Collectively, clients of the virtual server 
are allocated a target utilization U* derived from a 
maximum rate and maximum bandwidth specification 
for that server. This capacity should be made avail- 
able to clients in priority order. We allocate the entire 
virtual server capacity to the highest priority class. 
The unused capacity of each class is measured and al- 
located to lower priority classes. If this capacity is 
not enough, these clients will be degraded or rejected 
accordingly by the utilization control loop. The fol- 
lowing rule is used to degrade clients: 

For each priority class j ,  the target utilization is 
Uj’ = U* - Vi, where Ui = a& + bW; is 
the current measured utilization of the (higher 
priority) class i. 

Given the target utilization of each class j ,  as 
well as its measured utilization, U, = aR, + bWj, 
the control technique described in Section 2.2.2 
is applied to compute the extent of adaptation 
required for this class. Let us denote it by G,. 

Each class in adapted in accordance with the 
value of its specific Gj as described in Sec- 
tion 2.2.1. 

In the presence of low priority traffic, a higher priority 
class should also account for the overhead it may take 
to reject lower priority requests under overload. This 
can be figured in the computation of U,? as follows: 

U? 3 = U* - Ci<, Vi - Cl>, Urejectl. 
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where U r e j e c t ,  = a r e j e e t R l  is the overhead of reject- 
ing all current requests of a lower priority class I ,  the 
overhead of rejecting a single request being a r e j e c t .  

3.3 Sharing Excess Capacity 
An important advantage of grouping several virtual 
servers on the same machine is the ability to better 
reuse extra server capacity. Consider two physically 
separated servers, each of capacity, C. If load on one 
exceeds capacity while the other is underutilized, there 
is no way to reroute extra traffic to the idling server 
(unless a gateway is used in front of the server farm 
to balance load). Idling resources may be wasted on 
one server while requests are being rejected on an- 
other. A single server of capacity 2C does not suf- 
fer this problem. We therefore extend the preceding 
mechanisms to allow virtual servers to exceed their 
contracted target utilization, U*, as long as there is 
extra capacity on the machine. Since the virtual server 
has no contractual obligation to provide the extra ca- 
pacity in the first place, extra request traffic for any 
virtual server is uniformly treated on best-effort basis 
as non-guaranteed. Non-guaranteed trafEc is allowed 
to occupy the excess capacity on the machine using a 
mechanism similar to that of service differentiation de- 
scribed in the previous section. Specifically, the degrai 
dation level G, of non-guaranteed trafEc is computed 
from G, = G, + k(100 - U ) ,  where U = Q R  + bW 
is the current aggregate utilization of the computed 
from the aggregate request rate and bandwidth. We 
present an evaluation of these techniques in Section 5.  
Implementation details are discussed next. 

4 Implement at ion 
The adaptation software was implemented in C for a 
UNIX platform. The software was tested on a single 
processor K460 (HP PA-8200 CPU) workstation run- 
ning HP-UX 10.20, with 512MB main memory and 
GSC 100-BaseT network connection. For the purpose 
of experimentation an Apache 1.3.0 web server was 
used. In this section we give more details on software 
implementation, the testing environment and evalua- 
tion of adaptation software. 

4.1 Web Server Model 
In order to handle a large number of clients concur- 
rently, web servers adopt either a multithreaded or a 
multi-process model. Multithreaded web servers re- 
quire kernel thread support. Such support is provided 
in most modern operating systems, e.g., Solaris and 
Windows NT. A separate kernel thread is assigned by 
the server to each incoming HTTP request. Threads 

can share common state in global memory. In a multi- 
process model, common to UNIX implementations, a 
separate process is assigned to each incoming request. 
Since spawning a process is a heavy-weight opera- 
tion, a pool of processes is usually created at server 
startup. Created processes listen on a common web 
server socket, and may communicate via shared mem- 
ory. A process that accepts a connection handles it 
until it is closed. Apache 1.3.0, used in our experi- 
ments, subscribes to this model. 

The adaptation software is designed as a middle- 
ware layer between the web server and the underly- 
ing operating system. The middleware API may be 
called directly from the web server if desired, in which 
case it is not transparent. Alternatively, middleware 
calls may be made from the socket library used by the 
server, in which case server code remains unmodified. 
We begin by describing the API of our adaptation mid- 
dleware. 

4.2 Adaptation Software API 
Adaptation mechanisms described in this paper re- 
quire three entry points. Namely, (i) an initialization 
point, (ii) a request pre-processing point, and (iii) a re- 
quest post-processing point. The first point is called 
once upon server startup. The latter two are called 
upon the receipt of each request and the sending of 
each reply respectively. The specific calls are as fol- 
lows. adaptsoft init () is called from the main server 
process before forking workers. The function will ini- 
tialize some global variables and fork off the U t d Z Z Q -  

tion controller which will implement server utilization 
control loops. adaptsoft adapt (URL, client 1P)  
is called by workers each time an HTTP request is re- 
ceived. It classifies the client and returns the actual 
URL name to be served, or NULL if the request is to 
be rejected. adaptsoft logsize (URLhytesize) 
is called by workers to update transmitted bandwidth 
measurements by the byte size of a served URL. 

4.3 Implementing Load Monitoring 
When a request is first dequeued from the server 
socket’s listen queue by some worker process, Pi, the 
function adaptsoft-adapt () is called in the context of 
Pi. This function classifies the request as belonging 
to virtual server j .  The function then increments 
a counter, rib], that accumulates the number of re- 
quests for virtual server j seen by worker process Pi. 
When Pi has finished processing the request, it sends 
out the response and calls adaptsoft-log-size() pass- 
ing it the number of bytes sent. The function adapt- 
soft_logsize() updates a counter, bib] , that accumu- 
lates the total bytes sent by process Pi on behalf of 
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virtual server j .  
Periodically, a call to adaptsoft-adapt () by pro- 

cess Pi also invokes a utilization measurement func- 
tion. The function computes on behalf of each virtual 
server k the request rate &[k] = r i [ k ] / t  that process 
Pi has seen for the virtual server within the last t time 
units, and the bandwidth W i [ k ]  = b i [ k ] / t  that process 
Pi has delivered on behalf of the virtual server within 
that time interval. Finally it computes the utilization 
Ui[k]  = ol%[k] + b W i [ k ]  that process Pi consumed on 
behalf of each virtual server k, and stores the respec- 
tive values of Ui[k] in shared memory. All counters 
ri[k] and bj[k]  are then cleared in preparation for the 
next period. Note that the utilization measurement 
function is invoked separately in each worker process 
Pi to compute its contribution to the utilization of 
virtual servers. 

1 4.4 Implementing Utilization Control 
Utilization control is implemented in a separate pro- 
cess forked off by a d a p t s o f t h i t ( )  during startup. The 
process executes a loop that wakes up periodically to 
compute the extent of degradation for each virtual 
server then sleeps until the next period. Upon waking 
up, the controller computes the utilization, Uk of each 
virtual server k by aggregating the recorded contri- 
butions U j [ k ]  of all worker processes, Pi, towards uk. 
Thus, uk = ci U i [ k ] .  This utilization is then com- 
pared to the desired utilization for the virtual server 
and the degree of degradation G g  is computed accord- 
ingly as described in Section 2.2.2. The value of Gk 
for each virtual server k is stored in shared memory. 

Each time adaptsoftadapt (URL, IP) is in- 
voked in the context of a worker process upon the 
receipt of some new request it will classify it and read 
from shared memory the current value of Gk for the 
corresponding virtual server. The function will then 
execute the algorithm in Section 2.2.1 to determine 
which content tree to serve the request from, and 
prepend the requested URL name by the name of that 
tree. (For simplicity, we omitted in this section the 
implementation details related to performance differ- 
entiation among clients of the same virtual server.) 

5 Evaluation 
In this section we present a performance evaluation of 
the developed adaptation software. To emulate a large 
number of web clients we used httperf [9] ,  a testing 
tool that can generate concurrently a large number of 
HTTP requests for specified URLs at a specified rate. 
In order to overload the web server, httperf was run on 
4 workstations collectively emulating the community 

1.706 1 1.677 I -1.7% 

of clients. The workstations were connected to the 
server via a lOOMb switched Ethernet. 

5.1 Estimating Service Time 
In our first experiment, we profiled the Apache server 
to determine the time, T ,  it takes to serve a URL 
of size x .  Measuring server response time was found 
not to be indicative of service time T ,  because the 
former includes queuing time, network latency, etc. 
We therefore measured service time by obtaining the 
inverse of the maximum throughput. The experiment 
was repeated for different sizes of the requested URL. 
We found approximately that T ( z )  = a + b z ,  where 
a = 1.604 and b = 0.063. Table 1 shows the quality of 
this approximation. 

2 
4 
8 

1.73 1.73 0% 
1.858 1.856 -0.1% ‘ 
2.075 2.108 1.6% 

16 
32 

2.611 2.612 0% 
3.322 3.62 8.9% 

I 
.~ I I I I 

Table 1: Approximating Service Time 

5.2 Request Rejection Overhead 
We mentioned in the introduction that rejection of 
client requests wastes a lot of server resources with 
no benefit to the rejected client. To quantify the r e  
jection overhead, we instrumented the server to reject 
all requests by closing the connection as soon as the 
request is read off the server socket. The request rate 
on the server was then increased, and the maximum 
response rate was recorded. The maximum rate was 
found to be around 900 req/s, which is the maximum 
rate at which rejection can be processed. The rejection 
overhead (the inverse of the maximum rejection rate) 
is thus approximately 1.1 ms/req. This is to be com- 
pared with 1.604, the time it takes to serve a “very 
small” URL (denoted by constant a in Section 5.1). 
The difference is believed to be due to file system ac- 
cess associated with serving the URL. It appears that 
this difference is not substantial. Rejecting a set of 
requests will consume almost 70% of the resources it 
would take to serve them a short URL. Request rejec- 
tion, therefore, should be avoided whenever possible, 
which we believe is achieved in our content adapta- 
tion scheme. For better efficiency, request classifica- 
tion and rejection, when necessary, should be done in 
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the kernel at the earliest point possible upon request 
reception in order to conserve end-system's resources. 

5.3 Performance Isolation 
In this paper, we described a performance isola- 
tion mechanism that allows creating multiple virtual 
servers with individual rate and bandwidth guaran- 
tees. The mechanism provides protection among in- 
dividual virtual servers, as well as protection between 
the virtual servers and the non-guaranteed best-effort 
traffic. Figure 5-a demonstrates these features. In 
this experiment a best-effort background load of 300 
req/s (for 32KB URLs) was applied to overload the 
machine. In addition, two virtual servers, VI and VZ, 
were configured. Server VI was configured for a max- 
imum guaranteed bandwidth of 13 Mb/s, and maxi- 
mum guaranteed rate of 50 req/s. Server VZ was con- 
figured for a maximum guaranteed bandwidth of 27 
Mb/s and a maximum guaranteed rate of 100 req/s. 
Each virtual server was associated with a different 
hosted site. A constant load of 50 req/s (with a total 
bandwidth requirement of 12.8 Mb/s) was applied to 
the first site (VI) .  The load on the second (V2) was in- 
creased gradually from 0 to its maximum specification. 
The aggregate load on the machine was well above the 
overload threshold due to the existence of background 
best effort traffic (for other non-guaranteed sites). 

Figure 5-a depicts the offered load on each of VI and 
V2 (i.e., the total requested bandwidth), as well as the 
actual bandwidth delivered. Both are plotted versus 
the aggregate request rate on the server. For clarity, 
the best effort load is not shown. It can be seen that 
the actual bandwidth delivered by each virtual server 
follows closely the offered load. Thus, despite server 
overload, due to background best-effort traffic, virtual 
servers VI and V2 attain the contracted performance 
guarantees for their respective sites, and suffer virtu- 
ally no content degradation. Furthermore, variations 
in load on virtual server VZ do not affect virtual server 
VI. Performance isolation is thus achieved in the sense 
of maintaining the QoS guarantees independently for 
each virtual server regardless of other load. 

For comparison, we repeated the same experiment 
using a regular Apache server that does not use our 
adaptation extensions. Figure 5-b depicts the results 
obtained. It can be seen that the delivered bandwidth 
of both sites falls short of the offered load. The differ- 
ence reflects the fraction of connections that fail and 
don't get served due to overload. Note also how the 
increase in delivered bandwidth of one site results in 
a decreases in delivered bandwidth of another. No 
performance isolation is observed. The comparison of 
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Figure 5: Performance Isolation 

Figure 5-a and Figure 5-b illustrates the advantage of 
the developed adaptation software. 

5.4 Service Differentiation 
Adaptation software allows defining multiple priority 
classes of requests. In this section we experiment with 
defining two priority classes, namely a basic class B 
and a premium class P .  Requests of class P are 
treated as higher priority than those of B. In the ex- 
periment, we offered a constant load of 100 premium 
class requests per second. We then gradually increased 
the rate of basic class requests. Figure 6 plots the de- 
livered premium and basic bandwidth versus request 
rate. It also shows the offered load of both premium 
and basic clients. Note that when the server becomes 
overloaded, basic clients are degraded before premium 
clients thus achieving service differentiation. 

5.5 Excess Capacity Sharing 
As we argued earlier, an important advantage of colo- 
cating several adaptive virtual servers on the same 
machine is the ability to utilize unused capacity of 
one virtual server by another that is overloaded. The 
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Figure 6: Service Differentiation 

overloaded server should be allowed to exceed its indi- 
vidual capacity allocation when extra capacity is avail- 
able, as long as it does not affect other virtual servers. 
When the machine is overloaded, however, each vir- 
tual server should be policed to its individual capac- 
ity allocation in order to achieve performance isolation 
and overload control. These two features are provided 
by the excess capacity sharing mechanism described in 
Section 3.3. To evaluate the efficacy of this mechanism 
we conducted two experiments. In the experiments a 
virtual server VI is created whose offered load at run- 
time exceeds its capacity allocation. Low background 
load is used in the first experiment. As a result, virtual 
server VI is allowed to overrun its capacity allocation 
utilizing the excess capacity on the machine. In the 
second experiment, high background load is applied. 
As a result, the virtual server is policed to its indi- 
vidual capacity limit. Moreover, in both experiments 
a second virtual server, Vz, is also used. Server V2, 
which is loaded within its capacity limit at all times, 
is shown to exhibit no degradation despite the (con- 
trolled) capacity overrun of server VI ,  and the back- 
ground load. Excess capacity sharing is thus shown 
not to interfere with performance isolation. 

Figure 7-a depicts the results of the first experi- 
ment. It shows the contracted as well as the actual 
bandwidth of servers VI and Vz. Server fi is config- 
ured for maximum bandwidth of 13Mb/s, and maxi- 
mum request rate of 100 req/s. Server Vz is configured 
for maximum bandwidth of 27Mb/s and maximum re- 
quest rate of 100 req/s. At run time, the request rate 
of V-  is held constant at 100, offering a total band- 
width requirement of 25.6Mb/s, i.e., just within its 
capacity limit. The request rate on server VI is in- 
creased gradually from 0 to 250 req/s. The aggregate 
rate of both servers combined is shown on the hori- 
zontal axis. It can be seen that server Vz overruns its 

capacity allocation delivering a peak of about 35Mb/s 
at a rate of 140 req/s (at which the aggregate rate 
is 240 req/s in Figure 7-a). This is to be compared 
with its guaranteed maximum bandwidth of 27Mb/s 
and maximum request rate of 100 req/s. Server VI 
remains unaffected, since the excess capacity sharing 
mechanism ensures performance isolation. 

The experiment is repeated after adding a back- 
ground load of 100 req/s to overload the server. The 
results are shown in Figure 7-b which depicts the con- 
tracted as well as the actual bandwidth of servers VI 
and VZ in new the case. While the contracted band- 
width is the same as in Figure 7-a, we can see that 
the actual bandwidth differs. For ease of comparison 
with Figure 7-a, the horizontal axis, as before, rep- 
resents the aggregate request rate of VI and Vz com- 
bined. It can be seen that VI in the second experiment 
is made to deliver exactly its maximum guaranteed 
bandwidth, 27Mb/s, when its rate reaches the maxi- 
mum guaranteed rate, 100req/s (at which the aggre- 
gate request rate on the server is 200 in Figure 7-b). 
That is, in the absence of excess capacity on the ma- 
chine, the virtual servers are policed to their capacity 
allocation. Note that request rates higher than 100 on 
VI result in a bandwidth lower than 27Mb/s and vice 
versa. This is an effect of content adaptation to keep 
V1s utilization constant once it reaches V1s allocated 
utilization limit. 

6 Conclusions 
In this paper we presented a QoS management ar- 
chitecture that relies on adapting delivered content. 
Unlike present day non-adaptive servers, and unlike 
servers that implement binary admission control, con- 
tent adaptation enables a server to provide a smooth 
range of client degradation thereby coping with over- 
load in a graceful manner. We described the design 
and implementation of a utilization control loop that 
adapts delivered content in a way that respects a speci- 
fied utilization bound in the presence of variable server 
load while virtually eliminating connection errors. We 
demonstrated several extensions to this mechanism 
that provide performance isolation, service differen- 
tiation, sharing excess capacity, and QoS guarantees. 
The mechanisms described in this paper are largely in- 
dependent of workload assumptions, and can be easily 
applied to a different platform by appropriately tuning 
a small set of parameters using well-founded analytic 
techniques. The architecture can be implemented in a 
middleware layer transparently to existing server and 
browser code thereby facilitating deployment. 

There are several outstanding issues and challenges 
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in this context that can be subject of future research. 
Handling and adapting dynamic content is one inter- 
esting issue. The inherent unpredictability of CGI 
script execution times offers new challenges to load 
characterization. The experiments reported in this pa- 
per used the HTTP 1.0 protocol. It is interesting to 
see whether the same results will hold for HTTP 1.1. 
While some aspects of client classification may be sim- 
plified, persistent TCP connections may impose less 
predictable server load characteristics that are more 
sensitive to client-side bandwidth. The approach of 
storing multiple copies of content is affordable for the 
typical web site size. In video servers, however, an im- 
portant issue to investigate is scalable video encoding 
schemes that avoid storing multiple copies of the con- 
tent. Finally, an interesting research area is that of 
investigating appropriate content authoring and man- 
agement tools to preprocess web content in a way that 
preserves enough information, yet consumes a minimal 
amount of resources. 
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