
Specifying Recon�gurable Control Flow for Open Architecture Controllers �Chito Shiu, Michael J. Washburn, Shige Wang, Chinya. V. Ravishankar,Kang G. ShinDepartment of Electrical Engineering & Computer ScienceThe University of MichiganAnn Arbor, MI48109-2122, USAABSTRACTRecon�guration is an important consideration inthe design of open architecture controllers, so recon-�guring control ow is a critical design issue. Thispaper describes a speci�cation method based on Fi-nite State Machines that allows such recon�guration.Our approach also provides a standard communica-tion channel for cooperating controllers to exchangeinformation and issue requests to each other. Our ap-proach is being implemented and used for the testbedin the University of Michigan's open architecture con-troller (UMOAC) project at the NSF Engineering Re-search Center on Recon�gurable Machining Systems.Key Words: open architecture controller, controlow, �nite state machineINTRODUCTIONManufacturing equipment recon�guration due tochange in needs or technological obsolescence arecommon in modern manufacturing industry. Theneed for open architecture controllers (OAC) to ac-commodate such changes has been recognized sincethe early eighties (GM,1996)(Wright,1995). An openarchitecture allows exible factory automation sys-tems, rapid part realization, quality assurance, andrapid prototyping (Owen,1995)(Wright,1995).Software modularization issues are integral to theconstruction of open architecture controllers sincethey must provide exibility, ease of integration, andexpansion. We need a sound architectural modelcomprised of blocks that are easy to integrate intouseful applications. This goal requires the de�nitionof a standard application program interface (API) for�The work reported in this paper was supported in part bythe NSF ERC on Recon�gurable Machining Systems at TheUniversity of Michigan

these component blocks so that related blocks cancommunicate easily and correctly. A properly de-signed public API provides a comprehensive interfacethat enables users to add or swap modules. UMOAChas chosen the object-oriented (OO) paradigm andC++ as tools towards this goal. Building blocks areformed as abstractions of physical objects (such asaxes), manufacturing models (such as interpolatorsfor axes), and utility modules (as for control ow orcommunication service). OO/C++ technology is cho-sen because it provides a way to separate the APIfrom the implementation, and provides inheritanceand polymorphism to make code more reusable. Acomponent block is represented as a class in C++,with each class providing the services its correspond-ing abstract model is supposed to provide. For ex-ample, the clamp class object provides services thatinclude clamping on and clamping o�.Abstract control ow speci�cation is crucial to sucha framework. A good control ow speci�cation al-lows users to specify the desired controller behav-ior, while simplifying modi�cations when recon�gu-ration is necessary. The current commercial prac-tice in providing a recon�gurable control ow spec-i�cation is to use IEC-1131-3 (IEC,1993). Compa-nies following this approach include Steeplechase, Ne-matron, and Wizdom. IEC-1131-3 introduced Se-quential Function Chart (SFC), a supervision lan-guage, to specify control ow. A translator translatesthe machining program in IEC-1131-3 into C code(or some other computer programming language).The code is embedded into the soft-controller writ-ten in the same language and compiled into an exe-cutable that can run on the controller computer (Wis-nosky,1996)(Steeplechase,1997). Provided that thecontrol module API is made public, end users maychange the machine control ow as follows: Write an-other IEC- 1131-3 program specifying control ow,



use the translator to translate the program, put thetranslated computer code into the control modulewith the open API, and recompile the controller code.However, this solution for recon�gurable control owdoes not support communication between controllersin di�erent address spaces. This is a critical is-sue, since manufacturing applications have becomeincreasingly complex, and cooperation between con-trollers is often required.In this paper we will describe the e�ort of UMOACto provide a recon�gurable control ow speci�ca-tion that also enables communication among the con-troller in di�erent address spaces. In Section , wewill justify our choice of the FSM model, and explainhow event-based systems, more speci�cally machinetool systems, are mapped into FSMs. Section willexplain how the representation can be simpli�ed byusing the hierarchical property of FSM. Section andwill provide details of our approach to FSM imple-mentation and recon�guration. Section describeshow the UMOAC uses the FSM approach, and Sec-tion concludes the paper.EVENT-BASED SYSTEMSReactive systems are event-driven systemswhich react to external and internal stimuli(Boussinot,1991)(Harel,1987). In deterministic reac-tive systems, the order and values of inputs will com-pletely dictate the order and values of the system re-sponses. Therefore, system design and integration re-quires a speci�cation method to describe the desiredmachining system behavior. We have chosen to usethe �nite state machine model to provide the speci�-cation.FSMs for Control FlowThe FSM paradigm has been used for model-ing various applications of reactive systems, suchas human-machine interfaces and in the embeddedcontroller domain (Kuuluvainen,1991)(Chiodo,1994).Although FSMs were mainly used in past applicationsto model hardware or embedded systems, they workwell for our soft controller's needs. First, FSMs arean intuitive way to describe event-driven systems. Inthe Mealy machine model for FSMs (Hopcroft,1979),a transition works as follows: if the machine is insome state A and observes/receives event B, the ma-

chine will take speci�ed action C and move to speci-�ed state A'. We can describe the requirements of areactive system in the same way. Consider the fol-lowing machine tool domain example: if the machinetool is in ready mode and receives an axis feed com-mand, the axis performs the feed action, and the sys-tem state changes to running. Second, the standardFSM approach of sending and receiving events hasbeen shown to allow concurrency and communication(Harel,1987). Such properties enable us to add recon-�gurability and communication exibility to our con-trol ow speci�cation. Third, this approach will allowus to perform model veri�cation using the veri�ableproperties of FSM, such as reachability of states.Machine Tool Modeling with FSMsUsers can describe desired machine tool behaviorusing FSM-based speci�cations. For example, one de-sired behavior may be to stop the machine tool if thetool status is broken. Each machining tool/stationis �rst associated with a set of speci�cations, includ-ing tool capabilities (axis numbers and types) andenvironment stimuli accepted (axis position, tool sta-tus, temperature status, GUI inputs). In modelingmachine behavior as an FSM, we model machine op-erations as the set of FSM actions, and the environ-mental stimuli as the set of FSM events.
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states of the FSM. An arc labeled e=a from state q tostate p in the STD represents the transition q�e! p,and triggers the action a. Fig. 1 shows a simple ma-chine tool modeled as an FSM using STD, and has thecapability to move an axis. The axis is either movingor stopped. There are three events in the system: twofor the user's requests from the Graphical User Inter-face (GUI) to move or stop the axis, and one for thedetection of a broken tool. This FSM describes a sys-tem that follows users requests for an axis, and stopsthe axis when a broken tool is detected. While thisis a very simple machine, a more complicated systemcan also be modeled in the same manner. Nonethe-less, because we want to provide a speci�cation thatis both comprehensive and well-modularized, we havedecided to use multiple FSMs to represent complexmachine tool systems. The issues of communicatingand hierarchical FSMs will be discussed in depth inthe following sections.SYSTEM BEHAVIOR CONTROLWITH FSMSA complex or integrated system may consist ofseveral subsystems with di�erent functionalities, anddriven by di�erent control ows. Some subsystemsmay have been developed separately, or already ex-ist. To describe and control the behavior of such acomplex system, as well as ease in the integration ofnew functionalities, we propose a hierarchical struc-ture for FSMs to manage the system control ow atdi�erent levels.Hierarchical FSM OrganizationA complex machining system can be modularizedas several coordinated subsystems, each of which pos-sesses some desired functionality. The behavior ofsuch systems can be decomposed into the behaviorof the subsystems, whose control ows are describedusing separate FSMs. These FSMs are organized ina hierarchical structure, as shown in Fig. 2.In Fig. 2, the Level-0 FSM is a top-level FSM, andcorresponds to top-level system control ow. Whenthe top level FSM reaches State 2 in Level-0, a Level-1 FSM is invoked and the Level-0 FSM delegates thecontrol of the system to it. The Level-0 FSM re-mains at its current state until a new event arrives
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......Fig. 2. FSM hierarchyand causes a state change. Similarly, when the Level-1 FSM reaches State 2.1, it invokes a Level-2 FSMthat controls a lower level subsystem, delegates con-trol to it, and so on.Although every FSM may be decomposed into sev-eral lower-level FSMs with one coordinating FSM,such a division should uphold the integrity of systemcomponents. That is, an FSM for a basic functional-ity should not be decomposed further. Only relatedor cooperating FSMs should be integrated under onehigher-level FSM.Under this scheme, each system component can bedesigned, developed, and tested separately, and thencombined into a more complex application using ahigher-level FSM to describe and manage the coor-dination among di�erent modules and subsystems.This FSM hierarchy also helps isolate the subsystemsand control ow changes. A control ow change fora particular component/subsystem only a�ects FSMsat that level.The FSM hierarchical organization also aids in cor-rectness veri�cation. For a complex application sys-tem, it is natural to expect hundreds of states in thesystem, and even more transitions. It is di�cult toverify the correctness of such a large system by �nd-ing isolated states (states without an incoming edgebut that are not initial states), or dead states (stateswithout a outgoing edge but that is not a terminatingstate). Instead of verifying a single FSM with a largenumber of states, we can decompose it into severalFSM levels and verify them separately. The correct-



ness of the control ow for the whole system can beveri�ed by the correctness of each FSM node in theFSM hierarchy.Communication Among FSMsA fundamental issue in hierarchical FSMs is thecommunication between FSMs at di�erent levels.Since the FSM is an even-driven mechanism, thenext-level FSM invocation and termination are trig-gered by messages passing from a higher-level FSMto a lower-level FSM, or vice versa. For FSM objectsat the same level, no communication is required, andthe coordination of di�erent FSM objects at the samelevel is handled by the higher level FSM. Only one toplevel FSM exists in the machine tool system.The highest level FSM controls the execution of allthe other modules. Generally, the Machine ControlLogic FSM manages the control ow of all the othercomponents by sending events to its lower componentFSMs and gathering the current status of lower levelFSMs if necessary. The Machine Control Logic FSMcan be embedded in the same execution module asthe highest level FSM, and invoked when the highestlevel FSM reaches the appropriate state. It can alsobe in another execution module, and actuated whenthat module reaches a state under the control of thehighest level FSM.The number of FSMs required depends on the com-plexity of the machining system and the recon�gura-tion requirements. For a simple machine (e.g., withonly one axis moving from one �xed point to anotherone) and minimum recon�guration (e.g., the oper-ation mode won't be changed), a single FSM maycontrol the entire system. But for a more complexsystem, every component may need an FSM to man-age control ow, and several execution modules maybe necessary. In this case, we need a highest levelFSM to coordinate control ows among FSMs, andthe Machine Control Logic FSM should begin to con-trol the components when the top level FSM reachesa given state.To support the communication between FSMs,each FSM module has an associated communicationport. An FSM can only receive events from its owncommunication port. The communication port couldbe implemented using any mechanism the underly-ing system supports, e.g., shared memory, messagequeue, bus or network. Although di�erent FSMscould share one communication port, only one FSM

can consume a particular event and make a statechange due to the event.To invoke a next-level FSM, the higher-level FSMsends a message or event to the port of the nextlevel FSM. Then, when the lower-level FSM is at aterminating state, a message or event is sent to itsupper-level FSM. The communication between FSMsis shown in Fig. 3.
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Other ObjectsFig. 3. Communication between di�erent FSMsIn Fig. 3, when the Level-0 FSM makes the transi-tion from Si to Sj , the transition dispatches an eventto an output port. This event is sent to the Level-1FSM input port via a communication mechanism C.Upon receiving this event, the Level-1 FSM makes itsstate change and continuously receives events from itsinput port. Once the Level-1 FSM receives the eventthat makes it terminate (state change from Sk to Sl),it sends an event via C to notify the Level-0 FSM.FSM IMPLEMENTATIONThe additional requirements placed on our imple-mentation of FSMs were e�ciency and ease of use.E�ciency is important because FSMs will be used inapplications that require real-time performance, suchas machine control. To make FSMs useful in a recon-�gurable environment, it must be easy for a user tointegrate them into a control system without muchmodi�cation.The FSM is implemented as a set, or list, of states.Each state in this set contains an identi�er as well asa pointer to a set of transitions. There is a separatetransition set associated with each state (althoughtwo states could share a set if they needed the same



transitions). Each transition contains an event num-ber that triggers the transition, an action identi�erthat translates to the function associated with thetransition, and a pointer to the next state (which willbe in the original state set). Fig. 4 shows these struc-tures.
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State Set Transition SetFig. 4. FSM enginState Transition Tables and Action SetsThe driver described in Section is identical for allFSMs, but the state transition table and the actionset are di�erent with the FSM. The state transitiontable speci�es the contents of the state and transitionsets, and is a computer-readable translation of thestate transition diagram. The state transition tableis stored separately in a �le or database, and is loadedat system startup, con�guration, or initialization.The only code that needs to be written for a newFSM is that for the action set. The action set is thecomplete set of functions that may be called at statetransitions, and contains all functions visible outsidethe module. Currently, the action set is implementedas a simple switch statement. This is a simple wayto match the action number with its correspondingfunction.

FSM-BASED RECONFIGURATIONMachine system recon�guration is necessary whenthere are changes in system components, function-ality, or processing sequences. Each case requireschange of control ow. Using the FSM mechanism,the control ow can be changed separately from themachine. Also, the FSM provides a method forthe system designer/developer to specify application-speci�c control ow. E�ort and skill required for re-con�guration can be reduced signi�cantly with thisapproach.Machine System Recon�gurationMachine system recon�guration can be classi�edas machine reorganization or processing sequencechanges. In an OAC system, a machine system ismodularized as di�erent components, each of whichaccomplishes some designed functionality. Machinereorganization means using new or di�erent compo-nents, or putting the components together di�erentlyfor the same or di�erent purposes. Examples includechanging from a drill to a cutter, or breaking a 3-axisaxis group into one 2-axis axis group and a 1-axis axisgroup. Processing changes are the changes in the op-eration sequence, while using the same machine withthe same set of components. There are also manycases in which changes of components and process-ing sequences occur together. For real applications,the most frequent changes are processing proceduresand/or a subset of components. It is seldom that thewhole system or machine is redesigned or rebuilt.Since both functionality and processing sequenceare modeled by control ow in an OAC system, thecontrol of a recon�gured machine system could eas-ily be modi�ed by changing the control ow of thesystem. In our FSM model, machine reorganizationcause changes in the action set, where all possibleinvoked functions are de�ned and implemented. Pro-cessing sequence changes cause changes in the statetable.Mechanics of Recon�gurationFrom the perspective of the FSM, recon�guring asystem with new control ow and components meanschanges of the states and transitions. As discussedin the previous section, such information is describedin a system-independent state table and an action



set. Thus, the recon�guration of the system impliesrebuilding of the FSM state table and action set. Theprocedure for recon�guration with FSMs is shown inFig. 5.
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Fig. 5. Procedure of Recon�guration with FSMChanging in State Transition Tables andAction SetsAs Fig. 5 shows, the creation of a new state ta-ble is a major recon�guration step. Since the FSMis organized as a hierarchy to control di�erent com-ponents/subsystems, only those state tables relatedto the changes need to be rebuilt. For example, ina 3-axis milling machine system, FSMs may be usedto control a 2-axis axisgroup, a 1-axis axisgroup andeach axis. Creating a 3-axis axisgroup will introducea new FSM to control the 3-axis axisgroup, but theFSMs for each axis will remain unchanged. Before thestate table is created, its correctness should be ver-i�ed. Since changes to a state table may introducenew events, states, and transitions, the FSM may be

incorrect after such changes.Action set changes are also necessary when thefunctionality of a component is changed. Thesechanges are not as simple as those in the state ta-ble. The code for the FSM will need to be altered tocall the correct procedures corresponding to the newfunctionality of the component. However, changes incomponent fuctionality mean that source code is be-ing altered anyway, so the extra changes are not agreat burden.USE OF FSMS IN UMOACWe illustrate how to use FSMs in a controller,by describing the structure of the Open ArchitectureController (OAC) Project software currently beingdeveloped at the University of Michigan.Description of OAC StructureThe highest-level structure of the controller isTask. A Task represents an independent process(computational thread) in the system with certainproperties, such as priority and period (if it is pe-riodic). Every task contains a set of modules thatit controls. A simplifed example from the UMOACproject appears in Fig. 6, and shows the use of threetasks.
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with the machine tool (encoders, tachometers, actu-ators). The Interpolation Task divides movementsinto the steps that single axis servo-algorithms canunderstand. The Machine Control Task handles allof the upper-level control relating to a particular ma-chine. Its responsibilities include handling all datafrom the Human-machine Interface, sending con�gu-ration changes to the interpolation and servo controltasks, and ordering the motion commands for the ma-chine.FSMs and Controller StructureFSMs are used to handle the control ow of eachtask. It would have been possible to create a largeFSM that would control each task, but it made senseto use FSMs that controlled modules of smaller gran-ularity. First of all, each task contains a Task FSMwhich can be reused for any Task object. One ofthese is the highest-level FSM in the system, control-ling the con�guration and startup of the other taskFSMs. Each task FSM is responsible for the con�gu-ration and startup of each of its components.Each of the three tasks shown includes a high-levelmodule containing the functionality speci�c to thattask (say, for Machine, AxisGroup, and Axis). Eachof these is modeled by an FSM that can be consideredbelow the task FSM in the hierarchy. The Task FSMincludes an execution state that allows the FSM di-rectly below it in the hierarchy to run. This is shownin Fig. 7, which is a breakdown of the Machine Con-trol Task hierarchy.
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machine may run a di�erent part program dependingon what state it is in. The hierarchical property ofFSMs makes this easy to do, because each state of themachine FSM can have a part program FSM subset,as Fig. 7 shows.In this FSM hierarchy, the Machine FSM controlsall the other components of the sytem once they areallowed to execute by their respective task FSMs.Once the tasks are put into the executing state, theMachine FSM controls the execution of the entire sys-tem, unless an exceptional condition or a shutdownoccurs causing the Task FSM to change state. Also,the Part Program FSM controls the AxisGroup FSM,which controls the Axis FSMs.CONCLUSIONWe have shown how to design and implement con-trol ow speci�cations using the FSM model. Userscan recon�gure the controller using this paradigm.The FSM representation allows both hierarchical de-sign and communications between FSMs. The hierar-chical design allows us to decompose a complex sys-tem e�ectively, to ease the recon�guration and veri�-cation process.The goal of Open Architecture Controllers is to al-low components to be added to, and removed from,the system without major disruption. The FSM ap-proach helps allows control ow for a new componentto be easily integrated with the existing pieces. Theapproach also allows easy modi�cations to the controlow of the existing components, by simply modifyingthe associated state table. This has been a very use-ful property, as the project has gone through manyiterations, and in some cases, dramatic changes in themethods used for control. Of course, if the function-ality is altered, changes will go beyond the state table(Section 5.3), but the FSM still gives the property oflocalizing the e�ect of modi�cations.AcknowledgementsThe authors would like to thank Sushil Birla ofGeneral Motors, as well as Professors Yoram Korenand Galip Ulsoy of The University of Michigan, fortheir input and valuable discussions.
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