
Reliability Modeling of Hard Real-Time Systems

Hagbae Kim Allan L. White Kang G. Shin

Real-Time Computing Lab.

Dept. of Elect. Eng. Mail Stop 132 Dept. of Elect. Eng. and Comput. Sci.

Yonsei Univ. NASA LaRC The Univ. of Michigan

Seoul, Korea Hampton, VA 23681 Ann Arbor, MI 48109-2122

Abstract

A hard real-time control system, such as a y-by-
wire system, fails catastrophically (e.g., lose stability)
if its control input is not updated by its digital con-
troller computer within a certain time limit called the
the hard deadline. To assess and validate system re-
liability by using a semi-Markov model that explicitly
contains the deadline information, we propose a path-
space approach deriving the upper and lower bounds of
the probability of system failure. These bounds are de-
rived by using only simple parameters, and they are es-
pecially suitable for highly-reliable systems which must
recover quickly. Analytical bounds are derived for both
exponential and Weibull failure distributions, which
have proven e�ective through numerical examples,
while considering three repair strategies: repair-as-
good-as-new, repair-as-good-as-old, and repair-better-
than-old.

1 Introduction

A \hard" real-time system is characterized by a
stringent timing requirement, which should be met to
avoid any catastrophe [7]. This timing information
must, therefore, be accounted for when the reliability
of a hard real-time system is modeled or measured.
By embedding this timing information, the reliability
of a hard real-time system can also handle temporary
malfunctions caused, for example, by electromagnetic
interference. One class of examples is real-time control
systems where the dynamics of the controlled plant
(aircraft, robot, or paper mill) keep the plant within a
safe region if the controller malfunction does not last
too long. In a real-time control system such as air-
craft or satellite, the system should be directed by an
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appropriate controller computer in a timely manner;
that is, its control input must be updated by the con-
troller computer within a time limit called the hard
deadline [6]. For safety-critical applications this has
led to highly- redundant/recon�gurable controllers.

Most conventional reliability models assumed that
the (perfect) controller must always be failure-free and
must be in control of the underlying controlled plant.
Previous reliability models have captured the details
of such systems, and focused only on the states of
fault-tolerant computers treating a temporary con-
troller failure as a total system failure regardless of
the requirements of the controlled plant [2, 10]. That
is, they erred on the safe side by ignoring the \system
inertia" or system resilience in tolerating temporary
loss of the controller.

In contrast, in this paper the system failure is to
be caused by a slow recovery taking more than the
hard deadline that depends on the plant dynamics [6],
where neither of the inter-arrival time of controller
failures nor the recovery time is always exponentially-
distributed and the failure rate depends on the holding
time in the state of controller failure(s). Note that the
failure rate is also dependent on the \global time" (the
total operating time of the system) in more general
systems.

There has been some previous work that consid-
ered the deadline information for reliability model-
ing. In [9], a Markov model, which not only de-
scribes component-failure behaviors but also incorpo-
rates deadline violations as simple transitions, was
used to measure system reliability by deriving only
the probability of missing a deadline, while needing
another computation in a di�erent `lower-level' model.
The authors of [3] considered non-failure-critical cases,
where some system-down time can be tolerated if it is
recovered within a certain deadline. They derived the
mean value of the system lifetime and the cumulative



operational time for the case of bounded repair time
(restricted by the deadline). However, it is di�cult
to derive the distribution from the Laplace-Stieltjes
transform of the system lifetime, although it is easy
to compute the mean value. Hence, it is intractable
to derive system reliability using these results. More-
over, none of these considered such general cases as
when the time-to-failure and/or time-for-repair are
not exponentially-distributed. Although these gen-
eral cases were modeled by a time-non-homogeneous
Markov chain [1], a semi-Markov process [4], or a
Markov regenerative process [8], none of these dealt
with the case when the failure rate depends on the
total operation time of the system (implying that the
model is not semi-Markov). These general models can
be computed by the Monte Carlo method, but, since
the Monte Carlo method is just a statistical estima-
tion, it is computationally very expensive.

To overcome these obstacles, we consider a path-
space approach which has proven useful in solving
other reliability modeling problems [11, 12, 13]. Our
goal is to derive tight upper and lower bounds for the
probability of system failure in terms of two simple
parameters: (i) the probability of k (k > 0) interrup-
tions during the operating period T , and (ii) the prob-
ability of successful recovery (before the hard dead-
line) given an interruption. For the �rst parameter,
computing the probability of k events during a time
period is straightforward, and there are analytical for-
mulas for some of the more popular probability distri-
butions [5]. For the second parameter, using the prob-
ability of successful recovery has three advantages: (i)
it is mathematically more tractable than the density
function for the recovery time that is required by the
Chapman-Kolmogorov equations; (ii) it is experimen-
tally and statistically less demanding to obtain the
binomial parameters of failures than to do curve �t-
ting for a density function; and (iii) it permits model
reduction because it reduces complicated, multi-state
recovery models to a single state with jump proba-
bilities to successful recovery or unsuccessful recovery.
Despite all of these simpli�cations, it will be shown by
examples that this approach yields tight bounds for a
wide variety of models. It is especially suitable for the
sti� models of highly-reliable systems.

The recovery/repair procedure begins at the start
of an interruption. There can be a time lag between
the occurrence of an interruption and the beginning
of the actual repair, but this time lag is included in
the repair-time distribution. Hence, in the models re-
covery begins when the system enters a \down" state,
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Figure 1: The semi-Markov model for hard deadlines

often called the recovery/repair state. The probabil-
ity distribution for the recovery time is also �xed for
a given model. That is, it is assumed that recovery
is either an automated procedure or done by a repair
crew that does not become either more pro�cient or
fatigued. These properties of the recovery/repair pro-
cedures imply that the time to recovery depends only
on the time since entering the recovery/repair state.
Hence, recovery/repair is a semi-Markov process for
all the models described below, even if the distribu-
tion for system malfunction is dependent on the global
time.

2 Semi-Markov Model for Hard Dead-
lines

This section �rst discusses the assumptions needed
for a semi-Markov formulation of modeling the relia-
bility of a hard real-time system, and presents a semi-
Markov model and its Chapman-Kolmogorov equa-
tions. It then describes the path-space approach and
derives the upper and lower bounds for the probability
of system failure due to a lengthy interruption.

2.1 The semi-Markov formulation

We begin with a semi-Markov model. (A �xed
deadline can be modeled as a semi-Markov transition
with zero variance.) Later sections extend the result to
models with global-time dependencies. The assump-
tions for the model are:

� Recovery is as-good-as-new,

� Recovery distribution depends on elapsed time
since malfunction,

� Deadline is some �xed time, and

� All the processes (malfunction, recovery, and
deadline) are independent of each other.

Let f(t), g(t), and d(t) be the density function for the
arrival of the malfunction, the density for recovery,
and the density for the deadline, respectively. With
the four assumptions above, the model is semi-Markov
with three states as given in Fig. 1.



The �rst assumption is appropriate in case of ei-
ther perfect replacements or the repair of high-quality
equipment (such as electronic components) which has
a constant, or nearly-constant, failure rate. Obviously,
this assumption is the place to generalize the model
in order to handle a wider variety of systems. This
is done in later sections, but it requires global-time
dependent models. The second assumption says that
the repair procedure begins when a breakdown occurs,
and that the repair-time distribution remains the same
throughout the lifetime of the system. This is true for
the automatic recovery of a redundant/recon�gurable
electronic system. The assumption that the deadline
is �xed is made for convenience, which can be ex-
tended for the random deadlines with minor modi�ca-
tion. The fourth assumption reects the fact that the
processes (malfunction, recovery, and deadline) arise
from di�erent physical causes. Recovery depends on
diagnostics and the repair algorithm (for automatic
repair) or the repair policy (for a repair crew). The
deadline depends on the external demands for the sys-
tem.

To compute the probability of being in state 3 by
time T given the system starts in state 1 at time 0.
Chapman-Kolmogorov equations are:

P13(t) =

Z t

0

f(x)P23(t� x)dx (2.1)

P23(t) =

Z t

0

g(x) �D(x)P13(t�x)dx+

Z t

0

d(x) �G(x)dx;

where Pij(t) is the probability of being in state j by
time t given the system is in state i at time 0, and a
bar above a distribution function indicates its comple-
ment. These equations require the density functions
for system recovery which can be di�cult to obtain.

2.2 The path-space approach

The path-space approach considers all possible
ways of getting from the initial state to the absorbing
state, unwinding the loop in the malfunction-recovery
model and producing an in�nite collection of paths
from the initial state to system failure states to re-
move loops via structural patterns. The �rst three
paths for the model in Section 2.1 appear in Fig. 2.

Each path is a disjoint event even though they share
similar states. The probability of being in state 3 is
the sum of the probabilities of traversing each of the
paths. Hence, an upper bound for being in state 3
is the sum of the upper bounds for traversing each
of the paths; similarly for the lower bound. Initially,
the path-space approach appears more complicated,
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Figure 2: The �rst three paths for the hard deadline
model

but the regular (and repetitive) structure of the paths
lets one derive useful formulas. Before deriving the
bounds, note that since the density d is for a �xed
time of length � , we can de�ne the probabilities of
successful and unsuccessful recoveries as

Q =

Z 1

0

g(x) �D(x)dx=

Z �

0

g(x) �D(x)dx (2.2)

�Q = 1�Q =

Z 1

0

d(x) �G(x)dx =

Z �

0

d(x) �G(x)dx:

2.3 Derivation of the bounds

We now derive bounds for traversing the second
path above. Derivation of the bounds for longer paths
merely requires more bookkeeping. The probability of
traversing the second path by time T is given by the
convolution integral:

Z
T

0

f(t1)

Z
T�t1

0

g(t2) �D(t2)

Z
T�t1�t2

0

f(t3)

�

Z
T�t1�t2�t3

0

d(t4) �G(t4)dt4dt3dt2dt1

=

Z
T

0

f(t1)

Z
T�t1

0

f(t2)

Z
T�t1�t2

0

g(t3) �D(t3)

�

Z
T�t1�t2�t3

0

d(t4) �G(t4)dt4dt3dt2dt1:

Adjusting the limits of integration gives an upper
bound of

Z
T

0

f(t1)

Z
T�t1

0

f(t2)

Z
1

0

g(t3) �D(t3)

�

Z
1

0

d(t4) �G(t4)dt4dt3dt2dt1

=

Z
T

0

f(t1)

Z
T�t1

0

f(t2)Q �Qdt4dt3dt2dt1



and a lower bound of

Z
T�2�

0

f(t1)

Z
T�2��t1

0

f(t2)

Z
�

0

g(t3) �D(t3)

�

Z
�

0

d(t4) �G(t4)dt4dt3dt2dt1

=

Z
T�2�

0

f(t1)

Z
T�2��t1

0

f(t2)Q �Qdt4dt3dt2dt1:

The two dimensional convolution integral that ap-
pears in both bounds is the probability that two or
more events occur by time T .

For the general case, let Pfn � k; Tg be the prob-
ability that k or more events have occurred by time
T . An upper bound for being in state 3 of Fig. 1 by
time T is

UB =
1X
k=1

Pfn � k; TgQk�1 �Q (2.3)

and a lower bound is

LB =

bT=�cX
k=1

Pfn � k; T�k�gQk�1 �Q: (2.4)

The upper limit of summation for the lower bound is
the largest integer less than, or equal to, the quotient.
These sums converge faster than a geometric series
since Pfn � k; Tg � [Pfn � 1; Tg]k.

2.4 Numerical examples

We now consider a variety of demonstrative exam-
ples: an assembly line where the reliability is moder-
ate, an aircraft where the operating time is short and
the reliability is high, and a satellite where the operat-
ing period is long and the reliability is fairly high. The
parameter values are chosen to yield \stress" cases for
the formulas (and may not reect the ultimate in real-
ism). Each example uses both an exponential density
f1(t) = �e��t and a gamma density f2(t) = �2te��t

for the occurrences of malfunctions. For each exam-
ple, the parameters are chosen so that the exponential
and gamma distributions have the same mean, i.e.,
� = 2�. For the assembly line, the operating period
is 1 day, the hard deadline is 15 minutes, the proba-
bility of successful recovery is 0.95, and the expected
time to malfunction is 10 days. For the exponential
distribution,

LB = 0:004931; UB = 0:004988

Relative Error = (UB � LB)=UB = 0:01134;

and for the gamma distribution,

LB = 0:000879; UB = 0:000862

Relative Error = (UB � LB)=UB = 0:01954:

For the aircraft with a highly-reliable redun-
dant/recon�gurable controller, the operating time is
1 hour, the hard deadline is 1 second, the probability
of recovery is 0.99, and the expected time to malfunc-
tion is 108 hours. For the exponential distribution,

LB = 5:00000� 10�10; UB = 4:99972� 10�10;

Relative Error = (UB � LB)=UB = 5:5525� 10�5;

and for the gamma distribution, LB = 4:99600�
10�17; UB =4:99600�10�17. This example demon-
strates that the path-space approach with its upper
and lower bounds is suitable for extremely sti� prob-
lems.

For the satellite with a long mission time and re-
liable controllers, let the operating time be 20,000
hours, the hard deadline be 30 minutes, the proba-
bility of successful recovery be 0.97, and the expected
time to malfunction be 104 hours. For the exponential
distribution,

LB = 0:058236; UB = 0:058236;

Relative Error = (UB � LB)=UB = 7:5048� 10�7;

and for the gamma distribution,

LB = 0:051445; UB = 0:051442;

Relative Error = (UB � LB)=UB = 6:8839� 10�5:

2.5 An analytic upper bound for the ex-
ponential distribution

For an exponential distribution with a parameter
�, the probability of exactly k events in time T is
Pk = (�T )ke��T=(k!). Hence, the upper bound

1X
k=1

Pfn � k; TgQk�1 �Q

can be displayed as the sum of �Q times the rows

2
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1 �P0
Q �QP0 �QP1
Q2 �Q2P0 �Q2P1 �Q2P2
Q3 �Q3P0 �Q3P1 �Q3P2 �Q3P3
...

...
...

...
...

3
777775
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Figure 3: Control scenario with two envelops

Temporarily ignore the �rst column. The top diagonal
is

�

1X
i=0

QiPi = �

1X
i=0

Qi(�T )ie��T

i!
= �e��T eQ�T :

Each diagonal is Q times the diagonal above. Hence,
the sum of all the diagonals is

�

1X
j=0

Qj [e��TeQ�T ] = �
e��T eQ�T

1�Q
:

Adding the sum of the �rst column gives

1

1�Q
�
e��T eQ�T

1�Q
:

Multiplying by small �Q=1�Q gives an upper bound
of 1�e��T

�Q. Summing the terms in a di�erent or-
der gives the correct answer since the series converges
absolutely.

2.6 A rough-and-ready upper bound

When �T �Q is small, an approximation to the ana-
lytic upper bound for the exponential is 1� e��T

�Q �
�T �Q, which is �Q times the expected number of events.
In general, if Q is close to 1, the upper bound

1X
k=1

Pfn � k; TgQk�1 �Q � �Q
1X
k=1

Pfn � k; Tg; (2.5)

which, once again, is �Q times the expected number of
events.

2.7 A state aggregation example

The three state model in Fig. 1 is more general than
it appears because of the technique of state aggrega-
tion in semi-Markov models. As an example, consider
the control scenario where there is a normal operat-
ing envelop inside a safe operating envelop. This is
illustrated in Fig. 3. In this scenario the system is
vulnerable even after the controller has recovered be-
cause the system is close to the edge of its maximum

safe envelop. A worst-case analysis assumes that the
system needs the time for the controller to bring it
within its normal operating envelop before it can sur-
vive another malfunction.

A simple approach considers two �xed time inter-
vals: (i) the maximum time the controller should re-
cover before the system leaves the outer envelop given
it begins within the inner envelop, and (ii) the maxi-
mum time needed by the controller to bring the system
within the inner envelop given the system is inside the
outer envelop. Given these two time intervals, a semi-
Markov model is displayed in Fig. 4, where state 2
is the controller-recovery state. The density h is a
�xed time jump of length �1 representing the maxi-
mum time the controller should recover. The density
u represents controller recovery. State 4 is the system-
recovery state where the controller has recovered but
the system is not yet back within its normal operat-
ing envelop. Using the worst-case analysis, another
malfunction in state 4 (after the controller has recov-
ered, but before it can bring the system back within
the normal envelop) yields a system failure, and this
is represented by the density function f . In state 4,
the density function v is a �xed time jump of length �2
accounting for the maximum time required for system
recovery (bringing the system back within its normal
operating envelop). States 2 and 4 inside the dashed
box will be combined into a single state. To begin this
process, let

Q1 =

Z 1

0

u(t) �H(t)dt =

Z �1

0

u(t) �H(t)dt

Q2 =

Z 1

0

v(t) �F (t)dt =

Z �2

0

v(t) �F (t)dt;

and let

G(t) =

Z
t

0

u(t1) �H(t1)

Z
t�t1

0

v(t2) �F (t2)dt2dt1 =

Z
t

0

g(x)dx:

Then, Q is equal to G(1), computed as follows:

Z
1

0

u(t1) �H(t1)

Z
1

0

v(t2) �F (t2)dt2dt1

=

Z
�1

0

u(t1) �H(t1)

Z
�2

0

v(t2) �F (t2)dt2dt1 = Q1Q2

=

Z
�1

0

u(t1) �H(t1)

Z
�2

0

v(t2) �F (t2)dt2dt1 + 0 + 0

=

Z
�1

0

u(t1) �H(t1)

Z
�2

0

v(t2) �F (t2)dt2dt1

+

Z
�1+�2

�
+

1

u(t1) �H(t1)

Z
�1+�2�t1

0

v(t2) �F(t2)dt2dt1
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Figure 4: Semi-Markov model for a control scenario

+

Z
�1

0

u(t1) �H(t1)

Z
�1+�2�t1

�
+

2

v(t2) �F (t2)dt2dt1

=

Z
�1+�2

0

u(t1) �H(t1)

Z
�1+�2�t1

0

v(t2) �F (t2)dt2dt1

= G(�1 + �2):

To continue the state aggregation process, let

D(t) =

Z
t

0

h(t1) �U(t1)dt1 +

Z
t

0

u(t1) �H(t1)

�

Z
t�t1

0

f(t2) �V (t2)dt2dt1 =

Z
t

0

d(x)dx:

Likewise, it results in

D(1) = D(�1 + �2) = 1� Q: (2.6)

Hence, the four state model in Fig. 3 can be reduced to
the three-state model in Fig. 1 in a manner that pre-
serves the parameters for the upper and lower bounds.

A general method for obtaining the probabilities
and moments for state aggregation in semi-Markov
models is developed in [12].

3 Global Time-Dependent Models

We now modify the assumption that repair is as-
good-as-new. This introduces global-time dependent
models which are beyond the reach of semi-Markov
models, but can be similarly analyzed by path-space
techniques. The �rst (and easier) case is as-good-as-
old. It turns out that this assumption is well-suited to
the Weibull distribution, and it is possible to derive
an analytic upper bound. The general case is that
repair is better-than-old. Repair induces conditional
probability distributions as explained below. Several
numerical examples are given.

3.1 Repair is as-good-as-old

The opposite of repair as-good-as-new is as-good-
as-old. This is a reasonable approximation if the sys-
tem under consideration consists of a large number of
parts. Replacing one part as-good-as-new has little
e�ect on the overall failure rate of the system. If the

part is replaced not-as-good-as-new, then the approx-
imation is even better. Furthermore, recovery may
consist of a simple restart with no repair. The system
is wearing out, which is less and less able to handle
incoming perturbations. In this case repair as-good-
as-old is an exact model. The assumptions for the
model are:

� Recovery is as-good-as-old,

� System does not age during recovery,

� Recovery is semi-Markov (it depends only on the
time since malfunction), and

� The hard deadline is �xed at � .

It is assumed that the system does not age during
recovery since it will not be operating while it is being
repaired. If there is some use or wear-out during the
repair time, then the assumption of no wear-out will
be a close approximation because repair time is small
compared to the lifetime of the system. Recovery is
still assumed to begin when the system enters the mal-
function state and to be an automatic procedure or a
steady-state phenomenon as before. Hence, recovery
is semi-Markov. A subtle point in the analysis is that
repair as-good-as-old induces a conditional probabil-
ity. After the repair, it is as if the failure had not
happened. Hence, the probability of failure at some
future time must be conditioned by the assumption
that (immediately after repair) no failure has yet oc-
curred (as far as the system can tell because it has
been repaired as-good-as-old). Once again, consider a
typical path from the initial state to the failure state.
The probability of traversing this path by time T is
given by the integral expression

Z
T

0

f(t1)

Z
T

t1

g(t2�t1) �D(t2�t1)

Z
T�(t2�t1)

t1

f(t3)

1�F (t1)

�

Z
T�(t2�t1)

t3

d(t4 � t3) �G(t4 � t3)dt4dt3dt2dt1:

The �rst integral gives the occurrence of the �rst
malfunction. The second integral has a lower limit of
t1, because the expression must track the global-time.
Since recovery is a semi-Markov process, the functions
in the second integral are adjusted to begin at (their)
time equal to zero. The lower limit for the third inte-
gral is t1 because there is no system wear-out during
recovery. The upper limit is correspondingly decre-
mented by the time spent in recovery. The integrand



1 2  1  2  1  2  3
f(t) g(t) f(t) f(t)g(t) d(t)

d(t) d(t) g(t)

Figure 5: A typical path form the initial state to failure

in the third integral is the conditional density func-
tion. The fourth integral describes the semi-Markov
transition to the failure state.

3.2 The upper and lower bounds for
repair-as-good-as-old

As the �rst step the upper limit for the third inte-
gral can be changed into T . If this is done, the third
integral does not depend on the parameter t2, which
means the order of integration can be changed to:

Z
T

0

f(t1)

Z
T

t1

f(t3)

1� F (t1)

Z
T

t1

g(t2 � t1) �D(t2 � t1)

�

Z
T�(t2�t1)

t3

d(t4 � t3) �G(t4 � t3)dt4dt3dt2dt1:

Using the above equation, the lower bound is suc-
cessively obtained by giving the semi-Markov transi-
tion time � to occur. Beginning with the last semi-
Markov transition on the path, the original expression
is greater than, or equal to

Z
T��

0

f(t1)

Z
T��

t1

g(t2�t1) �D(t2�t1)

Z
T���(t2�t1)

t1

f(t3)

1�F (t1)

Z
t3+�

t3

d(t4 � t3) �G(t4 � t3)dt4dt3dt2dt1:

Adjusting for the �rst semi-Markov transition, the
expression above is greater than, or equal to

Z
T�2�

0

f(t1)

Z
t1+�

t1

g(t2�t1) �D(t2�t1)

Z
T���(t2�t1)

t1

f(t3)

1�F (t1)

Z
t3+�

t3

d(t4 � t3) �G(t4 � t3)dt4dt3dt2dt1:

Since t1 � t2 � t1+� , we have T �� � (t2 � t1) �
T �2� . Making this replacement for the upper limit
of the third integral decreases the numerical value of
the expression. This replacement also eliminates the
dependence of the third integral on t2. Hence, the last
expression is greater than, or equal to
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=
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0

f(t1)

Z
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t1

f(t3)

1� F (t1)
dt3dt1Q �Q:

The bounds for all the paths are similar to the bounds
for the path of length four. The derivations just re-
quire more bookkeeping. Hence, once again, an upper
bound for system failure is

1X
k=1

Pfn � k; TgQk�1 �Q; (3.1)

and a lower bound is

bT=�cX
k=1

Pfn � k; T � k�gQk�1 �Q; (3.2)

where
P1

k=1Pfn � k; Tg is the probability of k or
more events given recovery-as-good-as-old.

3.3 The Weibull distribution

We use the Weibull density in the form f(t) =
��t��1e��t

�

. The �rst result for the Weibull is that
with repair-as-good-as-old, the probability of exactly
k events by time T is

(��t�)ke��t
�

k!
:

To derive this formula, the integral expression for ex-
actly k events is
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(�10�2) � = 0:5 � = 1:5 � = 2:0
UB 0:2237 1:1118 2:4689
LB 0:2230 1:1112 2:4680

Rel Error 0:149 0:0513 0:0376

Table 1: Upper and lower bounds for various � when
� = 1 day and G(� ) = 0:99

� = 0:5 � = 1:5 � = 2:0
UB 0:03658 0:17001 0:34057
LB 0:03657 0:17000 0:34056

Rel Error 1:3� 10�4 4:97� 10�5 3:45� 10�5

Table 2: Upper and lower bounds for various � when
� = 2 hours and G(� ) = 0:90

An induction argument yields

�ke��T
� (T�)k

k!
: (3.3)

Using this expression for exactly k events and the tech-
niques of Section 2, an analytic upper bound for the
Weibull distribution is 1� e��T

�

. The expected num-
ber of events in time T (which is used in the rough-
and-ready upper bound) is �T�.

3.4 Examples for repair-as-good-as-old

Consider an industrial process with Weibull fail-
ure density f(t) = ��t��1e��t

�

. If the process uses
machinery, it is likely that the failure rate is increas-
ing (� > 1). If the process uses software, it is likely
that the failure rate is decreasing because of program
improvements (� < 1). Suppose the process has a
lifetime of �ve years. Let � = 1=6 per year. (If �
were equal to one, this would give an expected time
to malfunction of two months.)

Suppose the hard deadline is 1 day and the prob-
ability of recovery is 0.99. The results for various �
values are given in Table 1. Assuming the hard dead-
line is 2 hours and the probability of recovery is 0.90,
Table 2 describes the cases for various �.

3.5 Repair is better-than-old

In this scenario, recovery includes partial restora-
tion. The system is possibly better-than-old but not
necessarily as-good-as-new. If the i-th incident occurs
at time ti, then after recovery the system is as good
as it was at time riti, where 0 � ri � 1. The ri's need

not be equal for di�erent i's. We continue to model
recovery as a semi-Markov process. Once again, for
the path of length four, the integral expression is
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Z
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d(t4 � t3) �G(t4 � t3)dt4dt3dt2dt1:

As before, the upper and lower bounds are based on
inclusion for the sets of integration. Consider the three
sets determined by the inequalities:

A :

8>><
>>:

0 � t1 � T
t1 � t2 � T
r1t1 � t3 � T � (t2 � t1)� (t1 � r1t1);
t3 � t4 � T � (t2 � t1) � (t1 � r1t1)

B :

8>><
>>:

0 � t1 � T
0 � t2 � t1 � 1
r1t1 � t3 � T � (t1 � r1t1)
0 � t4 � t3 � 1

C :

8>><
>>:

0 � t1 � T � 2�
0 � t2 � t1 � �
r1t1 � t3 � T � 2�(t1 � r1t1)
0 � t4 � t3 � �;

where � is the hard deadline. It can be shown that
C � A � B, establishing the associated upper bound
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and lower bound
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for the original integral expression.

The bounds for paths of other lengths are handled
similarly. Computing the bounds is straightforward
using numerical routines for multiple integrals.

3.6 Example for repair-better-than-old

Let the failure density function be f(t) =
��t��1e��t

�

where � = 0:01 and � = 1:5, and let



the operating time T be 5 years. Suppose (i) the re-
covery period is 1 day, (ii) there is a 99% chance of
successful recovery, and (iii) the repair is progressively
less e�ective with ri = 1�(1=2)i. The upper and lower
bounds, then, are

UB = 0:001105953 and LB = 0:001104978

with the relative error of (UB� LB)=UB = 8:816�
10�4.

4 Random Hard Deadlines

The hard deadline can be thought of as the max-
imum controller \think time," which may depend on
the time needed to \actuate" the plant. This actu-
ation time is a random variable due to, for example,
random environmental perturbations like wind gusts
in case of the plant being an aircraft. (See [9] for
detailed examples showing that the hard deadline is
a random variable.) As another example, let's con-
sider a relay station where messages arrive and are
instantly retransmitted. The station is subjected to
random down-times due to perturbations (power out-
ages, external noises, or equipment malfunctions). If
the perturbation and its e�ects are not removed be-
fore the next message arrives (at some random time),
then the station will su�er a system failure.

The case of random deadlines uses the same math-
ematical formulation as the case of �xed deadlines.
We carry out the analysis in terms of repair-better-
than-old because this case includes both as-good-as-
new and as-good-as-old. Repair-as-good-as-new is re-
covered by letting the ri's equal zero, while repair-as-
good-as-old is recovered by letting them equal one. As
before, the integral for traversing the path of length
four by time T is
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The upper and lower bounds
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and
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are obtained by merely adjusting the set over which
the integral is taken. The fact that � is a �xed deadline
does not play any role in establishing that the last two
integrals bound the original. The upper bound does
not depend on �. For the lower bound the choice of �
depends on making a tradeo�. Using the equation for
a path of length four as an example, the factor for the
occurrence of two or more perturbations
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Z
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dt3dt1

decreases as � increases, while the factor for recovery
or failure
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Z
�

0

d(t4) �G(t4)dt4dt2

increases as � increases.

One consequence of this approach is that the for-
mulas for the upper and lower bounds use di�erent Q
and �Q. The upper bound is

1X
k=1

P [n � k; T ]Qk�1
U

�QU ; (4.1)

where QU and �QU are computed by integrating from
zero to in�nity. The lower bound is

bT=�cX
k=1

P [n � k; T � k� ]Qk�1
L

�QL; (4.2)

where QU and �QU are computed by integrating from
zero to some �.

5 On Tightness of Bounds

We have obtained tight bounds with a simple pro-
cedure by taking advantage of the features of the prob-
lem that (at �rst) appear to create computational
problems. These features are: (i) the systems are
highly reliable which means the probability of failure
is a small number that must be computed accurately;
(ii) recovery rates are fast compared to the component
failure rates which yields a sti� numerical problem;



and (iii) recovery can be an extremely complex proce-
dure the response is as follows. First, since the system
must be extremely reliable it uses components with
low failure rates, which means the series (for the up-
per and lower bounds) converge rapidly. Second, the
major di�erence between the upper and lower bound
terms is that the probabilities for the lower bound
must be computed over intervals decremented by re-
pair time. Since repair is fast, this introduces only a
small inaccuracy. Third, since repair is fast, the de-
tails of the repair procedure (the density function)is
unimportant. The probabilities of repair success or
failure appear to be su�cient. We expect the bounds
to diverge if these conditions are violated. On the
other hand, if these conditions are violated, we expect
a less reliable system whose reliability computation is
not as critical.

6 Conclusion

This paper proposes a path-space approach to the
problem of modeling the reliability of hard real-time
systems embedded with the deadline information. The
path-space approach in combination with the repet-
itive nature of the semi-Markov model yields con-
venient formulas and straightforward computational
techniques. The main results are the upper and lower
bounds for the probability of system failure that use
only simple parameters dealing with complicatedmod-
els through a simple canonical form for analysis. An
important feature of the path-space approach is that
it can be extended to handle global-time dependent
failure distributions, which are beyond the reach of
semi-Markov models and the associated Chapman-
Kolmogorov equations. We considered a spectrum
of repair strategies: repair-as-good-as-new, repair-as-
good-as-old, and the general repair-better-than-old,
where both deterministic and random hard deadlines
are considered as well. A variety of examples are pre-
sented to demonstrate the e�ectiveness of the path-
space approach. Because of the reliance on only sim-
ple parameters and the ease of reducing semi-Markov
models, this approach is suitable for very complex
models.
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