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AbstractÐInformation on Fault Tolerance Latency (FTL), which is defined as the total time required by all sequential steps taken to

recover from an error, is important to the design and evaluation of fault-tolerant computers used in safety-critical real-time control

systems with deadline information. In this paper, we evaluate FTL in terms of several random and deterministic variables accounting

for fault behaviors and/or the capability and performance of error-handling mechanisms, while considering various fault tolerance

mechanisms based on the trade-off between temporal and spatial redundancy, and use the evaluated FTL to check if an error-handling

policy can meet the Control System Deadline (CSD) for a given real-time application.

Index TermsÐFault tolerance latency (FTL), temporal/spatial and static/dynamic redundancy, error-handling, Control System

Deadline (CSD), dynamic failure.

æ

1 INTRODUCTION

CONTROL computers used for safety-critical applications
like flight and process controls must be equipped with

appropriate fault tolerance mechanisms which guarantee
the safe operation of the system even in the presence of
component failures. Fault tolerance is achieved via tempor-
al and/or spatial redundancy and, hence, its design
methodologies are characterized by the trade-off between
these two types of redundancy. Most design criteria in non-
real-time systems deal with optimization of spatial redun-
dancy, whereas, in real-time systems, time is so valuable as
to motivate trading space for time. A fault tolerance policy
should be selected and implemented to recover from errors
within a certain time limit, the Control System Deadline
(CSD) [14], [15], defined as the maximum time the under-
lying controlled system can stay in its admissible state space
without receiving correct services from its digital controller
computer. Fault Tolerance Latency (FTL)Ðwhich is defined
as the total time spent on such sequential error-handling
stages as error detection, fault location, system reconfigura-
tion, and recovery of the contaminated application program
[13]Ðis, therefore, essential to the design and and evalua-
tion of fault-tolerant computers.

There have been several attempts to evaluate quantities
related to FTL. Some researchers treated the recovery
process as one event, lumping all the sequential stages,
such as fault detection/isolation, system reconfiguration,
and resumption of the contaminated program, to 1) derive
analytically a simple expression for the recovery-time
distribution or 2) evaluate the general models of error-
handling with simulations. In [5] and [12], a truncated
normal distribution (with a displaced exponential function)

capturing ªgeneralº short periods of normal recovery, as
well as ªspecialº long durations of rare abnormal recovery,
according to experimental data and instantaneous prob-
abilities, thus characterizing only the effectiveness of error-
handling mechanisms, were used to model recovery
procedures.

The authors of [4], [10] proposed experimental and
statistical methods (i.e., sampling and parameter-estima-
tion) for characterizing the times of fault detection, system
reconfiguration, and computation recovery based on hard-
ware fault injections in the Fault-Tolerant Multiple Proces-
sor (FTMP), rather than modeling the total recovery time. In
[1], [13], the recovery times were defined as FTL and
estimated for a pooled-spare and N-modular redundant
systems by describing the effects of various fault tolerance
features. However, the results were given in a specific
application context, using spatial redundancy only, and
assuming that the time required for each stage of fault/
error recovery is approximated to be in a deterministic
range.

In this paper, we analytically model FTL, covering the
various recovery mechanisms (e.g., retry, rollback, restart)
based on the trade-off between temporal and spatial
redundancy. We first study the times required for all
individual error-handling stages. Especially, we describe in
detail the time required for system reconfiguration, which is
generally the most time-consuming error-handling stage.
Then, we tailor these results properly to represent various
error-handling scenarios or policies. (A policy/scenario is
composed of a set of sequential error-handling stages.)

Our analysis is based on the assumption that the
latencies of error-handling stages are stochastic, depending
upon the random characteristics of error detection and fault
behaviors; the active duration of a fault affects significantly
the success/failure of a temporal-redundancy method (i.e.,
instruction retry or program rollback). Although all
sequential actions are intrinsically not independent, we
assume that the time required for each stage is independent
of that of the others because the random aspects of the
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latencies of some (individual) stages result from indepen-
dently behaving faults (occurrence and duration) and
detection schemes, while the other stages have determinis-
tic latencies. This assumption allows us to derive the
probability density function (pdf) of FTL by convolving the
pdfs of the random variables representing the individual
latencies.

Our results focus on a sequence of error-handling stages
and can also be used for other well-developed reliability or
dependability models [2], [3].

In Section 2, we describe general fault tolerance features
by classifying fault tolerance mechanisms and considering
the trade-off between temporal and spatial redundancy
because we focus on the latency of general fault tolerance
mechanisms applying both types of redundancy. Section 3
examines the effects of individual error-handling stages,
from the occurrence of an error to its recovery on FTL, and
combines these results to evaluate the FTL of a general
error-handling policy covering various stages making a
trade-off between temporal and spatial redundancy. There,
we focus on system reconfiguration, a predominant con-
tributor to FTL, by considering the effects of such para-
meters as task size, CPU speed, and the bandwidth rate of
bus/interconnection network. In Section 4, we argue for the
importance of FTL information to the design and validation
of fault-tolerant control computers. We present there a
contrived example that selects an appropriate error-hand-
ling policy based on the FTL information. The paper
concludes with Section 5.

2 GENERIC FAULT TOLERANCE FEATURES

A fault is defined as the malfunctioning/damaged part of a
system occurring internally due to physical defects during
manufacture or due to component aging, or as environ-
mental interferences or disruptions occurring externally. An
error is the manifestation of one or more faults. Computer
system failures occur due to manifested faults (i.e., errors)
or deviations from the program-specified behaviors. It is
desirable to select an appropriate policy so as to preserve
the program-specified functions even in the presence of
faults/errors.

Fault tolerance is achieved via spatial and/or temporal
redundancy: that is, systematic and balanced selection of
protective redundancy among hardware (additional com-
ponents), software (special programs), and time (repetition
of operations). Thus, design methodologies for fault-
tolerant computers are characterized by the trade-off
between spatial and temporal redundancy. Using these
two types of redundancy, a fault-tolerant computer must go
through as many as 10 stages in response to the detection of
an error, including fault location, fault confinement, fault
masking, retry, rollback, diagnosis, recovery, restart, repair,
and reintegration. Design of a fault-tolerant computer
involves selection of an appropriate error-handling policy
that combines some or all of these stages.

Spatial redundancy is classified into two categories:
static and dynamic. Static redundancy, also known as
masking redundancy, can mask erroneous results without
causing any delay as long as a majority of participant
modules (processors or other H/W components) are

nonfaulty. However, the associated spatial cost is high,
e.g., three (four) modules are required to mask a non-
Byzantine (Byzantine) fault in a TMR (QMR) system. The
time overhead of managing redundant modulesÐfor
example, voting and synchronizationÐis also considerable
for static redundancy. Dynamic redundancy is implemen-
ted with two sequential actions: fault/error detection and
recovery of the contaminated computation. In distributed
systems, upon detection of an error, it is necessary to locate
the faulty module before replacing it with a nonfaulty one.
Although this approach may be more flexible and less
expensive than static redundancy, its cost may still be high
due to the possibility of hastily eliminating modules with
transient faults1 and it may also increase the recovery time
because of its dependence on time-consuming error-hand-
ling stages such as fault diagnosis, system reconfiguration,
and resumption of execution.

To overcome the above disadvantages, temporal redun-
dancy can be used by simply repeating or acknowledging
machine operations at various levels: micro-operation/
single instruction (retry), program segment (rollback), or
the entire program (restart). In fact, one of these recovery
schemes is also needed to resume program execution in
case of dynamic redundancy. This temporal-redundancy
method requires high coverage of fault/error detection so
as to invoke the recovery actions quickly. (The same
coverage is also required in case of dynamic redundancy.)
The main advantages of using temporal redundancy are not
only its low ªspatialº cost but also its low recovery time for
transient faults. However, the time spent for this method
would have been wasted in case of permanent or long-
lasting transient faults, which may increase the probability
of dynamic failure.

The relations between the temporal and spatial redun-
dancy required (and the associated redundancy-manage-
ment overhead) are shown in Fig. 1 for several fault
tolerance mechanisms. In case of time-critical applications,
an appropriate fault tolerance mechanism can be found
from the top left of Fig. 1, i.e., paying a small amount of
temporal redundancy at the cost of spatial redundancy like
N-modular redundancy. When the timing constraint im-
posed by the underlying control application is not tight, we
can save the cost of spatial redundancy by increasing
temporal redundancy (i.e., a larger amount of time for retry,
rollback, or restart recovery), which enhances the system's
ability in recovering from more transient faults before the
faulty modules are replaced. Increasing temporal redun-
dancy, however, increases the possibility of missing task
deadlines or dynamic failure.

3 EVALUATION OF FAULT TOLERANCE LATENCY

The recovery process that begins from the occurrence of an
error consists of several stages, some of which depend on
each other, and FTL is defined as the time spent for the
entire recovery process. Thus, all the stages necessary to
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handle faults/errors upon occurrence of an error should be
studied and their effects on FTL analyzed.

In a specific application context, the recovery times were
estimated in [1], [13] by decomposing the fault-recovery
process into stages and analyzing the effects of various fault
tolerance features on FTL. A similar approach is used here
for the evaluation of FTL, but for more general fault
tolerance strategies (than those in [1], [13]) based on
temporal redundancy.

Fig. 2 depicts various scenarios from the occurrence of an
error to its recovery, covering static and dynamic redun-
dancy, temporal-redundancy methods, and combinations
thereof. Each path represents one error-handling scenario,
which may occur as a result of selecting an error-handling
policy corresponding to the path and the success/fail result
of the selected method (depending upon the fault behaviors
when a temporal-redundancy method is applied). For
example, an unsuccessful retry (after the retry period
expires) implies another error detection, which may trigger
rollback or restart (with or without switching out the faulty
module). As shown in Fig. 2, error-handing processes are
classified according to the adopted fault/error detection
and recovery mechanisms.

3.1 Individual Error-Handling Stages

First, we divide the error-handing process into several
stages, as shown in Fig. 2, and evaluate the time spent on
each individual stage. Upon detection of an error, if a
temporal-redundancy method, such as retry or rollback, is
applied as a primary means of recovery, we may need a
secondary recovery method composed of such stages as
fault diagnosis, system reconfiguration, and resumption of
execution, depending on the recovery results of the
temporal-redundancy method used. Whether a temporal-
redundancy method is successful or not depends on the
adopted policies and the underlying fault behaviors. Thus,
we must represent the effects of certain stages on FTL
probabilistically due to random fault/error behaviors. Now,
we describe the features of individual error-handling stages
using spatial and temporal redundancy and examine their
effects of the time required for each stage on FTL.

Error Detection ProcessÐSince FTL begins with the
occurrence of an error, we are mainly interested in the error
latency, defined as the time interval from the error
generation to the error detection [16], which depends on
the active duration of a fault and the underlying detection
mechanism. Error-detection mechanisms are generally
classified into 1) signal-level detection mechanisms, 2) func-
tion-level detection mechanisms, and 3) periodic diagnos-
tics.2 Let tel and fel be the error latency and its probability
density function (pdf), respectively. Several well-known
pdfs, such as Weibull, Gamma, and log-normal distribu-
tions, were considered in [4] to model fel�t�. Let Fel denote
the Probability Distribution Function (PDF) of tel, then
Fel�t� �

R t
0 fel�x�dx. Let �ti be the mean execution time of

one instruction, then Fel��ti� � 1 for a high-coverage
signal-level detection mechanism. The function-level error
detection latency depends on the detection mechanism used
and the executing task and is commonly larger than the
signal-level detection latency.

Fault MaskingÐThis method filters out the effects of
faulty modules as long as the number of faulty modules is
not larger than Nÿ1

2 for N-modular redundancy in a form of
static (or hybrid) redundancy. Although the time required
for this type of recovery is almost zero, the method induces
the time overhead of redundancy management, such as
synchronization and voting/interactive consistency techni-
ques, even in the absence of faults, which increases with the
degree of redundancy [9].

Fault DiagnosisÐIn distributed systems, it may be
necessary to locate the faulty module and/or to determine
certain fault characteristics upon detection of an error by a
function-level detection mechanism. Let td and pd be the
time spent for fault diagnosis and the probability of locating
the faulty module (i.e., diagnostic coverage). The coverage
pd increases with td and greatly affects the results of the
subsequent recovery, hence, FTL. Note that the time, td,
taken for diagnosis is likely to be deterministic, because
diagnostics are usually programmed a priori.
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Fig. 1. Trade-off between temporal and spatial redundancy for various fault tolerance mechanisms.

2. Not covered in this paper.



System ReconfigurationÐReconfiguration, which is usual-
ly the most time-consuming error-handling stage, is the
only means to remove a permanent fault. When a fault is
located and identified as permanent, the faulty module
must be replaced with a spare module or switched off, thus
allowing for graceful degradation. This process is necessary
for both dynamic and hybrid redundancy. Specific hard-
ware, like the Configuration Control Unit (CCU) in FTMP
[6], may be dedicated to system reconfiguration. This
process (of using cold spares) generally consists of

1. switching power and bus connections,
2. running built-in-test (BIT) on the selected spare

module,
3. loading programs and data,
4. initializing the software.

When warm spares are used, Steps 1 and 2 are not needed.
The time taken for this process is also likely to be
deterministic, which depends upon program size, system
throughput, processor speed, and bus bandwidth. Let tr be
the time spent for system reconfiguration. We assume that
tr lies within a deterministic interval, tr1 � tr � tr2, where
tr1 and tr2 are determined by the type of reconfiguration
and several other factors described above. In fact, these
parameters were determined analytically in [8], as well as
experimentally in [1], [13].

Graceful DegradationÐIn on-line repair, the faulty com-
ponent may be replaced immediately by a backup spare in a
procedure equivalent to system reconfiguration or opera-
tion may continue without the faulty component's con-
tributions, as is the case with fault masking or graceful
degradation. Graceful-degradation techniques always use
redundant hardware as part of the system's normal
resources, preferring operation with degraded performance
to no operation at all. Since normal operation does not stop
upon detection of an error, the time required for this type of
ªrecoveryº is zero as in the case of fault masking.

RetryÐThis is the simplest recovery method using
temporal redundancy, which repeats the execution of a
micro-operation or instruction. To be effective, this method
requires immediate error detection, i.e., almost perfect
coverage of a signal-level detection mechanism yielding tel

smaller than �ti. The retry period, defined as a continuous-
time interval or the number of reexecutions, is the
maximum allowable time for retry. Let trp, ta, and Fa be
the retry period, the active duration of a fault, and the PDF
of ta, respectively. The result of a retry depends on trp and
ta. When a retry is successful, the time it has taken is equal
to the fault duration, ta, which is certainly smaller than trp.
However, it is equal to trp when the retry becomes
unsuccessful, and an alternative recovery method will be
followed, thus increasing FTL.

RollbackÐis needed when tel > �ti. When an error is
detected by a signal- or function- level detection mechan-
ism, it rolls back past the contaminated part of a program
(following a system reconfiguration in case of dynamic
redundancy). It may be invoked as another step of recovery
after an unsuccessful retry. Let �tc and Nc be the
intercheckpoint interval and the maximum number of
checkpoints necessary for rollback recovery, respectively.
The time taken for the rollback process depends on tel, �tc,
the number of checkpoints maintained, and the way
checkpoints are selected for rollback. For simplicity, we
assume that �tcs are equidistant. (It is not difficult to extend
our results to the case of nonequidistant checkpoints,
although the notation will become more complex.) When
the rollback is successful, the time taken to restore the
contaminated segment of a program is larger than tel but
smaller than tel ��tc; that is, equal to d tel�tc

e�tc, where dxe is
the smallest integer that is larger than x. If the fault is active
during the entire period of rollback or the contaminated
part is larger than the reexecuted part of the program, the
rollback recovery will fail and the corresponding ªwastedº
time (increase of FTL) is equal to Nc�tc.

RestartÐIf a large portion of the program execution is
contaminated due to a large tel, its execution is repeated
from the beginning. The time (computation loss) taken for
the restart process depends on 1) the time to detect an error
and 2) the types of restart (i.e., hot, warm, and cold restarts)
following a system reconfiguration. We use to and Fo to
denote the time of error occurrence measured since the
beginning of program execution and the PDF of to in a
program, respectively.
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3.2 Stringing Individual Stages Together

As mentioned earlier, all error-handling scenarios can be
described, as shown in in Fig. 2, by the ªpathsº composed of
several sequential stages from error detection to the
corresponding recovery. Clearly, an error-handling policy
depends on several mutually exclusive events, where one
event represents a scenario and its occurrence depends on
fault behaviors and the policy-related parameters. The
probability of the occurrence of each event can thus be
calculated by using the PDF of fault active duration (Fa) and
the policy parameters such as �tc, Nc, or trp. The FTL of a
certain error-handling policy is therefore obtained by using
the probabilities of all possible events/scenarios and the
times spent for these events/scenarios. Note that the time
spent for each scenario is obtained by adding the times
spent for all error-handling stages on the path representing
the scenario. Likewise, we can obtain the PDF of FTL for a
certain error-handling policy:

Fl�t� �
Xn
i�1

Fl�tjSi�P �Si�; �3:1�

where Si indicates the ith scenario of an error-handling
policy and P �Si� and n are the probability of the occurrence
of Si and the number of all possible scenarios in the selected
error-handling policy, respectively. Equation (3.1) describes
Fl�t� as a weighted sum of conditional PDF. Each Si's
conditional PDF is computed by convolving the PDF of the
time spent for every stage on the corresponding path or
error-handling policy. The time spent for every possible
error-handling stage is described as deterministic values or
random variables with certain PDFs. We will investigate
each error-handling stage individually.

Now, we characterize the error-handling process into
four policies according to the types of error-detection
mechanisms and recovery methods combined with tempor-
al and spatial redundancy:

1. restart after reconfiguration,
2. rollback,
3. retry, and
4. retry then rollback.

These cover various dynamic- and/or temporal-redun-
dancy methods. Specifically, we can describe the error-
handling policies as follows. (Note that the number of all
possible scenarios in each error-handling policy is defined
by n.)

Policy 1 (n � 2): S1 � successful restart after diagnosis and
reconfiguration, S2 � unsuccessful restart due to in-
correct diagnosis then repeat.

Policy 2 (n � 2): S1 � successful rollback after diagnosis,
S2 � unsuccessful rollback then restart after diagnosis
and reconfiguration.

Policy 3 (n � 2): S1 � successful retry, S2 � unsuccessful
retry then restart after reconfiguration.

Policy 4 (n � 3): S1 � successful retry, S2 � unsuccessful
retry and successful rollback, S3 � unsuccessful retry and
unsuccessful rollback then restart after reconfiguration.

While signal-level detection mechanisms can capture the
faulty module immediately upon occurrence of an error and
can thus invoke retry in Policies 3 and 4, function-level
detection mechanismsÐthat cause a nonzero error latency
and thus require the diagnosis process to locate the faulty
moduleÐmay be used for Policies 1 and 2. The probabilities
of scenario occurrences and the (conditional) PDFs of the
above scenarios are derived by using the variables defined
earlier for individual error-handling stages.

For simplicity, we do not consider the occurrence of an
error/failure due to a second fault during the recovery from
the first fault. If we need to consider the effects of such an
error/failure, we cannot derive a closed-form PDF of FTL,
but can instead derive the moments of FTL by using
recursive equations, which can then be used to derive the
PDF of FTL numerically.

Policy 1 is a simple form of dynamic redundancy, i.e., to
restart the task from the beginning after identifying and
replacing the faulty module with a nonfaulty spare. The
first scenario is a successful restart with correct diagnosis.
Thus, the probability of its occurrence is equal to that of
successful diagnosis (pd) and the time (tl) spent on this
scenario becomes

tl � tel � td � tr � t0o; �3:2�
where td and tr are deterministic variables and tel is a
random variable with the PDF, Fel. t

0
o is also a random

variable indicating the time of error occurrence given the
fact that an error had occurred during the execution of a
task (0 � t0o � T ), i.e., having the conditional distribution
Fo�tjan error� as its PDF. Let t � tl ÿ td ÿ tr, then

P �S1� � pd; �3:3�

Fl�tjS1� � Fel�t� � Fo�tjan error�: �3:4�
Similarly, P �S2� and Fl�tjS2� are derived for the second
scenario. Since an unsuccessful restart (of the second
scenario) wastes more time than the first scenario by the
amount of the incorrect diagnosis time plus the (error)
latency for a second error detection due to this incorrect
diagnosis, tl is changed to

tl � tel � td � tel � td � tr � t0o � 2tel � 2td � tr � t0o: �3:5�
Let t � tl ÿ 2td ÿ tr, then

P �S2� � 1ÿ pd; �3:6�

Fl�tjS2� � Fel t

2

� �
� Fo�tjan error�: �3:7�

Policies 2 and 3 use rollback with diagnosis and retry
upon error detection, respectively. Reconfiguration is also
called for if the temporal-redundancy approach became
unsuccessful. Since the first scenario of Policy 2 is a
successful rollback, the probability of its occurrence
depends on the probability of successful diagnosis (pd),
the parameters of rollback (�tc and Nc), the error latency
(tel), and the fault active duration (ta). For a successful
rollback, 1) a faulty module must be identified with correct
diagnosis, 2) tel must be smaller than Nc�tc, which is the
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maximum allowable time for rollback, and 3) the fault must

disappear within Nc�tc. Let pt be the percentage of

transient faults, then

P �S1� � ptpdFa�Nc�tc�Fel�Nc�tc�: �3:8�
The time spent for this case is simply obtained as

tl � tel � td � tel
�tc

� �
�tc: �3:9�

Let t � tl ÿ td, then

Fl�tjS1� � Fel�t� � Fm t

�tc

� �
; �3:10�

where Fm is a PDF for m � b tel�tc
c. The probability of the

second scenario being exclusive of the first one is equal to

1ÿ P �S1�
P �S2� � 1ÿ ptpdFa�Nc�tc�Fel�Nc�tc�: �3:11�

The time spent for this scenario is increased to

tl � tel � td �Nc�tc � td � tr � t0o
� tel � 2td �Nc�tc � tr � t0o:

�3:12�

Let t � tl ÿ 2td ÿNc�tc ÿ tr, then

Fl�tjS2� � Fel�t� � Fo�tjan error�: �3:13�
For Policy 3, which does not require fault diagnosis due

to the assumed immediate and correct detection of errors

with signal-level detection mechanisms, the probabilities of

scenario occurrences and PDFs are derived similarly to

Policy 2. For a successful retry, the error must be detected

before contaminating the result of executing the instruction

that will be retried (�ti) and the fault must become inactive

within trp if the time spent is tel � ta. Thus,

P �S1� � ptFa�trp�Fel��ti�; �3:14�

Fl�tjS1� � Fel�t� � Fa�t�: �3:15�
When a retry is unsuccessful, the time spent for this

becomes

tl � tel � trp � tr � t0o: �3:16�
Let t � tl ÿ trp ÿ tr, then

P �S2� � 1ÿ ptFa�trp�Fel��ti�; �3:17�

Fl�tjS2� � Fel�t� � Fo�tjan error�: �3:18�
Policy 4 has three scenarios whose probabilities and

PDFs are obtained by combining those of Policies 2 and 3.

The first scenario is a successful retry, for which P �S1� and

Fl�tjS1� are equal to those of the first scenario in Policy 3

(i.e., (3.15)). The second scenario is a successful rollback

following an unsuccessful retry. Thus, P �S2� and Fl�tjS2�
can be obtained by modifying (3.8) and (3.10) to include the

effects of an unsuccessful retry. Let t � tl ÿ trp, then

P �S2� � pt�Fa�Nc�tc�Fel�Nc�tc� ÿ Fa�trp�Fel��ti��; �3:19�

Fl�tjS2� � Fel�t� � Fm t

�tc

� �
: �3:20�

The third scenario is to restart with reconfiguration

following an unsuccessful retry, then rollback when the

time spent is tl � tel � trp �Nc�tc � tr � t0o. Thus, if t �
tl ÿ trp ÿNc�tc ÿ tr then

P �S3� � 1ÿ ptFa�Nc�tc�Fel�Nc�tc� �3:21�

Fl�tjS3� � Fel�t� � Fo�tjan error�: �3:22�
With these derived probabilities and conditional PDFs,

we can compute the PDF of FTL for each policy from (3.1).

4 APPLICATION OF FAULT TOLERANCE LATENCY

A real-time control system is composed of a controlled

process/plant, a controller computer, and an environment,

all of which work synergistically. A control system does not

generally fail instantaneously upon occurrence of a con-

troller-computer failure. Instead, for a certain duration, the

system stays in a safe/stable region or in the admissible

state space, even without the updated control input from

the controller computer. However, a serious degradation of

system performance or catastrophe, called a dynamic failure

(or system failure), occurs if the duration of missing the

update (or incorrect update) of the control input due to

malfunctioning of the controller computer exceeds the

control system deadline (CSD) [14], [15]. The CSD repre-

sents system inertia/resilience against a dynamic failure,

which can be derived experimentally or analytically using

the state dynamic equations of the controlled process, the

information on fault behaviors associated with environ-

mental characteristics (such as electro-magnetic interfer-

ences [7]), and the control algorithms programmed in the

control computers [14].

When an error/failure occurs in a controller computer,

the error must be recovered within a certain period to meet

the timing constraints and to avoid a dynamic failure. Roark

et al. [13] called this period the Application Required Latency

(ARL) and presented several empirical examples of ARL for

flight control, missile guidance, air data system, automatic

tracking, and recognition applications. It is important to

note that one can derive the ARL analytically using the CSD

information [14] because the sum of ARL and the maximum

time to execute the remaining control task to generate a

correct control input is equal to the CSD. Using this

information about the CSD of the controlled process and

the FTL of the controller computer, one can select (or

design) an appropriate error-handling policy by making a

trade-off between temporal and spatial redundancy while

meeting the strict timing constraint:
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FTL � deadline

ÿmaximum time to execute the remaining control task:

�4:1�
One can also estimate the system's ability of meeting the

timing constraint in the presence of controller-computer

failures, which is characterized by the probability of no

dynamic failure using the evaluated deadline and FTL. The

timing constraints should be satisfied for all errors/failures

occurring sequentially during the life of one task.

Due to their possible dependency on each other and also

on the underlying application, it is sometimes difficult to

obtain accurate values/models of the parameters and

latencies of individual stages that are used by the proposed

method to evaluate FTL. Fortunately, however, some of

these parameters are determined during the design process

(as opposed to measuring them at run-time) and others had

previously been evaluated by several researchers. For

example, one can obtain fT;Nc;�ti;�tc; trp; g by using

design parameters, ftel; te; ta; pd; ptg by using field data, and

tr by using the results in [1], [8].
We now present an example to demonstrate the

usefulness of the evaluated FTL. Consider a pooled-spares
system,3 which consists of multiple modules connected via
a backplane. Let the basic time unit be one millisecond and
let the task execution time in the absence of errors and the
mean execution time of one instruction be given as T �
50�� 0:05sec� and �ti � 0:002�� 2�sec�, respectively. The
error latency is assumed to follow an exponential distribu-
tion with mean 12 and 0:002 for function- and signal- level
detection mechanisms, respectively. The fault occurrence
and duration are also governed by exponential distribu-
tions, where the mean value of active duration is 0:5, and
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Fig. 3. PDF of the FTL with cold spares.

Fig. 4. PDF of the FTL with policy parameters different from those of Fig. 3: pd � 0:97, Nc � 5, and trp � 2.

3. The system consists of power supplies, input/output modules, and a
set of identical data processing modules, a subset of which are assigned to
processing tasks. The remaining modules can be used as spares in case of an
error/failure.



the percentage of transient faults (pt) is about 0:9. Then,
given that an error occurred during T , the occurrence time,
te, is uniformly distributed over T . The diagnosis time, td, is
50, which is assumed to yield coverage pd � 0:95. When
cold spares are used, it is assumed to take 500 units of time
�� 0:5sec� for system reconfiguration. We also assume that
this value can be reduced to 100 by using warm spares.
When applying rollback recovery, we set �tc � 5 and
Nc � 4, whereas the retry period, trp, is set to 1. Under these
conditions, the PDF of FTL are evaluated for the four
representative policies by using the method developed in
Section 3. These functions are plotted in Fig. 3.

From the above evaluation of FTL, one can conclude that
P o l i c i e s 1 a n d 2 a r e a c c e p t a b l e o n l y w h e n
thd > 14T �� 700 � 0:7sec�. While the FTL of Policy 1 is
distributed around 12T �� 600� with a small variance,
Policy 2 has a wide range bounded by 14T , indicating that
Policy 2 is less likely than Policy 1 to violate the timing
constraint, (4.1), under the above chosen conditions. Policies
3 and 4 that use retry have better distributions as compared

to Policies 1 and 2, which satisfy the constraint thd > 12T .

However, to be effective, retry usually requires dedicated

hardware and immediate error detection. (Note that the

mean error latency of Policies 3 and 4 in Fig. 3 is 0:002.)
Fig. 4 plots FTL while varying the policy parameters. We

adopt a more accurate diagnosis process with pd � 0:97 and

change rollback and retry policies to Nc � 5 and trp � 2,

respectively. The error-detection mechanisms are also

improved to decrease the error latencies to 10 and 0:001

for both function- and signal-level mechanisms. In this case,

the mean values of FTL become smaller, but the upper

bounds of FTL are not changed. Thus, we can draw the

same conclusion as Fig. 3 in selecting an appropriate error-

handling policy.
We also consider different fault parameters: pt and the

mean value of active duration are changed to 0:95 and 0:25,

respectively. Since the temporal-redundancy approaches

get better under such conditions, the FTLs of Policies 2, 3,

and 4 cluster small values, as depicted in Fig. 5. However,
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Fig. 5. PDF of the FTL under fault environments different from those of Fig. 3: pt � 0:95 and E�ta� (the mean active duration) � 0:25.

Fig. 6. PDF of the FTL with a reconfiguration strategy different from that of Fig. 3: warm spares.



one still cannot neglect some possible FTLs larger than 10T ,

albeit with small probabilities.
When the CSD, thd, is tight, like thd � 10T �� 500�, no

policy can satisfy (4.1). It is shown in Figs. 4 and 5 that FTL

does not change significantly even if the policy and/or fault

parameters are changed. Considering the fact that reconfi-

guration is the most time-consuming among all the error-

handling stages, we use warm spares to reduce tr, which

significantly skews the PDF of FTL to the right, as shown in

Fig. 6, where all parameters but tr are the same as those in

Fig. 3. In that case, Policies 3 and 4 are suitable for systems

with thd > 4T �� 200�.
If the timing constraint is tighter, e.g., thd � 4T , we can

conclude that static redundancy (or hot spares) must be

used at the expense of spatial redundancy since no policy

using dynamic or temporal redundancy can satisfy the

stringent constraint.

5 CONCLUSION

In this paper, we evaluated FTL for general error-handling

policies that combine temporal and spatial redundancy. We

investigated all the individual error-handling stages from

error detection to complete recovery from the error and

used some deterministic and random variables to model the

times spent for these stages. This is in sharp contrast to the

previous work that evaluated error-recovery times with

simple models or deterministic data collected from experi-

ments. As shown in the exampleÐalthough the parameters

used in the example are chosen somewhat arbitrarily, their

choice would not change our conclusionÐthe evaluated

FTL is a key to the selection of an appropriate error-

handling policy, especially for real-time control computers.
The main contribution of this paper is twofold: 1)

demonstrating the importance of FTL in designing and

evaluating fault-tolerant computers from real-time applica-

tion's perspectives and 2) analytically deriving the relations

between the FTL (and the latencies of some individual

stages) and the parameters of both fault behaviors and fault

tolerance designs.
There are also related problems worth further investiga-

tion, including:

. It is important to derive, if possible, a closed-form
pdf expression for the time spent for each individual
stage. In case an exact closed-form pdf is not

obtainable, an approximate expression may be used
to determine an appropriate error-handling policy.

. The FTL strongly depends upon fault coverage,
which was assumed to be a constant determined by
the diagnosis stage. However, fault coverage is, in
reality, not simple to determine due mainly to the
effects of many coupled testing/detection methods.
The task type and the failure occurrence rate also
affect fault coverage. When periodic diagnoses are
used, there is a trade-off between accuracy (fault
coverage) and time (frequency and diagnosis time).
It is important to study all the factors determining
fault coverage and analyze its effects on FTL.

APPENDIX

LIST OF SYMBOLS

tel : error latency
fel�t� : probability density function of tel
Fel�t� : probability distribution function of tel
�ti : mean execution time of one instruction
T : nominal task execution time
td : time spent for fault diagnosis
pd : diagnostic coverage
tr : time spent for system reconfiguration
trp : retry period
ta : active duration of a (transient) fault
Fa�t� : probability distribution function of ta
E�ta� : mean active duration of a fault
�tc : intercheckpoint interval
Nc : maximum checkpoints rolled back
to : time of error occurrence
Fo�t� : probability distribution function of te
pt : percentage of transient faults
tl : time spent on each scenario
Fl�t� : probability distribution function of tl
Si : the ith scenario of an error-handling policy
P �Si� : probability of the occurrence of Si
thd : control system deadline
t0o : time of error occurrence given that an error occurred
during a time interval T
n : number of all possible scenarios in a selected error-
handling policy
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