
The END: A Network Adapter Design Tool *

Atri Indiresan Ashish Mehra Kang G. Shin

Cisco Systems Inc.
170 W. Tasman Drive
San Jose, CA 95 134

IBM T. J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Real-time Computing Lab.
Dept. of EE & CS

The University of Michigan
Ann Arbor, MI 48 109

atri @ cisco.com mehraa @ Watson. ibmxom kgshin @eecs.umich.edu

Abstract

We present the design and implementation of Emulated Network
Device (END), a network adapter design tool thatfacilitates ac-
curate evaluation of altemative adapter designs. Using device
emulation, END permits designers to couple a representative
model of an adapter with a real host and its communication
sofhuare. Different adapter designs can be evaluated and com-
pared accurately in a realistic setting, i.e., while capturing host-
adapter concurrency and interaction overheads, before building
a prototype. We present the architectural framework adopted by
END and demonstrate its feasibility via a case study of a com-
mercial network adaptel: Several design improvements to alle-
viate pe~ormance bottlenecks are realized and evaluated using
END, highlighting its utility as a network adapter design tool.

1. Introduction
End-to-end communication performance depends not only on
the underlying networking technology, but also on the end-host
operating system as well as the interface between the host and
the network. As network speeds increase, the performance bot-
tleneck tends to shift to the end host, in particular to the hard-
ware and software components of the host communication sub-
system. While communication software primarily comprises
the protocols, the communication hardware at a host primar-
ily comprises the network adapter and the interface between the
host and the adapter. The design of the network adapter, and
the division of functionality between the adapter and the host
communication software, can have a significant impact on the
performance delivered to applications.

In order to design network adapters that integrate well with
the host communication software and deliver good perfor-

*The work reported in this paper was performed while the authors were at
the University of Michigan. It was supported in part by the Defense Advanced
Research Projects Agency, monitored by the US Air Force Rome Laboratory
under Grant F30602-95-1-0044, the National Science Foundation under Grant
MIP-9203895 and the Office of Naval Research under Grant N00014-94-1-
0229. Any opinions, findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily reflect the views of
the funding agencies.

mance, one must study the impact of various design parame-
ters in a realistic setting, i.e., when the network adapter is con-
trolled and accessed by the communication software on the tar-
get host platform. The performance evaluation methodology
employed must consider the hardware components and over-
heads involved (such as the system I/O bus, caches, device in-
terrupts), and capture the hardware-software concurrency and
dynamic host-adapter interaction without excessive intrusion.

In this paper, we propose network device emulation as a
mechanism to study the hardware-software interface for com-
munication subsystems, and to help design network adapters
that integrate well with the host operating system and applica-
tions. In particular, we present the Emulated Network Device
(END), a network adapter design tool that interfaces to a real
communication protocol stack on the host via the system I/O
bus, a typical configuration for many network adapters [17].
This allows END to generate the same overheads as real
adapters. Further, by using a synthetic network model as a sink
and source of traffic, END can emulate all the operations of a
network adapter without interfacing to a real network.

Designers can use END to experiment with network adapter
design, including the partitioning of functionality between the
host communication software and the hardwarelfirmware on the
network adapter, before actually prototyping the adapter. The
experimentation can be performed directly on the target host
platform, with END running concurrently on its own processor,
thus accounting for overheads and host architectural features
that influence communication performance. END thus permits
hardware-software co-design, where adapter design tradeoffs
can be explored early in the design cycle.

Device emulation has been used before to model source/sink
behavior of I/O devices (disks, networks, sensors). Our distinct
contribution lies in applying device emulation to capture the de-
tails of network adapter design. END can be used in two ways:
(i) to design a new network adapter, and (ii) to explore design
alternatives that improve the performance of an existing proto-
type. We have also used END to study QoS issues in adapter de-
sign and solutions to the receive livelock problem [lo]. In this
paper, we demonstrate how END was used to explore design
alternatives for an existing device by conducting a case study

0-7803-4383-2/98/$10.00 0 1998 IEEE. 756

http://cisco.com
mailto:eecs.umich.edu

of the Ancor W E CIM 250, an adapter for the Fiber Channel
networking technology. This is achieved by first building a rep-
resentative model of the device, called the base model, using
END. The base model is then modified to incorporate design
changes that improve communication performance for outgo-
ing traffic. We show that with these changes, communication
throughput increases by up to 5096, suggesting that similar im-
provements can be expected on the real device as well.

In the rest of the paper, Section 2 highlights issues in net-
work adapter design and compares device emulation to other
evaluation techniques. The architectural framework and our
implementation of END are presented in Section 3. Section 4
presents the case study of the Ancor CIM 250 network adapter
and its emulation using END. Section 5 illustrates use of END
to evaluate design improvements for outgoing traffic. The gen-
eral applicability of END is highlighted in Section 6. Section 7
discusses related work, and Section 8 concludes the paper.

2. Network Adapter Design Issues
In this section we discuss various issues involved in network
adapter design. Our goal is to identify the architectural com-
ponents that determine the mechanics and performance of data
transfer between the host and the network via the network
adapter. The architectural framework of END is based on these
architectural components. We also compare and contrast device
emulation with other performance evaluation techniques.

2.1. Factors Affecting Communication Performance

Within end hosts, communication performance is largely de-
termined by the efficiency with which communication software
and hardware/firmware components interact to move data be-
tween applications and the network (Figure l(a)). Data trans-
fer involves traversing a protocol stack, moving data between
the host memory and the network adapter, and between the net-
work adapter and the network. Figure l(b) illustrates the five
basic components of a typical network adapter: host-adapter
interface, data-transfer control module, transmissiodreception
queuing module, buffer-management module, and adapter-
network interface. Typically, most network adapters are ac-
cessed by the host via the system I/O bus [171, and employ one
or more general-purpose microprocessors and custom hardware
that operates under control of the adapter firmware.
Host-Adapter Interface: This interface typically has a device
driver running on the host, and a “host driver” on the adapter.
The two drivers exchange information across the system I/O
bus, and may synchronize their operations either via interrupts
and/or polling [20].
Adapter Internals: The following three modules provide the
internal functionality of the adapter:
Data Transfer Control: Data transfer between host and adapter
memory may be via DMA or programmed I/O (PIO). PI0 has
no startup latency, but requires the CPU for the duration of the
transfer, while the CPU is required only to set up the DMA.
TdRx Queuing: Best-effort adapters may provide simple first-
in-first-out (FIFO) queuing of packets with deep pipelining of

STORAGE

(a) Trace-driven simulation

P?!?!!ete?zer?mode! - - - -
of device under evaluation

TARGET MACHINE

(b) Device emulation

Figure 2. Simulation vs emulation.

operations on the adapter. This delivers high throughput by ex-
ploiting the overlap between, say, DMA of one packet and trans-
mission of another, and keeping the overheads of queuing low.
More sophisticated queuing and scheduling algorithms may be
required when providing per-connection QoS guarantees.
Buffer Management: The adapter may need to manage packet
buffers that may reside either in adapter or host memory. It must
provide buffer management policies, such as reserving buffers
for connections with QoS guarantees, as well as handle buffer
overload conditions correctly.
Adapter-Network Interface: The adapter may use PI0 or
DMA to move data between the network and packet buffers.
If packet buffers reside in host memory, the adapter needs to in-
form the host on completion of packet transmission so that the
buffer may be reused. On packet reception, it must stage data in
its buffers and subsequently transfer the data to the host.

2.2. Design and Evaluation Techniques

To design a network adapter that meets desired performance re-
quirements, one must study design alternatives in a realistic set-
ting, Le., when the network adapter interacts with the communi-
cation software on the target host platform. Several techniques
may be used to design and evaluate network devices: mathe-
matical modeling, simulation, emulation and prototyping.

Mathematical modeling is typically used to study the queu-
ing behavior of network traffic. Though mathematical models
are relatively inexpensive to develop for simple systems, they
rarely account for system overheads encountered in practice.
Detailed models capturing concurrency, contention, and com-
ponent interaction in real systems rapidly become intractable.

(Trace-driven) simulation has several advantages [2]. Since
simulators are built in software, they are usually easier and
cheaper to build than real systems and can be readily modified
to test new features and interfaces. However, a simulator typi-
cally has no real system components and must be accurately pa-
rameterized via performance measurements. Exceptions to this
do exist in approaches that execute actual software under con-
trol of the simulator [4]. However, such approaches may not be
applicable when hardware components (such as caches and de-
vice interrupts) must also be considered and hardware-software
concurrency and dynamic interaction captured in the evaluation.
Further, simulation is typically much slower than the execution

757

r APPLICATIONS I

r \

DEVICE DRIVER

t software
.1 1 hardwardirmware

NETWORK ADAPTER

SYSTEM 110 BUS
A

PROTOCOL STACK LAYER

f i NETWORK

w
(a) Host communication subsystem

NETWORK LINK
(b) Generic network adapter architecture

Figure 1. Focus of this paper.

of real systems. Increasing the accuracy of the simulation model
increases its cost while further slowing it down.

Prototyping a device and interfacing to higher software lay-
ers is time-consuming and expensive. While highly accurate,
prototypes are not easily modifiable. The on-board firmware
may be modified to study different design options [8], or one
may employ programmable adapters [5] or use FPGAs for some
hardware components, but the internal hardware architecture is
typically impossible to modify without developing a new proto-
type. More importantly, hardware engineers designing network
adapters are often far removed from the concerns of those writ-
ing the communication software, and vice versa, producing a
design poorly integrated with the host operating system.

2.3. The Case for Device Emulation

Device emulation shares the advantages of simulation in that it
is a flexible technique that allows rapid evaluation of various
design alternatives. In contrast to a simulator, an emulator is a
module that interfaces with a real host (Figure 2(b)), giving the
latter the impression that it is interacting with the actual sub-
system being emulated in real-time. For trace-driven simula-
tion (Figure 2(a)), the target machine is instrumented to gener-
ate run-time traces that are fed as input to the device simulator.
Not only must the host software be instrumented to generate
sufficiently detailed traces, the instrumentation code may be in-
trusive enough to disturb the timing (and hence the sequence)
of important events. Device emulation does not require that
the target machine be instrumented, as long as it has necessary
driver software to communicate with the device emulator.

END emulates a network adapter and interfaces with the tar-
get host, giving the impression that the host is communicating
with a real network. This has several significant advantages.
Interfacing a device emulator to the target host allows adapter
design tradeoffs to be evaluated in the presence of applications,
operating system overheads, interrupts, etc. This helps iden-
tify design limitations and bottlenecks early in the design cycle.
Further, since device emulation is carried out on the target plat-

form, it allows development and testing of host software that
interfaces to the device, and rapid integration of the hardware
device when it becomes available.

3. END Emulation Architecture
In this section, we present the emulation framework for END,
define the functional interface it must export to the host, and
describe our prototype implementation.

3.1. Host View of the Network

The host views the network adapter as a sink for data transmis-
sion, and a source for data reception. It exchanges commands
and data with the adapter, the timing of these events being de-
termined by network characteristics and traffic conditions. To
accurately emulate a network adapter, END must export to the
host the same functional interface as, and have performance
characteristics similar to, that of a real adapter.

END interacts with the host like a real device, exchang-
ing commandddata and synchronizing via interrupts or polling.
Typically, the communication subsystem acknowledges data
transmission after a delay determined by the size of data, and
the system and network load. As long as applications do not
expect acknowledgments, all they see is data being transmitted
at a certain rate. A transmitting application will not be able to
distinguish between END and a real network as long as END
captures this timing behavior. For data reception, END gener-
ates incoming traffic based either on stochastic models or real
traffic traces. Genuine two-way traffic may also be generated.

3.2. Emulator Components

Figure 3 shows our emulator-based architecture for studying
adapter design. Each network “node” corresponds to a host and
an emulator processor board on the same UO bus.
Host Node: The host node is precisely the target host. Com-
municating applications send and receive data via the protocol
stack which has a device driver for the target network adapter.

758

Figure 3. END-based emulation architecture.

Though this driver communicates with END, it implements the
real host-adapter interface. This permits the implementation
and testing of a complete driver even while the network adapter
is being designed, and ensures that observed performance of the
driver is comparable for the emulated and real adapters.
Network Adapter: The network adapter node is a general-
purpose processor board (running END), with a CPU and mem-
ory. Since its main function is to handle data transmission and
reception efficiently, it needs at most a minimal executive to
provide process management and handle interrupts.

Packet transmission is modeled as a transmission-complete
notification after a suitable delay. Since actual data is not trans-
ferred, this does not capture the overhead of cycle stealing dur-
ing DMA data transfers. However, this is also an advantage in
that the system may be configured for arbitrary network speeds,
allowing END to operate at different network speeds.

Packet arrivals can be generated either using a stochastic
model, or using two-way communication. For the purposes of
studying adapter performance, the actual data content is unim-
portant. However, since received data must traverse the protocol
stack, packet headers must be meaningful.
Time Services: END needs time services to simulate transmis-
sion and reception delays in real time. This requires an event
manager to register desired delays, and notify the requesting
node when the time expires, either with an interrupt or simply
setting a completion flag that can be polled by the adapter.

3.3. Two-way Communication Across the “Network”

For two-way communication, we utilize the system VO bus as
the “network” (similar to [9]), with data being transferred from
one adapter node to another (see Figure 3). Though the YO bus
limits the speeds that can be emulated, this approach is quite
useful, since it can be used to verify the functional correct-
ness of protocols and conduct relative performance comparisons
rather than derive absolute performance. If the actual data trans-
mitted is not important, it suffices to copy only the packet head-
ers as long as one accounts for the time to transfer the packet
data. If header lengths are small compared to the packets, VO
bus contention is low; this permits evaluation of adapter perfor-
mance for a wide range of network speeds.

Interface h lay Compbnon
Opmtbns Notlfkatbn

Figure 4. Emulator system configuration.

3.4. Implementation

Figure 4 depicts our implementation of one emulator node (each
additional node is another HOST-END pair; the time device is
shared). The nodes communicate with each other via the VME-
bus. The internal structure of END comprises an emulation core
and several components (described below). The emulation core
is a minimal executive supporting threads, interrupt handling,
and semaphores. It is essentially a cyclic executive that polls
the host for commands, executes them, and notifies the host of
command completion. Its components may be configured and
parameterized to realize any desired adapter behavior.
Host-emulator interface: The host-emulator interface uses
commadresponse queues to exchange information. The inter-
face is determined by the actual commands, and whether syn-
chronization is via interrupts and/or polling.
Data transfer control: In our prototype, no actual data is trans-
ferred, except for packet headers for two-way traffic and pure
reception. We supply generic time models for DMA and PI0
in order to capture the associated timing correctly. DMA has a
fixed, non-zero startup time for each block of memory, and an
incremental cost per byte transferred, while the PI0 has little
or no startup cost, but, typically, a higher incremental cost. In
addition, for PIO, the emulator CPU is idled for the duration of
the PIO, and not allowed to perform any other functions, since
it is supposed to be busy copying data.
Wansmission and reception queuing: Packets can be queued
for various operations during transmission and reception. These
queues are determined by the data type and the operation, and
queuing policies are selected independently for each queue.
FIFO and Earliest Due Date (EDD) queuing policies have been
implemented, and the selection of queues may either be round
robin or based on their relative priorities.
Buffer management: Buffers are allocated for outgoing pack-
ets from a shared pool on the host, while incoming packets are
allocated buffers on the adapter. Buffers on the host and/or
adapter may also be reserved on a per-connection basis [151.
Network interface: The network interface for data transmis-
sion is a delay model. Data transmission may be synchronous
(the emulator waits until the transmission delay elapses), or
asynchronous (the emulator performs other operations during
the “data transmission” delay). The delay services are provided
by the time device, described below.
Time Device: To model a delay operation, END computes the
completion time by adding the desired delay to the current time,
and writes a delay request to the time device. The time device
is a cyclic executive that executes on a processor board without

any OS support, reading delay requests and issuing completion
notifications. A completion function associated with each re-
quest is executed when the time interval expires. In operations
involving more than one emulator (as in two-way communica-
tion), all nodes are notified of the completion. The time de-
vice also provides for creating and destroying event-generating
stochastic processes. Any arbitrary function or stored traces
may be used to determine event arrival times.

END is implemented as a multi-stage device using the above
components. Each sfage corresponds to an activity like data
movement (e.g., copying, transmission) or transformation (e.g.,
encoding, segmentation), and requires certain resources which
are typically shared (e.g., CPU, buffers, buses, network links).
Activities in different stages may proceed concurrently as long
as they do not contend for the same resources.

c

Initialization

4. Emulating the Ancor CIM 250 Using END

In this section, we conduct a case study of the Ancor CIM 250
and emulate it using END. The CIM is a suitable candidate for
this study given that our version of the adapter had several per-
formance bottlenecks [1 11 caused by poor design decisions. To
identify some of the performance characteristics of the CIM, we
have used the results obtained in [13]. Note that END has been
designed independently of the CIM; this study therefore serves
as a fair test of END’S ability to model real adapters.

Our methodology is to first construct a base model represen-
tative of the device. A representative model is one that performs
the same functions and has performance equivalent to that of
the target device. Once the base model is constructed, design
changes can be incorporated in END. Subsequent changes in
observed performance of the modified model would be similar
to those due to similar design modifications in the real adapter.
Constructing a representative model of an existing adapter re-
quires systematic “black box” performance analysis of the de-
vice. While we have implemented receive mechanisms and per-
formed end-to-end experiments, we focus on data transmission
in a single-node configuration with a single transmitting node.

send w r i t e - start transmit sequence - sendwrite ack

4.1. Ancor VME CIM 250

Fiber Channel

The Ancor VME CIM 250 [11 (CIM) is a network adapter for
ANSI Fiber Channel (FC) 3.0 networks. Besides communica-
tion interface hardware, the CIM has an NEC 32 MHz 70236
UO processor, 8MB DRAM, independent DMA controllers, and
VMEbus interface logic. The CIM communicates with the host
using commandresponse FIFOs; it supports commands to initi-
ate read and write operations, set up DMA, and signal the com-
pletion of DMA and network transmission. The CIM polls the
command FIFO for commands from the host, and uses inter-
rupts to notify the host of responses in the response FIFO. A
simplified sequence of the events involved in CIM transmis-
sion is listed in Figure 5 . Similar events occur on reception
as well (see [1, 131 for details). Note that the host may issue
additional commands before a previous one completes. This in-
creases concurrency since different operations may now occur

- Interrupt Request
Transfer data to Fiber Chan-
ne1 networkinterface

c sendtransmit a c k
e Interrupt Request

I c Interrupt Request
DMA I sendaddress list - DMA list of a d d r e s s

I / commands to local memory
DMA data to local memory

c sendaddress a c k

Figure 5. Host-adapter interaction (transmit).

simultaneously. We call the number of incomplete write opera-
tions the pipeline depth on the CIM.

4.2. CIM Functional Model
The END model and the CIM appear functionally identical to
the host if both have the same commands and responses. The
main loop of END polls for commands from the host, executes
them and sends appropriate responses to the host. The host-
END interface is almost identical to the host-CIM interface.
The only difference is that the CIM has hardware support for
commandresponse FIFOs, so the host writes commands to (and
reads responses from) a fixed address in its YO space. In con-
trast, END writes commands to (and read responses from) cir-
cular FIFOs in END’S memory. The functions supported are
adequate to completely define the host-END interface, Le., this
model interacts correctly with the host device driver.

4.3. CIM Performance Emulation
To accurately emulate the CIM using END, it is necessary to
compute the delay functions for the DMA and FC phases. We
gathered information for these functions from three sources: ex-
isting literature [13], our own measurements [I 11, and conver-
sations with staff at Ancor Communications, Inc. Lin et al. [131
characterized the delays of various components of the CIM.
These delays deliver a performance significantly different from
ours since they used a different platform. We utilized only those
measurements that are internal to the CIM, and hence, not af-
fected by the platform. These include the delays for setting up
the DMA and the FC phase. The delays during DMA, for exam-
ple, are computed from measurements made on our platform.
Accurate Base Model: We construct an accurate base model
for the CIM by computing 70 and 7 F , the times for the DMA
and FC phases, respectively. While 7 F is obtained from [13],
‘TD must be computed via measurements since it is platform-
dependent. The definitions and values of the terms used in this
section are given in Table 1. 7 F is given by

(1)
s
3 8

I F (s) = T o + 1-1 x Fd

we compute 7-0 by measuring TZ=’, the transmission time on
the CIM with a pipeline depth of 1, as follows:

7$=’(s) = Mo + 7D(s) + 7 F (s) , (2)

760

Table 1. Important system parameters

Message overhead - FC delay
WOO END DMA delay

Real DMA delay /"
0 /'

7 0 0 t moo

/"
/'

I I I I I I
'0 4096 8192 12288 16384 20480 24576 28672 32768

Message Size (bytes)

Figure 6. Sources of delay in the model.

where M, corresponds to the cost of generating the message,
traversing the protocol stack, and crossing the host-CIM inter-
face for the entire message. 7 D can now be computed as the
only unknown in Eq. (2). Our computed value for 70 showed
that the incremental delay is a non-linear function of S, being
much higher for messages smaller than S,, and lower for larger
messages (see Figure 6), as shown below:

x v , + s x D ; if S < S,

+ (S - Ss) x Di otherwise.
7D(s) = x DO -k s, X Di (3) {
This approximation works well except for the region around
S = 4KB, where the CIM's DMA performance diverges.
Accounting for Concurrency and Contention: When multi-
ple packets are being transmitted or received on the CIM, 70 of
one message may (partially) overlap M, of another, permitting
some concurrency. However, not all operations can occur con-
currently. Both the DMA and FC phases use the CIM's local
memory bus. Hence, for pipeline depth of 2, the DMA and FC
phases occur successively, and may overlap with M,. Since the
DMA and FC phases take longer than M,, the average message
delay with pipeline depth of 2 may be estimated as:

(4)

In Figure 7, Eq. (2) corresponds to the timeline for Mes-
sage 1, while Eq. (4) corresponds to Message 2 (case
1) . However, some of 3, may overlap with other operations.
From empirical observations, the revised equation below yields
good agreement between the CIM and END.

This corresponds to Message 2 (case 2) in Figure 7,
where Td is split into two parts, Tdl and Tdz. Tdl overlaps with
F,, after which the FC operations seize the bus and preempt any
further DMA transfer. The remaining part, Tdz, resumes when
Message 1 completes transmission.
Equivalence of the CIM and the END model: To show the
equivalence of the CIM and its END model, throughput and de-
lay were measured for various message sizes and various values
of pipeline depth. Figure 8 shows the mean throughput for the
CIM and END. The curves for pipeline depth of 1 are almost
identical in both graphs (mean error = 1.1%). The error in-
creases to 3.3%, 6.5% and 7.9% for pipeline depths of 2, 3 and
4, respectively. The reason for this increase in error is that this
model does not capture all the details of the hardware interac-
tions in the CIM, and these interactions increase as the number
of messages increases. Similar results are observed for mes-
sage delays (not shown here). It should be noted that all per-
formance information regarding the CIM was inferred purely
from external measurements and without knowledge of the ex-
act firmware. When designing a real network adapter, knowl-
edge of the exact firmware and hardwarehoftware interactions
would help build even more accurate models. In such cases,
it would be possible not only to determine potential interac-
tions, but, if such interactions were considered undesirable, to
redesign the architecture or firmware to minimize their impact.

5. Improving the Design of Ancor CIM 250
We now demonstrate the use of END as a design tool to evalu-
ate design alternatives to improve the handling of outgoing traf-
fic. Since END emulates a representative model of the CIM, we
may reasonably conclude that performance enhancements ob-
served due to any changes in the END model of the CIM would
be representative of performance enhancements due to similar
changes in the real CIM. We consider two design modifications
to improve performance: (i) simplification of the host-adapter
interface to reduce overhead, and (ii) architectural changes to
increase concurrency in CIM operations.

5.1. Reducing Host-Adapter Interface Overhead

Figure 5 describes the CIM write operation. The host sends
two commands to the CIM, and gets three responses, each with
an interrupt. In the initialization phase, the host and the CIM ex-
change transaction identifiers. However, the initiator of a trans-
action (the host for w r i t e and the CIM for read) can create a
unique transaction ID. The CIM also sends a response for both
the DMA and FC phases, when a single response should suffice.

Message1 1 I I I
I

Mo’ Td FO ’ Fd ‘
Message 2
(Case 1)

I I I

(Case 2) MO Td2 ‘ FO ‘ Fd
Message 2 H

Figure 7. Inter-message overlap during CIM transmissions.

+ pipeline = 4

8 16 32 64 128 256 512 1024 2048 4096 8192 1638432768 8 16 32 64 128 256 512 1024 2048 4096 8192 1638432768
message length (bytes) message length (bytes)

(a) CIM throughput (b) END throughput

Figure 8. Comparison of CIM and END’S transmission throughput. Note that the graph uses a log-log scale,
and throughput increases by about 50% when maximum pipeline depth increases from 1 to 2.

The equations for delay in this case will be almost identical to
Eq. (2) and Eq. (5); only the value of M , will be reduced.

5.2. Exploiting Increased Concurrency

The DMA and FC phases cannot proceed in parallel since they
share the same memory bus. Dual memory banks with inde-
pendent memory buses have been suggested as a cost effective
technique to increase the memory system’s bandwidth, as op-
posed to more expensive memory organizations like dual-ported
memory [181. If alternate transfers are placed in alternate mem-
ory banks (similar to double-buffering), most of the time it will
be possible for the DMA and FC phases to proceed in parallel.
With pipeline depth of 1, there is no benefit to having two buses.
When the pipeline depth is 2, however, the DMA and FC phases
proceed concurrently. As in Eq. (5) , the message overhead and
copy time for the address list get completely overlapped with
the data transfer time, and the message delay is determined by
the slower of the DMA or the FC phases:

5.3. Performance of the Improved CIM

We modified the END model of the CIM to reflect the changes
described above. For the changes in the interface, modifications
were required both in the device driver and END. To capture the
performance with dual ported memory banks, it suffices to mod-

ify the model so that DMA and FC phases proceed in parallel,
i.e., the FC phase no longer preempts the DMA phase.

With a pipeline depth of 1 (Figure 9(a)), since at most
one message is processed at a time, there is no benefit from
dual memory banks; all performance improvements arise from
the faster interface. Throughput increases by 12-15%, with a
greater increase for smaller packets since, in these cases, the
cost of the interface was more significant compared to the cost
of transmission’. With a pipeline depth of 2 (Figure 9(b)),
throughput rises significantly due to the dual memory banks.
For small messages, there is not much additional concurrency,
and the throughput increases by about 8%. For larger messages,
the throughput increases by as much as 28%. For very large
messages, since the FC phase is much faster than the DMA
phase, the cost of the DMA phase begins to dominate again,
and the improvements decline to about 17%. With both fea-
tures, throughput increases by 15-50%.

6. General Applicability of END
As outlined below, END can be readily ported to different plat-
forms and utilized in several interesting ways.
Portability and Scalablity of END: END is written almost en-
tirely in C (about 3000 lines of code for END and 2000 lines
for the time device) and is easily portable. It requires a minimal

‘The FC phase has a large setup cost, and this dominates the transmission
time for very small messages. This bounds the improvement in throughput.

762

-
Y
2 6 o -.--0 DUalMemotyBanks(DM6)

0- - -0 Fast Interface (FI)

- 2540 - + FI and DMB
di

p'

executive for process management and interrupt handling ser-
vices, and a high resolution clock for time services, all widely
available on other platforms.

While END operates in real time and interacts with a real
system, the END model is essentially a real-time simulation
and only as accurate as the underlying model. Since END runs
on a general-purpose processor board, it may not always be
able to represent all hardwarelfirmware interactions on an ac-
tual adapter. Further, the accuracy of END is limited by emu-
lation overheads and the relative CPU speed, interrupt latency,
and memory bandwidth on END and the target device. Some of
these concerns can be circumvented by using a processor signif-
icantly faster than the host CPU. With two processor boards per
node, and nodes interacting across the 1/0 bus, bus contention
may limit the scalability of END. I/O bus contention may be
partially alleviated by only exchanging packet headers instead
of the entire data payload.
END as a Prototype: As mentioned in Section 4, the device
drivers for the real and emulated adapters were almost identi-
cal. The high degree of code reusability afforded by END
allows software development and testing to proceed in parallel
with hardware design and implementation. In addition, the END
model itself can serve as a prototype for the adapter firmware.
END as a Programmable Traffic Source: END can be config-
ured as a special network interface in the host operating system
to act as a stochastic source of network traffic. Applications or
higher software layers can open this interface and "program" it
to generate network traffic with characteristics such as a given
arrival distribution, source and destination addressedports, etc.
This could potentially be extremely useful to designers for de-
bugging and/or evaluating protocol implementations.

In other work [lo], we have demonstrated the versatility of
END by studying a range of issues affecting end host commu-
nication subsystem design, as summarized below.
Quality-of-Service: Many applications have specific quality-
of-service (QoS) requirements on communication, such as a
minimum bandwidth and maximum delay in end-to-end com-

I

Y .&-
a 0- - -0 Fast Interface (FI) ,,rQ"
a .E 6 P o - -0 Dual M m O t y Banks (D M F ~ ~ @ "
2500 - + FI and DMB ,,#"'(* .RC -

s ,5' &,.. &..'
.,/'

,.:/
,.J.'

..e .I , , GI' _...

munication. Support for QoS is necessary not only in the net-
work, but also in the end-host operating system and commu-
nication subsystem. We studied network adapter design to sup-
port QoS for two distinct network configurations: point-to-point
networks and shared networks. Our study highlighted the trade-
offs involved in partitioning QoS support between the adapter
and the host, especially the impact of the relationship between
available CPU processing capacity and network bandwidth.
Receive Livelock In a poorly designed communication sub-
system, a network host can suffer from receive livelock [171 un-
der sustained network input overload. In this condition, since
packet reception is performed at a very high priority, the host
is swamped with handling arriving packets, to the extent that
effective system throughput falls to zero. Receive livelock may
be avoided via careful modifications applied to the operating
system [16]. We used END to propose and evaluate intelli-
gent interface backof, a novel approach to eliminating receive
livelock in which the adapter dynamically adjusts its interrupt
generation rate based on host processing load.

2wo

1500

1wo

!%I

7. Related Work

,/ / . ,.8

P
,: I' ,' _...

2M)o - ,+i' ,!' ,.&" -

i' 5' , , ' ., .."
- 1500 - ,;*.' ,/' ,' ..:. -

/"
,fl .*'. ,.' ; ,' ...'

-

;' ; ,
#" , , _.. a .,. -

' .4

i<,,'fl .' ..5'
.I. ,' .:' .' ,' ...'. ,/ I .

- J' ./' - low L',.

,/:-0 p . 0 I I I

,,/a ./,O

-
0,,/

I I I
4096 8192 16384 32768 "OL48 4096 8192 16384 32768 2048

Our work relates to the following areas of research.
Communication subsystem design and performance: Several
researchers have studied the issues affecting the design and per-
formance of network adapters [6, 17, 21, 81, and communica-
tion subsystems in general [7, 191. While many of these studies
have influenced our work, we have focused as much on the de-
sign process, as the design itself.
Simulation-based evaluation: Recently, significant atten-
tion has been given to accurate, low-level simulation to study
machine architectures while capturing operating system over-
heads [22,2]. Other efforts have focused on protocol-level sim-
ulation with the ability to run the actual protocol stack during
simulation [4], and network-level simulation with a focus on
routing and end-to-end protocol performance [12, 141. Most
relevant to our work is architecture-level and protocol-level sim-

763

ulation. Since END executes on its own processor concurrently
with the host, it avoids any intrusion on the host operating sys-
tem executing on the host CPU. More importantly, END utilizes
actual hardware resources on the host (system I/O bus, inter-
rupts) just as a real adapter would; capturing events at this low
granularity in simulation models would require highly accurate
resource models and render the simulation extremely slow.
Network adapter as sourcehink of data: Network adapters have
been modeled as simple data sources and sinks for parallel
protocol implementations [3], with the models executing on a
separate processor within the host. Besides modeling network
sourcelsink behavior, our approach captures significantly more
details of adapter design and interaction with the protocol stack.
I/O device modeling: Other researchers have studied the issues
involved in modeling disks [23]. While the focus of our work
is network device emulation, our emulation framework can be
extended to emulate disks and interact with the file system layer
in the operating system. This would provide a reasonable mech-
anism to study storage subsystem performance.

8. Conclusions and F’uture Work

In this paper, we described the architecture and implementation
of END, a tool for designing network adapters via device emula-
tion. We used END to accurately model a real network adapter,
the Ancor VME CIM 250, and extend its original design to
remove performance bottlenecks. These design improvements
yielded throughput increases of 15-50%, depending on the traf-
fic load. We argued that END is a versatile tool that can be
employed by device designers to compare and evaluate design
alternatives before actually building a prototype.

We have implemented reception functionality in END, us-
ing both true two-way communication as well as synthetic traf-
fic generation. We have also added a control interface to END
through which protocol designers and applications can request
various synthetic traffic patterns and exercise dynamic control
over incoming traffic. END is also being extended to make it
more generally applicable, especially in WAN environments.
This will enable us to model larger networks and study end-to-
end protocols. To further enhance the usability of END, we are
considering developing libraries for interrupt wrappers, FIFO
and priority queues, and stochastic models for traffic sources.
Finally, we would also like to extend END to inject communi-
cation faults in a data stream, allowing it to be used to study the
reliability and performance of communication protocols.

References

ANCOR Communications, Inc. VME CIM 250 ReferenceAJser’s
Manual, 1992.
R. C. Bedichek. Talisman: Fast and accurate multicomputer sim-
ulation. In Proceedings of Sigmetrics 95/Performance 95, pages
14-24, May 1995.
M. Bjorkman and P. Gunningberg. Locking effects in multi-
processor implementations of protocols. In Proc. of ACM SIG-
COMM, pages 74-83, September 1993.

[4] L. S. Brakmo and L. L. Peterson. Experiences with network
simulation. In Proceedings of ACM Sigmetrics 96, pages 80-90,
May 1996.

[5] R. K. Budhia, P. M. Melliar-Smith, L. E. Moser, and R. Miller.
Higher performance and implementation independence: Down-
loading a protocol onto a communication card. In Proc. of the
Intl. Con$ on Comm., June 1995.

[6] C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Edwards,
and J. Lumley. Afterburner. IEEE Network Magazine, pages
36-43, July 1993.

[7] P. Druschel, M. Abbott, M. Pagels, and L. Peterson. Network
subsystem design. IEEE Network Magazine, pages 8-17, July
1993.

[SI P. Druschel, L. L. Peterson, and B. S. Davie. Experiences with a
high-speed network adaptor: A software perspective. In Proc. of
ACM SIGCOMM, pages 2-13, London, UK, October 1994.

[9] A. Gokhale and D. C. Schmidt. Measuring the performance of
communication middleware on high-speed networks. In Proc. of
ACM SIGCOMM, August 1996.

[103 A. Indiresan. Exploting Quality-ofservice Issues in Network
Adapter Design. PhD thesis, Department of Electrical Engineer-
ing and Computer Science, The University of Michigan, Ann
Arbor, MI 48109, October 1997.

[l 11 A. Indiresan, A. Mehra, and K. Shin. Design tradeoffs in imple-
menting real-time channels on bus-based multiprocessor hosts.
Technical Report CSE-TR-238-95, University of Michigan, Apr.
1995.

[12] S. Keshav. REAL : A network simulator. UCB CS Tech Report
881472, University of California, Berkeley, December 1988.

[13] M. Lin, J. Hsieh, D. H. C. Du, and J. A. MacDonald. Perfor-
mance of high-speed network YO subsystems: Case study of a
fibre channel network. In Supercomputing ’94, Nov. 1994.

[14] S. McCanne and S. Floyd. NS (network simulator), 1995. Avail-
able via http:llwww-nrg.ee.Ibl.gov1ns.

[15] A. Mehra, A. Indiresan, and K. Shin. Structuring communication
software for quality-of-service guarantees. In Proc. 1742 Real-
Time Systems Symposium, pages 155-164, Dec. 1996.

[16] J. Mogul and K. K. Ramakrishnan. Eliminating receive livelock
in an interrupt-driven kernel. ACM Trans. Computer Systems,

[17] K. K. Ramakrishnan. Performance considerations in designing
network interfaces. IEEE Journal on Selected Areas in Commu-
nications, 11(2):203-219, February 1993.

[1 81 M. A. R. Saghir, P. Chow, and C. G. Lee. Exploiting dual data-
memory in digital signal processors. In Proc. of the 7rh ACM
con$ on Arch. Support for Prog. Lang. and Oper. Sys., October
1996.

[19] D. C. Schmidt and T. Suda. Transport system architecture ser-
vices for high-performance communications systems. IEEE
Journal on Selected Areas in Communications, 1 1 (4):489-506,
May 1993.

[20] J. M. Smith and C. B. S. Traw. Giving applications access to
Gbls networking. IEEE Nemork Magazine, pages 44-52, July
1993.

[21] P. A. Steenkiste. A systematic approach to host interface design
for high-speed networks. IEEE Computer, pages 47-57, March
1994.

2221 E. Witchell and M. Rosenblum. Embra: Fast and flexible ma-
chine simulation. In Proceedings of ACM Sigmetrics 96, pages
68-79, May 1996.

[23] B. L. Worthington, G. R. Ganger, and Y. N. Patt. On-line extrac-
tion of SCSI disk drive parameters. In Proceedings of Sigmetrics
95/Performance95, pages 146-156, May 1995.

15(3):217-252, AUg. 1997.

764

http:llwww-nrg.ee.Ibl.gov1ns

