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Abstract 
Transmission of multimedia data over a packet-switched network pically requires 

throughput or delay). In this article we address the problem of how to make such 
real-time communication reliable. First of all, it is essential to bound the duration of 
service disruption caused by failures to a reasonably small value. Considering the 
large volume of multimedia data, minimizing the fault-tolerance overhead is also 
important. Furthermore, as  more applications with different dependability require- 
ments share the same network, the level of dependability for a given application 
should be ”customizable,” depending on the criticality of the application. W e  first 
survey the existing approaches, and then present our scheme which is developed 
in  accordance with three design goals: fast failure recovery, low fault-tolerance 
overhead, and per-connection reliability guarantee. Our scheme provides an inte- 
grated solution covering such issues as  connection establishment, failure detection, 
runt ime failure recovery, and resource reconfiguration. 

resource reservation to guarantee an acceptable level of per 7 ormance (e.g. ,  

eal-time transport of continuous media (i.e., video 
and audio) has traditionally been achieved by circuit 
switching in telephone services or by broadcasting 
over shared media in television services. However, it 

is difficult to realize real-time continuous multimedia applica- 
tions on packet-switched computer networks, since the end-to- 
end packet delay and throughput of a media stream are 
inherently nondeterministic. Such end-to-end performance, 
necessary to achieve the required functionality of these appli- 
cations, is often called end-to-end quality of service (QoS). 
Today’s representative computer network, Internet, also lacks 
QoS support for continuous media applications; the window- 
based flow control is unsuitable for traffic with end-to-end 
timing constraints. Nevertheless, several multimedia applica- 
tions have already been deployed on Internet using such pro- 
tocols as RTP [l], XTP [2], and IP multicast. However, these 
protocols do not meet the true multimedia requirements 
because they only support a best-effort service model. The 
next-generation Internet is expected to provide new services 
that meet the diverse QoS requirements of various emerging 
multimedia applications. 

In response to this growing demand for real-time communi- 
cation services, considerable efforts have been made in recent 
years and numerous QoS service models developed, ranging 
from static constant bit rate (CBR) service, which resembles 
the telephony service, to the “controlled-load service,” which 

mimics the best-effort service in unloaded networks [3, 41. 
Unlike traditional datagram services in which average perfor- 
mance is of prime interest, guaranteeing QoS is the key 
requirement of the real-time communication service. To  
achieve QoS guarantees, most real-time communication 
schemes rely on some form of resource reservation and 
admission control, while each differs in QoS parameters 
and/or firmness of QoS guarantees. That is, they share three 
common properties: they are QoS-contracted, connection-ori- 
ented, and reservation-based. A contract between a client and 
the network is established before the client’s messages are 
actually transferred. To this end, the client must first specify 
his input traffic behavior and required QoS. The network then 
computes the resource needs (e.g., link and CPU bandwidths, 
and buffer space) from this information, selects a path, and 
reserves necessary resources along the path. If there are not 
enough resources to meet the client’s QoS requirement, the 
request is rejected. The client’s data messages are transported 
only via the selected path with the resources reserved, and this 
virtual circuit is often called a real-time channel. 

Network Dependability 
Primitive real-time communication services will soon be 
available for such multimedia applications as Internet phone, 
the Web, and digital libraries. For example, the controlled- 
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load service is considered a possible candidate. On the other 
hand, the increase of network connectivity and link capacity 
will expand the application domain of real-time multimedia 
communication to include business- or mission-critical appli- 
cations, such as remote medical service, collaborative scien- 
tific research, business net-meeting, real-time electronic 
commerce, or even remote battlefield command/control. 
Such critical applications require both dependable and timely 
communication services. Suppose, for example, there is a 
very important videoconference, and unanticipated network 
failures disconnect one or more participants from the con- 
ference for an unpredictably long period. This may lead to a 
failure or delay in reaching important strategic decisions, 
which can cause significant economic loss. In this example 
the connection availability, defined as the probability of a 
connection being available at any given t ime, is a key 
dependability QoS measure. 

Network failures can cause an even larger-scale social disas- 
ter. Catastrophic social consequences of network failures have 
actually been witnessed in recent breakdowns of the U.S. 
telecommunication network. For  instance, a fire at an 
unmanned tall office building in Illinois caused 3.5 million 
telephone calls to be blocked in 1988. Emergency 911 calls 
went unanswered, online business transactions were stopped, 
and flights were delayed because of air traffic control failures. 
Hospital operations were affected, and drug stores could not 
process prescriptions. Even banks had to be closed for securi- 
ty reasons due to disabled alarm systems [5].  In the 1990s sev- 
eral similar accidents have been reported for various reasons, 
such as damage of a fiber cable caused by construction, earth- 
quakes, outage of switching systems, or network overload. 
Although network failures rarely occur, the consequence of 
mishandling failures could be devastating, thus making net- 
work reliability a major concern. 

The current Internet with datagram services has successful- 
ly dealt with two types of network failures: transient and persis- 
tent.  A typical example of a transient failure is temporary 
packet losses due to either network congestion or data corrup- 
tion. Persistent failures include the breakdown or crashing of 
network components. Transport protocols such as TCP can 
handle transient loss of packets by acknowledgment and 
retransmission, and the connectionless IP protocol deals with 
persistent failures by routing packets around faulty network 
components. However, retransmission is unlikely to be useful 
for real-time communication, because there is usually not 
enough time to detect and retransmit a lost real-time message 
before its deadline expires. Instead, forward error correction 
(FEC) techniques should be used if no data loss is acceptable. 
The main drawback of FEC is its high overhead. We also face 
a serious difficulty in tolerating persistent failures for real- 
time communication, because a QoS guarantee is realized by 
reserving resources on a fixed path and transporting real-time 
messages only via the path. Hence, a real-time message, 
unlike a datagram message, cannot be detoured around faulty 
components on the fly. 

The prevalence of optical fibers affects network depend- 
ability in two ways. First, the probability of transmission 
errors in optical links becomes negligible; the error rate is 
dropped from 10-5/b in the 56 kb/s links of initial ARPANET 
to below 10-lO/b in optical links [6]. The chance of packet 
loss due to transmission errors is very rare, and most packet 
losses are attributed to congestion-control problems. As a 
result, for real-time communication tolerating transient fail- 
ures has become relatively less important because conges- 
t ion-induced packet losses can be  avoided by resource 
reservation, Furthermore, occasional loss of messages is tol- 
erable in many multimedia applications. In contrast, the 

deployment of optical fibers exacerbates the difficulty in tol- 
erating persistent failures, because more connections will be 
running through each large-capacity link, and thus, even a 
single link failure can result in the loss of a large number of 
connections. Unless the network is carefully designed to  
restore and then deliver the large amount of traffic lost due 
to failures, the increase of link capacity will seriously threat- 
en network dependability. Not only link failures but also 
node failures are getting more difficult to deal with. Usually, 
Internet routers are not designed to meet as stringent a reli- 
ability goal as telephone network switches (e.g., AT&T 
5ESS). Higher-performance routers in the future Internet 
will become even harder to provide high reliability for, due 
mainly to their complex software. Moreover, computer net- 
works are more vulnerable to vandalism such as viruses or 
hacking than the telephone network, which has a “closed” 
architecture. 

Considering the criticality of network dependability and the 
increasing threat of network failures, the development of 
effective mechanisms to cope with network failures is a must. 

Des i d l e  Features 
To design a fault-tolerant service, one must first define the 
model of failures to be tolerated. Some applications can tol- 
erate slow failure recovery but require reliable (correct) 
delivery of all messages, even if it takes a long time. Exam- 
ples of such applications are electronic mail and file transfer. 
For these applications, message-level failure handling is nec- 
essary. Thus, the receiver informs the sender of the reception 
of each message (or group of messages), so that the sender 
can detect delivery failures and retransmit lost messages. 
Some other applications require fast failure recovery, but 
data loss during failure recovery can be tolerated. Real-time 
multimedia applications fall into this category, since they do 
not require such strict reliability as “no message loss at all.” 
For example, loss of a couple of frames in video/voice data 
streams may be acceptable. Therefore, the fault-tolerant ser- 
vice for multimedia applications should be designed with a 
different reliability goal than that of conventional non-real- 
time applications. 

In this article we assume that (infrequent) transient packet 
losses are acceptable to applications, or are dealt with by other 
techniques like FEC, and focus on how to effectively handle 
“persistent” or “permanent” failures of network components 
(e.g., crash failures). Instead of directly modeling component 
failures, we define and use a new failure semantic, channel fuil- 
ure. A real-time channel is said to have “failed” if the rate of 
correct1 message delivery within a certain time interval is 
below a threshold specified by the application; that is, the 
granularity of failures is “persistent disruption of channels” 
instead of “individual message loss.” The same error rate may 
be acceptable to some applications, and not to others. 

There are five criteria that characterize a good solution to 
this problem: 

Per-connection dependability guarantee - Each connection 
may request a different level of fault tolerance depending 
on its criticality. The network should provide guarantees on 
dependability for each connection, so that successful recov- 
ery is guaranteed as long as failure occurrences do not 
exceed the fault-tolerance capability of the connection. 
Fast (time-bounded) failure recovery - The service disrup- 
tion time of a connection caused by failures should be 
bounded to a reasonably small value. 

I In terms of both content and timing. 
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Extra resources 

l o  
I Source node Real-tim’e channel Destination node 1 
W Figure 1. A n  example of an SFI channel. 

Small fault-tolerance overhead - The additional resource 
overhead required for fault tolerance should be acceptably low. 
Robust failure handling - Failures should always be han- 
dled robustly, even though failure occurrences may exceed 
the assumed failure hypothesis. By “robustly” we mean that 
the QoS of nonfaulty real-time channels is not affected, and 
as many faulty real-time channels as possible are recovered. 
Interoperability/scalability - The failure recovery scheme 
must be interoperable with various existing and future real- 
time channel protocols. Also, it should scale well in a 
dynamic environment where (short-lived) connections are 
set up and torn down frequently, and the distributions of 
connection setup requests and connection holding time are 
unknown. 

Existing Approaches 
Before presenting our approach, we will first survey some 
notable previous work on dependable real-time communica- 
tion. Particularly, the schemes developed for computer and 
telephone networks are reviewed with comparisons against 
our approach. 

Packet-Switched Computer Nefworks 
There have been roughly three types of approaches to 
the problem of achieving dependable real-time commu- 
nication in packet-switched computer networks. 

First, the simplest way of recovering a real-time chan- 
nel from a network component failure is to  establish a 
new real-time channel which excludes the failed compo- 
nent. This reactive method is studied in [7]. This scheme 
relies on the broadcast of all component failures to the 
entire network so that all hosts can maintain a consis- 
tent  view of the current  network topology. When a 
source node recognizes the failure of its channel from 
this broadcast, it tries to  establish a new channel to  
replace the disabled one. Since no provisions are made a 
priori for fault tolerance, this method causes no fault- 
tolerance overhead in the absence of failures. However, 
it does not give any guarantee of failure recovery. The 
channel  re-establishment a t tempt  can fail due  t o  
resource shortage at that particular time. Even when 
there are  sufficient resources, the contention among 
simultaneous recovery attempts for different faulty con- 
nections may require several trials to  succeed, thus 
delaying service resumption and increasing network traf- 
fic. To  regulate simultaneous recovery attempts, random 
delays can be introduced before starting each recovery 
operation. 

The second approach is failure masking, in which 
multiple copies of a message are sent simultaneously 
via disjoint paths [8]. This method attempts to achieve 
both timely and reliable delivery at  the same time. 
Thus, by transmitting multiple copies over disjoint 
paths for a message, the chance that at least one copy 

is delivered within its deadline increases, and the effects of 
possible failures are masked. This approach has an advan- 
tage in that both persistent and transient failures are han- 
dled without service disruption, but it is very expensive due 
to  the additional resource consumption for transmitting 
multiplc copies of the same message. T o  enhance resource 
efficiency, [9] presents a scheme which combines error cod- 
ing with multiple-copy transmission. In this method, instead 
of transmitting multiple copies of an entire message, each 
message is broken into equal-size submessages which are 
then transmitted over disjoint paths. In  addition, some 
redundant information is transmitted over separate paths 
for FEC. When some submessages are lost due to  failures, 
the original message can be reconstructed using the redun- 
dant information. This method allows a trade-off between 
resource overhead and fault-tolerance capability by select- 
ing thc number of redundant information channels. Howev- 
e r ,  this  me thod  still involves addi t iona l  resource  
consumption for FEC, which is not necessary if the under- 
lying multimedia applications can tolerate infrequent tran- 
s ient  d a t a  loss. Ano the r  pract ical  p roblem is t h a t  t h e  
connectivity of current (or near future) network topologies 
may not  provide a sufficient number  of disjoint pa ths  
between any two network nodes, which may hinder the flex- 
ibility of this method. 

The third approach lies between the above two approach- 
es in tcrms of fault-tolerance overhead. In this approach, 
cold-standby resources are reserved for fault tolerance. The 
Single Failurc Immune (SFI) scheme [lo] took this approach 
to provide guaranteed failure recovery under a single failure 
model. In this scheme, additional resources are reserved in 
the vicinity of each real-time channel at the time of channel 
establishment, and when a failure occurs the failed compo- 
nent  is detoured by altering the  channel path using the 

A 
Source 
node 

Destination 
node 

Source 
node 

Destination 
node 

Source 
node 

Destination 
node 

W Figure 2. Three rerouting strategies: a )  local rerouting; b) local-to-end 
rerouting; c)  end-to-end rerouting. 
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reserved resources. Figure 1 illustrates the setup 
of an SFI channel. The advantage of this cold- 
standby approach is that although additional 
resources need to be reserved, the resources 
reserved for fault tolerance can be utilized by 
best-effort traffic in the absence of failures. 
Another cold-standby method is presented in 
[ l l ] .  In this method, cold-standby reservation is 
combined with multiple-channel transmission. It 
differs from the multiple-channel FEC method 
in that extra subchannels remain as cold-standbv 

Reactive 

SFI 

Multicopy 

Span restoration 

Path restoration 

1 8urgpproach 
I -  

No Long No I 

High Shorter Deterministic 

Very high No Flexible I 

Low Shorter Deterministic 

Lower Short Deterministic 

Lower Short 

i 

I 

Flexible - - _ _  
Table 1 . A comparison of existing approaches. 

in the absence of failures; thus, FEC is not pro- 
vided. The cold-standby extra channels are acti- 
vated to replace the original submessage channels disabled 
by failures. 

Telephone Networks 
In old telephone networks, two telephones were connected by 
a true electric circuit through electro-mechanical or pure elec- 
tric exchanges. Even after the introduction of digital transmis- 
sion hierarchies like synchronous digital hierarchy) (SDH) 
and synchronous optical network (SONET) transmission, the 
64 kb/s circuit-switching paradigm continued as the main tech- 
nology. However, the transition from circuit to cell switching 
- that is, the asynchronous transfer mode (ATM) network - 
has completely changed the problems and solutions of tele- 
phone networks. Now, telephone networks are very close to 
computer networks. A modern switching node in telephone 
networks is almost a general-purpose computer equipped with 
high fault-tolerance capability and powerful I/O capability. A 
mesh-like network topology is being used instead of a fully 
connected topology. Techniques for telephone services resem- 
ble those for real-time communication services in packet- 
switched computer networks, in that both services rely on 
similar principles such as dedicated resources and static rout- 
ing. Therefore, the dependability techniques of telephone net- 
works are worth a close look. While telephone network 
survivability is accounted for at various levels, here we cover 
only the network-layer operation, which is most relevant to 
this article. 

Essentially, when a telephone connection is broken it is 
rerouted by detouring the failure point. Failure recovery 
should be fast so that users (or applications) hardly notice 
the service disruption caused by the  failure. Even more 
important is to ensure the success of failure recovery itself. If 
there are not enough resources available for rerouting all 
affected connections, some of them should be dropped. To 
avoid resource shortage during failure recovery, spare 
resources (i.e., cold-standby resources) a re  reserved in 
advance. The amount of spare resources to be allocated is an 
important design issue, and is closely related to the problem 
of selecting the rerouting paths of failed connections. For 
rerouting, there are three strategies: local rerouting, local-to- 
end rerouting, and end-to-end rerouting. Each of these strate- 
gies is illustrated in Fig. 2. 

The local-rerouting strategy, also called a span-restoration 
method, has usually been used in synchronous transfer mode 
(STM) networks. In most of the work on this strategy [12, 
131, a “maximum flow” model is used to find the (semi-) opti- 
mal placement of spare resources under a deterministic fail- 
u re  hypothesis, typically a single-link failure model. A 
drawback of the local rerouting approach is that resource 
usage becomes inefficient after failure recovery, because 
channel paths tend to  be lengthened by local detouring. 
According to  [14], end-to-end rerouting is the best with 
respect to resource efficiency, local-to-end rerouting is the 
second, and local rerouting is the worst. 

T h e  end- to-end  re rout ing  strategy, also called pa th  
restoration, has been studied mainly in the context of ATM 
networks. Essentially, this strategy requires the intervention 
of the endpoints of each failed connection. There are two 
variations in this strategy, depending on whether the failure 
recovery paths are precomputed before failure occurrence, 
o r  determined after failures actually do occur. There are 
several differences between these two methods. In the for- 
mer the prerouted recovery paths should be disjoint with 
the corresponding original connection paths, while in the 
latter the recovery paths can use the healthy components of 
their original connection paths. The greater flexibility in 
routing the recovery paths implies the potential of higher 
resource efficiency of the latter. However, the former has 
an advantage over the latter in terms of dependability guar- 
antees. In the former, since the network can reserve the 
spare resources necessary for the recovery connections 
whose pa ths  a re  already decided, t he re  will be  no  
conflict/contention for spare resources between recovery 
attempts upon failures. By contrast, in the latter, when fail- 
ures occur each disabled connection will try to establish a 
new connection by “claiming” the shared spare resources. 
Therefore ,  resource contention similar to  the  reactive 
method can happen, and some connections may need to try 
several recovery paths before they succeed. Some recent 
efforts on the former method can be found in [14-161, and 
an example of the latter method is [17]. Essentially, they try 
to optimally route recovery paths by minimizing the spare 
resource reservation, while guaranteeing successful recovery 
under a deterministic failure model. 

Comparison 
Basically, our approach uses end-to-end rerouting with pre- 
computed recovery paths. We set up one or more backup 
channels in advance in addition to eachprimary channel; that 
is, each dependable real-time (D) connection consists of one 
primary channel and backup channels. Upon failure of a pri- 
mary channel, one of its backups is promoted to a new prima- 
ry channel. 

In Table 1 existing approaches and our  approach are  
compared with each other in terms of resource overhead, 
recovery delay, and recovery guarantee. The SFI method is 
similar to the span restoration method in many aspects, 
except that it induces higher overhead, because in the SFI 
method all the spare resources required by each connec- 
t ion a re  reserved, unlike the  span res tora t ion  method 
which optimizes the allocation of spare resources. Both 
methods will have a shorter recovery delay than the end- 
to-end rerouting methods, because failures are handled 
locally without intervention of end nodes. The  recovery 
delay of our approach is smaller than that of the reactive 
method,  because in our  approach  a backup channel is 
established before failures actually occur and the network 
can use i t  immediately upon the  failure of i ts  primary 
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W Figure 3. An overview of our failure-recoveiy scenario. 

channel, without the time-consuming channel (re)establish- 
ment process.2 

The path restoration method for ATM networks comes 
closet to our approach, but there are three main differences 
between the two. First, the path restoration method is unable 
to control the fault-tolerance level of each connection, and all 
connections are treated equally under the same failure model. 
By contrast, our approach allows for per-connection fault-tol- 
erance control, so more critical connections will get higher 
levels of fault tolerance. Second, in path restoration all chan- 
nel paths and spare resources are determined simultaneously; 
hence, addition or removal of a channel requires recalculation 
of all channel paths and spare resources. It is assumed that 
the connection demands - virtual path (VP) setup requests 
- are known at the time of network design and change very 
rarely.3 Therefore, this method cannot be applied to an envi- 
ronment where short-lived channels are set up and torn down 
frequently. In contrast, our approach needs only information 
that can easily be obtained at runtime. It is possible because 
we separate the spare resource allocation problem from the 
channel routing problem, so: 

A backup path may be selected by any algorithm. 
Spare resource allocation may be done with given routing 

Third, although the control of recovery procedures might be 
distributed, centralized, o r  a hybrid of the two, 
calculation/assignment of spare resources is usually central- 
ized in existing path restoration methods. In our approach, 
both runtime failure recovery and spare resource allocation 
are done in a fully distributed manner. 

Figure 3 gives an overview of our failure-recovery scenario. 
The key steps in our approach are: 

Backup channel establishment 
Failure detection 
Failure reporting and channel switching 
Resource reconfiguration 

The rest of this article will outline each of these steps. 

results. 

Connection Establish m e n  t 

A backup channel does not carry any data until it is activated, 
so it does not consume bandwidth in a normal situation. How- 
ever, a backup channel is not free, since it requires the same 

The time required to establish a real-time channel is relatively large and 
can be unbounded even without contention, since channel establishment 
requests are usually sent as best-effort messages and the admission test is 
required at each component on the channelpath. 

In telephone ATM networks, each call setup is handled at the virtual 
connection (VC) level without requiring a new VP to be set up. 

amount of resources to be reserved as its primary channel in 
order to provide the same QoS upon its activation. In a nor- 
mal situation, spare resources can be used by non-real-time 
traffic, but they cannot be used to set up other real-time chan- 
nels. This is because if a real-time channel is established by 
using spare resources which are reserved for other backups, 
its QoS guarantee may be violated when spare resources are 
claimed for failure recovery. As a result, equipping each I, 
connection with a single backup routed disjointly with its pri- 
mary reduces network capacity by 50 percent or more (because 
the backup is likely to run over a longer path). Thus, raw 
backup channels are too expensive to be useful for multime- 
dia networking. 

To alleviate this problem we have developed a resource- 
sharing technique, called backup multiplexing. Its basic idea is 
that on each link, we reserve only a very small fraction of link 
resources needed for all backup channels going through the 
link. In this article we consider only link bandwidth for sim- 
plicity, but other resources like buffers and CPUs can be 
treated similarly. 

With backup multiplexing, backup channels are over- 
booked via a meta-admission test ,  in which some existing 
backup channels are not accounted for in the admission test 
of a new backup channel. I t  is, in essence, equivalent to  
resource sharing between the new backup and those back- 
ups unaccounted for. Deciding which backup channels will 
not be  accounted for in the admission test  of a backup 
channel is a crucial problem. Our strategy is to multiplex 
those backups which are less likely to be activated simulta- 
neously. The probability of simultaneously activating two 
different I, connections’ backups, Bi and B j ,  is equal to - 
actually, bounded by - the probability of simultaneous fail- 
ures of their respective primary channels. Let’s denote this 
probability S(Bi,  B;). Based on this probability, the set of 
backups to be multiplexed together is determined for each 
backup on a link (i.e., hop-by-hop multiplexing). B; and B; 
are multiplexed if S(Bi, B;) is smaller than a certain thresh- 
old Y ,  called the multiplexing degree, which is specific to each 
backup. More accurately, if S(B;, B j )  < vi, Bj can be multi- 
plexed with Bi. Each backup can use a different v to deter- 
mine the set of backups to be multiplexed. The smaller the 
v of a backup, the higher fault tolerance will result, since 
fewer backups will be multiplexed with it. This way, more 
important connections can have higher fault tolerance (i.e., 
tolerate harsher failures). However, we require each backup 
to have the same multiplexing degree on all of its links for 
easier management. 

Figure 4 describes an algorithm that calculates the amount 
of spare resources (q) at link Cwhen a new backup Bi is estab- 
lished on L Let IIB~ ~ = {€fa,  Bg, . . . } denote the set of backups 
which are not multiplexed with Bi on and rk is the resource 
requirement of Bk. After calculating all HE, the highest 
resource requirement among all sets of {HE, ~ + Bi} is chosen 
as SI. To construct we consider only backups with no 
multiplexing degrees greater than that of Bi. This is to avoid 
the risk of overestimating the spare resource requirement by 
accounting for all backups regardless of multiplexing degree. 

In establishing a I, connection, we consider two key depend- 
ability-QoS parameters (P,, r), P, is the probability of fast fail- 
ure recovery, and r is the estimated failure-recovery delay. In 
other words, the probability that a I, connection will suffer a 
service disruption longer than r is not greater than P,. 
Because fast failure recovery relies on the availability of back- 
ups, P, of a I, connection increases with the number of its 
backups. Backup multiplexing also affects P, by reducing the 
amount of spare resources by reserving fewer resources than 
the sum of resources needed by individual backups, but creat- 
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ifs(&, Bi) z v; and vk 5 vi then 
ing a possibility of spare  resource 
exhaustion. Thus, some backups cannot 
be activated because other activated 
backups have already taken all spare 
resources. In such a case, a multiplexing 
failure is said to occur. We account for 
the probability that a backup suffers a 
multiplexing failure in the calculation 
of P,. See [18] for a detailed account of 
calculating P,. 

Thus far, we have explained the pro- 

endif 

endloop 

W Figure 4. The backup multiplexing algo- 
rithm. 

cedure of allocating spare resources, 
assuming that backup paths are given. How to route backups 
greatly influences the resource efficiency, that is, the amount 
of spare resources to achieve a certain P,. Our study shows 
that traditional routing algorithms such as minimum-hop or 
maximum load-balanced routing are less effective in backup 
routing than routing methods which capitalize on the charac- 
teristics of backup multiplexing. 

Failure Defection 
Effective failure detection with high coverage and low latency 
is essential for fast failure recovery. Instead of adopting 
expensive failure-detection techniques (e.g., hardware duplica- 
tion/comparison for telephone network switches [ 191, we use 
behavior-based detection techniques that do not require any 
special hardware support and hence can be used in any net- 
work. They are the end-to-end and neighbor detection meth- 
ods. 

End-to-end detection involves both the source and desti- 
nation nodes of a real-time channel. The source node regu- 
larly injects “channel heartbeats” into the channel message 
stream. A channel heartbeat is a sort of real-time message, 
and the intermediate nodes on a channel do not discriminate 
channel heartbeats from data messages. Each channel heart- 
beat contains the sequence number of the latest data mes- 
sage. In this way, the destination node can monitor the 
number of data messages lost. If the message loss rate of the 
channel exceeds the channel’s threshold, the destination 
node declares that the channel has failed. This method will 
uncover all channel failures (i.e., 100 percent failure detec- 
tion coverage). However, its detection latency is tightly cou- 
pled with the  application-specific failure threshold,  so 
applications with large failure thresholds will result in long 
detection latencies. 

Neighbor detection resembles the gateway failure-detection 
protocols in the Internet.  Adjacent nodes periodically 
exchange node heartbeats (“I am alive”). If a node does not 
receive heartbeats from one of its neighbors for a certain peri- 
od, it declares all the channels going through the silent neigh- 
bor as failed. This scheme has a much weaker dependency on 
the channel-specific characteristics than the end-to-end 
scheme, because it monitors the behavior of a neighbor node 

rather than that of a particular real- 
time channel. If a node crashes quickly 
after failures occur, one can achieve 
very small detection latencies with this 
scheme. However, there is a possibility 
that a node does not correctly transmit 
data messages, but still generates node 
heartbeats for a while. In such a case, 
the neighbor scheme may miss the fail- 
ures of some channels or detect them 
later than the end-to-end scheme. 

We experimentally evaluated the 
effectiveness of the two failure-detection schemes. The  
experimental results on a laboratory testbed which was 
designed without any particular consideration for fault toler- 
ance have indicated that the neighbor scheme detects a sig- 
nificant portion of failures very quickly, while a long latency 
occasionally results. (Detailed experimental results are 
reported in [20].) 

failure Reporfing and Channel Switching 
If the node that detects the failure of a channel is different 
from the node responsible for channel switching, the detected 
failure should be reported to the latter node. There are three 
important issues in reporting failures. First, who needs to  
receive failure reports? Second, which path will be used for 
reporting failures? Third, what information needs to be car- 
ried in a failure report? Our approach to these issues is: 

Failure reports are sent from the failure-detecting nodes to 

Failure reports are delivered through healthy segments of 

Each failure report contains the channel-id of the failure 

Our approach handles multiple (near-) simultaneous failures 
very naturally and easily. A failure report will be discarded by a 
node when the failure report about the same channel has 
already been received by, or passed through, the node. Thus, if 
multiple failures occur to a channel, only one failure report will 
reach its end nodes; all the other reports will be lost due to the 
failures themselves or discarded by intermediate nodes. If the 
spare resources at a link are exhausted by the activation of 
backups, the remaining backup channels on the link cannot 
function as standby channels (i.e., multiplexing failures). Mul- 
tiplexing failures should be reported in the same way as com- 
ponent failures. 

When an end node of a I, connection receives a failure 
report on its primary channel, it selects one of its healthy back- 
ups4 and sends an activation message along the path of the 
selected backup. (Both end nodes may start backup activation 
simultaneously.) If an activation message reaches a node on 
which the backup channel has already been activated by the 
activation message from the other end node, the activation 

message is discarded by the node. Figure 5 illustrates the 
1 channel-switching urocedure described above. If a failure 

the end nodes of failed channels. 

the failed channels’ paths. 

channel. 

U 1  

is detected by the channel’s destination node (e.g., with 
the end-to-end method), there will be no explicit failure 
reporting; instead, the destination node will immediately 
start the backup activation procedure. To minimize ser- 
vice disruption, data transfer through the new primary 
channel will be resumed immediately after the source 
node sends an activation message or receives an activation 
message generated by the destination node. Albeit unlike- 

W Figure 5. A n  example of failure reporting and backup activation. The health of backups should also be monitored. 
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ly, if a data message arrives at inter- 
mediate nodes of the new primary 
channel before the channel is activat- 
ed, the data message will be discarded 

lished. In case 2, the faulty backup 
will be torn down and a new backup 
should be established to maintain the 
dependabilitv QoS of the injured con- ,Table 2. cases requiring r~sOurce reconfie- 

with no harm. ration. 
The transmission of failure reports 

and activation messages is time-criti- 
cal, because their delays directly affect the service disruption 
time. The delay of such messages is unpredictable if transport- 
ed as best-effort messages. Assigning the highest priority to 
such messages is not a good solution either, since it may affect 
the QoS of regular real-time traffic. Suppose there are mali- 
cious nodes or a large number of coincident failures. In such 
cases, flooding urgent messages can paralyze the whole (or 
part of the) network. To  achieve delay-bounded and robust 
transmission of time-critical control messages, we transmit 
them over special-purpose real-time channels, called real-time 
control channels (RCCs). When the network is initialized, a 
pair of RCCs, one in each direction, is established on every 
link of the network. If the capacity of the RCC on each link is 
large enough to accommodate all time-critical control mes- 
sages on the link, timely delivery of such messages can be 
guaranteed. 

Resource Reconfiguration 
In a normal situation, the dependability QoS of a D connec- 
tion is maintained by limiting the admission of new connec- 
tions not to impair the QoS of existing connections. Upon 
occurrence of a failure, more explicit actions (i.e., resource 
reconfiguration) need to be taken to preserve the QoS of the 
connections which are directly or indirectly affected by the 
failure. Specifically, there are three cases which require 
resource reconfiguration for QoS maintenance, as shown in 
Table 2, where x denotes failure and 0 nonfailure (thus 
healthy). 

In case 1, both primary and backup channels will be reestab- 

ne i t ion .  Tde  network sh'buld tear  
down the old backup before a new 
backup is established so that the new 

backup can be routed using the healthy components on the 
old backup path, if necessary. In case 3, the healthy backup 
will be promoted to a new primary channel, where the faulty 
primary will be torn down. After channel switching a new 
backup is necessary, since the original backup has been acti- 
vated, thus ceasing its backup role. 

Even when a connection is not directly inflicted with fail- 
ures, its dependability QoS can be affected by the failure 
recovery for other connections. This is because spare resources 
are shared by multiple backups, and activation of a backup 
will reduce the spare resources on its path, and as a result the 
remaining backups on this path may not receive their original 
QoS.5 At such links, more spare resources have to be allocat- 
ed to maintain the same QoS for the remaining backups. Here 
the network has to take care of a situation where there are 
not enough resources available at a link to match the need for 
additional spare resources. The network can resolve such situ- 
ations by moving some of the remaining backups to different 
paths o r  by QoS degradation. In this article we will not 
address this issue any further. 

Performance Analysis 
We evaluated the resource overhead and fault-tolerance 

capability of our scheme through simulations. The simulated 
networks were an 8 x 8 torus (wrapped mesh) and an 8 x 8 
mesh. To obtain a similar total capacity for both networks, we 
set the link capacity of the torus to 200 Mb/s and that of the 
mesh to 300 Mb/s. At each simulation run, a total of 4032 
connections were established so that the source and destina- 

tion of each connection were evenly distributed. 
Channels of each D connection were routed dis- 
jointly with shortest-path routing. For simplicity, 
we assumed that all channels used the same traf- 
fic model so each channel required 1 Mb/s of 
bandwidth on each link of its pa th .  We also 
assumed that the same multiplexing degree was 
used for all backup channels. Three failure mod- 
els (i.e., single link failure, single node failure, 
and double node failures) were simulated. As a 
metric of the fault-tolerance level achieved by 
each backup configuration, the ratio of fast recov- 
ery to the number of failed primary channels was 
used. For instance, a 90 percent fast recovery 
ratio means that 90 percent of the D connections 
whose primary failed were recovered by using 
their backup channels. 

The  simulation results are summarized in 
Table 3. The fast recovery ratio given in Table 3 
is the average value collected from all possible 
failure cases under the corresponding failure 
model. The spare bandwidth value is the average 

W Table 3. Simulation results (h = component failure rate). 

In the worst case, the remaining backups can be subject 
to exhaustion of spare resources. 

Y = 0 has the same effect as disabling backup multiplex- 
ing, since no backup will be multiplewed with each other. 

62 

~ ~~ 

IEEE Network NovemberDecember 1998 



of all links. N/A indicates that the total bandwidth require- 
ment exceeded the network capacity before establishing all 
connections. 

In general, with far less than half the resource overhead as 
that before multiplexing,h more than 90 percent of fault-toler- 
ance capability could be preserved by backup multiplexing in 
the single-backup configuration. As expected, the use of a 
smaller multiplexing degree results in higher fault tolerance 
with an exception between v = 0 and v = A in the bottom row 
of Table 3c, where the fault-tolerance level was increased 
after backup multiplexing. This is due to the impact of backup 
multiplexing on the channel route selection. The multiplexing 
efficiency was even further improved by using the double 
backup configuration. Thus, a similar level of fault tolerance 
was achievable with significantly less spare resources in the 
double backup configuration. For example, compare the case 
of single backup with v = 3h with the case of double backups 
with v = 6h in the torus network. Another interesting obser- 
vation is that multiplexing efficiency is affected by network 
topology. In the mesh network, the  reduction of spare  
resources by multiplexing is not as great as in the torus net- 
work. This is because the absence of wrapped links in the 
mesh network makes the primary channel paths more concen- 
trated on the central region of the network, thus discouraging 
multiplexing among their backups. 

Concluding Remarks 
The main focus of this article is twofold. First, we surveyed 
existing approaches to dependable multimedia communication 
and discussed their pros and cons. Second, we presented a new 
scheme which selectively adopts only the merits of existing 
approaches without their shortcomings. Thus, this scheme allows 
the desired level of fault tolerance to be achievcd for each con- 
nection at an acceptably low level of resource overhead. 

This scheme scales well because it does not require each 
node to maintain global knowledge of the network traffic con- 
ditions or to generate any type of messages to be broadcast. 
Control messages are sent only over those paths of channels 
affected by failures. Backup multiplexing is performed hop by 
hop; therefore, at each link only the knowledge of primary 
channels whose backups traverse the link is required. Such 
information can easily be collected by making a backup chan- 
nel establishment message carry the path information of its 
primary channel. Since our scheme is designed without any 
assumption for a particular real-time communication scheme, 
it can be placed on top of any existing (possibly independently 
developed) real-time channel protocols. 
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