
470 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 5, MAY 1998

Fault-Tolerant Real-Time Communication
in Distributed Computing Systems

Qin Zheng, Member, IEEE Computer Society, and Kang G. Shin, Fellow, IEEE

Abstract—The delivery delay in a point-to-point packet switching network is difficult to control due to the contention among
randomly-arriving packets at each node and multihops a packet must travel between its source and destination. Despite this
difficulty, there are an increasing number of applications that require packets to be delivered reliably within prespecified delay
bounds. This paper shows how this can be achieved by using real-time channels which make “soft” reservation of network resources
to ensure the timely delivery of real-time packets. We first present theoretical results and detailed procedures for the establishment
of real-time channels and then show how the basic real-time channels can be enhanced to be fault-tolerant using the multiple
disjoint paths between a pair of communicating nodes. The contribution of the former is a tighter schedulability condition which
makes more efficient use of network resources than any other existing approaches, and that of the latter is a significant
improvement in fault tolerance over the basic real-time channel, which is inherently susceptible to component failures.

Index Terms—Real-time fault-tolerant communications, point-to-point packet switching networks, deadline scheduling, single-
failure-immune (SFI) networks.

—————————— ✦ ——————————

1 INTRODUCTION

IMELY delivery of intertask messages—called real-time
communication—is essential to the completion of real-

time tasks before their deadlines. On one hand, distributed
systems with point-to-point interconnection networks are
natural candidates for real-time communication because
parallel processing and communication, as well as fault
tolerance, can be achieved using multiple processors and
interconnection paths between every pair of nodes. On the
other hand, due to the contention among randomly-
arriving messages at each node/link and multihops be-
tween the source and destination that a message must
travel, it is difficult to guarantee the timely delivery of in-
tertask messages. The main goal of this paper is to remove
this difficulty and simultaneously realize the potential of dis-
tributed systems for high performance and high reliability.

If messages are broken into packets of the same size, one
way to achieve real-time communication is to use circuit-
switched transmission based on the Synchronous Transmis-
sion Mode (STM), i.e., statically assign time slots of transmis-
sion links to each circuit over which real-time communication
must be achieved. However, there are two problems associ-
ated with circuit-switched transmission. First, since time slots
are statically assigned to each circuit, there is a waste of
bandwidth associated with the time slots during which no
packets are transmitted. Second, it is difficult to establish cir-
cuits with different delay and/or bandwidth requirements.
Hence, although the circuit-switched transmission has been

quite successful for digital telephone communications, it is
not suitable for distributed real-time computing systems.

The first problem can be solved by using packet-switched
transmission in which link transmission times are dynami-
cally assigned to those connections which have packets to
transmit. However, due to the dynamic sharing of link
bandwidth among multiple connections, it is difficult to
guarantee packet transmission delay bounds in a packet-
switched network.

The approach of real-time channel, first proposed by Fer-
rari and Verma [1], then refined by Kandlur et al. [3], is an
enhancement to the conventional packet-switched network
to provide delay bound guarantees to real-time connec-
tions. With the real-time channel approach, each packet is
assigned a deadline over each link on its route and the
transmission of packets over a link is scheduled according
to their deadlines. Using a proper deadline assignment pol-
icy, the network will first serve those packets of the channels
that require tight delivery delays and/or high link band-
widths. This will solve the second problem of the STM.

Liu and Layland [2] proved the deadline scheduling
policy to be “optimal” in the sense that if the transmission
of packets can be completed before their deadlines using
any scheduling policy, so can they using the deadline
scheduling policy. Thus, the deadline scheduling policy is
best suited for a communication subsystem where all time-
constrained packets must be delivered before their dead-
lines. However, as pointed out in [3], the main problem
with the deadline scheduling policy is the difficulty in
computing guarantees. In other words, there are no efficient
ways to solve the following two problems:

•� The schedulability problem: Given a set of real-time
channels passing through a link, verify if all packets of
these channels can be delivered over the link before
their deadlines, and

1045-9219/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� Q. Zheng is with Argon Networks, 25 Porter Road, Littleton, MA 01460.
E-mail: zheng@argon.com.

•� K.G. Shin is with the Department of Electrical Engineering and Computer
Science, Real-Time Computing Laboratory, University of Michigan, Ann
Arbor, MI 48109-2122. E-mail: kgshin@eecs.umich.edu.

Manuscript received 29 June 1995; revised 2 Oct. 1996.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 104590.

T

ZHENG AND SHIN: FAULT-TOLERANT REAL-TIME COMMUNICATION IN DISTRIBUTED COMPUTING SYSTEMS 471

•� The minimum guaranteed delay problem: Given a new
real-time channel to be established, calculate the
minimum delivery delay bound that a link can guar-
antee for this channel without violating the guaran-
tees of existing real-time channels.

The concept of real-time channel cannot be efficiently im-
plemented without solving these two problems.

Ferrari and Verma [1] obtained a solution to the schedula-
bility problem under the assumption that the summation of
the maximum packet transmission times over all real-time
channels passing through a link is not larger than the mini-
mum packet interarrival times of these channels. This as-
sumption is quite restrictive in practice, as it limits the traffic
types to be serviced. Without using this assumption, Kandlur
et al. [3] established a sufficient condition to check the
schedulability of channels. They first derived the schedula-
bility conditions from the priority scheduling policy. Since
any set of channels which are schedulable under the priority
scheduling policy are also schedulable under the deadline
scheduling policy, this condition is a sufficient schedulability
condition for the deadline-driven policy.

It can be proven that, under the assumption of [1], the suf-
ficient condition in [3] is equivalent to that in [1]. So, the for-
mer subsumes the latter; that is, [3] can deal with situations
where the assumption of [1] fails to hold. However, using
sufficient schedulability conditions for establishing real-time
channels may still under utilize the network’s transmission
capacity since violation of the sufficient conditions does not
necessarily mean that the channels cannot be established.

In this paper, we study the real-time channel establish-
ment problem and present a schedulability condition which
is both necessary and sufficient. So, under this condition, the
network’s transmission capacity can be better utilized in
accommodating real-time channels. Based on this condi-
tion, an efficient solution to the minimum guaranteed delay
problem is also derived and used in dividing the requested
end-to-end packet delivery delay of a real-time channel into
delay segments, each of which is assigned as the deadline
of a link the channel runs through.

One important, yet under explored, problem is the fault
tolerance associated with the concept of real-time channel.
For ease in controlling the end-to-end packet delays, the
static routing approach is used for real-time channels. All
packets of a real-time channel are transmitted along the
same path. This, unfortunately, is more susceptible to com-
ponent failures than a dynamic routing approach, since a
single component failure may disable the whole channel,
while packets can be easily routed around the broken com-
ponents with a dynamic routing approach.

The failure-handling techniques described in [4] for da-
tagram communication are inadequate for real-time com-
munication because real-time messages cannot be detoured
around the failed component on the fly. Techniques for real-
time communication in multiaccess LANs, such as the one
in [5], are not applicable to multihop point-to-point net-
works, either.

There have also been proposed forward-recovery ap-
proaches, as in [6], [7], where multiple copies of a mes-
sage are sent via disjoint paths to mask component fail-
ures. A variation of these approaches coupled with the

error-correction coding scheme can be found in [8]. But all of
these approaches cannot guarantee bounded recovery delays.

The method proposed in [9] requires all failures to be
broadcast to the entire network. When a source node is no-
tified of the failure of its channel, it tries to establish a new
channel from scratch. Since no resource is reserved in ad-
vance for the fault tolerance purpose, this method has a
small overhead in the absence of faults. However, it does
not give any guarantee on failure recovery. The channel
reestablishment attempt for failure recovery can be rejected,
even when there are sufficient resources, as a result of the
contention among several simultaneous recovery attempts.
Moreover, successive attempts of channel reestablishment
may extend the recovery delay significantly.

In this paper, we will show how a real-time channel can
be enhanced at a moderate cost to be immune to any single
component failure within the channel. The basic idea is to
use a constrained dynamic routing approach which strikes
a balance between the reliability of real-time channels and
the cost of guaranteeing timely delivery of packets. For real-
time communication which can tolerate rare, short-period
breakdowns, we show how backup channels can be estab-
lished with the minimum cost which make the quick rees-
tablishment of real-time channels possible. (See [12] for im-
plementation details of the backup channel approach.)

The paper is organized as follows. Section 2 introduces
the concept of real-time channel, solutions to both the
schedulability and the minimum guaranteed delay prob-
lems, and algorithms for the establishment of real-time
channels. Section 3 shows how single-failure-immune (SFI)
real-time channels can be established. Section 4 discusses
the idea of backup channels for the quick recovery from
broken channels. The paper concludes with Section 5.

2 REAL-TIME CHANNELS

A real-time channel is defined as a simplex virtual circuit
between the source and destination nodes which guaran-
tees the delivery of packets within a user-requested end-to-
end delay bound [1], [3]. The choice of virtual circuits over
datagram services is based on their relative ease in control-
ling packet delivery times. Moreover, communication with
virtual circuits turns out to be suited very well for most
real-time applications.

Like an ordinary virtual circuit in a packet switching
network, there are three phases associated with each real-
time channel: channel setup, packet transmission, and
channel tear-down. Once the channel is set up, all packets
of the real-time channel are transmitted over the same
path. The difference between a real-time channel and an
ordinary virtual circuit is that a real-time channel guar-
antees the user-requested end-to-end packet delivery de-
lay, while the latter does not provide such guarantees.
Guaranteeing the user-requested end-to-end delay makes
the channel setup procedure more complex than that for a
virtual circuit. Also, a more complex scheduling policy
than the conventional FIFO must be implemented for
packet transmissions.

To set up a real-time channel, the requesting process
must specify its traffic generation pattern. Because of the

472 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 5, MAY 1998

limited capacity of transmission links, no bounded message
delivery delay can be guaranteed without this informa-
tion. We use two parameters, T and C, to describe a traffic
pattern, where T is the minimum packet inter-arrival time
and C is the maximum packet-transmission time over a
link.1 It is reasonable to assume prior knowledge of these
parameters for many applications, such as interactive
voice/video transmission and real-time control/monitoring.
In other applications where the traffic pattern is less pre-
dictable, the estimated values of T and C could be used. A
process may exceed its prespecified maximum packet
generation rate at the risk that these packets may be de-
livered with delays longer than the prespecified bound, or
may even be discarded, but this particular process will not
affect the guarantees of the other existing channels.

Upon receiving the request for establishing a new real-
time channel, the service provider must

1)� select a route for the channel, and
2)� check if the requested end-to-end delay can be satis-

fied along this route.

The real-time channel establishment request is accepted if
this test is passed, and rejected otherwise. We will focus on
the second step in the remainder of this section. (The route
selection step will be discussed in the next section.)

The end-to-end packet delivery delay is the summation
of delays over links and nodes that the channel runs
through, which are composed of:

•� Switching delay: The time needed to move a packet from
an input link to an appropriate output link buffer.

•� Scheduling delay: The time needed to choose a packet
in the wait queue for transmission, or insert the
packet in an ordered queue, according to a specific
scheduling policy.

•� Queuing delay: The waiting and transmission time of a
packet at the transmitter of an output link.

•� Propagation delay: The time needed for the packet to
reach the next node.

The switching delay at a node depends on the switch ar-
chitecture and the switching technique used by the node.
According to the discussion in [10], the data-transfer speed
inside a switching node is usually much faster than that of
an output link and, thus, the switching delay is negligible
as compared to the other delay elements.

The scheduling delay depends on the scheduling policy
used. The usual First-In-First-Out (FIFO) policy incurs
practically no scheduling delay, as the first packet in the
wait queue is always chosen for transmission and a newly-
arrived packet is inserted at the end of the queue. However,
the overhead incurred by the deadline scheduling policy—
the policy to be used in real-time channels—could be signifi-
cant since the entire queue may have to be searched for
packet selection/insertion. Designing a fast packet switch
that implements the deadline scheduling policy is an inter-
esting problem of its own right. (See [11] for an example
hardware design for deadline scheduling.) In this paper, we

1. C varies over links with different transmission rates and lengths. Actu-
ally, a user gives the maximum packet size and each node determines the
value of C for each of its output links.

assume the availability of such a fast switch and thus as-
sume the scheduling delay to be negligible. The propaga-
tion delay depends on the total link length between the
source and destination nodes and is constant for a given
route, so it can be presubtracted from the requested end-to-
end delivery delay.

Because of the conflicts at the output link, queuing de-
lays are inevitable. In the rest of this section, we will discuss
how they can be controlled within a certain bound for real-
time channels.

Suppose a real-time channel ti requires an end-to-end

packet delivery delay Di, and the (physical) route of the

channel consists of k links, ,1, L, ,k. One way to meet the
end-to-end packet delivery deadline is to guarantee the
packet delivery deadline over each link on the route. In

other words, if the packet delay over link ,j is guaran-

teed to be no greater than di
j and d Di

j
ij

k
≤

=∑ 1
, then the

end-to-end packet delivery delay cannot be greater than

Di. Guaranteeing the end-to-end packet delivery delay in
this way, albeit conservatively, makes the problem much
easier to solve, because we only need to calculate the
delay bound over a single link, rather than over the en-
tire channel.

By amortizing the end-to-end requested delivery delay

over the links of its route, a real-time channel ti running

through a link ,j can be described as a three-tuple T C di i
j

i
j, ,e j,

where Ti is the minimum packet interarrival time at the link,

Ci
j is the maximum packet-transmission time over the link,

and di
j is the packet delivery delay bound assigned to the

link. Without loss of generality, one can assume Ti, Ci
j , and

di
j to be positive. We will also omit the superscript j when the

link number j is immaterial.
A set of channels ti = (Ti, Ci, di), i = 1, 2, ..., n, is said to be

schedulable over a link if for all 1 £ i £ n, the maximum
queuing delay experienced by channel i’s packets over the
link is not greater than the requested delay bound di.

A real-time channel ti can be established in two differ-
ent ways. The first way is to divide the end-to-end delay

Di into link delay bounds di
j s before establishing the

channel. Then, check the schedulability of the channel
over each of the links on the channel’s route. If all the

checks are positive, ti can be established successfully.
Otherwise, one must reassign link delays and repeat the
procedure. The second way is to calculate the minimum
delay bound each of the links on the channel’s route can
guarantee without affecting the schedulability of existing
channels. If the sum of these minimum link-delay bounds
is not greater than the user-requested end-to-end delay,
the real-time channel can be established. Otherwise, it is
impossible to establish the channel at this time unless one
chooses an alternative route or the client increases his re-
quested end-to-end delay.

The above two ways of establishing a real-time channel
introduce the following two problems.

ZHENG AND SHIN: FAULT-TOLERANT REAL-TIME COMMUNICATION IN DISTRIBUTED COMPUTING SYSTEMS 473

•� Schedulability Problem: Given a set of n channels ti =
(Ti, Ci, di), i = 1, 2, º, n, running through a link, are
they all schedulable?

•� Minimum Guaranteed Delay Problem: Suppose n - 1
channels, ti = (Ti, Ci, di), i = 1, 2, º, n - 1, are schedul-
able over a link. Given a new channel tn with the
minimum packet interarrival time Tn and the maxi-
mum packet-transmission time Cn, what is the mini-
mum value of dn such that all ti = (Ti, Ci, di), i = 1, 2, º, n,
are still schedulable?

Solutions to these problems are presented in the follow-
ing two theorems.

THEOREM 1. A set of channels ti = (Ti, Ci, di), i = 1, 2, ..., n, are
schedulable over a link under the preemptive deadline
scheduling policy if and only if both of the following hold:

1)� C Ti ii

n
≤

=∑ 1
1

.

2)�"t Œ S, t d T C ti i ii

n
− ≤

+

=∑ c h
1

, where S Sii

n
=

=1U ,

S d nT n t d Ti i i i i= + = −: , , ,0 1 K maxc h{ } ,

t d d d T C C Tn i i ii

n

ii

n

imax = −L
NM

O
QP −FH IKRST

UVW= =∑ ∑max , , ,1 1 1
1 1K c h ,

and Èx˘+ = n if n - 1 £ x < n, n = 1, 2, ..., and Èx È+ = 0 for
x < 0.

THEOREM 2. Let f t d t d T Cn i i ii

n
,c h c h= −

+

=∑ 1
 and S be the

set defined in Theorem 1 with dn = Cn. Then, dn = Cn is the

solution to the minimum guaranteed delay problem if "t Œ S,

f(t, Cn) £ t. Otherwise, the solution is dn = max{dt: t Œ G},

where G = S > {t : f(t, Cn) > t} and dt is computed as

d C k Tt
n f

t
n f

t
t
t= + + +e e , with k f t C t Cf

t
n n= − −,c h 1 ,

e f
t

n f
t

nf t C t k C= − −,c h , et
t

n t
t

nt C k T= − − , k t C Tt
t

n n= −c h .

Proofs of these theorems and more results about the
schedulability and minimum guaranteed delay problems
can be found in [13].

Using Theorems 1 and 2, we have developed the fol-
lowing two algorithms to establish a real-time channel ti
over a given route consisting of k links, ,1, L, ,k.

Algorithm 1:

STEP 1. Divide the requested end-to-end delay Di among the

links, i.e., assign a link delay bound di
j over ,j, j = 1,

L, k, such that d Di
j

ij

k
=

=∑ 1
.

STEP 2. Using Theorem 1, check the schedulability of the
channel over each link. If all the checks are positive,
then the requested real-time channel can be estab-
lished with the assigned link delays di

j s. Otherwise,
the channel establishment request is rejected.

Algorithm 2:

STEP 1. Using Theorem 2, calculate the minimum packet

delay bounds d i
j

min, over link ,j, j = 1, L, k.

STEP 2. If d Di
j

ij

k

min, ≤
=∑ 0

, then the requested real-time

channel can be established. Assign the link delay over

,j to be d d ki
j

i
j

i= +min, δ , where δ i i i
j

j

k
D d= −

=∑ min,1
.

Otherwise, the channel establishment request is rejected.

Algorithm 2 is, in general, superior to Algorithm 1 since

it “optimally” divides the end-to-end delay Di into link de-

lays di
j s. In other words, if a real-time channel cannot be

established using Algorithm 2, then it cannot be established
using Algorithm 1 either under any link-delay assignment
policy. However, Algorithm 1 is useful in situations where
the network is lightly loaded (thus, the requested channel
may always be established) and the client has specific pref-
erence on either of the link-delay assignment policies.

We make several remarks on the above results.

1)�The description of a channel ti over a link with a

three-tuple (Ti, Ci, di) means that the packet inter-
arrival times at the link are not smaller than a con-

stant Ti. This is true at the first link of the channel if
the source node abides by the traffic generation con-
straints. The packet interarrival times at intermediate

links, however, may be smaller than Ti because of the
different delays experienced by the packets at the
previous links. For this reason, one should use a logi-

cal packet arrival time t, —which is defined as the
time the packet would have arrived at the link if it
had experienced the largest delays (i.e., the requested
link delay bounds di

j s) at all previous links—to com-

pute the packet’s deadline, t, + di. Clearly, using its
logical packet arrival time will not exceed the user-
requested packet’s end-to-end delay. Also, under
heavy traffic conditions, using the logical arrival time
will lower the priority of a packet, which has gained
time over the previous links (thus, arrived earlier) and
allow other tighter-deadline packets (or even non-real-
time packets) to be transmitted first. Under light traffic
conditions, using the logical arrival time will not delay
the transmission of a packet because the packet can be
transmitted before its logical arrival time.

2)� At the source node, one can use the logical generation
time to deal with the case when the source process vio-
lates its prespecified traffic constraints. Specifically, if a
packet has a length longer than the prespecified value of
the corresponding channel, it is broken into one or more
packets. If the packet generation rate is greater than the
prespecified value, the packets which are generated ear-
lier than specified are assigned deadlines according to
the times when they should have been generated. In this
way, only those packets that violate the traffic constraints
may suffer larger delays, but this violation will not affect
the delivery guarantees of other channels.
� This property also enables real-time channels to
possess the capability of distributed flow control.
Each real-time channel is guaranteed to have a certain
network bandwidth; no channel can deprive other
channels’ guarantees.

474 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 5, MAY 1998

3)�Non-real-time and datagram services can be easily
supported with the concept of real-time channel. Over
each link, one can set up a special real-time channel t0
with large values of T0 and d0. All non-real-time and
datagram packets are transmitted through channel t0.
Since T0 and C0 are large, t0 has little influence on the
other real-time channels. Also, non-real-time or da-
tagram packets will be transmitted immediately after
transmitting all or most of the real-time packets. So,
the network bandwidth is efficiently used. Dynamic
routing of datagram packets is also possible by run-
ning t0 through every link of the network. One can then
send a datagram packet to an output link over which
the packet will be assigned the earliest deadline.

3 SINGLE-FAILURE-IMMUNE (SFI) REAL-TIME
CHANNELS

In addition to their potential for high performance, high reli-
ability is another attractive feature of point-to-point con-
nected distributed systems. High reliability comes from the
multiple processors and interconnection paths existing in a
distributed system that provide natural spatial redundancy.
However, the real-time channels discussed in the last section
do not take advantage of this feature. All packets of a real-
time channel are transmitted along the same path, so a single
component failure can disable the entire channel.

A natural way to increase the reliability of a real-time chan-
nel is to expand the channel with some extra links and nodes,
such that packets can be rerouted around faulty components
on the original channel. One extreme is to use all links and
nodes in the network such that packets can be successfully
routed in a timely manner as long as the network remains
connected. However, this method is usually very expensive.
The cost comes not only from the large number of links/nodes
involved, but also from the delay bound requirements over the

links. For a real-time channel which remains operational as
long as the network is connected, the number of hops a packet
may traverse, in the worst case, is very large. The large num-
ber of hops from the source to destination node requires each
link on the route to provide a very small delay bound so that
the end-to-end delay bound can be guaranteed. From Theo-
rem 1, it is easy to see that establishing a real-time channel
with a very small requested delay bound over a link is very
costly and very likely to be rejected.

By making a trade-off between reliability and cost, we
want to establish each real-time channel which is single-
failure-immune (SFI). A real-time channel is said to be SFI if
it guarantees the timely delivery of a packet as long as the
packet encounters no more than one link/node failure on
its way to the destination node.

For convenience of presentation, we introduce some defi-
nitions first. A communication network is modeled as a di-
rected graph N = {V, E}, where V is a set of nodes and E is a

set of directed links. A basic circuit from node v0 to node vk in

the network is defined as a sequence Cb = v0e1v1e2 º ekvk,

where vis are nodes and e v vi i i= −
→

1 is a directed link from vi-1

to vi. AN SFI circuit Cs from node v0 to node vk in the network

is defined as a basic circuit Cb from v0 to vk, augmented with
some extra nodes and links, which are called the detours of
the basic circuit, such that there exists a basic circuit from v0

to vk in Cs if no more than one node/link (except the source

and destination nodes v0 and vk) is removed from Cb. Notice
that the removal of a node means the removal of all links
incident to/from it. In Fig. 1, links 1-3 and the nodes they
connected compose a basic circuit from SOURCE NODE 1 to
DESTINATION NODE 1. The basic circuit can be augmented
into an SFI circuit with the addition of links 4-10 and the
nodes they connected.

Fig. 1. Two optimal SFI circuits in a mesh network. Solid arrows represent the basic circuits and dashed arrows represent detours.

ZHENG AND SHIN: FAULT-TOLERANT REAL-TIME COMMUNICATION IN DISTRIBUTED COMPUTING SYSTEMS 475

To establish an SFI real-time channel, the first step is to
find an SFI circuit on which the real-time channel is to be
established. A straightforward way to find an SFI circuit
from v0 to vk is given as follows: First, establish a basic cir-
cuit from v0 to vk, then break the links and nodes down on
the basic circuit one at a time and establish basic circuits
from v0 to vk in the remaining network. The union of all the
basic circuits forms an SFI circuit from v0 to vk. Failure of
this algorithm means that no such SFI circuits exist.

If an SFI circuit is to be used for the establishment of an
SFI real-time channel, some extra features are desirable.
From Theorem 2, we see that the existing real-time channels
over a link affect the link’s ability to guarantee delay
bounds for future channels. In establishing a new channel,
it is thus desirable to minimize this negative influence on
future channels to be established.

There are two ways to measure this influence of an ordi-
nary real-time channel. First, the more links a real-time
channel traverses, the more pronounced the influence will
become. This is because a larger number of links are in-
volved in establishing a long channel than a short channel.
Second, over a single link, the smaller the requested packet
delivery delay di

j , the more pronounced the influence will
become (see Theorem 1). Thus, to reduce a real-time chan-
nel’s influence on the network’s ability to establish future
channels, one should run it through as few links as possible
and make the requested packet delivery delay over each
link as large as possible. Note that the second objective is
consistent with the first, because the more links a real-time
channel traverses, the smaller the requested packet delivery
delay per link would become. Hence, minimum-hop routes
are best suited for real-time channels.

Another advantage of minimum-hop routing for real-
time channels is the reduction of real-time packets’ influ-
ence over non-real-time packets. If each real-time packet
traverses through a minimum number of links, the total
real-time traffic in the network would be minimized. Since
transmission priority is usually given to real-time packets,
minimizing real-time traffic effectively minimizes its influ-
ence on non-real-time packets in the network.

For SFI real-time channels, the influence of the existing
real-time channels on the future channel establishments
also includes that over the detours. Thus, one should estab-
lish an SFI real-time channel over an SFI circuit which
needs a minimum number of extra links.

In summary, we have the following two goals in selecting
SFI circuits for the establishment of SFI real-time channels:

G1: The basic circuit is a minimum-hop route from the
source to the destination node. In the case of link/node
break-down, the detours should also be the minimum-
hop routes in the remaining network.

G2: Under the constraint of G1, the total number of links on
the detours of an SFI circuit should be as small as possible.

An SFI circuit is said to be optimal if it achieves the above
two goals. It is not difficult to find an optimal SFI circuit in
some widely-used regular networks like meshes and hy-
percubes. Fig. 1 gives an example of two optimal SFI cir-
cuits in a mesh network.

For an arbitrary-topology network, however, optimal SFI
circuits are not always readily obtainable. The difficulty
comes from the existence of multiple minimum-hop basic
circuits between two nodes in a network. Different choices of
the basic circuit and detours could result in different numbers
of extra links needed for an SFI circuit. We propose a heuris-
tic algorithm for finding an SFI circuit as follows:

Algorithm 3:

STEP 1. Set up a minimum-hop basic circuit Cb = v0e1v1 L ekvk
from the source to destination nodes.

STEP 2. Let the set of extra nodes and links C = ∆. For i = 1,
º, k, do the following:

STEP 2.1. Remove node vi from the original network if
i < k, and link ek if i = k.

STEP 2.2. Establish a minimum-hop basic circuit Ci
from v0 to vk in the remaining network. At any
node, if there are two directions both leading to
a minimum-hop circuit, the one to a node which
is closer to Cb < C is selected. Break a tie using
the following rules:
1)� choose the one which does not introduce a

new link,
2)� choose the one which is closer to Cb, and
3)�break the tie arbitrarily.

If a basic circuit from v0 to vk does not exist, go
to Step 3.

STEP 2.3. Suppose Ci intersects a node vj in C. Then, for
n = i, i + 1, if

1)� there is a basic circuit Cjn from vj to vn in C and
2)� the number of hops from vj to vn in C plus the

number of hops from vn to vk in Cb is not
smaller than the number of hops from vj to vk
in Ci, then remove nodes and links of Cjn
from C. Add nodes and links of Ci into C.

STEP 3. If the algorithm fails at Step 2, there does not exist
an SFI circuit from v0 to vk. Otherwise, remove nodes
and links of Cb from C. C < Cb is an SFI circuit con-
necting v0 and vi with Cb as its basic circuit and C as
the set of extra links and nodes.

As an example, we show how the SFI circuit from
SOURCE NODE 1 to DESTINATION NODE 1 in Fig. 1 can
be established using Algorithm 3. The relevant nodes and
links and their labels are shown in Fig. 2.

The sequences of the SFI circuit establishment steps are
shown below.

STEP 1. Set up a minimum-hop basic circuit Cb = v0e1v1e2v2e3v3.

STEP 2. The set of extra nodes and links C = ∆. i = 1.

STEP 2.1. Remove node v1 from the original network.

STEP 2.2. Establish a minimum-hop basic circuit
from v0 to v3 in the remaining network: C1 =
v0e4v4e5v5e6v6e11v2 e3v3. At node v6, both e11 and
e7 lead to a minimum-hop circuit, but e11 is
chosen since it leads to a node closer to Cb.

STEP 2.3. C = C < {links and nodes of C1} = {e4, e5, e6,
e11, e3, v0, v4, v5, v6, v2, v3}.

476 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 5, MAY 1998

STEP 2. i = 2.

STEP 2.1. Remove node v2 from the original network.

STEP 2.2. Establish a minimum-hop basic circuit
from v0 to v3 in the remaining network: C2 =
v0e1v1e9v5e6v6e7v7e8v3.

STEP 2.3. C = C < {links and nodes of C2} = {e4, e5, e6,
e11, e3, e1, e9, e7, e8, v0, v4, v5, v6, v2, v3, v1, v7}.

STEP 2. i = 3.

STEP 2.1. Remove link e3 from the original network.

STEP 2.2. Establish a minimum-hop basic circuit
from v0 to v3 in the remaining network: C3 =
v0e1v1e2v2e10v6e7v7e8v3.

STEP 2.3. C3 intersects a node v6 in C and

1)� there is a basic circuit from v6 to v2: C62 =
v6e11v2, and

2)� the number of hops from v6 to v2 in C plus the
number of hops from v2 to v3 equals the
number of hops from v6 to v3 in C3 (They both
equal 2).

So, remove links and nodes of C62 from C. After
adding the nodes and links of C3 to C, we get C
= {e4, e5, e6, e1, e9, e7, e8, e10, v0, v4, v5, v6, v3, v1, v7}.

STEP 3. Remove nodes and links of Cb from C, we have C =
{e4, e5, e6, e7, e8, e9, e10, v4, v5, v6, v7}. Then, Cb is an SFI
circuit from v0 to v3 with Cb as its basic circuit and C as
the set of extra links and nodes.

The heuristic used in the algorithm is that a detour route Ci
should be as close to the existing routes Cb < C as possible. In
this way, Ci will most likely intersect Cb < C, thus reducing the
number of links needed. The purpose of Step 2.3 is to remove
any redundant links and nodes. Actually, we can prove

Step 2.3 is optimal in the sense that the SFI circuit obtained
from Algorithm 3 is irreducible, i.e., it does not contain any
redundant links. This result is stated in the following theorem.

THEOREM 3. Let C < Cb be the SFI circuit obtained from Algo-
rithm 3. Then, the removal of any link from C violates G1.

PROOF. We prove this theorem by contradiction. Suppose a

link e v vl l l=
→
1 2

 is removed from C and the remaining

network (C/el) < Cb still satisfies G1.2

Suppose el is added to C at the ith iteration of Step 2.

In other words, link el is on the minimum-hop detour

Ci from vi to vk when link ei+1 is broken. Since (C/el) <

Cb still satisfies G1, there is another minimum-hop

detour ′Ci from vi to vk. Let e v vm m m=
→
0 1

 be the first

link of ′Ci which is not on Ci. Suppose Ci takes a link eh

π em at node vm0
. Clearly, em cannot be in Cb. Other-

wise, from Step 2.2, Ci would have taken em instead of

eh. Then, there is a j π i such that em is added to C at the

jth iteration of Step 2. In other words, em is on the mini-

mum-hop detour Cj from vj to vk when link ej+1 is broken.

Suppose j > i. We claim that Ci must intersect Cb at

vn, n = j or j + 1. Otherwise, from Step 2.2 of the Al-

gorithm 3, Cj would have taken eh instead of em.

Since both Ci and Cj are minimum-hop detours, the

number of hops from vm0
 to vn on Ci plus the num-

ber of hops from vn to vk on Cb equals the number of

hops from vm0
 to vk on Cj. Thus, eh should have been

removed from C at the jth iteration of Step 2.3. This
is a contradiction.

Similarly, if j < i, it can be proven that em should
have been removed from C at the ith iteration of Step
2.3. Again, this is a contradiction. o

From Theorem 3, we see that Algorithm 3 guarantees
a local optimal solution in the sense that the SFI circuit
thus obtained cannot be improved without adding some
links/nodes to it.

We now develop two algorithms similar to Algorithms 1
and 2 to establish an SFI real-time channel on an SFI circuit.
Let Cs = C < Cb be an SFI circuit on which an SFI real-time
channel is to be established, and let Cb = v0e1v1 L ekvk be the
basic circuit from the source node v0 to the destination node
vk. Suppose there are m links in Cs. Label the links in C as ek+1,
L, em. Let C0 = Cb and, for i = 1, 2, L, k, let Ci be the mini-
mum-hop circuit from v0 to vk in Cs when link ei is broken.
Define a (k + 1) ¥ m circuit-link matrix M = (mij)k¥m as follows:

m
C e i k

j mij
i j=

=
= −

RST
+1 0

0 0 1
1if contains

otherwise
, , .
, , .
K

K

2. The notation S1/S2 denotes the set containing all the elements of S1

which are not in S2.

Fig. 2. An example of using Algorithm 3.

ZHENG AND SHIN: FAULT-TOLERANT REAL-TIME COMMUNICATION IN DISTRIBUTED COMPUTING SYSTEMS 477

Suppose link ei guarantees a delay bound di. Then, an SFI
real-time channel can be established with an end-to-end
delay bound D if and only if the following delay inequality
is satisfied:

M
d

d

D

Dm

1
M M

F
H
GG

I
K
JJ ≤

F
HG

I
KJ

. (1)

Then, similar to Algorithms 1 and 2, we have the following
two ways to establish an SFI real-time channel over an SFI
circuit.

Algorithm 4:

STEP 1. For i = 1, 2, L, m, assign a link delay bound di over
ei, such that (1) is satisfied.

STEP 2. Using Theorem 1, check the schedulability of the
channel over each link. If all the checks are positive,
the requested real-time channel can be established
with the assigned link delays dis. Otherwise, the
channel establishment request is rejected.

Algorithm 5:

STEP 1. Using Theorem 2, calculate the minimum packet
delay bound dmin,i over link ei, i = 1, L, k.

STEP 2. Let di = dmin,i, i = 1, L, m. If (1) is satisfied, the re-
quested real-time channel can be established. Assign
the link delay over ej to be di = dmin,i + di, where dis
satisfy

M
D

D
M

d

dm m

δ

δ

1 1

M M M
F
H
GG

I
K
JJ ≤

F
HG

I
KJ

−
F

H
GG

I

K
JJ

min,

min,

. (2)

Otherwise, the channel establishment request is rejected.

Since (2) cannot determine a unique solution, we need to
give a rule to choose one of the solutions. The reason to
increase the delay bound over link ei from dmin,i to dmin,i + di
in Algorithm 5 is to reduce the channel’s influence on the
link’s ability to establish more real-time channels. The value
of di represents the degree of influence reduced. Thus, with
respect to a single link ei, one should set di as large as possi-
ble. However, since the maximization of di must be done
under the constraint of (2), an increase of di may cause the
decrease of dj of another link ej. To make the whole network
evenly loaded, we use the following max-min rule to
choose a solution from (2).

Max-min Rule: Among all solutions satisfying (2), choose
the one whose smallest element, i.e., min1£i£ mdi, has
the maximum value. If there is more than one solution
satisfying this rule, choose the one whose second
smallest element has the maximum value. Repeat this
process until a unique solution is obtained.

The max-min rule can be easily implemented with the
following algorithm.

Algorithm 6:

STEP 1. Initialize the set of variables to be determined as S =
{d1, L, dm}.

STEP 2. For all di Œ S, replace di with a single variable d in
(2). Calculate the maximum value of d satisfying (2).

Notice that (2) contains m inequalities, all elements of
M are either 0 or 1, and the maximum value of d
makes at least one inequality become an equality.
Remove all dis from S which are contained in the
equality and set them to be the obtained maximum
value of d.

STEP 3. If S = ∆, stop. Otherwise, go to Step 2.

As an example of using Algorithms 5 and 6, we show
how an SFI real-time channel can be established over the
SFI circuit from source node 1 to destination node 1 in
Fig. 1. Suppose this real-time channel is to be established in
an otherwise idle network and has the minimum packet
interarrival time T = 100, maximum packet transmission
time C = 5, and requested end-to-end packet delivery delay
D = 60. The labels of the links on the SFI circuit are shown
in Fig. 1. Then, the circuit-link matrix is

M =
F

H
GG

I

K
JJ

1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0
1 0 0 0 0 1 1 1 1 0
1 1 0 0 0 0 1 1 0 1

. (3)

From Theorem 2, we have dmin,i = 5 for 1 £ i £ 10. Thus, the
right-hand side of (2) equals (45 35 35 35)T. Using Algo-
rithm 6, we first set S := {d1, L, d10}. Replacing all elements
in S with a single variable d, (2) becomes

3
5
5
5

45
35
35
35

F

H
GG
I

K
JJ ≤

F

H
GG

I

K
JJδ . (4)

The maximum value d is then 7, with which the second,
third, and fourth inequalities of (2) become equalities which
contain all dis but d3. Thus, at the next iteration of Step 2 in
Algorithm 6, S = {d3}. Replacing d3 with d and setting all
other variables in (2) to be 7, it becomes 14 + d £ 45. The
maximum value of d is 31.

Thus, the solution from Algorithm 6 is (d1, d2, d3, d4, d5,
d6, d7, d8, d9, d10) = (7, 7, 31, 7, 7, 7, 7, 7, 7, 7). Using Algo-
rithm 5, the SFI real-time channel is established with link
delay bounds (d1, d2, d3, d4, d5, d6, d7, d8, d9, d10) = (12, 12, 36,
12, 12, 12, 12, 12, 12, 12).

4 BACKUP CHANNELS FOR REAL-TIME CHANNELS

In the last section, we discussed how real-time channels can be
enhanced to be immune to single point failures. For real-time
communication that can tolerate rare short-period break-
downs, a less expensive way to increase the reliability of a real-
time channel is to set up backup channels. This method is also
applicable to cases where no SFI circuits exist from the source
to destination nodes due to the poor connectivity of the net-
work. The idea of backup channels works as follows:

•� Each real-time channel is composed of a primary
channel and a number of backup channels. Under the
normal circumstance, the primary channel is used for
packet transmission while keeping the backup chan-
nels idle or unused. In case the primary channel gets
disabled by a component failure, one of the backup
channels is promoted to the primary channel (thus
taking over the transmission task).

478 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 5, MAY 1998

•� Both the primary and backup channels are established
simultaneously using the procedures described in
Section 2. In case a primary or backup channel cannot
be established, the system is allowed to tear down
some of the existing backup channels based on a
scheme that will be described later.

Using backup channels, the long channel reestablishment
overhead can be avoided when the primary channel is dis-
abled. The cost of backup channels is minimal because:

•� Backup channels are not used to transmit redundant
packets under the normal circumstance, thus unaf-
fecting the packets in other channels, as well as non-
real-time traffic, and

•� The number of real-time channels that a network can
accommodate is not reduced since the backup chan-
nels can be removed whenever there is a shortage of
network resources in establishing a new real-time
channel.

As compared to the case of replicating real-time chan-
nels, there are two problems in implementing the idea of
backup channels. First, there is a delay in switching to a
backup channel when a fault occurs to the primary
channel. The main source of this delay is associated with
fault detection and channel switching. The real-time
packets transmitted during this period could be lost.
Second, there is no guarantee on the number of backup
channels that each real-time channel can have. In the rest
of this section, we will address how these two problems
can be alleviated.

The fault detection time can be reduced by using an “ac-
knowledgment channel” for each real-time channel. A
channel fault can be detected quickly if the source node
does not receive an ack in a certain period after transmitting
a packet. Note that an acknowledgment channel usually
costs far less than a real-time channel since it deals with a
shorter packet size, a larger requested delivery delay (de-
pending on the required fault detection time), and/or a
longer packet interarrival time (several packets can be ac-
knowledged at a time).

The channel switch time is the time needed to find a
nonfaulty backup channel and promote it to the primary
channel. If there is at least one nonfaulty backup channel,
this process is quite fast. One can send multiple copies of a
packet through all the backup channels of the now disabled
real-time channel, and choose the one which delivered the
packet correctly. If, unfortunately, all the backup channels
are faulty, there is no choice but to execute the time-
consuming channel establishment procedure.

The second problem of using backup channels comes
from the fact that a backup channel may be removed in
order to accommodate future real-time channels. A real-
time channel may have many backup channels when the
network is “lightly loaded” (in the sense that there do not
exist many real-time channels in the network). As more
and more real-time channels are added, the number of
backup channels may decrease or even become zero.
Thus, the use of backup channels provide no guaranteed
fault tolerance for the primary channels. An important
question is then how to manage the establishment and

removal of backup channels such that the primary chan-
nels can be backed up as much as possible. To this end,
the following three questions must be answered:

Q1: For each real-time channel, how many backup channels
should be established?

Q2: How should the channels be routed?

Q3: Which channel removal policy should be used?

A straightforward answer to Q1 is that the more backup
channels the better. A real-time channel is more likely to
find a nonfaulty backup channel if it is backed up by many
channels. However, there is a limitation to the number of
backup channels which can be established. Establishing too
many backup channels will complicate the channel estab-
lishment procedure. Also, the system gains little by estab-
lishing channels which have a large number of common
links and nodes, because a single component failure would
bring all of them down. For this reason, we restrict the pri-
mary and backup channels of a real-time channel to run
through disjoint paths, and the number of backup channels
to be established is thus the maximum number of disjoint
paths minus one.

As to the routing problem, we argued in Section 3 that
the minimum hop routing is preferable for real-time chan-
nels. The primary channel and backup channels can be set
up sequentially by establishing one at a time, then remov-
ing all the intermediate nodes and links it passes through
from consideration for setting up next channels, and estab-
lishing the next backup channel in the remaining network,
and so on.

The third question consists of two parts:

1)�Which channels are allowed to be removed?
2)�Which of the removable channels should actually be

removed?

As to Part 1, establishment of a new channel should only
be allowed to remove only those channels which are less
important than itself. There are two ways to compare the
relative importance of backup channels:

1)�The backup channels of a critical real-time channel are
more important than those of a less critical one, and

2)�For two real-time channels of the same criticality, the
backup channels of the one with more backup chan-
nels are less important than those of the other real-
time channel.

To this end, one may assign a criticality number C to each
real-time channel and then assign a rank R = f(C, k) to its kth
backup channel, where f(C, k) is an increasing function of C
and a decreasing function of k. One such choice is f(C, k) = C
- k. So, we have a channel removal strategy which allows for
tearing down only lower-rank backup channels. Since the
establishment of a primary channel is always allowed to tear
down backup channels, the rank of all primary channels is
assigned to be ∞.

The answer to the second part of the question is that one
should remove as few important backup channels as possi-
ble. In other words, if there is a choice between two backup
channels, the one with lower rank should be removed. This
can be done with the following algorithm.

ZHENG AND SHIN: FAULT-TOLERANT REAL-TIME COMMUNICATION IN DISTRIBUTED COMPUTING SYSTEMS 479

Algorithm 7: Channel Removal Strategy

STEP 1. Establish the new channel using Algorithm 2 with-
out removing any existing backup channels. Termi-
nate if successful. Otherwise, go to Step 2

STEP 2. Remove all the backup channels on the route having
lower ranks than the new one, except those with link

delay bounds larger than tm, the time that achieves the

maximum of dn = max{dt : t ∈ G} in Theorem 2 (the
removal of these channels will not change the link-
delay bound of the new channel).

STEP 3. Establish the new channel using Algorithm 2. If it is
still not successful, the new channel cannot be estab-
lished and those channels removed in Step 2 are re-
stored. Otherwise, go to Step 4.

STEP 4. Starting from the backup channels with the highest
rank, reestablish the backup channels removed in
Step 2. This step reduces the number of backup chan-
nels removed.

We now give an example to show how to establish a
fault-tolerant real-time channel.

Consider a ring network with five stations connected by
five duplex links (link i connects station i and (i + 1) mod
5). All real-time channels have the same minimum packet

interarrival time Ti = 100 and maximum packet transmis-

sion time Ci = 5. Suppose three backup channels τ1b, τ2b, τ3b

have been established in the network with the following
information on source (src) and destination (dst) stations,

user-requested end-to-end delay Di, channel rank Rib, and

link-delay bound di
j . (To show the procedure of Algorithm 7

clearly, we do not consider the existing primary chan-
nels, since the primary channels are not allowed to be
torn down.)

τ

τ

τ

1 1 1 1
3

1
4

2 2 2 2
1

2
0

3 3 3 3
2

3
1

3
0

3 0 15 1 10 5

2 0 10 2 5

3 0 30 1 7 12 11

b b b b

b b b b

b b b b b

D R d d

D R d d

D R d d d

:

:

: .

src dst

src dst

src dst

= = = = = =

= = = = =

= = = = = = =

Now, we want to establish a new real-time channel τ4 of
criticality 4 with src = 3, dst = 0, D4 = 15.

The primary channel of τ4 takes the minimum-hop route
,3 → ,4. Using Algorithm 2, one can establish the primary
channel as:

τ 4 4 4 4
3

4
43 0 15 5 10p p p pD R d d: src dst= = = = ∞ = = .

After removing ,3 and ,4 from the network, the network
contains only one more connection between station 3 and
station 0. So, τ4 can have, at most, one backup channel τ4b.
Since the criticality of τ4 is 4, the rank of its first backup
channel is R4b = 4 - 1 = 3. Setting up τ4b on the route ,2 → ,1
→ l0 with Algorithm 2 results in rejecting the channel re-
quest. Hence, all other backup channels on the route with
lower ranks lower than τ4, i.e., τ2b and τ3b, are removed. Af-
ter this removal, τ4b can be successfully established as:

τ 4 4 4 4
2

4
1

4
03 0 15 3 5 5 5b b b b bD R d d d: src dst= = = = = = = .

The next step is to reestablish those backup channels re-
moved, starting from the one with the highest rank. Using
Algorithm 2, the establishment of τ2b is rejected. So, τ2b must
be removed and τ3b is reestablished as:

t 3 3 3 3
2

3
1

3
03 0 30 1 10 10 10b b b b bD R d d d: src dst= = = = = = = .

Consequently, after establishing a new real-time channel t4,
the network has the following four established channels:

t
t
t
t

1 1 1 1
3

1
4

3 3 3 3
2

3
1

3
0

4 4 4 4
2

4
1

4
0

4 4 4 4
3

4
4

3 0 15 1 10 5
3 0 30 1 10 10 10
3 0 15 3 5 5 5
3 0 15 5 10

b b b b

b b b b b

b b b b b

p p p p

D R d d
D R d d d
D R d d d
D R d d

:
:
:
: .

src dst
src dst
src dst
src dst

= = = = = =
= = = = = = =
= = = = = = =
= = = = • = =

5 CONCLUSION

We have addressed the problem of fault-tolerant real-time
communication in distributed point-to-point connected
systems. We analyzed the components of end-to-end packet
delivery delay and showed how this delay can be con-
trolled to be below a prespecified value by establishing real-
time channels. To increase the reliability of real-time chan-
nels, we showed how they can be enhanced to be single-
failure-immune. One can also establish backup channels
with the minimal cost to which a broken real-time channel
can quickly switch.

ACKNOWLEDGMENT

The work reported in this paper was supported in part by
the U.S. Office of Naval Research under Grant N00014-94-1-
0229 and the U.S. National Science Foundation under Grant
MIP-9203895. Any opinions, findings, and recommenda-
tions expressed in this publication are those of the authors,
and do not necessarily reflect the views of the funding
agencies. A portion of this paper was presented at the 22nd
International Symposium on Fault Tolerant Computing,
Boston, Massachusetts, July 8-10, 1992.

REFERENCES

[1]� D. Ferrari and D.C. Verma, “A Scheme for Real-Time Channel
Establishment in Wide-Area Networks,” IEEE J. Selected Areas
Comm., pp. 368-379, 1990.

[2]� C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, 1973.

[3]� D.D. Kandlur, K.G. Shin, and D. Ferrari, “Real-Time Communi-
caiton in Multi-Hop Networks,” Proc. 11th Int’l Conf. Distributed
Computing Systems, pp. 300-307, May 1991. Also appeared in IEEE
Trans. Parallel and Distributed Systems, vol. 5, no. 10, pp. 1,044-
1,056, Oct. 1994.

[4]� D. Comer, Internetworking with TCP/IP. Prentice Hall, 1995.
[5]� B. Chen, S. Kamat, and W. Zhao, “Fault-Tolerant Real-Time

Communication in FDDI-Based Networks,” Proc. Real-Time Sys-
tems Symp., 1995.

[6]� P. Ramanathan and K.G. Shin, “Delivery of Time-Critical Mes-
sages Using a Multiple Copy Approach,” ACM Trans. Computer
Systems, vol. 10, no. 2, pp. 144-166, May 1992.

[7]� B. Kao, H. Garcia-Molina, and D. Barbara, “Aggressive Transmis-
sions of Short Messages Over Redundant Paths,” IEEE Trans. Par-
allel and Distributed Systems, vol. 5, no. 1, pp. 102-109, Jan. 1994.

[8]� A. Banerjea, “Simulation Study of the Capacity Effects of Disper-
sity Routing for Fault Tolerant Realtime Channels,” Proc. ACM
SIGCOMM Symp., pp. 194-205, Aug. 1996.

480 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 5, MAY 1998

[9]� A. Banerjea, C.J. Parris, and D. Ferrari, “Recovering Guaranteed
Performance Service Connections from Single and Multiple
Faults,” Technical Report TR-93-066, Computer Science Division,
Univ. of California at Berkeley, 1993.

[10]� I. Cidon, I. Gopal, G. Grover, and M. Sidi, “Real-Time Packet
Switching: A Performance Analysis,” IEEE J. Selected Areas Comm.,
vol. 6, no. 9, pp. 1,576-1,586, 1988.

[11]� J. Rexford, J. Hall, and K.G. Shin, “A Router Architecture for Real-
Time Point-To-Point Networks,” Proc. 23rd Int’l Symp. Computer
Architecture, pp. 237-246, May 1996.

[12]� S. Han and K.G. Shin, “Fast Restoration of Real-Time Communi-
cation Service from Component Failures in Multi-Hop Net-
works,” Proc. ACM SIGCOMM97, pp. 77-88, Sept. 1997.

[13]� Q. Zheng and K.G. Shin, “On the Ability of Establishing Real-
Time Channels in Point-To-Point Connected Packet Switching
Networks,” IEEE Trans. Comm., vol. 42, nos. 2/3/4, pp. 1,096-
1,105, Feb./Mar./Apr. 1992.

Qin Zheng (S’89-M’91) received the BS and MS
degrees in electrical engineering from the Uni-
versity of Science and Technology of China in
1982 and 1985, respectively, and the PhD de-
gree in electrical engineering and computer sci-
ence from the University of Michigan in 1993.

He worked with Mitsubishi Electric Research
Laboratory from 1993 to 1997, where he con-
ducted research in the area of traffic manage-
ment for ATM and other high speed comminica-
tion networks, and developed a Mitsubishi Elec-

tric’s second generation ATM network interface chip. Currently, he is
with Argon Networks working on a 2.488 Gbps multiservice switching
system. Dr. Zheng holds six patents and has published more than twenty
technical papers in the area of real-time fault-tolerant communication.

Kang G. Shin received the BS degree in elec-
tronics engineering from Seoul National Univer-
sity, Seoul, Korea, in 1970, and both the MS and
PhD degrees in electrical engineering from Cor-
nell University, Ithaca, New York, in 1976 and
1978, respectively. From 1978 to 1982, he was
on the faculty of Rensselaer Polytechnic Insti-
tute, Troy, New York. He has held visiting posi-
tions at the U.S. Airforce Flight Dynamics Labo-
ratory, AT&T Bell Laboratories, the Computer
Science Division within the Department of Elec-

trical Engineering and Computer Science at the University of California
at Berkeley, the International Computer Science Institute, Berkeley,
California, the IBM T.J. Watson Research Center, and with the Soft-
ware Engineering Institute at Carnegie Mellon University. He also
chaired the Computer Science and Engineering Division in the Electri-
cal Engineering and Computer Science Department at the University of
Michigan for three years beginning in January 1991. Currently, he is a
professor and director of the Real-Time Computing Laboratory in the
Department of Electrical Engineering and Computer Science at the
University of Michigan, Ann Arbor, Michigan.

Dr. Shin has authored and coauthored more than 450 technical pa-
pers (about 170 of these in archival journals) and numerous book
chapters in the areas of distributed real-time computing and control,
fault-tolerant computing, computer architecture, robotics and automa-
tion, and intelligent manufacturing. He has coauthored (jointly with
C.M. Krishna) a textbook titled Real-Time Systems (McGraw-Hill,
1997). In 1987, he received the Outstanding IEEE Transactions on
Automatic Control Paper Award for a paper on robot trajectory plan-
ning. In 1989, he received the Research Excellence Award from The
University of Michigan. In 1985, he founded the Real-Time Computing
Laboratory, where he and his colleagues are investigating various
issues related to real-time and fault-tolerant computing.

He has also been applying the basic research results of real-time
computing to multimedia systems, intelligent transportation systems,
embedded systems, and manufacturing applications ranging from the
control of robots and machine tools to the development of open archi-
tectures for manufacturing equipment and processes. (The latter is
being pursued as a key thrust area of the newly established U.S. Na-
tional Science Foundation’s Engineering Research Center on Recon-
figurable Machining Systems.)

Dr. Shin is a fellow of the IEEE. He was the program chairman of
the 1986 IEEE Real-Time Systems Symposium (RTSS), the general
chairman of the 1987 RTSS, a program cochair for the 1992 Interna-
tional Conference on Parallel Processing, and has served on numer-
ous technical program committees. He also chaired the IEEE Technical
Committee on Real-Time Systems during 1991-1993 and was a distin-
guished visitor of the Computer Society of the IEEE. He served as the
guest editor of the August 1987 special issue of the IEEE Transactions
on Computers on real-time systems, was an editor of the IEEE Trans-
actions on Parallel and Distributed Computing, and an area editor of
the International Journal of Time-Critical Computing Systems.

