
An E�cient End-Host Protocol Processing Architecture for Real-Time

Audio and Video Tra�c

Khawar M. Zuberi and Kang G. Shin

Real-Time Computing Laboratory, The University of Michigan

fzuberi,kgshing@eecs.umich.edu

Abstract

Information appliances (IAs) are mass-produced, low-

cost devices for specialized computation/communi-

cation tasks. Examples include webTV, smart cellu-

lar phones, and web phones. Since low cost and low

power-consumption are important requirements in the

design of these devices, IAs use relatively slow/cheap

CPUs (usually 20{40 MHz). Real-time audio and

video communication over the Internet is an integral

part of many IAs which means that despite slow hard-

ware, the communication subsystem within the OS

must be able to e�ciently handle heavy network traf-

�c. This paper presents a protocol architecture which

reduces I-cache miss overheads (bene�ting short audio

messages) and also enables use of single-copy without

any hardware support or restrictions on network APIs

(bene�ting long video messages). We implemented

UDP/IP to evaluate our architecture and measure-

ments show that overheads for short messages are re-

duced about 20% while overheads for long messages

are reduced 15{22%.

1 Introduction

Information appliances (IAs) [1] are single-user de-

vices with Internet connectivity, used for specialized

communication and information retrieval purposes.

IAs include devices such as webTVs, smart cellular

phones with e-mail, PDAs, and web video phones.

With annual production volume of IAs expected to

reach 48 million units by year 2001 [2], IAs are be-

coming an important class of computation devices.

Since IAs are mass produced, keeping per-unit costs

low is a primary design objective. As a result, IAs use

simple, low-cost hardware. For example, the current

generation of personal information managers (PIMs)

use processors running at 16{44 MHz [1]. Since au-

dio/video communication is a primary function per-

formed by IAs, the communication subsystem within

the OS must be highly e�cient to work well with the

low-cost, slow hardware of IAs for both short audio

and long video messages. Di�erent overheads come

into play depending on whether short or long messages

are being processed. Data-touching overheads (which

include data copying and checksum overheads) tend

to dominate when dealing with long messages. For

short (audio) messages, copying overheads are not im-

portant, but messages are sent once every 10{30ms [3].

With messages arriving with such high frequency, non-

data-touching overheads (context switching, interrupt

handling, I-cache miss overheads, etc.) become an im-

portant part of protocol processing.

Studies have shown that receive-side protocol pro-

cessing is more complicated and has higher over-

head than the send-side [4,5] and this is what limits

throughput; so, here we focus on improving receive-

side overhead. For reducing non-data-touching over-

heads, we present layer bypass which uses application-

speci�c knowledge to safely bypass select layers within

the protocol stack, completely avoiding all I-cache

misses associated with those layers. Regarding data-

touching overheads, we exploit the periodic nature

of video applications. We show that the single-copy

scheme presented for non-real-time systems in [6] |

which requires specialized network adapter hardware

to be feasible for non-real-time systems | works well

without any hardware support for multimedia appli-

cations because of their periodic nature.

For evaluation, we implemented UDP/IP using our

protocol architecture within the EMERALDS real-

time operating system [7]. EMERALDS is designed

for use in small embedded systems such as digital cel-

lular phones. We chose UDP as the protocol to im-

plement since it is commonly used for audio and video

applications.

The next section gives an overview of protocol pro-

cessing overheads. Section 3 presents our schemes for

reducing these overheads which are then evaluated in

Section 4. The paper concludes with Section 5.

2 Protocol Architecture Issues

Following is an overview of I-cache and data-

copying overheads, schemes proposed by other re-

searchers to reduce these overheads, and shortcomings

of these schemes.

2.1 E�cient I-Cache Usage

Communication protocols are designed to accom-

modate varying communication patterns and error

conditions. As a result, a large portion of the pro-

tocol code is devoted to checking for rarely-occurring

errors or special message formats. These checks are

usually coded as shown in Figure 1. Most of the time,

there are no errors so that the bodies of the if state-

ments never execute. However, code is still fetched

into the I-cache, causing replacement misses. More-

over, repeated branches can cause CPU pipeline stalls.

For relatively slow CPUs such as those used in IAs,

this results in signi�cant non-data-touching overhead.

Researchers have proposed techniques such as outlin-

ing/cloning [8] and incremental specialization [9] to

reduce I-cache misses, but these schemes involve low-

level optimization of frequently-executed code in the



if (check1) { ... }

if (check2) { ... }

if (check3) { ... }

Figure 1: Typical structure of error checks in proto-

col code.

protocol stack, and this entails considerable e�ort on

part of the programmer. This indicates a need to de-

velop an easier-to-use scheme to reduce I-cache misses.

2.2 Single-Copy Architectures

The single-copy network architecture was proposed

by network adapter (NA) designers [6] to reduce data-

touching overheads. The idea is to design a NA with

enough bu�er space so that on transmission, data is

copied once from user-space directly to the NA, while

on reception, data stays in the NA until the appli-

cation makes a receive system call and then data is

copied directly to user-space.

To work well for general-purpose systems, single-

copy schemes require the NA to have \exible" bu�ers.

The Afterburner NA [6] uses linked lists to manage NA

bu�ers, so it can continue to receive packets as long

as some free bu�ers are available. This is a more com-

plicated and expensive NA design than common NAs

such as LANCE which uses circular queues of bu�ers.

For reception, LANCE �lls bu�ers in the receive ring

until it reaches a �lled bu�er at which point it starts

dropping packets (even if other bu�ers are free down

the ring). But, as we will show later, for real-time ap-

plications, the single-copy architecture is feasible when

combined with a real-time task scheduler , and it works

even with cheap NAs such as LANCE (which is essen-

tial to keep costs low in IAs).

3 Protocol Architecture

The next subsection describes the basic structure

we chose for our protocol architecture, followed by a

description of our protocol processing optimizations.

3.1 Basic Structure

We chose lazy receiver processing (LRP) [10] (Fig-

ure 2) as our basic architecture. Under LRP, the

packet �lter [11] tries to forward real-time packets di-

rectly to queues associated with the destination thread

where packets stay unprocessed until the application

makes a receive system call. This is possible for real-

time messages since the application threads are usu-

ally periodic so that packets are always processed

within a known time interval. Non-real-time pack-

ets are forwarded to a special network thread which

performs protocol processing and keeps the message

until the �nal destination thread makes a receive call.

LRP minimizes priority inversion [12] and also saves

one context switch for real-time messages compared to

architectures which always use intermediate network

threads for protocol processing, which is why we use

LRP.

Next, we describe our optimizations for protocol

processing. Note that these optimizations do not de-

pend on LRP and would work equally well with other

protocol architectures.

Network

Kernel

Device driver

Net. thread

non-real-

time

Packet filter

User 

thread

Protocol code

real-time

Figure 2: Lazy receiver processing.

3.2 Reducing Non-Data-Touching Over-

heads

For lowering non-data-touching overheads | espe-

cially those related to I-cache misses | we present a

new scheme called layer bypass. It is easier to apply

than low-level optimizations like outlining and special-

ization and does not require any in-depth analysis of

protocol code.

Layer bypass relies on the observation that most

of the functionality implemented by various protocol

layers is simply not needed when processing short mes-

sages. The few operations that are needed are either

already duplicated in the packet �lter or can be eas-

ily migrated there. This allows various protocol layers

to be bypassed, completely avoiding all I-cache misses

these layers may have caused.

Layer bypass can be applied as follows. When writ-

ing the packet �lter, the protocol speci�cation for var-

ious protocol layers is �rst studied to determine which

aspects of the protocol are not needed for a given mes-

sage stream (such as live audio messages). Those lay-

ers are identi�ed which perform little or no functions.

The few useful operations these layers do perform can

all be placed together in the packet �lter (or some

other such small module appropriately inserted in the

protocol stack). Then the �lter is programmed to de-

tect messages belonging to certain message streams

(like audio) and bypass the redundant layers for these

messages. For example, if the IP layer is to be by-

passed, the �lter will forward packets straight to the

transport layer.

Layer bypass can be used very e�ectively for audio

messages. UDP/IP is commonly used for such mes-

sages, so �rst consider the IP layer which performs

the following major functions:

IP: Routing, fragmentation/reassembly, IP address

checks, IP header checksum, checks for malformed

headers and packets, IP option processing.

A receiving host does not perform any rout-

ing. Short live audio messages need not be frag-

mented/reassembled. IP options are used for network

testing, so they do not apply here. The packet �lter

checks the destination IP address, so this function of

the IP layer is already being handled by the packet

�lter. The IP header checksum and other error checks

can be bypassed safely for the following reason: the

packet �lter examines the various �elds in the header



to detect audio packets. If the header has been cor-

rupted, the �lter will not recognize the packet; it will

be forwarded to the IP layer, normal processing will

occur, the errors will be detected, and the packet will

be discarded.

Now we look at the feasibility of bypassing the UDP

layer which performs the following major functions:

UDP: UDP datagram checksum, port address

checks, generate ICMP messages if destination

port does not exist, pass incoming datagrams to

correct socket.

The UDP checksum is usually turned o� for live audio

messages. The packet �lter already checks the desti-

nation port address. If this check fails, the packet

is routed through the full protocol stack where error

handling (if needed) can occur. So, for live audio mes-

sages, the packet �lter bypasses both IP and UDP lay-

ers and forwards packets straight to the socket layer.

Layer bypass can also be used for handling other

types of short messages such as web server requests as

discussed in [13].

3.3 Improving Data-Touching Overheads

We now show that the single-copy scheme | which,

without hardware support, has limited value for non-

real-time systems | can be used e�ectively for video

communication with no special hardware support.

The key to the e�ectiveness of the single-copy scheme

in real-time systems is a real-time scheduler which

guarantees that the application executes at its period

and does not face unpredictable delays. Hence, incom-

ing packets will stay in the NA bu�ers for no longer

than the period of the application. This is in contrast

to non-real-time applications where no such bound ex-

ists on how long an application may take to retrieve

its packets from the NA.

Real-time audio and video applications run with

some period T . T for audio is quite short, usually 10{

30ms [3], but video applications can run as slow as 30

or even 10 frames/s, giving a T as large as 0.1s. This

is the maximum time messages for a video application

have to stay in NA bu�ers. If NA bu�ers are about

to overow and the video messages have not been pro-

cessed, packets for these messages have to be copied

out of the NA into kernel bu�ers to make room for

incoming packets. This can occur if a burst of non-

real-time packets arrive, �lling NA bu�ers in a short

period of time. Following is an analysis of how often

this might happen when both real-time and non-real-

time packets are being received through the NA.

Estimating Non-Real-Time Packet Arrivals:

Poisson processes have previously been used to model

packet arrivals. However, studies have shown that

wide-area network tra�c is too bursty to be correctly

modeled by a Poisson process [14]. In fact, only em-

pirical models exist for web browsing [15] and other

mass data transfer applications. This precludes any

closed-form derivation of non-real-time packet arrival

distributions. Instead, we present an engineering ap-

proximation of packet arrival rates to see if the single-

copy scheme can be used successfully in IAs.

We use web browsing as a representative non-real-

time networking application. Measurements of web

tra�c have shown that retrieval of even small web

pages take more than 2 seconds [15]. This is the time

needed to look up the remote host's DNS entry and

establish TCP connections. After this initial phase

data transfer begins at the rate of 1 byte per 90{

100�s [15]. Most web pages are relatively small-sized.

Considering the small display screens that IAs have,

we assume a 10kB page size and 20 packets to carry

10kB. With these assumptions and using 90�s as the

per-byte transfer time (which is faster than the wire-

less link speeds available to most IAs today), we get a

packet arrival rate of 22 packets/s or 2.2 packets/0.1s.

Even if due to burstiness, �ve times as many packets

arrive within T = 0:1s, we still get only 11 packets/T .

Even if 5 bursts of 11 packets/T occur during down-

load (highly unlikely since the majority of web pages

�t in fewer than 30 packets) and the user spends just

one second reading the document, the probability of

getting a burst of 11 packets/T is only 5 times in 35T

seconds or 0.143. This is negligible considering that

NAs typically have 128{256 bu�ers.

Note that the above analysis is true even for the

NAs with the simplest bu�er-management policies,

such as LANCE. As such, the single-copy scheme

for real-time applications does not require any spe-

cial/expensive hardware support which is an impor-

tant consideration for IAs.

4 Evaluation Results

We want to evaluate the e�ectiveness of our archi-

tecture in handling both short audio and long video

messages. We implemented our protocol architecture

within EMERALDS on a 25MHz Motorola 68040 pro-

cessor. The 68040 is typical of CPUs used in many

IAs today. (Refer to [13] for evaluation results on a

faster processor.) We use two 68040s in our experi-

ments, connected by a 10Mb/s private Ethernet using

the LANCE network adapter.

For evaluation, we implemented UDP/IP using our

architecture. The protocol and LANCE device driver

code was taken from FreeBSD 4.4 and minor modi�-

cations were made to make it work with EMERALDS.

For simplicity, we used a UDP/IP-speci�c packet �l-

ter. Interested readers are referred to [11] for more

generalized high-performance packet �lters.

4.1 Performance Improvements

We sent datagram messages from one processor to

another and measured the total overhead of receive-

side protocol processing including interrupt handling

and all relevant context switches using a 5MHz on-

chip timer. For each data point (�xed message size)

we repeated this experiment 100 times and averaged

the results. Further increase in number of samples did

not result in any signi�cant change in averaged results.

Short Messages: Figure 3 shows the total receive

overhead for short message sizes. This �gure presents

measurements for the cases when processing is done

by a special network thread (labeled \standard archi-

tecture"), regular LRP, and LRP when layer bypass is



0.0 50.0 100.0 150.0 200.0

Message size (bytes)

0.0

50.0

100.0

150.0

200.0

250.0

R
ec

ei
v
e 

o
v
er

h
ea

d
 (

µ
s)

Standard architecture

LRP

LRP + layer bypass

Figure 3: Receive overhead for short messages.

0.0 2000.0 4000.0 6000.0

Message size (bytes)

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

R
ec

ei
v
e 

o
v
er

h
ea

d
 (

µ
s)

Two-copy

Single-copy

Figure 4: Receive overheads for long messages.

used as well. In all cases, the UDP checksum is turned

o�. From the �gure, we see the bene�t of bypassing IP

and UDP layers. Performance is improved 20% (be-

yond that of LRP). Note that the sharper variations in

the plots are a result of BSD's mbuf allocation scheme

[4] and are not related to the protocol architecture.

Long Messages: Figure 4 plots the receive over-

head for messages ranging from 20 to 6000 bytes. It

shows that single-copy incurs 15{22% less overhead

than the two-copy scheme. Note that the sharp in-

creases in overheads approximately every 1500 bytes is

due to messages being fragmented into Ethernet pack-

ets, each of which generates a separate interrupt.

5 Conclusion

Information appliances (IAs) are an emerging class

of devices which are used for specialized communica-

tion tasks such as audio/video communication over the

Internet. The Internet-centric nature of IAs combined

with the need to keep costs low in these mass-produced

devices (which results in the use of slow/cheap pro-

cessors) dictates that the communication subsystem

in the OS be highly e�cient to enable audio/video

communication despite slow hardware. In this paper

we presented a protocol architecture which improves

message reception overhead for real-time audio and

video communication. Overhead for short live audio

messages is reduced 20% by safely bypassing protocol

layers. For long video messages, we showed that the

single-copy scheme can be used e�ectively | without

hardware support | to reduce overheads by 15{22%.

References

[1] T. Lewis, \Information appliances: Gadget netopia,"

IEEE Computer, vol. 31, no. 1, pp. 59{70, January

1998.

[2] Appliance war could make web less open. News Briefs,

IEEE Computer, vol. 30, no. 10, pp. 20{25, October

1997.

[3] H. Schulzrinne, \RTP pro�le for audio and video con-

ferences with minimal control," RFC 1890, January

1996.

[4] J. Kay and J. Pasquale, \Measurement, analysis, and

improvement of UDP/IP throughput for the DECsta-

tion 5000," in Proc. Winter USENIX, pp. 249{258,

January 1993.

[5] D. Kandlur, D. Saha, and M. Willebeek-LeMair,

\Protocol architecture for multimedia applications

over ATM networks," IEEE Journal on Selected Ar-

eas in Communications, vol. 14, no. 7, pp. 1349{1359,

September 1996.

[6] C. Dalton, G. Watson, D. Banks, C. Calamvokis,

A. Edwards, and J. Lumley, \Afterburner," IEEE

Network, vol. 7, no. 4, pp. 36{43, July 1993.

[7] K. M. Zuberi and K. G. Shin, \EMERALDS: A mi-

crokernel for embedded real-time systems," in Proc.

Real-Time Technology and Applications Symposium,

pp. 241{249, June 1996.

[8] D. Mosberger, L. L. Peterson, P. G. Bridges, and

S. O'Malley, \Analysis of techniques to improve pro-

tocol processing latency," in Proc. SIGCOMM, pp.

73{84, August 1996.

[9] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan,

J. Inouye, L. Kethana, J. Walpole, and K. Zhang,

\Optimistic incremental specialization: Streamlining

a commercial operating system," in Proc. Symposium

on Operating Systems Principles, pp. 314{324, De-

cember 1995.

[10] P. Druschel and G. Banga, \Lazy receiver processing

(LRP): A network subsystem architecture for server

systems," in Proc. Operating Systems Design and Im-

plementation, October 1996.

[11] D. Engler and M. F. Kaashoek, \DPF: Fast, exible

message demultiplexing using dynamic code genera-

tion," in Proc. SIGCOMM, pp. 53{59, August 1996.

[12] C. Mercer and H. Tokuda, \An evaluation of priority

consistency in protocol architectures," in Proc. IEEE

Conf. Local Computer Networks, pp. 386{398, Octo-

ber 1991.

[13] K. M. Zuberi, Real-Time Operating System Services

for Networked Embedded Systems, PhD thesis, Uni-

versity of Michigan, EECS Dept., 1998.

[14] V. Paxson and S. Floyd, \Wide area tra�c: The fail-

ure of poisson modeling," IEEE/ACM Trans. Net-

working, vol. 3, no. 3, pp. 226{244, June 1995.

[15] C. Cunha, A. Bestavros, and M. Crovella, \Character-

istics of WWW client-based traces," Technical Report

BU-CS-95-010, Boston University, Computer Science

Department, 1995.


