
Fast low-Cost Failure Recovery for
Reliable Red-Time

Multimedia Com m un ication
Kang G. Shin and Seungjae Han, The University of Michigan

Abstract
Transmission of multimedia data over a packet-switched network pically requires

throughput or delay). In this article we address the problem of how to make such
real-time communication reliable. First of all, it is essential to bound the duration of
service disruption caused by failures to a reasonably small value. Considering the
large volume of multimedia data, minimizing the fault-tolerance overhead is also
important. Furthermore, as more applications with different dependability require-
ments share the same network, the level of dependability for a given application
should be ”customizable,” depending on the criticality of the application. W e first
survey the existing approaches, and then present our scheme which is developed
in accordance with three design goals: fast failure recovery, low fault-tolerance
overhead, and per-connection reliability guarantee. Our scheme provides an inte-
grated solution covering such issues as connection establishment, failure detection,
runt ime failure recovery, and resource reconfiguration.

resource reservation to guarantee an acceptable level of per 7 ormance (e.g. ,

eal-time transport of continuous media (i.e., video
and audio) has traditionally been achieved by circuit
switching in telephone services or by broadcasting
over shared media in television services. However, it

is difficult to realize real-time continuous multimedia applica-
tions on packet-switched computer networks, since the end-to-
end packet delay and throughput of a media stream are
inherently nondeterministic. Such end-to-end performance,
necessary to achieve the required functionality of these appli-
cations, is often called end-to-end quality of service (QoS).
Today’s representative computer network, Internet, also lacks
QoS support for continuous media applications; the window-
based flow control is unsuitable for traffic with end-to-end
timing constraints. Nevertheless, several multimedia applica-
tions have already been deployed on Internet using such pro-
tocols as RTP [l], XTP [2], and IP multicast. However, these
protocols do not meet the true multimedia requirements
because they only support a best-effort service model. The
next-generation Internet is expected to provide new services
that meet the diverse QoS requirements of various emerging
multimedia applications.

In response to this growing demand for real-time communi-
cation services, considerable efforts have been made in recent
years and numerous QoS service models developed, ranging
from static constant bit rate (CBR) service, which resembles
the telephony service, to the “controlled-load service,” which

mimics the best-effort service in unloaded networks [3, 41.
Unlike traditional datagram services in which average perfor-
mance is of prime interest, guaranteeing QoS is the key
requirement of the real-time communication service. To
achieve QoS guarantees, most real-time communication
schemes rely on some form of resource reservation and
admission control, while each differs in QoS parameters
and/or firmness of QoS guarantees. That is, they share three
common properties: they are QoS-contracted, connection-ori-
ented, and reservation-based. A contract between a client and
the network is established before the client’s messages are
actually transferred. To this end, the client must first specify
his input traffic behavior and required QoS. The network then
computes the resource needs (e.g., link and CPU bandwidths,
and buffer space) from this information, selects a path, and
reserves necessary resources along the path. If there are not
enough resources to meet the client’s QoS requirement, the
request is rejected. The client’s data messages are transported
only via the selected path with the resources reserved, and this
virtual circuit is often called a real-time channel.

Network Dependability
Primitive real-time communication services will soon be
available for such multimedia applications as Internet phone,
the Web, and digital libraries. For example, the controlled-

56 0890-8044/98/$10.00 0 1998 IEEE IEEE Network * NovemberiDeeember 1998

load service is considered a possible candidate. On the other
hand, the increase of network connectivity and link capacity
will expand the application domain of real-time multimedia
communication to include business- or mission-critical appli-
cations, such as remote medical service, collaborative scien-
tific research, business net-meeting, real-time electronic
commerce, or even remote battlefield command/control.
Such critical applications require both dependable and timely
communication services. Suppose, for example, there is a
very important videoconference, and unanticipated network
failures disconnect one or more participants from the con-
ference for an unpredictably long period. This may lead to a
failure or delay in reaching important strategic decisions,
which can cause significant economic loss. In this example
the connection availability, defined as the probability of a
connection being available at any given t ime, is a key
dependability QoS measure.

Network failures can cause an even larger-scale social disas-
ter. Catastrophic social consequences of network failures have
actually been witnessed in recent breakdowns of the U.S.
telecommunication network. For instance, a fire at an
unmanned tall office building in Illinois caused 3.5 million
telephone calls to be blocked in 1988. Emergency 911 calls
went unanswered, online business transactions were stopped,
and flights were delayed because of air traffic control failures.
Hospital operations were affected, and drug stores could not
process prescriptions. Even banks had to be closed for securi-
ty reasons due to disabled alarm systems [5]. In the 1990s sev-
eral similar accidents have been reported for various reasons,
such as damage of a fiber cable caused by construction, earth-
quakes, outage of switching systems, or network overload.
Although network failures rarely occur, the consequence of
mishandling failures could be devastating, thus making net-
work reliability a major concern.

The current Internet with datagram services has successful-
ly dealt with two types of network failures: transient and persis-
tent. A typical example of a transient failure is temporary
packet losses due to either network congestion or data corrup-
tion. Persistent failures include the breakdown or crashing of
network components. Transport protocols such as TCP can
handle transient loss of packets by acknowledgment and
retransmission, and the connectionless IP protocol deals with
persistent failures by routing packets around faulty network
components. However, retransmission is unlikely to be useful
for real-time communication, because there is usually not
enough time to detect and retransmit a lost real-time message
before its deadline expires. Instead, forward error correction
(FEC) techniques should be used if no data loss is acceptable.
The main drawback of FEC is its high overhead. We also face
a serious difficulty in tolerating persistent failures for real-
time communication, because a QoS guarantee is realized by
reserving resources on a fixed path and transporting real-time
messages only via the path. Hence, a real-time message,
unlike a datagram message, cannot be detoured around faulty
components on the fly.

The prevalence of optical fibers affects network depend-
ability in two ways. First, the probability of transmission
errors in optical links becomes negligible; the error rate is
dropped from 10-5/b in the 56 kb/s links of initial ARPANET
to below 10-lO/b in optical links [6]. The chance of packet
loss due to transmission errors is very rare, and most packet
losses are attributed to congestion-control problems. As a
result, for real-time communication tolerating transient fail-
ures has become relatively less important because conges-
t ion-induced packet losses can be avoided by resource
reservation, Furthermore, occasional loss of messages is tol-
erable in many multimedia applications. In contrast, the

deployment of optical fibers exacerbates the difficulty in tol-
erating persistent failures, because more connections will be
running through each large-capacity link, and thus, even a
single link failure can result in the loss of a large number of
connections. Unless the network is carefully designed to
restore and then deliver the large amount of traffic lost due
to failures, the increase of link capacity will seriously threat-
en network dependability. Not only link failures but also
node failures are getting more difficult to deal with. Usually,
Internet routers are not designed to meet as stringent a reli-
ability goal as telephone network switches (e.g., AT&T
5ESS). Higher-performance routers in the future Internet
will become even harder to provide high reliability for, due
mainly to their complex software. Moreover, computer net-
works are more vulnerable to vandalism such as viruses or
hacking than the telephone network, which has a “closed”
architecture.

Considering the criticality of network dependability and the
increasing threat of network failures, the development of
effective mechanisms to cope with network failures is a must.

Des i d l e Features
To design a fault-tolerant service, one must first define the
model of failures to be tolerated. Some applications can tol-
erate slow failure recovery but require reliable (correct)
delivery of all messages, even if it takes a long time. Exam-
ples of such applications are electronic mail and file transfer.
For these applications, message-level failure handling is nec-
essary. Thus, the receiver informs the sender of the reception
of each message (or group of messages), so that the sender
can detect delivery failures and retransmit lost messages.
Some other applications require fast failure recovery, but
data loss during failure recovery can be tolerated. Real-time
multimedia applications fall into this category, since they do
not require such strict reliability as “no message loss at all.”
For example, loss of a couple of frames in video/voice data
streams may be acceptable. Therefore, the fault-tolerant ser-
vice for multimedia applications should be designed with a
different reliability goal than that of conventional non-real-
time applications.

In this article we assume that (infrequent) transient packet
losses are acceptable to applications, or are dealt with by other
techniques like FEC, and focus on how to effectively handle
“persistent” or “permanent” failures of network components
(e.g., crash failures). Instead of directly modeling component
failures, we define and use a new failure semantic, channel fuil-
ure. A real-time channel is said to have “failed” if the rate of
correct1 message delivery within a certain time interval is
below a threshold specified by the application; that is, the
granularity of failures is “persistent disruption of channels”
instead of “individual message loss.” The same error rate may
be acceptable to some applications, and not to others.

There are five criteria that characterize a good solution to
this problem:

Per-connection dependability guarantee - Each connection
may request a different level of fault tolerance depending
on its criticality. The network should provide guarantees on
dependability for each connection, so that successful recov-
ery is guaranteed as long as failure occurrences do not
exceed the fault-tolerance capability of the connection.
Fast (time-bounded) failure recovery - The service disrup-
tion time of a connection caused by failures should be
bounded to a reasonably small value.

I In terms of both content and timing.

IEEE Network Novembermecember 1998 57

Extra resources

l o
I Source node Real-tim’e channel Destination node 1
W Figure 1. A n example of an SFI channel.

Small fault-tolerance overhead - The additional resource
overhead required for fault tolerance should be acceptably low.
Robust failure handling - Failures should always be han-
dled robustly, even though failure occurrences may exceed
the assumed failure hypothesis. By “robustly” we mean that
the QoS of nonfaulty real-time channels is not affected, and
as many faulty real-time channels as possible are recovered.
Interoperability/scalability - The failure recovery scheme
must be interoperable with various existing and future real-
time channel protocols. Also, it should scale well in a
dynamic environment where (short-lived) connections are
set up and torn down frequently, and the distributions of
connection setup requests and connection holding time are
unknown.

Existing Approaches
Before presenting our approach, we will first survey some
notable previous work on dependable real-time communica-
tion. Particularly, the schemes developed for computer and
telephone networks are reviewed with comparisons against
our approach.

Packet-Switched Computer Nefworks
There have been roughly three types of approaches to
the problem of achieving dependable real-time commu-
nication in packet-switched computer networks.

First, the simplest way of recovering a real-time chan-
nel from a network component failure is to establish a
new real-time channel which excludes the failed compo-
nent. This reactive method is studied in [7]. This scheme
relies on the broadcast of all component failures to the
entire network so that all hosts can maintain a consis-
tent view of the current network topology. When a
source node recognizes the failure of its channel from
this broadcast, it tries to establish a new channel to
replace the disabled one. Since no provisions are made a
priori for fault tolerance, this method causes no fault-
tolerance overhead in the absence of failures. However,
it does not give any guarantee of failure recovery. The
channel re-establishment a t tempt can fail due t o
resource shortage at that particular time. Even when
there are sufficient resources, the contention among
simultaneous recovery attempts for different faulty con-
nections may require several trials to succeed, thus
delaying service resumption and increasing network traf-
fic. To regulate simultaneous recovery attempts, random
delays can be introduced before starting each recovery
operation.

The second approach is failure masking, in which
multiple copies of a message are sent simultaneously
via disjoint paths [8]. This method attempts to achieve
both timely and reliable delivery at the same time.
Thus, by transmitting multiple copies over disjoint
paths for a message, the chance that at least one copy

is delivered within its deadline increases, and the effects of
possible failures are masked. This approach has an advan-
tage in that both persistent and transient failures are han-
dled without service disruption, but it is very expensive due
to the additional resource consumption for transmitting
multiplc copies of the same message. T o enhance resource
efficiency, [9] presents a scheme which combines error cod-
ing with multiple-copy transmission. In this method, instead
of transmitting multiple copies of an entire message, each
message is broken into equal-size submessages which are
then transmitted over disjoint paths. In addition, some
redundant information is transmitted over separate paths
for FEC. When some submessages are lost due to failures,
the original message can be reconstructed using the redun-
dant information. This method allows a trade-off between
resource overhead and fault-tolerance capability by select-
ing thc number of redundant information channels. Howev-
e r , this me thod still involves addi t iona l resource
consumption for FEC, which is not necessary if the under-
lying multimedia applications can tolerate infrequent tran-
s ient d a t a loss. Ano the r pract ical p roblem is t h a t t h e
connectivity of current (or near future) network topologies
may not provide a sufficient number of disjoint pa ths
between any two network nodes, which may hinder the flex-
ibility of this method.

The third approach lies between the above two approach-
es in tcrms of fault-tolerance overhead. In this approach,
cold-standby resources are reserved for fault tolerance. The
Single Failurc Immune (SFI) scheme [lo] took this approach
to provide guaranteed failure recovery under a single failure
model. In this scheme, additional resources are reserved in
the vicinity of each real-time channel at the time of channel
establishment, and when a failure occurs the failed compo-
nent is detoured by altering the channel path using the

A
Source
node

Destination
node

Source
node

Destination
node

Source
node

Destination
node

W Figure 2. Three rerouting strategies: a) local rerouting; b) local-to-end
rerouting; c) end-to-end rerouting.

58 IEEE Network NovembedDeccmber 1998

reserved resources. Figure 1 illustrates the setup
of an SFI channel. The advantage of this cold-
standby approach is that although additional
resources need to be reserved, the resources
reserved for fault tolerance can be utilized by
best-effort traffic in the absence of failures.
Another cold-standby method is presented in
[l l] . In this method, cold-standby reservation is
combined with multiple-channel transmission. It
differs from the multiple-channel FEC method
in that extra subchannels remain as cold-standbv

Reactive

SFI

Multicopy

Span restoration

Path restoration

1 8urgpproach
I -

No Long No I

High Shorter Deterministic

Very high No Flexible I

Low Shorter Deterministic

Lower Short Deterministic

Lower Short

i

I

Flexible - - _ _
Table 1 . A comparison of existing approaches.

in the absence of failures; thus, FEC is not pro-
vided. The cold-standby extra channels are acti-
vated to replace the original submessage channels disabled
by failures.

Telephone Networks
In old telephone networks, two telephones were connected by
a true electric circuit through electro-mechanical or pure elec-
tric exchanges. Even after the introduction of digital transmis-
sion hierarchies like synchronous digital hierarchy) (SDH)
and synchronous optical network (SONET) transmission, the
64 kb/s circuit-switching paradigm continued as the main tech-
nology. However, the transition from circuit to cell switching
- that is, the asynchronous transfer mode (ATM) network -
has completely changed the problems and solutions of tele-
phone networks. Now, telephone networks are very close to
computer networks. A modern switching node in telephone
networks is almost a general-purpose computer equipped with
high fault-tolerance capability and powerful I/O capability. A
mesh-like network topology is being used instead of a fully
connected topology. Techniques for telephone services resem-
ble those for real-time communication services in packet-
switched computer networks, in that both services rely on
similar principles such as dedicated resources and static rout-
ing. Therefore, the dependability techniques of telephone net-
works are worth a close look. While telephone network
survivability is accounted for at various levels, here we cover
only the network-layer operation, which is most relevant to
this article.

Essentially, when a telephone connection is broken it is
rerouted by detouring the failure point. Failure recovery
should be fast so that users (or applications) hardly notice
the service disruption caused by the failure. Even more
important is to ensure the success of failure recovery itself. If
there are not enough resources available for rerouting all
affected connections, some of them should be dropped. To
avoid resource shortage during failure recovery, spare
resources (i.e., cold-standby resources) a re reserved in
advance. The amount of spare resources to be allocated is an
important design issue, and is closely related to the problem
of selecting the rerouting paths of failed connections. For
rerouting, there are three strategies: local rerouting, local-to-
end rerouting, and end-to-end rerouting. Each of these strate-
gies is illustrated in Fig. 2.

The local-rerouting strategy, also called a span-restoration
method, has usually been used in synchronous transfer mode
(STM) networks. In most of the work on this strategy [12,
131, a “maximum flow” model is used to find the (semi-) opti-
mal placement of spare resources under a deterministic fail-
u re hypothesis, typically a single-link failure model. A
drawback of the local rerouting approach is that resource
usage becomes inefficient after failure recovery, because
channel paths tend to be lengthened by local detouring.
According to [14], end-to-end rerouting is the best with
respect to resource efficiency, local-to-end rerouting is the
second, and local rerouting is the worst.

T h e end- to-end re rout ing strategy, also called pa th
restoration, has been studied mainly in the context of ATM
networks. Essentially, this strategy requires the intervention
of the endpoints of each failed connection. There are two
variations in this strategy, depending on whether the failure
recovery paths are precomputed before failure occurrence,
o r determined after failures actually do occur. There are
several differences between these two methods. In the for-
mer the prerouted recovery paths should be disjoint with
the corresponding original connection paths, while in the
latter the recovery paths can use the healthy components of
their original connection paths. The greater flexibility in
routing the recovery paths implies the potential of higher
resource efficiency of the latter. However, the former has
an advantage over the latter in terms of dependability guar-
antees. In the former, since the network can reserve the
spare resources necessary for the recovery connections
whose pa ths a re already decided, t he re will be no
conflict/contention for spare resources between recovery
attempts upon failures. By contrast, in the latter, when fail-
ures occur each disabled connection will try to establish a
new connection by “claiming” the shared spare resources.
Therefore , resource contention similar to the reactive
method can happen, and some connections may need to try
several recovery paths before they succeed. Some recent
efforts on the former method can be found in [14-161, and
an example of the latter method is [17]. Essentially, they try
to optimally route recovery paths by minimizing the spare
resource reservation, while guaranteeing successful recovery
under a deterministic failure model.

Comparison
Basically, our approach uses end-to-end rerouting with pre-
computed recovery paths. We set up one or more backup
channels in advance in addition to eachprimary channel; that
is, each dependable real-time (D) connection consists of one
primary channel and backup channels. Upon failure of a pri-
mary channel, one of its backups is promoted to a new prima-
ry channel.

In Table 1 existing approaches and our approach are
compared with each other in terms of resource overhead,
recovery delay, and recovery guarantee. The SFI method is
similar to the span restoration method in many aspects,
except that it induces higher overhead, because in the SFI
method all the spare resources required by each connec-
t ion a re reserved, unlike the span res tora t ion method
which optimizes the allocation of spare resources. Both
methods will have a shorter recovery delay than the end-
to-end rerouting methods, because failures are handled
locally without intervention of end nodes. The recovery
delay of our approach is smaller than that of the reactive
method, because in our approach a backup channel is
established before failures actually occur and the network
can use i t immediately upon the failure of i ts primary

IEEE Network NovemberDecember 1998 59

- - - - - - - - - - - - - - - ;
+

Backup channel setup
I t +

channel switching
Failure detection

I I I
W Figure 3. An overview of our failure-recoveiy scenario.

channel, without the time-consuming channel (re)establish-
ment process.2

The path restoration method for ATM networks comes
closet to our approach, but there are three main differences
between the two. First, the path restoration method is unable
to control the fault-tolerance level of each connection, and all
connections are treated equally under the same failure model.
By contrast, our approach allows for per-connection fault-tol-
erance control, so more critical connections will get higher
levels of fault tolerance. Second, in path restoration all chan-
nel paths and spare resources are determined simultaneously;
hence, addition or removal of a channel requires recalculation
of all channel paths and spare resources. It is assumed that
the connection demands - virtual path (VP) setup requests
- are known at the time of network design and change very
rarely.3 Therefore, this method cannot be applied to an envi-
ronment where short-lived channels are set up and torn down
frequently. In contrast, our approach needs only information
that can easily be obtained at runtime. It is possible because
we separate the spare resource allocation problem from the
channel routing problem, so:

A backup path may be selected by any algorithm.
Spare resource allocation may be done with given routing

Third, although the control of recovery procedures might be
distributed, centralized, o r a hybrid of the two,
calculation/assignment of spare resources is usually central-
ized in existing path restoration methods. In our approach,
both runtime failure recovery and spare resource allocation
are done in a fully distributed manner.

Figure 3 gives an overview of our failure-recovery scenario.
The key steps in our approach are:

Backup channel establishment
Failure detection
Failure reporting and channel switching
Resource reconfiguration

The rest of this article will outline each of these steps.

results.

Connection Establish m e n t

A backup channel does not carry any data until it is activated,
so it does not consume bandwidth in a normal situation. How-
ever, a backup channel is not free, since it requires the same

The time required to establish a real-time channel is relatively large and
can be unbounded even without contention, since channel establishment
requests are usually sent as best-effort messages and the admission test is
required at each component on the channelpath.

In telephone ATM networks, each call setup is handled at the virtual
connection (VC) level without requiring a new VP to be set up.

amount of resources to be reserved as its primary channel in
order to provide the same QoS upon its activation. In a nor-
mal situation, spare resources can be used by non-real-time
traffic, but they cannot be used to set up other real-time chan-
nels. This is because if a real-time channel is established by
using spare resources which are reserved for other backups,
its QoS guarantee may be violated when spare resources are
claimed for failure recovery. As a result, equipping each I,
connection with a single backup routed disjointly with its pri-
mary reduces network capacity by 50 percent or more (because
the backup is likely to run over a longer path). Thus, raw
backup channels are too expensive to be useful for multime-
dia networking.

To alleviate this problem we have developed a resource-
sharing technique, called backup multiplexing. Its basic idea is
that on each link, we reserve only a very small fraction of link
resources needed for all backup channels going through the
link. In this article we consider only link bandwidth for sim-
plicity, but other resources like buffers and CPUs can be
treated similarly.

With backup multiplexing, backup channels are over-
booked via a meta-admission test , in which some existing
backup channels are not accounted for in the admission test
of a new backup channel. I t is, in essence, equivalent to
resource sharing between the new backup and those back-
ups unaccounted for. Deciding which backup channels will
not be accounted for in the admission test of a backup
channel is a crucial problem. Our strategy is to multiplex
those backups which are less likely to be activated simulta-
neously. The probability of simultaneously activating two
different I, connections’ backups, Bi and B j , is equal to -
actually, bounded by - the probability of simultaneous fail-
ures of their respective primary channels. Let’s denote this
probability S(Bi, B;). Based on this probability, the set of
backups to be multiplexed together is determined for each
backup on a link (i.e., hop-by-hop multiplexing). B; and B;
are multiplexed if S(Bi, B;) is smaller than a certain thresh-
old Y , called the multiplexing degree, which is specific to each
backup. More accurately, if S(B;, B j) < vi, Bj can be multi-
plexed with Bi. Each backup can use a different v to deter-
mine the set of backups to be multiplexed. The smaller the
v of a backup, the higher fault tolerance will result, since
fewer backups will be multiplexed with it. This way, more
important connections can have higher fault tolerance (i.e.,
tolerate harsher failures). However, we require each backup
to have the same multiplexing degree on all of its links for
easier management.

Figure 4 describes an algorithm that calculates the amount
of spare resources (q) at link Cwhen a new backup Bi is estab-
lished on L Let IIB~ ~ = {€fa, Bg, . . . } denote the set of backups
which are not multiplexed with Bi on and rk is the resource
requirement of Bk. After calculating all HE, the highest
resource requirement among all sets of {HE, ~ + Bi} is chosen
as SI. To construct we consider only backups with no
multiplexing degrees greater than that of Bi. This is to avoid
the risk of overestimating the spare resource requirement by
accounting for all backups regardless of multiplexing degree.

In establishing a I, connection, we consider two key depend-
ability-QoS parameters (P,, r), P, is the probability of fast fail-
ure recovery, and r is the estimated failure-recovery delay. In
other words, the probability that a I, connection will suffer a
service disruption longer than r is not greater than P,.
Because fast failure recovery relies on the availability of back-
ups, P, of a I, connection increases with the number of its
backups. Backup multiplexing also affects P, by reducing the
amount of spare resources by reserving fewer resources than
the sum of resources needed by individual backups, but creat-

60 IEEE Network November/December 1998

ifs(&, Bi) z v; and vk 5 vi then
ing a possibility of spare resource
exhaustion. Thus, some backups cannot
be activated because other activated
backups have already taken all spare
resources. In such a case, a multiplexing
failure is said to occur. We account for
the probability that a backup suffers a
multiplexing failure in the calculation
of P,. See [18] for a detailed account of
calculating P,.

Thus far, we have explained the pro-

endif

endloop

W Figure 4. The backup multiplexing algo-
rithm.

cedure of allocating spare resources,
assuming that backup paths are given. How to route backups
greatly influences the resource efficiency, that is, the amount
of spare resources to achieve a certain P,. Our study shows
that traditional routing algorithms such as minimum-hop or
maximum load-balanced routing are less effective in backup
routing than routing methods which capitalize on the charac-
teristics of backup multiplexing.

Failure Defection
Effective failure detection with high coverage and low latency
is essential for fast failure recovery. Instead of adopting
expensive failure-detection techniques (e.g., hardware duplica-
tion/comparison for telephone network switches [191, we use
behavior-based detection techniques that do not require any
special hardware support and hence can be used in any net-
work. They are the end-to-end and neighbor detection meth-
ods.

End-to-end detection involves both the source and desti-
nation nodes of a real-time channel. The source node regu-
larly injects “channel heartbeats” into the channel message
stream. A channel heartbeat is a sort of real-time message,
and the intermediate nodes on a channel do not discriminate
channel heartbeats from data messages. Each channel heart-
beat contains the sequence number of the latest data mes-
sage. In this way, the destination node can monitor the
number of data messages lost. If the message loss rate of the
channel exceeds the channel’s threshold, the destination
node declares that the channel has failed. This method will
uncover all channel failures (i.e., 100 percent failure detec-
tion coverage). However, its detection latency is tightly cou-
pled with the application-specific failure threshold, so
applications with large failure thresholds will result in long
detection latencies.

Neighbor detection resembles the gateway failure-detection
protocols in the Internet. Adjacent nodes periodically
exchange node heartbeats (“I am alive”). If a node does not
receive heartbeats from one of its neighbors for a certain peri-
od, it declares all the channels going through the silent neigh-
bor as failed. This scheme has a much weaker dependency on
the channel-specific characteristics than the end-to-end
scheme, because it monitors the behavior of a neighbor node

rather than that of a particular real-
time channel. If a node crashes quickly
after failures occur, one can achieve
very small detection latencies with this
scheme. However, there is a possibility
that a node does not correctly transmit
data messages, but still generates node
heartbeats for a while. In such a case,
the neighbor scheme may miss the fail-
ures of some channels or detect them
later than the end-to-end scheme.

We experimentally evaluated the
effectiveness of the two failure-detection schemes. The
experimental results on a laboratory testbed which was
designed without any particular consideration for fault toler-
ance have indicated that the neighbor scheme detects a sig-
nificant portion of failures very quickly, while a long latency
occasionally results. (Detailed experimental results are
reported in [20].)

failure Reporfing and Channel Switching
If the node that detects the failure of a channel is different
from the node responsible for channel switching, the detected
failure should be reported to the latter node. There are three
important issues in reporting failures. First, who needs to
receive failure reports? Second, which path will be used for
reporting failures? Third, what information needs to be car-
ried in a failure report? Our approach to these issues is:

Failure reports are sent from the failure-detecting nodes to

Failure reports are delivered through healthy segments of

Each failure report contains the channel-id of the failure

Our approach handles multiple (near-) simultaneous failures
very naturally and easily. A failure report will be discarded by a
node when the failure report about the same channel has
already been received by, or passed through, the node. Thus, if
multiple failures occur to a channel, only one failure report will
reach its end nodes; all the other reports will be lost due to the
failures themselves or discarded by intermediate nodes. If the
spare resources at a link are exhausted by the activation of
backups, the remaining backup channels on the link cannot
function as standby channels (i.e., multiplexing failures). Mul-
tiplexing failures should be reported in the same way as com-
ponent failures.

When an end node of a I, connection receives a failure
report on its primary channel, it selects one of its healthy back-
ups4 and sends an activation message along the path of the
selected backup. (Both end nodes may start backup activation
simultaneously.) If an activation message reaches a node on
which the backup channel has already been activated by the
activation message from the other end node, the activation

message is discarded by the node. Figure 5 illustrates the
1 channel-switching urocedure described above. If a failure

the end nodes of failed channels.

the failed channels’ paths.

channel.

U 1

is detected by the channel’s destination node (e.g., with
the end-to-end method), there will be no explicit failure
reporting; instead, the destination node will immediately
start the backup activation procedure. To minimize ser-
vice disruption, data transfer through the new primary
channel will be resumed immediately after the source
node sends an activation message or receives an activation
message generated by the destination node. Albeit unlike-

W Figure 5. A n example of failure reporting and backup activation. The health of backups should also be monitored.

IEEE Network NovembedDecember 1998 61

~ ~

ly, if a data message arrives at inter-
mediate nodes of the new primary
channel before the channel is activat-
ed, the data message will be discarded

lished. In case 2, the faulty backup
will be torn down and a new backup
should be established to maintain the
dependabilitv QoS of the injured con- ,Table 2. cases requiring r~sOurce reconfie-

with no harm. ration.
The transmission of failure reports

and activation messages is time-criti-
cal, because their delays directly affect the service disruption
time. The delay of such messages is unpredictable if transport-
ed as best-effort messages. Assigning the highest priority to
such messages is not a good solution either, since it may affect
the QoS of regular real-time traffic. Suppose there are mali-
cious nodes or a large number of coincident failures. In such
cases, flooding urgent messages can paralyze the whole (or
part of the) network. To achieve delay-bounded and robust
transmission of time-critical control messages, we transmit
them over special-purpose real-time channels, called real-time
control channels (RCCs). When the network is initialized, a
pair of RCCs, one in each direction, is established on every
link of the network. If the capacity of the RCC on each link is
large enough to accommodate all time-critical control mes-
sages on the link, timely delivery of such messages can be
guaranteed.

Resource Reconfiguration
In a normal situation, the dependability QoS of a D connec-
tion is maintained by limiting the admission of new connec-
tions not to impair the QoS of existing connections. Upon
occurrence of a failure, more explicit actions (i.e., resource
reconfiguration) need to be taken to preserve the QoS of the
connections which are directly or indirectly affected by the
failure. Specifically, there are three cases which require
resource reconfiguration for QoS maintenance, as shown in
Table 2, where x denotes failure and 0 nonfailure (thus
healthy).

In case 1, both primary and backup channels will be reestab-

ne i t ion . Tde network sh'buld tear
down the old backup before a new
backup is established so that the new

backup can be routed using the healthy components on the
old backup path, if necessary. In case 3, the healthy backup
will be promoted to a new primary channel, where the faulty
primary will be torn down. After channel switching a new
backup is necessary, since the original backup has been acti-
vated, thus ceasing its backup role.

Even when a connection is not directly inflicted with fail-
ures, its dependability QoS can be affected by the failure
recovery for other connections. This is because spare resources
are shared by multiple backups, and activation of a backup
will reduce the spare resources on its path, and as a result the
remaining backups on this path may not receive their original
QoS.5 At such links, more spare resources have to be allocat-
ed to maintain the same QoS for the remaining backups. Here
the network has to take care of a situation where there are
not enough resources available at a link to match the need for
additional spare resources. The network can resolve such situ-
ations by moving some of the remaining backups to different
paths o r by QoS degradation. In this article we will not
address this issue any further.

Performance Analysis
We evaluated the resource overhead and fault-tolerance

capability of our scheme through simulations. The simulated
networks were an 8 x 8 torus (wrapped mesh) and an 8 x 8
mesh. To obtain a similar total capacity for both networks, we
set the link capacity of the torus to 200 Mb/s and that of the
mesh to 300 Mb/s. At each simulation run, a total of 4032
connections were established so that the source and destina-

tion of each connection were evenly distributed.
Channels of each D connection were routed dis-
jointly with shortest-path routing. For simplicity,
we assumed that all channels used the same traf-
fic model so each channel required 1 Mb/s of
bandwidth on each link of its pa th . We also
assumed that the same multiplexing degree was
used for all backup channels. Three failure mod-
els (i.e., single link failure, single node failure,
and double node failures) were simulated. As a
metric of the fault-tolerance level achieved by
each backup configuration, the ratio of fast recov-
ery to the number of failed primary channels was
used. For instance, a 90 percent fast recovery
ratio means that 90 percent of the D connections
whose primary failed were recovered by using
their backup channels.

The simulation results are summarized in
Table 3. The fast recovery ratio given in Table 3
is the average value collected from all possible
failure cases under the corresponding failure
model. The spare bandwidth value is the average

W Table 3. Simulation results (h = component failure rate).

In the worst case, the remaining backups can be subject
to exhaustion of spare resources.

Y = 0 has the same effect as disabling backup multiplex-
ing, since no backup will be multiplewed with each other.

62

~ ~~

IEEE Network NovemberDecember 1998

of all links. N/A indicates that the total bandwidth require-
ment exceeded the network capacity before establishing all
connections.

In general, with far less than half the resource overhead as
that before multiplexing,h more than 90 percent of fault-toler-
ance capability could be preserved by backup multiplexing in
the single-backup configuration. As expected, the use of a
smaller multiplexing degree results in higher fault tolerance
with an exception between v = 0 and v = A in the bottom row
of Table 3c, where the fault-tolerance level was increased
after backup multiplexing. This is due to the impact of backup
multiplexing on the channel route selection. The multiplexing
efficiency was even further improved by using the double
backup configuration. Thus, a similar level of fault tolerance
was achievable with significantly less spare resources in the
double backup configuration. For example, compare the case
of single backup with v = 3h with the case of double backups
with v = 6h in the torus network. Another interesting obser-
vation is that multiplexing efficiency is affected by network
topology. In the mesh network, the reduction of spare
resources by multiplexing is not as great as in the torus net-
work. This is because the absence of wrapped links in the
mesh network makes the primary channel paths more concen-
trated on the central region of the network, thus discouraging
multiplexing among their backups.

Concluding Remarks
The main focus of this article is twofold. First, we surveyed
existing approaches to dependable multimedia communication
and discussed their pros and cons. Second, we presented a new
scheme which selectively adopts only the merits of existing
approaches without their shortcomings. Thus, this scheme allows
the desired level of fault tolerance to be achievcd for each con-
nection at an acceptably low level of resource overhead.

This scheme scales well because it does not require each
node to maintain global knowledge of the network traffic con-
ditions or to generate any type of messages to be broadcast.
Control messages are sent only over those paths of channels
affected by failures. Backup multiplexing is performed hop by
hop; therefore, at each link only the knowledge of primary
channels whose backups traverse the link is required. Such
information can easily be collected by making a backup chan-
nel establishment message carry the path information of its
primary channel. Since our scheme is designed without any
assumption for a particular real-time communication scheme,
it can be placed on top of any existing (possibly independently
developed) real-time channel protocols.

References
[l] H. Schulzrinne et al., "RTP: A transport protocol for real-time applications,"

[2] Xpress Jronsfer Protocol Specification, XTP Forum, rev. 4.0, March 1995.
(31 C. M. Aras et al., "Real-time communication in packet-switched networks,"

Tech. rep. Internet RFC 1889, Feb. 1996.

Proc. IEEE, vol. 82, no. 1, Jan. 1994, pp. 122-39.

[41 D. Ferrari, "Multimedia network protocols: where are we?" Multimedio Sys.

[51 J. McDonald, "Pu Iic network integrity - avoiding a crisis in trust," IEEE
JSAC, vol. 12, no. 1, Jan. 1994, pp. 5-1 2.

[61 A. Tanenbaum, Computer Nebvorks, 3rd ed., Englewood Cliffs, NJ: Prentice
Hall, 1996.

[7] A. Bonerjea, C. Parris, and D. Ferrari, "Recovering guaranteed performance
service connections from single and multiple faults," Tech. rep. TR-93-066,
UC Berkeley, 1993.

[E] P. Ramanathan and K. G. Shin, "Delivery of time-critical messages using a
multiple copy approach," ACM Trans. Comp. Sys., vol. 10, no. 2, May
1992, pp. 144-66.

[9] A. Banerjea, "Simulation study of the capacity effects of dispersity routing for
fault tolerant realtime channels," Proc. ACM SIGCOMM, 1996, pp. 194-205.

[l o] Q. Zheng and K. G. Shin, "Fault-tolerant real-time communication in dis-
tributed computing systems," Proc. I€€€ FJCS, 1992, pp. 8f-93.

I 1] A. Banerjea, "Fault Management for Realtime Networks, Ph.D. thesis, UC
Berkeley, 1994.

121 W. Grover, "The selfhealing network: A fast distributed restoration tech-
nique for networks using digital crossconnect machines," Proc. /€€€ GLOBE-
COM, 1987, pp. 1090-95.

I31 C. Yang and S. Hose awo, "FITNESS: Failure immuniiotion technology for
network service survivohy," Proc. I € € € GLOBECOM, 1988, pp. 1549-54.

I41 J. Anderson et ol., "Fast restoration of ATM networks," lE€E JSAC, vol. 12,
no. 1, Jan. 1994, pp. 128-38.

[151 R. Kawamura, K. Sato, and I. Tokizawa, "Self-healing ATM networks based
on virtual path concept," I€€€ JSAC, vol. 12, no. 1, Jan. 1994,pp. 120-27.

[16] K. Murakami and H. Kim, "Near-optimal virtual path routing or survivable
ATM networks," Proc. I € € € INFOCOM, 1994, pp, 208-1 5.

[17] R. Iraschko, M. MacGregor, and W. Grover, "Optimal capacity placement for
path restoration in mesh survivable nehvarks," Pm. IEEE ICC, 1996, pp. 1568-74.

[181 S. Han and K. G. Shin, "Fast restoration of real-time communication service
from component failures in multi-hop networks," Proc. ACM SIGCOMM,
1997, pp. 77-88.

[191 W. N. Toy, "Fault-tolerant design of {AT&T telephone switching system pro-
cessors,'' Relioble Computer Systems: Design and Evaluation, Digital Press,
1992, pp. 533-74.

[20] S. Hon and K. G. Shin, "Experimental evaluation of failure-detection schemes
in real-time communication networks," Proc. I€€€ FTCS, 1997, pp. 122-31.

J., VOI. 4, 1996, pg., 299-304.

Biographies
KANG G. SHIN (kgshin@eecs.umich.edu) i s professor and director of the Real-
Time Computing Laboratory, Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor. He has authored/co-authored about
600 technical papers and numerous book chapters in the areas of distributed
real-time computing and control, computer networking, fault-tolerant computin ,
and intelligent manufacturing. He co-authored with C. M. Krishna a textboo!,
Real-Time Systems (McGraw Hill, 1997). In 1987 he received the Outstandin
IEEE Tronsoctions on Aufomotic Control Paper Award, and in 1989 the Researcz
Excellence Award from the University of Michigan. In 1985 he founded the Real-
Time Computing Laboratory, where he and his colleagues are investigating vari-
ous issues related to real-time and fault-tolerant computing. His current research
focuses on QoS-sensitive computin and networking with emphases on timeliness
and dependability. He has also teen applying the basic research results to
telecommunication and multimedia systems, intelligent transportation systems,
embedded systems, ond manufacturing applications. He received a B.S. degree
in electronics en ineering from Seoul National Universi Korea, in 1970, and
bath M.S. and P1.D. degrees in electrical engineering k m Cornell University,
Ithaca, New York, in 1976 and 1978, respectively.

SEUNGJAE HAN (sihan@eecs.umich.edu) i s a post-doctoral research fellow at the
Real-Time Computing Loboratory, Department of Electrical Engineerin and
Computer Science, University of Michigan, Ann Arbor. He received bot! B.S.
and M.S. degrees in computer engineering from Seoul National University,
Korea, in 1989 and 1991, respectively, and a Ph.D. degree in computer science
and engineering from the University of Michigon in 1998. His research interests
include computer networks, fault-tolerant systems, and real-time systems.

IEEE Network NovcmberiDecember 1998 63

