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Abstract

Contemporary multimedia applications usually require

servers to provide static QoS (Quality-of-Service), such

as constant bit rate or �xed average transfer rate. These

requirements do not reect the application needs, but re-

sult from lack of support for adaptive QoS in applica-

tions as well as in operating systems. Multimedia servers

should provide \acceptable" service under a variety of

QoS con�gurations. When they are ported to systems

that do not support explicit QoS guarantees (e.g., the In-

ternet), the exploitation of multimedia's inherent adapt-

ability is an absolute must.

We propose a model for server design that addresses

the need for adaptive QoS. Using economic theory, the

server is designed to allocate resources so as to maximize

the weighted sum of clients-perceived QoS. Our model

views the QoS de�ned for a session as a variable that

can be changed on-the-y to improve user-perceived QoS

on an aggregated basis. This on-the-y change capability

allows the server to degrade or upgrade the QoS of indi-

vidual sessions within a pre-speci�ed range, depending on

the loading condition and/or resource availability. Simu-

lation of our model showed that it (i) increases the num-

ber of clients served by the system between 30 and 130%;

(ii) improves clients' perception of the service; and (iii)

e�ectively controls the number of adaptation operations

needed for these improvements.

1 Introduction

A main disadvantage of today's multimedia server ar-

chitectures is their inability to support load-sensitive

yet \acceptable" Quality-of-Service (QoS). Conventional

multimedia server architectures are based on making \bi-

nary" admission decisions: either admit a client while

guaranteeing a speci�c level of QoS or reject him. This

design may work well for small intra-nets with a few

clients, e.g., in-house training videos. However, if one

tries to serve a greater audience, one would need a so-

lution that o�ers more exibility in handling active ses-

sions, i.e., degrades (upgrades) the QoS for each active

client within a pre-speci�ed range as the load on the

server increases (decreases). Such exibility will greatly

bene�t the design of on-demand services because it en-

ables the server to provide degraded (upgraded) yet sat-

isfactory service to many clients under heavy (light) load.

As a result, clients may try to receive better service by

avoiding peak load times. Finding an appropriate adap-

tation model that helps achieve this is very important.

We propose such a model, combining adaptability with

commercial applicability.

Multimedia servers should operate under various re-

source constraints, as they must usually adapt their

clients' QoS to changes in resource availability. A client

should be able to specify his preference of a particu-

lar QoS con�guration over others. Under certain con-

straints these preferences can be translated into utility

functions [4, 11]. Since utility functions provide a com-

pact representation of preferences, we can use them in

making resource-allocation decisions inside a multimedia

server in a load-sensitive manner.

Evolution of integrated multimedia services will ex-

pand the domain of commercial multimedia applica-

tions. Server design will be inuenced by both eco-

nomic incentives (primary) and technical challenges (sec-

ondary). The primary objective is to implement the ser-

vice provider's economical policies while providing ser-

vice to the clients. Therfore, each multimedia server

has to �t into its economical environment, rather than

forcing the environment to adapt to yet another type of

multimedia technology. More speci�cally, we want ser-



vice policies de�ned in economic terms so as to translate

them directly into concrete policies of client session man-

agement within the multimedia server, thus interfacing

economic theory to the application domain by the means

of price and utility. This will require some economic

modeling.

Modeling every client of a multimedia server as its own

independent economic entity would require too much

of modeling overhead, especially if there are frequent

client arrivals. We therefore present a model, which

reduces economic theory to an acceptable tradeo� be-

tween the e�ciency of representation and \natural feel"

of the price{utility interface. The tradeo� chosen in our

model is to consider groups of similar clients, instead

of considering each client individually. Membership in

such a group should be associated with a price/fee, so

that clients have to evaluate whether the description of

a group �ts their interests and a�ordability; they may or

may not subscribe to it, depending on their evaluation

results. In this way, the decision problem of assigning a

client to an \interest group" and determining his utility

function is o�-loaded to the client himself.

The problem of de�ning groups and the membership

fee is entirely an economical decision, subject to techno-

logical limitations and market behavior. The impact of

this decision extends far beyond the scope of multimedia

systems. Hence we will assume that the service provider

has come up with group de�nitions, including the groups'

utility functions for di�erent levels of QoS, probably de-

rived from opinion polls or estimation. The provider will

make these descriptions visible to its clients, so clients

are aware of the price, QoS, and utility of the group

they may subscribe to. The supported levels of QoS are

coded into the actual implementation of the multimedia

service and may depend on the particulars of the server's

operating system (OS).

In real economic systems, resources are allocated

adaptively to changes in the environment, such as the

arrival or departure of clients, which, in turn, alter the

amount of each available resource. If more resources be-

come available, some clients will be given better QoS,

thus increasing average user-perceived QoS. Conversely,

if resource supply is reduced due to new clients and re-

source failures, some clients' QoS may have to be de-

graded. This calls for the need for exible QoS: a client

may receive at one of several \acceptable" levels of QoS.

1

Flexible QoS enables the server to adapt to uctuations

in resource supply, load, and di�erent client preferences,

but we do not know how to change the resource alloca-

tion inside the server for each client session as the envi-

1

This di�ers from \best-e�ort" service in that clients will re-

ceive predictable QoS by specifying their acceptable QoS levels

and passing admission tests.

ronment changes.

We propose a new model called the Flexible

Multimedia Session Scheduling (FluSS), which facili-

tates session management for a multimedia server with

multiple service classes. The model includes de�nitions

of server-side, client-side, and an algorithm designed to

re-allocate resources as new clients arrive and old ones

leave. The objective of this algorithm is to increase ag-

gregated utility, i.e., the sum of all clients' perceived util-

ities.

The FluSSmodel leaves price determinaton up to the

service provider. It implements the simplest economic

con�guration interface by allowing the service provider

to group clients, estimate their assumed utilities, spec-

ify the fee they are supposed to pay, and con�gure the

service levels supported by the server.

The rest of the paper is organized as follows. Section

2 gives a comparative perspective of our approach rela-

tive to other similar approaches. Section 3 models the

allocation-optimization problem, and presents a solution

algorithm. Section 4 adapts this model to the demands

on high-end multimedia servers. Section 5 discusses how

to integrate the proposed mechanism into o�-the-shelf

OSs, and performance issues related to the model. The

paper concludes with Section 6.

2 Related Work

The multimediaarchitecture developed as part of the Pe-

gasus Project at Universities of Twente and Cambridge

[1, 10] addresses several questions related to the problem

treated in this paper. In particular, their focus on adap-

tive QoS supports our adaptive QoS server architecture.

Mullender and Sijben [10] presented an architecture

for dynamic QoS multimedia applications. They em-

phasize the need for adaptive QoS when considering the

transmission of continuous media. One of the main mo-

tivations for their implementation of the Nemesis ker-

nel [1] was to provide resource protection for competing

multimedia applications against each other and support

for QoS adaptation on-the-y. The Nemesis kernel im-

plements the desired functionality by o�ering an easy-to-

use thread abstraction that allows external triggers for

changes in the main function of a thread. It also imple-

ments the management of resource access rights on a per-

process basis. Since most of the work is done in threads,

the application can build its own thread scheduling and

adaptation mechanisms on top of resource shares granted

on a per-process level. Process-level guarantees are very

�rm. Thus, unlike most other OSs, Nemesis' virtual re-

sources can be assumed to have a �xed capacity and are

much more predictable than the virtual resources in to-

day's standard OSs. The strong support for resource



shares and on-the-y adaptation allows us to consider

the allocation problem at a higher level of abstraction.

In this sense, our work is complementary to the Pegasus

Project, since our model deals with on-line adaptation,

assuming that resource reservation can be implemented

and the server code | that implements di�erent algo-

rithms | can be changed on a per-thread basis. In Sec-

tion 5 we will discuss to what extent it is possible to

achieve our goals on standard OS without requiring any

non-trivial change to the OS itself.

The solution by Real Networks Inc. for streaming

continuous media over the Internet is widely deployed

in broadcasting live contents over the Internet [9].

Their audio and video servers use statistical information

about the end-to-end connection between their RealAu-

dio server and the client to accomplish a stable contin-

uous media connection. The scheme depends mainly on

bu�ering at the client side to mask the e�ects of varying

network loads on the client-to-server connection. This

is one building block in load-sensitive QoS provision.

Nevertheless, bu�ering will only help mask temporary

changes on the client-to-server connection. If a connec-

tion has become a permanently congested or stays con-

gested for an extended period, it would be desirable to

upgrade the QoS for other clients whose connection could

carry additional information.

RealAudio's allocation policy is what we refer to as the

Null model or best-e�ort. It simply checks whether the

client's request can be granted without considering the

possibility of degrading existing connections for a new

client. This leads to low system utility under light load

and only a small number of clients served under heavy

load, as we shall see in Section 5. Furthermore, RealAu-

dio primarily supports broadcasting one stream to many

clients, but it does not provide any powerful means to

serve many clients with CD-player-like semantics (start,

stop, jump to, skip), where every client-to-server con-

nection is unique. Adaptation to overload, like giving

higher-paying clients better service or maximizing the

number of clients served, is not implemented.

A similar architecture | only for video| is the Oracle

video cartridge [8]. It avoids the unpredictability caused

by a platform that does not support QoS guarantees by

running one and only one application on the platform.

Since the Oracle video server is designed to be ignorant

of the contents it is shipping to the clients, one cannot

expect the server to dynamically adjust the QoS in an

application-sensitive way. In fact, once a connection is

established, the server \pumps" the video at a constant

rate according to the parameters that were agreed upon

at the time of connection establishment. At connection-

establishment time, the client and the server negotiate

the versions of the multimedia contents that the client

will receive, thus providing some basic adaptability. Un-

like Nemesis, Orcale's architecture does not allow for on-

the-y adaptation. Bu�ering is its only means to adapt

to changes in the environment. As stated earlier, this

is useful for dealing with transient overload conditions

and transient network failures, but fails to increase the

availability of service or maximize the client-perceived

utility. In contrast to the RealAudio architecture, Ora-

cle's video server is designed to support playback seman-

tics. For this reason, we also �nd extensive on-demand

video retrieval and interface capabilities all built into the

server.

RealAudio and similar on-demand services would be

more attractive if they could exploit system support

for dynamic, utility-based session management (that we

propose here).

3 The System Model

The service model plays a key role in solving the allo-

cation problem as well as in implementing the service.

The model also a�ects both the user's perception of the

service and the provider's ability to con�gure the server.

Any adequate service model must:

� Guarantee clients to receive service at one of the

several QoS levels they speci�ed,

� Allow the clients ! QoS levels mapping to be

changeable without terminating any ongoing ses-

sion,

� Represent the fact that upgrading the QoS of clients

may lead to di�erent rewards, depending on the

client's perceived utility,

� Optimize allocations with respect to the total re-

ward to be accrued while accounting for the associ-

ated overhead,

� Permit service providers to make tradeo�s among

maximal total reward, service availability, and av-

erage connection-establishment overhead; and

� Allow clients to de�ne their perceived utility at var-

ious QoS levels.

We have developed an abstract model that meets all

of the above requirements. The model can be broken

down into three main parts: the service de�nition (ser-

vice model), service perception (subscription model), and

the service provision (interaction model). The service

model enables the provider to express his server's ca-

pabilities to the OS or a middleware layer, depending

on the implementation of the FluSS model. The sub-

scription model enables the provider to specify service



classes available to clients, including QoS levels and the

corresponding fees. The interaction model speci�es how

the server should implement session setup, tear-down,

and adaptation with respect to client arrivals and de-

partures. Resource failures may be integrated into this

model as well.

3.1 Service Model

The server's ability to maintain a given QoS level for an

individual session depends on the availability of neces-

sary resources on the server. At this point the mapping

of a multimedia service to speci�c technology becomes

relevant because it determines the amount of resources

consumed by each client at a certain QoS level. Although

this mapping is not trivial (as discussed in Section 4),

here we will assume its availability. Furthermore, we

want to scale resource requests with respect to the total

amount of a resource available. For example, if there

are one million CPU cycles per second to be allocated in

\1000-cycle units," then one unit represents 0.1 % of the

CPU resource. This simple representation helps sepa-

rate resource-allocation algorithms from the particulars

of the underlying technology. By not committing to a

particular implementation of resource shares, we de�ne

an OS-independent, implicit representation of resource

allocation. Our particular percentage resource shares

are tailored to bandwidth allocation. The algorithm pre-

sented in Section 3.4.1 works directly with any additive

resource measure. Otherwise, it only needs to be slightly

modi�ed. In general, to abstract from particular imple-

mentation issues, we de�ne a service class as the aggre-

gation of code that needs to be executed to achieve a

certain level of QoS along with a measured amount of

resources that it requires to satisfy some high-level QoS

constraint.

Only if all resources were local then a service class

would represent the resources needed at a local node.

However, since a distributed collection of workstations

may cooperate to service a client, a resource-reservation

\vector" is used to represent resource percentages at all

nodes involved. It has to account for all resources at

all involved nodes that need to be reserved for service

provision at a speci�c QoS level.

A multimedia server is assumed capable of providing

a certain service in several di�erent ways, and clients are

assumed capable of receiving service at any of the QoS

levels speci�ed, unless they are above a certain maximal

level, beyond which the client's resources are exhausted.

This is reasonable, because clients who want to inter-

act with a speci�c server are usually willing to install

the necessary software on their system that will man-

age QoS adaptation. Furthermore, we are not arguing

for improved client-server inter-operability but for QoS

adaptation. Support for di�erent service provisions must

therefore be designed to increase the server's exibility in

dealing with client arrivals and departures, and resource

failures.

De�nition 1 (Service Class) For a server that sup-

ports b service classes, service class i 2 f0; 1; : : :; b� 1g

contains information about which part of the server code

to run, its parameters, and the corresponding resource

consumption on the server to maintain a session for

each client receiving service in that class. In case of

k resources and b service classes, we de�ne the func-

tion rescon: f0; 1; : : :; b�1g ! [0; 1]

k

, with rescon(i) =

(x

1

; x

2

; : : : ; x

k

)

t

, where rescon(i) represents the amount

of all resources needed to deliver service to a client in

service class i (t represents transposition).

Note that the de�nition of a service class alone does not

imply anything about the user-perceived QoS, which can

be achieved in many di�erent ways. For example, to

transmit a video, one may use more CPU cycles to pro-

cess (e.g., compress or smooth) the video signal, thus

reducing network-bandwidth requirements; or use less

CPU cycles, thus requiring more bandwidth. The ac-

tual optimization problem turns out to be much easier

when there are fewer such tradeo�s and the canonical

preferences over service classes coincide with the order

achieved by the � ordering on the resource consumption

vectors for each service class. An example will be given

in Section 3.2.

3.2 Subscription Model

Having discussed client preferences over service classes,

we now want to have a closer look at the client side of

our model.

Clients can be classi�ed into groups, each with similar

preferences on the multimedia signal quality. By increas-

ing the number of groups, we can make �ner distinc-

tions between user preferences. Thus, grouping clients

together is not a serious limitation in dealing with mul-

timedia clients. A group of similar preferences is called

a subscription class. Such grouping is used in many

real-world settings. For example, one can lease di�erent-

bandwidth lines from public network providers, each of-

fered at a speci�c price/rate. This rate is the same for all

clients who want to receive service at a particular level of

QoS. In case of QoS upgrade or degrade, clients within

a particular subscription class are

discriminated.

Most models that o�er group distinction exert their

admission control by identifying the utility a group has

for di�erent service classes and setting a charge rate for



that group. The group membership charge rate regulates

access to the service. On the client's end, his subscrip-

tion represents agreement with the group's pre-de�ned

preference relation.

Our admission-control scheme di�ers from dynamic

pricing models because the price for a service is known

in advance, but the actual QoS doesn't have to be. Such

exibility is not feasible in dynamic pricing models, be-

cause the possibility of receiving better service would

already be �gured into the price, so the client would be

very dissatis�ed if he were ever served at lower quality

than what he paid for. This inexibility is too limit-

ing for adaptive services. Another argument against dy-

namic pricing as a means of admission control for mul-

timedia services, is the prohibitive overhead of price ne-

gotiation. This is true, especially when the service is

requested frequently, like audio on-demand.

For the above reasons, slowly-changing subscription

prices (or membership fees) charged over many distinct

service sessions appear to be the best choice. They al-

low more exibility in changing the service class for each

client during an active session. In general, prices and

client preferences are external to the multimedia server.

We will use a combination of prices and client prefer-

ences as a measure for the utility the provider receives

from serving clients of a speci�c subscription class. The

price of a subscription class corresponds to the utility a

client has in order to be fully satis�ed with the QoS he re-

ceives. When service to the client is degraded, his utility

does not drop to zero immediately but decreases accord-

ing to a relative utility function u with Image(u) � [0; 1]

and the domain of all possible service classes. The rela-

tive utility helps the provider recognize how the client's

utility reacts to changes in the service class.

Now, we can de�ne the absolute utility function U

(Fig. 1) as the product of the price of a subscription class

and its relative utility function. We also ensure that the

utility does not saturate after the client is being served

at his \highest satisfaction" service class (u reaches 1),

but we distribute an additional unit (\bonus") of utility

equally over all remaining service classes, for which the

client has su�cient resources. This is done to ensure

that a client can receive better service than he pays for,

if the server can provide it. There is one utility function

u and one price for each subscription class.

Example: A service provider may decide to o�er three

subscription classes: CD quality, FM quality, FM or CD

with natural preference for CD. Each of these will be

priced di�erently. Assume CD quality costs $50 per

month, FM $20 per month and the mixed subscription

class $40 per month. Assuming that the multimedia sys-

tem can provide AM, record, FM, CD qualities | these

are the service classes | we still need to de�ne a relative

utility function for each subscription class in addition to

the price of a subscription class (Fig. 1(a)).

Our model relies heavily on the determination of

clients' sensitivity to changes in such QoS as frame rate,

resolution, etc., since we want to use the absolute utility

function U (Fig. 1) de�ned for each service class, as part

of an objective function for the evaluation of allocations,

i.e., client ! service class mappings.

De�nition 2 (Subscription Class) Suppose there

are t active clients and the service provider o�ers v

subscription classes, s(i) 2 f0; : : : ; v � 1g, and each

client i 2 f0; 1; : : : ; t � 1g is associated with exactly

one subscription class s(i). Each subscription class j is

speci�ed by the price price(j), its corresponding relative

utility function u

j

, and a timeout. The relative utility

function is speci�ed over all possible service classes

o�ered by the multimedia server. \Timeout" speci�es

the amount of time for which a client of subscription

class j is guaranteed to receive service. The price and

timeout of a subscription class may be subject to change,

whereas the utility function cannot be altered once a

subscription class is instantiated.

Note that these subscription classes are maintained

on the server. Contracts between the provider and the

client are established on the basis of particular instantia-

tions of subscription classes. Subscription class instances

should, therefore, closely model clients' real preferences.

Furthermore, the server should devise the utility func-

tions so that it may maximize aggregated system utility

while providing high service availability.

3.3 Subscription-Model ! Service-

Model Mapping

An allocation is a mapping of active subscription class

members to service classes, and it must satisfy the fol-

lowing two conditions:

AC1: Each client receives service at exactly one QoS

level speci�ed by exactly one service class. No client

receives service in the trivial class null (no service),

unless the client's connection timed out. The func-

tion sclass that maps a client to a service class takes

the client's ID as a parameter.

AC2: In case of t clients, the following constraint must

be satis�ed:

P

i2f0;1;:::;t�1g

rescon(sclass(i)) � (1; 1; : : : ; 1)

t
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Figure 1: Subscription class and absolute utility.

where � is a vector comparison in which the left-

hand side is less than or equal to the right-hand

side in every component.

These conditions ensure that (i) an allocation speci�es a

service class for every client and (ii) resources will not be

over-booked. Note that resource allocation is done im-

plicitly by chosing a service class for a client. Resource

constraints restrict the set of possible client!service-

class mappings.

Our discussion of the model and the algorithm focused

mainly on QoS adaptation to client arrivals and depar-

tures, but the model is general enough to accommodate

other sources of change, such as the one caused by fail-

ures. In case of a resource failure, AC2 may be violated

and the allocation algorithmor the interaction model has

to guarantee that AC2 will be met as soon as possible,

upon detection of the failure.

3.4 The Interaction Model

We now describe the core part of the model by formu-

lating the problem to �nd an applicable solution. The

resource-allocation problem turns out to be a slight mod-

i�cation of the well-known knapsack optimization prob-

lem [6]. Since the knapsack problem is known to be

NP-complete, we will relax it somewhat for on-line use.

If we strictly maximize aggregated system utility, the op-

timization problem has to be solved every time a client

enters or leaves the system. (The same applies in case of

resource failures.) The optimization problem for t clients

is to maximize

P

j20;1;:::;t�1

u

sj

(sclass(j)) by changing the

sclass mapping, subject to AC1 and AC2.

If the dynamic programming is used, the time com-

plexity is typically in O(SIZE � M ) where M is the

number of items from which we can choose and SIZE is

the size of the knapsack. The items from the knapsack

problem correspond to the service classes in our prob-

lem. Each client has to be served at exactly one of the

service levels o�ered by the server. The pro�t function

de�ned in the knapsack problem corresponds to the ab-

solute utility of a service class. A more di�cult problem

is to identify the size of the knapsack. For simplicity,

we will �rst look at the one-resource case in which it

is easy to identify the size of the knapsack. (This will

later be generalized to the case of multiple resources.)

If the resource could be allocated at the granularity of

1=x (x � 1) relative to the total amount of a resource

available, we can dedicate the resource to each client at

x di�erent consumption levels. The size of the knapsack

would be x, which is usually not very large, but as we add

one more resource, we can dedicate one more resource to

each client. Assuming addition of one resource, we have

to multiply the reciprocal of the granularity of the �rst

resource by that of the newly-added resource to get the

size of the knapsack for the extended problem. This im-

plies an exponential growth of the problem in the number

of resources considered. The exponential growth in the

optimization space as the resource-allocation granular-

ity becomes �ner, makes the problem intractable. So,

we propose an optimistic approach to solving this prob-

lem.



3.4.1 An Optimistic Approach to Solving the

Allocation Problem

In the one-resource case, the problem is equivalent

to the simple knapsack problem. Our algorithm acts

just like the dynamic programming solution for this

one-dimensional resource problem [5]. Unfortunately, its

complexity is higher than in the classical case because

we have to enforce the additional constraint AC1.

OptCycle:

1. Pick the bottleneck resource for which the

allocation will be optimized.

2. Pack the resource optimally for the first client

under all levels of resource availability. Make

sure that AC2 holds for every solution computed.

Remember the maximum utility achieved for each

allocation level of the resource considered.

3. Add next client to the allocation, and try to

give him all possible shares of the considered

bottleneck resource. Allocate the n-1 clients

first by deciding the best utilization they can

get out of the remaining resource share of the

considered resource. Now, pick the best service

class for the new class that is feasible. The

optimal allocation is now computed by finding

the maximum utility that can be achieved over

all levels of resource allocation to the new

client.

4. If there are more clients then go to Step 3

else output the optimal allocation.

Step 1 of the OptCycle algorithm may be non-trivial

but we assume that in most cases the heuristic of pick-

ing the most heavily-overloaded resources maywork well.

Note that there are sophisticated heuristics for �nding

the bottleneck resource but the main goal of the \op-

timistic approach" is to reduce the problem's inherent

complexity.

3.4.2 Remarks on the Optimistic Approach

A simple example shows that the above simpli�cation

weakens its applicability: we do not allow network band-

width to be traded for CPU bandwidth, and vice versa,

because we have to consider the allocation of both re-

sources to optimize utility. More speci�cally, the amount

of network bandwidth allocated to one client may a�ect

the maximum utility achievable for the current client,

but our algorithm might only be looking at the CPU re-

source to increase utility. (The resource tradeo� problem

will be addressed in a separate forthcoming paper.)

If it is possible to determine the critical bottleneck re-

source | overbooked and not a candidate for resource

tradeo�s | then we are again facing the \simple" one-

dimensional version of the knapsack problem because in

this case AC2 would kick in only for the bottleneck re-

source. Thus, packing the bottleneck resource optimally

becomes the goal, which is exactly what the optimistic

approach implements. Because real systems often en-

counter one bottleneck resource at a time, the optimistic

approach will perform well in realistic settings.

3.4.3 Need for a Simpler Solution

Despite the signi�cant complexity reduction achieved,

one may question whether this algorithm will perform

e�ciently even if client arrivals are as frequent as 1 Hz

and higher. To obtain an applicable solution, we need

to adjust the model to �t the demands on multimedia

servers, which should be able to support at least 100

clients per server. The admission algorithm should be

done, on average, well within a second. OptCycle might

not cope with such demands if resource granularity is

too �ne.

An important fact to keep in mind is that OptCycle

exhibits pseudo-global characteristics. For example, it

is possible that the service class of every client will be

changed. This adjustment requires changing schedul-

ing parameters and potentially switching to another ser-

vice algorithmand client adaptation, inducing signi�cant

overhead. We will in the next section reduce this over-

head and show how its reduction inuences the quality

of resource allocations.

4 E�cient Solution to the Alloca-

tion Problem

Since it is time-consuming for the OptCycle algorithm

to reallocate client sessions, we introduce a short-term

repository (STR), from which new clients draw some re-

sources until their admission decision is made; the re-

sources needed for the STR are reserved in advance. We

propose use of a STR for two reasons. First, it is time-

consuming to make an admission decision, as it may have

to invoke an optimization process. Second, the number

of clients served without a STR is less than that with it,

because new client arrivals might not increase aggregated

utility su�cient enough to be considered \admissible,"

but should not be rejected so as to keep the rejection

rate low. We also introduce a \cache" for connections

that have just been terminated, so that a new request

may take the place of a client who has just left, without

triggering a time-consuming optimization process.



4.1 Short-Term Repository and Free-

List

Instead of waiting until the admission test completes,

we will set aside a �xed amount of resources for newly-

arriving clients. The STR represents resources that are

reserved on the server but not used to serve existing

clients. Its amount is so chosen to accommodate the

mean number of clients arriving during the execution of

the admission test. A newly-arrived client that cannot

receive any more resources except for those allocated to

him from the STR will reduce his requirements. If more

resources become available, the STR will be replenished

before making any other changes to the allocation. The

downside of this order of steps is that the maximum ag-

gregated utility for the server is reduced because the re-

sources in the STR cannot be used to increase the utility

of active clients.

Another way of admitting clients is to use a free-list

(FL). Instead of degrading active clients' QoS to accom-

modate a new client, we may take advantage of the fact

that a client of the same subscription class, thus, by def-

inition, sharing the same preference relation, may have

left the server a very short time ago. Thus, the new

client can take the place of the client who just left with-

out triggering any adaptation operation, thus reducing

the number of times the OptCycle algorithm to be in-

voked, and decreasing the overall adaptation overhead.

Every time the OptCycle algorithm is invoked, all re-

sources on the FL will be made available for improving

the service class of active client sessions.

4.2 Session Termination

Timeouts need to be implemented in the server; oth-

erwise, a client could block others from accessing the

server forever. In the OS context, this problem is typi-

cally referred to as starvation. Taking a timeout is the

�rst step towards terminating an active client session.

Upon expiration of a client's time quantum, he is put on

a droppable-list (DL). Once on this list, the client's abso-

lute utility will start to decline steadily to ensure that he

will eventually be dropped to accommodate new clients.

The introduction of a DL is reasonable since it would not

make any sense to terminate a client session immediately

if nobody can bene�t from the freed resources.

The resources allocated to those clients, who do not

resign themselves in time but leave or are dropped from

the DL, are not put on the FL. If this were not the

case, a client could resume immediately after being dis-

connected, as his resources would be \bu�ered" in the

meantime. Of course, the most common source for ses-

sion termination will be the client's \logging o�." Once

a session of subscription class i is closed, we will put

the resources reserved for that particular session on the

FL for subscription class i, where the reservation will be

kept for a prede�ned time period or until a new arrival

uses it.

4.3 Admitting New Clients

The most convenient way to admit a new client is to

take resources from its subscription class' FL. So, check-

ing the FL is the �rst step in the admission-control al-

gorithm. If this step is successful, the algorithm takes

and reserves the resources from the FL, allocates them

to the new client, and exits.

Another straightforward way to allocate resources to

a newly-arrived client is to satisfy its resource require-

ments directly from the DL. Clients on the DL will be

dropped in increasing order of their maximum utility.

All of the k lowest utility client sessions whose aggre-

gated utility is less than the new client's maximum,

will be dropped, as they contribute to the congestion

of the server. More speci�cally, the ratio of reward re-

ceived from maintaining those \expired" sessions to the

resources these sessions consume is unacceptable.

If the admission algorithm fails to allocate the new

client by using the above two steps, it allocates resources

from the STR to it, which will su�ce to start serving the

client at the lowest service class de�ned for the server.

We will then start degrading active client sessions for the

new client. If there are no clients who, if degraded, lose

less utility than the gain by upgrading the new client

to the next higher service class and also free su�cient

resources for the upgrade, we leave the new client at its

current level. Otherwise, we upgrade its service class

again.

4.4 Periodic Check

Since the proposed model uses timeouts \generously,"

we want to guarantee system integrity only after pe-

riodic system checks. If we were to deal with timers

while serving the clients, it would be impossible to serve

many clients simultaneously. Periodic integrity checks

may lead to inconsistencies between checks, e.g., clients

whose timeout has occurred could still be receiving full

service.

Periodically we release all resources that were tied up

on FLs for too long, drop clients on the DL whose util-

ity is almost zero, and run OptCycle to upgrade clients'

service classes. We also need to replenish the STR if

the resources allocated for it do not match its speci�ed

size. The period of this check is an important design

parameter, and is de�ned in terms of how many adapta-

tion operations the greedy strategy may perform before

OptCycle must be run again.



4.5 Analysis of the Hybrid Approach

Our choice of a mixture of greedy and global (OptCycle)

strategies for the FluSS model is based on the com-

parison of algorithmic complexity of both optimization

strategies. Despite its simplicity, OptCycle still has a

strong negative inuence on the system performance,

which we were able to observe as the simulation speed

declines. The time per simulation run greatly depended

on the frequency at which OptCycle was invoked. This

observation is backed up by our time complexity analy-

sis.

The complexity of the OptCycle algorithm depends on

two parameters: the number of clients, n, and the gran-

ularity of the server's resource, g 2 [0; 1]. The number g

represents the minimal amount of the resource that can

be allocated to a client.

Since the dynamic programming is used to solve the

allocation problem, a table of size O(n=g) must be con-

structed. An entry, (n

i

; g

i

), represents the optimal al-

location for all n

i

clients who were given g

i

of the bot-

tleneck resource. When creating new entries, we have

to ensure that AC2 holds, possibly leading to a search

through all 1=g rows of the previous column. However,

this is unlikely, since we are assuming abundant supply

of all resources, except for the bottleneck. Nevertheless,

to guarantee the correctness of the algorithm, we still

need to check AC2, which will have a signi�cant impact

on the worst-case analysis for the algorithm. Thus, for

n clients the complexity of OptCycle is computed as the

cost of building the table, which is O(n=g

2

).

For the greedy approach, in the worst case all n clients

are at the lowest service level and can all be upgraded to

the highest service class. Each upgrade operation step

costs O(log(n)) per-client, since we will keep clients on a

priority heap, ordered by their potential utility increase

and O(log(n)) is the cost of maintaining the heap con-

dition after each insertion. An insertion must be made

every time a client's potential utility gain changes, i.e.

after each upgrade operation. The greedy approach for

degradation is de�ned analogously. In this way, we com-

pute the complexity of O(n log(n)). Note that the num-

ber of service classes only accounts for a constant factor

in the complexity analysis, since we can upgrade each

client by at most the number of service classes that the

server o�ers.

5 Application and Evaluation of

FluSS

This section describes the application scenario that in-

spired FluSS, presents the advantages of FluSS over

high speed

interconncetion

high speed

interconncetion

...

...

...file retrieval

DSP

communication
subsystem

clients

multimedia
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Figure 2: A multi-stage server.

the common practice in multimedia server design, and

evaluates the e�ects of server design parameters.

5.1 A Multi-Stage Multimedia Server

In the OptCycle algorithm we made the implicit assump-

tion that resources can be e�ectively allocated to indi-

vidual server threads. This assumption doesn't hold for

almost all of today's commercial OSs. The main di�-

culty lies with their inability of reserving resources, thus

causing interferences among the server threads. For ex-

ample, reservation of hard disk bandwidth for one thread

will a�ect the amount of memory bandwidth available

to another thread. The amount of cross-resource inter-

ference tends to be so signi�cant that no simple solu-

tion for resource reservation may be derived and imple-

mented. However, there is an exception: the problem

of reserving/allocating CPU cycles is very well under-

stood, solved and implemented in most modern OSs.

POSIX [3, 12] de�nes the de facto standard for schedul-

ing threads and enables the programmer to change the

time-sharing policy for his threads from user-space. We

propose to enhance the scheduling capabilities of POSIX-

compliant OSs slightly to provide resource-reservation

mechanisms necessary forFluSS, i.e., fair-share schedul-

ing [7].

Our solution di�ers from conventional multimedia

sever implementations in that, instead of integrating all

functionalities into one node (workstation or PC), the

service is broken up into functional components that

would interfere with each other if they were run on the

same node. So, we decided to distribute them over sev-

eral nodes. Furthermore, each unit (Fig. 2) is built



around one particular bottleneck resource. This design

makes it easier to ensure that all resources, except the

bottleneck resource, are abundant at the local node. The

composite server functionality is achieved by combining

the components in a pipelined fashion. The performance

of this \pipeline" will depend on the performance of the

slowest component in the chain. Finding and optimizing

the slowest component in the chain guarantees the Opt-

Cycle algorithm's optimality. Note that separate boxes

in Fig. 2 may be either separate workstations or separate

processing elements integrated on one board. The only

requirement is that the interconnection network should

not be the bottleneck for the server, i.e., should connect

the individual stages of the server with su�cient band-

width, and the processing units should not interfere with

one another.

Decomposition is the �rst step in providing general

resource-reservation mechanisms. The second step is

to exploit the available resource-reservation mechanisms

| ideally fair-share reservation | to reserve di�erent

shares of the bottleneck resources at the involved nodes.

If fair-share reservation is unavailable for a particular

resource we must resort to mapping fair-share resource

allocation to fair-share CPU allocation. The idea behind

this mapping is that the frequency at which a thread can

consume resources depends on the CPU share it receives.

Hence there must be a CPU quantum to be allocated to

a thread so that it receives its reserved share of the bot-

tleneck resource. Note that this step can be skipped if

the node runs an advanced multimedia OS like Nemesis

[1].

One may ask: \Given a desired thread performance,

as de�ned by the FluSSmodel, how does one optimally

con�gure the scheduling parameters for this thread in

order to achieve the target performance?" Although the

answer to this question is important, we will only briey

describe a potential solution (Fig. 3), since the derivation

of a complete answer is beyond the scope of this paper.

Since OSs must handle many unpredictable events like

interrupts, failures, branch-prediction in the processor,

etc., one cannot determine the mapping analytically. In-

stead, one has to measure the performance experienced

by the resource-consuming thread subject to di�erent

scheduling parameters, such as minimum time-slice, pri-

ority, etc. The thread should therefore be instrumented

for e�cient monitoring and feedback mechanisms, which

will help �nd the optimal scheduling parameters for a de-

sired level of QoS. Franken's thesis [2] presents a model

that achieves the needed mapping by monitoring and

stochastic modeling. If the scheduling is as simple as

fair-share scheduling, which only depends on the param-

eters thread latency and CPU utilization, the mapping

can be accomplished e�ciently.
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Figure 3: Potential node setup.

5.2 Simulating FluSS

We now want to evaluate the goodness of FluSS via sim-

ulation. The simulation results were very stable as the

server activities were simulated for 27 hours, achieving

less than 2% variations in our measurements of long-

term averages. Due to their highly system-dependent

nature, we determined the trend of utility, adaptation

operations, and clients-in-service for di�erent choices of

system design parameters.

5.2.1 Simulation Parameters

To give a rough estimate of the performance of the

proposed algorithm in realistic settings, we modeled

the server using the information on RealSystem 5.0 [9],

Real Network's audio-on-demand server. This widely-

used system supports four service classes: 14.4, 28.8,

ISDN, and Dual ISDN. According to Real Networks,

it is possible to support more than 1,000 sessions per

server PC at 14.4 kbps when broadcasting live contents.

With individual streams the performance is signi�cantly

lower. Due to the unavailability of any more accurate

information about the number of streams supported for

\canned" contents, we modeled a server that can sup-

port up to 128 sessions at 14.4 kbps. This requires a

bandwidth of 230 KB/s, which is manageable by a single

workstation server. Table 1 shows the modeling param-

eters. We generated only one bottleneck resource, since

the bottleneck-determination problem was not within

the scope of this paper.

Furthermore, we de�ned the time granularity for the

simulation to be 2 ms, so the server cannot handle client

arrivals closer together than this. We chose 2 ms because

it is a lower bound on the time in which we can receive a

request for service, do the �rst \greedy" admission test,



serv. class ID res. cons. vector

1 (0.0078125, 0.00390625, 0.00390625)

2 (0.015625, 0.0078125, 0.0078125)

3 (0.0234375, 0.015625, 0.015625)

4 (0.03125, 0.01953125, 0.01953125)

Table 1: Service class description

ID $ Timeout/min utility vector

1 15 45 (0.95, 0.98, 0.99, 1.0)

2 30 45 (0.3, 0.6, 0.98, 1.0)

3 50 45 (0.1, 0.6, 0.8, 1.0)

Table 2: Subscription class (SubCs) description. (utili-

ties as utilities for each service class)

then generate a reply. This bound will be exceeded as

soon as clients' workstations do not reside in the same

workstation cluster as the server.

To get a handle on client inter-arrival times and session

durations, we assume they are exponentially-distributed.

This assumption is consistent with most queueing mod-

els of client arrivals. The parameter for session durations

was the same for all service classes in all simulations and

used the parameter 6 � 10

�7

(a mean of 45 min). We

evaluated the performance of FluSS under high, low,

and very light loads. The corresponding parameters are

given in Table 3.

The server resources considered in the simulation are

CPU, hard disk, and communication (in that order of

appearance in the resource vector). The CPU was con-

sidered the bottleneck resource because it is involved in

signal enhancement, data retrieval, and protocol process-

ing. Note that the bottleneck resource depends on the

server setup.

The lowest quality is near AM radio with a 14.4 kbps

connection. At 28.8 kbps one receives quality between

AM and FM radio. Finally, ISDN facilitates true FM

quality. Using both channels of ISDN will guarantee

near-CD quality. Each of these QoS levels is represented

by a service class. Clients are assumed to be capable to

receive service at all of these levels.

The modeled server o�ers three di�erent subscription

classes. The lowest quality might be of interest to those

who want to access voice transmissions, such as radio

learning at 14.4 kbps for $15 per month. The second

subscription class targets at those who want to listen

to music at FM quality, ideally receiving service at 64

kbps. The cost is $30 per month. The last and most

expensive class is for CD quality, and served best at 128

kbps. It costs a monthly fee of $50. See Table 2 for

Load SubCs1/s SubCs2/s SubCs3/s

light 0.005 0.02 0.01

low 0.02 0.07 0.03

high 0.035 0.1225 0.0525

heavy 0.05 0.2 0.1

(overload)

Table 3: Arrival rates for di�erent SubCs at di�erent

load levels.

Load FluSS Null

low 0.00 0.12

high 0.00 0.27

Table 4: Average rejection rates: FluSS versus Null

the exact utilities used in our simulation. The generated

conditions for the simulation were mainly modeled after

the motivating example in Section 3.2.

5.2.2 FluSS Enhances Service Availability

The FluSS model is compared against today's common

practice in session management for multimedia servers

that admits clients as long as there are su�cient re-

sources to set up sessions for them. The server does

not distinguish between clients, and simply tries to serve

each client as best as it can. Furthermore, there is no

concept of adaptation. Because of the model's simplicity

we will refer to it as the Null model.

Intuitively, FluSS will outperform the Null model in

terms of availability because it has the option of degrad-

ing clients' QoS, which is not supported by the Null

model. What is surprising is the extent to which FluSS

outperforms the Null model. Table 4 shows that the

simple policy does not scale well to high-load environ-

ments whereas FluSS does. Lack of adaptability to load

variations is \handled" by excessive over-design in cur-

rent multimedia systems. By contrast, exible QoS al-

lows the service providers to tailor their systems more to

their real needs, thus drastically decreasing the cost of

the server and eventually the clients' cost.

Moreover, FluSS is found to be able to serve 30%

more clients under low load than the Null model (40 as

opposed to 30). Under high load this gap widens even

more to 233% (70 versus 30). As we approach the over-

load region, the two policies drift apart even farther. The

number of clients served in the FluSSmodel is sensitive

to the removal of the short-term repository. Its removal

decreases the average number of clients served by 10%

and results in a non-zero rejection rate. This negative

impact is ampli�ed as load increases. Clearly, adapta-



tion and the ability to admit clients on a \conditional"

basis improve the server availability notably.

5.2.3 Allocation Improvements

Since we aim at improving the aggregated utility of al-

locations, we need to evaluate the utility improvements

of FluSS over Null as well as the impacts of design

parameters in FluSS.

As expected, FluSS outperforms the Null model

(Fig. 4) by 15{25%, depending on the choice of system

design parameters. There is a clear anti-proportional

relation between the inter-OptCycle interval and the

achieved aggregated utility. This is because the local

strategy might get stuck at local extrema if the solution

is not optimized from time to time by a global strat-

egy. The decline in the aggregated utility is larger un-

der higher load, to an extent that even the Null model

achieves greater aggregated utility if OptCycle is not run

frequently.

As expected, FLs have a negative impact on the

achievable aggregated utility, as they were not intro-

duced to increase utility but to decrease overhead. The

aggregated utility with FLs ranks approximately 20%

lower than without them (Fig. 5). this is signi�cant with

respect to the gain achieved so far, one must �nd a com-

pelling reason for using FLs. The immediate decline of

utility in the presence of FLs is due to the high arrival

rates with which we have experimented. The lower the

arrival rate the atter will be the slope of the decline in

utility in Fig. 5.

5.2.4 Trading Allocation Optimality for Less

Overhead

Decreasing overhead e�ectively means improving the ag-

gregated utility, since the resources saved on adaptation

operations can be used to admit more clients to the

server, which would then increase the aggregated utility.

The overhead per session adaptation is not negligible,

since it requires to change both the resource reservation

and the the QoS level of a server thread.

Knowing that the aggregated utility decreases linearly

with the time between OptCycle runs, we would like to

con�rm that the number of operations decreases faster

so that we can make an e�ective tradeo�.

The decrease in the number of adaptation operations

with the increase of inter-OptCycle intervals resembles a

negative exponential function, meaning that its decline

will be larger than a linear function at zero and less as

we approach positive in�nity. If we increase the time

between OptCycle runs from zero to 15,000 adaptation

operations, we notice a 10-fold di�erence in the number

of adaptation operations (Fig. 6). The aggregated utility

for the same interval only changes by less than 10%,

indicating the need for trading optimality for a reduction

of adaptation overhead.

We noticed in the discussion of aggregated utility that

FLs have a negative e�ect (Fig. 5) on utility. This e�ect

is compensated by the fact that while achievable aggre-

gated utility decreases by 20%, the number of adaptation

operations changes by more than 800% (Fig. 7), because

every time a client is admitted through FL, adaptation

is not necessary. Extending the time to keep resources

on the FL does not decrease the number of operations

any further beyond the optimal point, but it does not

increase it either.

5.2.5 Finding the Optimal Choice of Parame-

ters

FluSS requires a few parameters to be adjusted to en-

hance the performance of the multimedia server. Espe-

cially, the tradeo� between maximumutility and adapta-

tion operations makes the choice of parameters di�cult.

So, we suggest to measure the number of CPU cycles

consumed per adaptation operation. Once this number

is determined it can be multiplied to the rate of adap-

tation operations and expressed in terms of resources

consumed per second.

Now, to determine the utility gain from increasing

the time between OptCycle runs or the introduction of

free-lists, one has to �gure out the resource consump-

tion by adaptation operations executed at the new inter-

OptCycle intervals. One can then compute the reduction

in resource consumption achieved by the optimization

step.

We compare the sub-optimality (in terms of utility

loss) resulting from performing OptCycle less frequently

against the average utility gain if the freed resources were

used to upgrade clients' service classes. The expected

utility gain can be determined by extending the simu-

lation or a rough analytic approximation. By iterating

this process the rough estimation may work well; other-

wise, the parameters can be �ne-tuned after the server

is set up.

The choice of parameters is system-dependent, so it

must be made for every newly-con�gured system. Our

simulation must be fed with the parameters that �t the

description of the new multimedia server and derive a

proper set of parameters from the simulation results.

6 Concluding Remarks

The proposed FluSS model is found to have signi�cant

advantages over current best-e�ort schemes in terms of

service availability and allocation. Flexible QoS is the
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key to building commercial multimedia servers. The re-

sultant high service availability allows the provider to

invest less money initially, because the server will still

perform well even if it operates near its capacity. The

provider can upgrade the server gradually to meet the

need without excessive over-design. The fact that we

were able to quantify the positive contribution of ev-

ery component in the FluSSmodel is signi�cant in that

FluSS-like components can be used for adaptive session

resource management, a key to future commercial mul-

timedia systems.

We are currently exploring modi�cations of standard

OSs to accommodate resource shares. This and the pro-

posed session-management scheme together will eventu-

ally lead to building an advanced multi-stage multimedia

server that supports adaptive QoS without requiring any

non-trivial changes to commercial OSs. One of the de-

sign goals in building such a server is to use o�-the-shelf

OSs to show that, besides improving the service itself,

adaptive QoS can also help reduce the cost of building

high-end multimedia servers.
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