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ABSTRACT

Reconfiguration is an important consideration in
the design of open architecture controllers, so recon-
figuring control flow is a critical design issue. This
paper describes a specification method based on Fi-
nite State Machines that allows such reconfiguration.
Our approach also provides a standard communica-
tion channel for cooperating controllers to exchange
information and issue requests to each other. Our ap-
proach is being implemented and used for the testbed
in the University of Michigan’s open architecture con-
troller (UMOAC) project at the NSF Engineering Re-
search Center on Reconfigurable Machining Systems.
Key Words: open architecture controller, control
flow, finite state machine

INTRODUCTION

Manufacturing equipment reconfiguration due to
change in needs or technological obsolescence are
common in modern manufacturing industry. The
need for open architecture controllers (OAC) to ac-
commodate such changes has been recognized since
the early eighties (GM,1996)(Wright,1995). An open
architecture allows flexible factory automation sys-
tems, rapid part realization, quality assurance, and
rapid prototyping (Owen,1995)(Wright,1995).

Software modularization issues are integral to the
construction of open architecture controllers since
they must provide flexibility, ease of integration, and
expansion. We need a sound architectural model
comprised of blocks that are easy to integrate into
useful applications. This goal requires the definition
of a standard application program interface (API) for
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these component blocks so that related blocks can
communicate easily and correctly. A properly de-
signed public API provides a comprehensive interface
that enables users to add or swap modules. UMOAC
has chosen the object-oriented (OO) paradigm and
C++ as tools towards this goal. Building blocks are
formed as abstractions of physical objects (such as
axes), manufacturing models (such as interpolators
for axes), and utility modules (as for control flow or
communicationservice). O0O/C++ technology is cho-
sen because it provides a way to separate the API
from the implementation, and provides inheritance
and polymorphism to make code more reusable. A
component block is represented as a class in C4++,
with each class providing the services its correspond-
ing abstract model is supposed to provide. For ex-
ample, the clamp class object provides services that
include clamping on and clamping off.

Abstract control flow specification is crucial to such
a framework. A good control flow specification al-
lows users to specify the desired controller behav-
ior, while simplifying modifications when reconfigu-
ration is necessary. The current commercial prac-
tice in providing a reconfigurable control flow spec-
ification is to use IEC-1131-3 (IEC,1993). Compa-
nies following this approach include Steeplechase, Ne-
matron, and Wizdom. IEC-1131-3 introduced Se-
quential Function Chart (SFC), a supervision lan-
guage, to specify control flow. A translator translates
the machining program in TEC-1131-3 into C code
(or some other computer programming language).
The code is embedded into the soft-controller writ-
ten in the same language and compiled into an exe-
cutable that can run on the controller computer (Wis-
nosky,1996)(Steeplechase,1997).  Provided that the
control module API is made public, end users may
change the machine control flow as follows: Write an-
other IEC- 1131-3 program specifying control flow,



use the translator to translate the program, put the
translated computer code into the control module
with the open API, and recompile the controller code.
However, this solution for reconfigurable control flow
does not support communication between controllers
in different address spaces. This i1s a critical is-
sue, since manufacturing applications have become
increasingly complex, and cooperation between con-
trollers 1s often required.

In this paper we will describe the effort of UMOAC
to provide a reconfigurable control flow specifica-
tion that also enables communication among the con-
troller in different address spaces. In Section , we
will justify our choice of the FSM model, and explain
how event-based systems, more specifically machine
tool systems, are mapped into FSMs. Section will
explain how the representation can be simplified by
using the hierarchical property of FSM. Section and
will provide details of our approach to FSM imple-
mentation and reconfiguration. Section  describes
how the UMOAC uses the FSM approach, and Sec-

tion concludes the paper.

EVENT-BASED SYSTEMS

Reactive systems are event-driven systems
which react to external and internal stimuli
(Boussinot, 1991)(Harel ,1987). In deterministic reac-
tive systems, the order and values of inputs will com-
pletely dictate the order and values of the system re-
sponses. Therefore, system design and integration re-
quires a specification method to describe the desired
machining system behavior. We have chosen to use
the finite state machine model to provide the specifi-
cation.

FSMs for Control Flow

The FSM paradigm has been used for model-
ing various applications of reactive systems, such
as human-machine interfaces and in the embedded
controller domain (Kuuluvainen,1991)(Chiodo,1994).
Although FSMs were mainly used in past applications
to model hardware or embedded systems, they work
well for our soft controller’s needs. First, FSMs are
an intuitive way to describe event-driven systems. In
the Mealy machine model for FSMs (Hopcroft,1979),
a transition works as follows: if the machine is in
some state A and observes/receives event B, the ma-

chine will take specified action C and move to speci-
fied state A’. We can describe the requirements of a
reactive system in the same way. Consider the fol-
lowing machine tool domain example: if the machine
tool 1s in ready mode and receives an axis feed com-
mand, the axis performs the feed action, and the sys-
tem state changes to running. Second, the standard
FSM approach of sending and receiving events has
been shown to allow concurrency and communication
(Harel,1987). Such properties enable us to add recon-
figurability and communication flexibility to our con-
trol flow specification. Third, this approach will allow
us to perform model verification using the verifiable
properties of FSM, such as reachability of states.

Machine Tool Modeling with FSMs

Users can describe desired machine tool behavior
using FSM-based specifications. For example, one de-
sired behavior may be to stop the machine tool if the
tool status is broken. Each machining tool/station
1s first associated with a set of specifications, includ-
ing tool capabilities (axis numbers and types) and
environment stimuli accepted (axis position, tool sta-
tus, temperature status, GUT inputs). In modeling
machine behavior as an FSM, we model machine op-
erations as the set of FSM actions, and the environ-
mental stimuli as the set of FSM events.

Move Axis
MoveAxis()

Stop Axis
StopAXxis()

Tool Broken
StopAXis()

Tool Broken

Fig. 1. FSM for a simple machine tool

The State Transition Diagram (STD) is a graphi-
cal method to describe FSMs. It is a directed graph,
in which the vertices of the graph correspond to the



states of the FSM. An arc labeled e/a from state ¢ to
state pin the STD represents the transition ¢ xe — p,
and triggers the action a. Fig. 1 shows a simple ma-
chine tool modeled as an FSM using STD, and has the
capability to move an axis. The axis is either moving
or stopped. There are three events in the system: two
for the user’s requests from the Graphical User Inter-
face (GUT) to move or stop the axis, and one for the
detection of a broken tool. This FSM describes a sys-
tem that follows users requests for an axis, and stops
the axis when a broken tool is detected. While this
1s a very simple machine, a more complicated system
can also be modeled in the same manner. Nonethe-
less, because we want to provide a specification that
1s both comprehensive and well-modularized, we have
decided to use multiple FSMs to represent complex
machine tool systems. The issues of communicating
and hierarchical FSMs will be discussed in depth in
the following sections.

SYSTEM
WITH FSMS

BEHAVIOR CONTROL

A complex or integrated system may consist of
several subsystems with different functionalities, and
driven by different control flows. Some subsystems
may have been developed separately, or already ex-
ist. To describe and control the behavior of such a
complex system, as well as ease in the integration of
new functionalities, we propose a hierarchical struc-
ture for FSMs to manage the system control flow at
different levels.

Hierarchical FSM Organization

A complex machining system can be modularized
as several coordinated subsystems, each of which pos-
sesses some desired functionality. The behavior of
such systems can be decomposed into the behavior
of the subsystems, whose control flows are described
using separate FSMs. These FSMs are organized in
a hierarchical structure, as shown in Fig. 2.

In Fig. 2, the Level-0 FSM is a top-level FSM, and
corresponds to top-level system control flow. When
the top level FSM reaches State 2 in Level-0, a Level-
1 FSM is invoked and the Level-0 FSM delegates the
control of the system to it. The Level-0 FSM re-
mains at its current state until a new event arrives

Level OFSM !

Fig. 2. FSM hierarchy

and causes a state change. Similarly, when the Level-
1 FSM reaches State 2.1, it invokes a Level-2 FSM
that controls a lower level subsystem, delegates con-
trol to it, and so on.

Although every FSM may be decomposed into sev-
eral lower-level FSMs with one coordinating FSM,
such a division should uphold the integrity of system
components. That is; an FSM for a basic functional-
ity should not be decomposed further. Only related
or cooperating FSMs should be integrated under one
higher-level FSM.

Under this scheme, each system component can be
designed, developed, and tested separately, and then
combined into a more complex application using a
higher-level FSM to describe and manage the coor-
dination among different modules and subsystems.
This FSM hierarchy also helps isolate the subsystems
and control flow changes. A control flow change for
a particular component/subsystem only affects FSMs
at that level.

The FSM hierarchical organization also aids in cor-
rectness verification. For a complex application sys-
tem, it is natural to expect hundreds of states in the
system, and even more transitions. It is difficult to
verify the correctness of such a large system by find-
ing isolated states (states without an incoming edge
but that are not initial states), or dead states (states
without a outgoing edge but that is not a terminating
state). Instead of verifying a single FSM with a large
number of states, we can decompose it into several
FSM levels and verify them separately. The correct-



ness of the control flow for the whole system can be
verified by the correctness of each FSM node in the
FSM hierarchy.

Communication Among FSMs

A fundamental issue in hierarchical FSMs is the
communication between FSMs at different levels.
Since the FSM is an even-driven mechanism, the
next-level FSM invocation and termination are trig-
gered by messages passing from a higher-level FSM
to a lower-level FSM | or vice versa. For FSM objects
at the same level, no communication is required, and
the coordination of different FSM objects at the same
level is handled by the higher level FSM. Only one top
level FSM exists in the machine tool system.

The highest level FSM controls the execution of all
the other modules. Generally, the Machine Control
Logic FSM manages the control flow of all the other
components by sending events to its lower component
FSMs and gathering the current status of lower level
FSMs if necessary. The Machine Control Logic FSM
can be embedded in the same execution module as
the highest level FSM, and invoked when the highest
level FSM reaches the appropriate state. It can also
be in another execution module, and actuated when
that module reaches a state under the control of the
highest level FSM.

The number of FSMs required depends on the com-
plexity of the machining system and the reconfigura-
tion requirements. For a simple machine (e.g., with
only one axis moving from one fixed point to another
one) and minimum reconfiguration (e.g., the oper-
ation mode won’t be changed), a single FSM may
control the entire system. But for a more complex
system, every component may need an FSM to man-
age control flow, and several execution modules may
be necessary. In this case, we need a highest level
FSM to coordinate control flows among FSMs, and
the Machine Control Logic FSM should begin to con-
trol the components when the top level FSM reaches
a given state.

To support the communication between FSMs,
each FSM module has an associated communication
port. An FSM can only receive events from its own
communication port. The communication port could
be implemented using any mechanism the underly-
ing system supports, e.g., shared memory, message
queue, bus or network. Although different FSMs
could share one communication port, only one FSM

can consume a particular event and make a state
change due to the event.

To invoke a next-level FSM, the higher-level FSM
sends a message or event to the port of the next
level FSM. Then, when the lower-level FSM is at a
terminating state, a message or event is sent to its
upper-level FSM. The communication between FSMs
is shown in Fig. 3.

®

Other Objects

©

Fig. 3. Communication between different FSMs

Other Objects

In Fig. 3, when the Level-0 FSM makes the transi-
tion from S; to S;, the transition dispatches an event
to an output port. This event is sent to the Level-1
FSM input port via a communication mechanism C.
Upon receiving this event, the Level-1 FSM makes its
state change and continuously receives events from its
input port. Once the Level-1 FSM receives the event
that makes it terminate (state change from Sj to ),
it sends an event via C to notify the Level-0 FSM.

FSM IMPLEMENTATION

The additional requirements placed on our imple-
mentation of FSMs were efficiency and ease of use.
Efficiency is important because FSMs will be used in
applications that require real-time performance, such
as machine control. To make FSMs useful in a recon-
figurable environment, it must be easy for a user to
integrate them into a control system without much
modification.

The FSM is implemented as a set, or list, of states.
Each state in this set contains an identifier as well as
a pointer to a set of transitions. There is a separate
transition set associated with each state (although
two states could share a set if they needed the same



transitions). Fach transition contains an event num-
ber that triggers the transition, an action identifier
that translates to the function associated with the
transition, and a pointer to the next state (which will
be in the original state set). Fig. 4 shows these struc-

tures.
/ \
0 7 0 [ Default()

1 | StartProcessing() |
1 S
) 0 [ Default()
Z ~ 2 | PauseProcessing() | ,
State Set Transition Set

Fig. 4. FSM engin

State Transition Tables and Action Sets

The driver described in Section 1s identical for all
FSMs, but the state transition table and the action
set are different with the FSM. The state transition
table specifies the contents of the state and transition
sets, and 1s a computer-readable translation of the
state transition diagram. The state transition table
1s stored separately in a file or database, and is loaded
at system startup, configuration, or initialization.

The only code that needs to be written for a new
FSM 1is that for the action set. The action set is the
complete set of functions that may be called at state
transitions, and contains all functions visible outside
the module. Currently, the action set 1s implemented
as a simple switch statement. This is a simple way
to match the action number with its corresponding
function.

FSM-BASED RECONFIGURATION

Machine system reconfiguration is necessary when
there are changes in system components, function-
ality, or processing sequences. Fach case requires
change of control flow. Using the FSM mechanism,
the control flow can be changed separately from the
machine. Also, the FSM provides a method for
the system designer/developer to specify application-
specific control flow. Effort and skill required for re-
configuration can be reduced significantly with this
approach.

Machine System Reconfiguration

Machine system reconfiguration can be classified
as machine reorganization or processing sequence
changes. In an OAC system, a machine system is
modularized as different components, each of which
accomplishes some designed functionality. Machine
reorganization means using new or different compo-
nents, or putting the components together differently
for the same or different purposes. Examples include
changing from a drill to a cutter, or breaking a 3-axis
axis group into one 2-axis axis group and a 1-axis axis
group. Processing changes are the changes in the op-
eration sequence, while using the same machine with
the same set of components. There are also many
cases in which changes of components and process-
ing sequences occur together. For real applications,
the most frequent changes are processing procedures
and/or a subset of components. It is seldom that the
whole system or machine is redesigned or rebuilt.

Since both functionality and processing sequence
are modeled by control flow in an OAC system, the
control of a reconfigured machine system could eas-
ily be modified by changing the control flow of the
system. In our FSM model, machine reorganization
cause changes in the action set, where all possible
invoked functions are defined and implemented. Pro-
cessing sequence changes cause changes in the state
table.

Mechanics of Reconfiguration

From the perspective of the FSM, reconfiguring a
system with new control flow and components means
changes of the states and transitions. As discussed
in the previous section, such information is described
in a system-independent state table and an action



set. Thus, the reconfiguration of the system implies
rebuilding of the FSM state table and action set. The
procedure for reconfiguration with FSMs is shown in

Fig. 5.

New application
requrements

Sytem change

)

Processing sequence chgnges
Define new action set I|<—

I |Define new states| | Define new Transitions|
|

Create new state
table

Verify and test Error
new state table

|

Integrate and test with Error
other compoents

Run new system

Fig. 5. Procedure of Reconfiguration with FSM

Changing in State Transition Tables and

Action Sets

As Fig. b shows, the creation of a new state ta-
ble is a major reconfiguration step. Since the FSM
is organized as a hierarchy to control different com-
ponents/subsystems, only those state tables related
to the changes need to be rebuilt. For example, in
a 3-axis milling machine system, FSMs may be used
to control a 2-axis axisgroup, a l-axis axisgroup and
each axis. Creating a 3-axis axisgroup will introduce
a new FSM to control the 3-axis axisgroup, but the
FSMs for each axis will remain unchanged. Before the
state table is created, its correctness should be ver-
ified. Since changes to a state table may introduce
new events, states, and transitions, the FSM may be

incorrect after such changes.

Action set changes are also necessary when the
functionality of a component is changed. These
changes are not as simple as those in the state ta-
ble. The code for the FSM will need to be altered to
call the correct procedures corresponding to the new
functionality of the component. However, changes in
component fuctionality mean that source code is be-
ing altered anyway, so the extra changes are not a
great burden.

USE OF FSMS IN UMOAC

We illustrate how to use FSMs in a controller,
by describing the structure of the Open Architecture
Controller (OAC) Project software currently being
developed at the University of Michigan.

Description of OAC Structure

The highest-level structure of the controller is
Task. A Task represents an independent process
(computational thread) in the system with certain
properties, such as priority and period (if it is pe-
riodic). Every task contains a set of modules that
it controls. A simplifed example from the UMOAC
project appears in Fig. 6, and shows the use of three
tasks.
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Fig. 6. OAC Task Structure

These tasks contain functionality vital to basic ma-
chine control. The Servo Control Task contains the
functionality to run the servo controller (such as a
PID control algorithm), and handles all of the 1/0O



with the machine tool (encoders, tachometers, actu-
ators). The Interpolation Task divides movements
into the steps that single axis servo-algorithms can
understand. The Machine Control Task handles all
of the upper-level control relating to a particular ma-
chine. Its responsibilities include handling all data
from the Human-machine Interface, sending configu-
ration changes to the interpolation and servo control
tasks, and ordering the motion commands for the ma-
chine.

FSMs and Controller Structure

FSMs are used to handle the control flow of each
task. It would have been possible to create a large
FSM that would control each task, but it made sense
to use FSMs that controlled modules of smaller gran-
ularity. First of all, each task contains a Task FSM
which can be reused for any Task object. One of
these is the highest-level FSM in the system, control-
ling the configuration and startup of the other task
FSMs. Each task FSM is responsible for the configu-
ration and startup of each of its components.

Each of the three tasks shown includes a high-level
module containing the functionality specific to that
task (say, for Machine, AxisGroup, and Axis). Each
of these is modeled by an FSM that can be considered
below the task FSM in the hierarchy. The Task FSM
includes an execution state that allows the FSM di-
rectly below it in the hierarchy to run. This is shown
in Fig. 7, which is a breakdown of the Machine Con-
trol Task hierarchy.

Fig. 7. FSM Hierarchy of Machine Control Task

The Machine Control Task contains another level
FSM that controls the part program execution. The

machine may run a different part program depending
on what state it 1s in. The hierarchical property of
FSMs makes this easy to do, because each state of the
machine FSM can have a part program FSM subset,
as Fig. 7 shows.

In this FSM hierarchy, the Machine FSM controls
all the other components of the sytem once they are
allowed to execute by their respective task FSMs.
Once the tasks are put into the executing state, the
Machine FSM controls the execution of the entire sys-
tem, unless an exceptional condition or a shutdown
occurs causing the Task FSM to change state. Also,
the Part Program FSM controls the AxisGroup FSM,
which controls the Axis FSMs.

CONCLUSION

We have shown how to design and implement con-
trol flow specifications using the FSM model. Users
can reconfigure the controller using this paradigm.
The FSM representation allows both hierarchical de-
sign and communications between FSMs. The hierar-
chical design allows us to decompose a complex sys-
tem effectively, to ease the reconfiguration and verifi-
cation process.

The goal of Open Architecture Controllers is to al-
low components to be added to, and removed from,
the system without major disruption. The FSM ap-
proach helps allows control flow for a new component
to be easily integrated with the existing pieces. The
approach also allows easy modifications to the control
flow of the existing components, by simply modifying
the associated state table. This has been a very use-
ful property, as the project has gone through many
iterations, and in some cases, dramatic changes in the
methods used for control. Of course, if the function-
ality is altered, changes will go beyond the state table
(Section 5.3), but the FSM still gives the property of
localizing the effect of modifications.
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