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Abstract 

We present the design and implementation of Emulated Network 
Device (END), a network adapter design tool thatfacilitates ac- 
curate evaluation of altemative adapter designs. Using device 
emulation, END permits designers to couple a representative 
model of an adapter with a real host and its communication 
sofhuare. Different adapter designs can be evaluated and com- 
pared accurately in a realistic setting, i.e., while capturing host- 
adapter concurrency and interaction overheads, before building 
a prototype. We present the architectural framework adopted by 
END and demonstrate its feasibility via a case study of a com- 
mercial network adaptel: Several design improvements to alle- 
viate pe~ormance bottlenecks are realized and evaluated using 
END, highlighting its utility as a network adapter design tool. 

1. Introduction 
End-to-end communication performance depends not only on 
the underlying networking technology, but also on the end-host 
operating system as well as the interface between the host and 
the network. As network speeds increase, the performance bot- 
tleneck tends to shift to the end host, in particular to the hard- 
ware and software components of the host communication sub- 
system. While communication software primarily comprises 
the protocols, the communication hardware at a host primar- 
ily comprises the network adapter and the interface between the 
host and the adapter. The design of the network adapter, and 
the division of functionality between the adapter and the host 
communication software, can have a significant impact on the 
performance delivered to applications. 

In order to design network adapters that integrate well with 
the host communication software and deliver good perfor- 
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mance, one must study the impact of various design parame- 
ters in a realistic setting, i.e., when the network adapter is con- 
trolled and accessed by the communication software on the tar- 
get host platform. The performance evaluation methodology 
employed must consider the hardware components and over- 
heads involved (such as the system I/O bus, caches, device in- 
terrupts), and capture the hardware-software concurrency and 
dynamic host-adapter interaction without excessive intrusion. 

In this paper, we propose network device emulation as a 
mechanism to study the hardware-software interface for com- 
munication subsystems, and to help design network adapters 
that integrate well with the host operating system and applica- 
tions. In particular, we present the Emulated Network Device 
(END), a network adapter design tool that interfaces to a real 
communication protocol stack on the host via the system I/O 
bus, a typical configuration for many network adapters [17]. 
This allows END to generate the same overheads as real 
adapters. Further, by using a synthetic network model as a sink 
and source of traffic, END can emulate all the operations of a 
network adapter without interfacing to a real network. 

Designers can use END to experiment with network adapter 
design, including the partitioning of functionality between the 
host communication software and the hardwarelfirmware on the 
network adapter, before actually prototyping the adapter. The 
experimentation can be performed directly on the target host 
platform, with END running concurrently on its own processor, 
thus accounting for overheads and host architectural features 
that influence communication performance. END thus permits 
hardware-software co-design, where adapter design tradeoffs 
can be explored early in the design cycle. 

Device emulation has been used before to model source/sink 
behavior of I/O devices (disks, networks, sensors). Our distinct 
contribution lies in applying device emulation to capture the de- 
tails of network adapter design. END can be used in two ways: 
(i) to design a new network adapter, and (ii) to explore design 
alternatives that improve the performance of an existing proto- 
type. We have also used END to study QoS issues in adapter de- 
sign and solutions to the receive livelock problem [lo]. In this 
paper, we demonstrate how END was used to explore design 
alternatives for an existing device by conducting a case study 

0-7803-4383-2/98/$10.00 0 1998 IEEE. 756 

http://cisco.com
mailto:eecs.umich.edu


of the Ancor W E  CIM 250, an adapter for the Fiber Channel 
networking technology. This is achieved by first building a rep- 
resentative model of the device, called the base model, using 
END. The base model is then modified to incorporate design 
changes that improve communication performance for outgo- 
ing traffic. We show that with these changes, communication 
throughput increases by up to 5096, suggesting that similar im- 
provements can be expected on the real device as well. 

In the rest of the paper, Section 2 highlights issues in net- 
work adapter design and compares device emulation to other 
evaluation techniques. The architectural framework and our 
implementation of END are presented in Section 3. Section 4 
presents the case study of the Ancor CIM 250 network adapter 
and its emulation using END. Section 5 illustrates use of END 
to evaluate design improvements for outgoing traffic. The gen- 
eral applicability of END is highlighted in Section 6. Section 7 
discusses related work, and Section 8 concludes the paper. 

2. Network Adapter Design Issues 
In this section we discuss various issues involved in network 
adapter design. Our goal is to identify the architectural com- 
ponents that determine the mechanics and performance of data 
transfer between the host and the network via the network 
adapter. The architectural framework of END is based on these 
architectural components. We also compare and contrast device 
emulation with other performance evaluation techniques. 

2.1. Factors Affecting Communication Performance 

Within end hosts, communication performance is largely de- 
termined by the efficiency with which communication software 
and hardware/firmware components interact to move data be- 
tween applications and the network (Figure l(a)). Data trans- 
fer involves traversing a protocol stack, moving data between 
the host memory and the network adapter, and between the net- 
work adapter and the network. Figure l(b) illustrates the five 
basic components of a typical network adapter: host-adapter 
interface, data-transfer control module, transmissiodreception 
queuing module, buffer-management module, and adapter- 
network interface. Typically, most network adapters are ac- 
cessed by the host via the system I/O bus [ 171, and employ one 
or more general-purpose microprocessors and custom hardware 
that operates under control of the adapter firmware. 
Host-Adapter Interface: This interface typically has a device 
driver running on the host, and a “host driver” on the adapter. 
The two drivers exchange information across the system I/O 
bus, and may synchronize their operations either via interrupts 
and/or polling [20]. 
Adapter Internals: The following three modules provide the 
internal functionality of the adapter: 
Data Transfer Control: Data transfer between host and adapter 
memory may be via DMA or programmed I/O (PIO). PI0 has 
no startup latency, but requires the CPU for the duration of the 
transfer, while the CPU is required only to set up the DMA. 
TdRx Queuing: Best-effort adapters may provide simple first- 
in-first-out (FIFO) queuing of packets with deep pipelining of 
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Figure 2. Simulation vs emulation. 

operations on the adapter. This delivers high throughput by ex- 
ploiting the overlap between, say, DMA of one packet and trans- 
mission of another, and keeping the overheads of queuing low. 
More sophisticated queuing and scheduling algorithms may be 
required when providing per-connection QoS guarantees. 
Buffer Management: The adapter may need to manage packet 
buffers that may reside either in adapter or host memory. It must 
provide buffer management policies, such as reserving buffers 
for connections with QoS guarantees, as well as handle buffer 
overload conditions correctly. 
Adapter-Network Interface: The adapter may use PI0 or 
DMA to move data between the network and packet buffers. 
If packet buffers reside in host memory, the adapter needs to in- 
form the host on completion of packet transmission so that the 
buffer may be reused. On packet reception, it must stage data in 
its buffers and subsequently transfer the data to the host. 

2.2. Design and Evaluation Techniques 

To design a network adapter that meets desired performance re- 
quirements, one must study design alternatives in a realistic set- 
ting, Le., when the network adapter interacts with the communi- 
cation software on the target host platform. Several techniques 
may be used to design and evaluate network devices: mathe- 
matical modeling, simulation, emulation and prototyping. 

Mathematical modeling is typically used to study the queu- 
ing behavior of network traffic. Though mathematical models 
are relatively inexpensive to develop for simple systems, they 
rarely account for system overheads encountered in practice. 
Detailed models capturing concurrency, contention, and com- 
ponent interaction in real systems rapidly become intractable. 

(Trace-driven) simulation has several advantages [2]. Since 
simulators are built in software, they are usually easier and 
cheaper to build than real systems and can be readily modified 
to test new features and interfaces. However, a simulator typi- 
cally has no real system components and must be accurately pa- 
rameterized via performance measurements. Exceptions to this 
do exist in approaches that execute actual software under con- 
trol of the simulator [4]. However, such approaches may not be 
applicable when hardware components (such as caches and de- 
vice interrupts) must also be considered and hardware-software 
concurrency and dynamic interaction captured in the evaluation. 
Further, simulation is typically much slower than the execution 
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Figure 1. Focus of this paper. 

of real systems. Increasing the accuracy of the simulation model 
increases its cost while further slowing it down. 

Prototyping a device and interfacing to higher software lay- 
ers is time-consuming and expensive. While highly accurate, 
prototypes are not easily modifiable. The on-board firmware 
may be modified to study different design options [8], or one 
may employ programmable adapters [ 5 ]  or use FPGAs for some 
hardware components, but the internal hardware architecture is 
typically impossible to modify without developing a new proto- 
type. More importantly, hardware engineers designing network 
adapters are often far removed from the concerns of those writ- 
ing the communication software, and vice versa, producing a 
design poorly integrated with the host operating system. 

2.3. The Case for Device Emulation 

Device emulation shares the advantages of simulation in that it 
is a flexible technique that allows rapid evaluation of various 
design alternatives. In contrast to a simulator, an emulator is a 
module that interfaces with a real host (Figure 2(b)), giving the 
latter the impression that it is interacting with the actual sub- 
system being emulated in real-time. For trace-driven simula- 
tion (Figure 2(a)), the target machine is instrumented to gener- 
ate run-time traces that are fed as input to the device simulator. 
Not only must the host software be instrumented to generate 
sufficiently detailed traces, the instrumentation code may be in- 
trusive enough to disturb the timing (and hence the sequence) 
of important events. Device emulation does not require that 
the target machine be instrumented, as long as it has necessary 
driver software to communicate with the device emulator. 

END emulates a network adapter and interfaces with the tar- 
get host, giving the impression that the host is communicating 
with a real network. This has several significant advantages. 
Interfacing a device emulator to the target host allows adapter 
design tradeoffs to be evaluated in the presence of applications, 
operating system overheads, interrupts, etc. This helps iden- 
tify design limitations and bottlenecks early in the design cycle. 
Further, since device emulation is carried out on the target plat- 

form, it allows development and testing of host software that 
interfaces to the device, and rapid integration of the hardware 
device when it becomes available. 

3. END Emulation Architecture 
In this section, we present the emulation framework for END, 
define the functional interface it must export to the host, and 
describe our prototype implementation. 

3.1. Host View of the Network 

The host views the network adapter as a sink for data transmis- 
sion, and a source for data reception. It exchanges commands 
and data with the adapter, the timing of these events being de- 
termined by network characteristics and traffic conditions. To 
accurately emulate a network adapter, END must export to the 
host the same functional interface as, and have performance 
characteristics similar to, that of a real adapter. 

END interacts with the host like a real device, exchang- 
ing commandddata and synchronizing via interrupts or polling. 
Typically, the communication subsystem acknowledges data 
transmission after a delay determined by the size of data, and 
the system and network load. As long as applications do not 
expect acknowledgments, all they see is data being transmitted 
at a certain rate. A transmitting application will not be able to 
distinguish between END and a real network as long as END 
captures this timing behavior. For data reception, END gener- 
ates incoming traffic based either on stochastic models or real 
traffic traces. Genuine two-way traffic may also be generated. 

3.2. Emulator Components 

Figure 3 shows our emulator-based architecture for studying 
adapter design. Each network “node” corresponds to a host and 
an emulator processor board on the same UO bus. 
Host Node: The host node is precisely the target host. Com- 
municating applications send and receive data via the protocol 
stack which has a device driver for the target network adapter. 
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Figure 3. END-based emulation architecture. 

Though this driver communicates with END, it implements the 
real host-adapter interface. This permits the implementation 
and testing of a complete driver even while the network adapter 
is being designed, and ensures that observed performance of the 
driver is comparable for the emulated and real adapters. 
Network Adapter: The network adapter node is a general- 
purpose processor board (running END), with a CPU and mem- 
ory. Since its main function is to handle data transmission and 
reception efficiently, it needs at most a minimal executive to 
provide process management and handle interrupts. 

Packet transmission is modeled as a transmission-complete 
notification after a suitable delay. Since actual data is not trans- 
ferred, this does not capture the overhead of cycle stealing dur- 
ing DMA data transfers. However, this is also an advantage in 
that the system may be configured for arbitrary network speeds, 
allowing END to operate at different network speeds. 

Packet arrivals can be generated either using a stochastic 
model, or using two-way communication. For the purposes of 
studying adapter performance, the actual data content is unim- 
portant. However, since received data must traverse the protocol 
stack, packet headers must be meaningful. 
Time Services: END needs time services to simulate transmis- 
sion and reception delays in real time. This requires an event 
manager to register desired delays, and notify the requesting 
node when the time expires, either with an interrupt or simply 
setting a completion flag that can be polled by the adapter. 

3.3. Two-way Communication Across the “Network” 

For two-way communication, we utilize the system VO bus as 
the “network” (similar to [9]), with data being transferred from 
one adapter node to another (see Figure 3). Though the YO bus 
limits the speeds that can be emulated, this approach is quite 
useful, since it can be used to verify the functional correct- 
ness of protocols and conduct relative performance comparisons 
rather than derive absolute performance. If the actual data trans- 
mitted is not important, it suffices to copy only the packet head- 
ers as long as one accounts for the time to transfer the packet 
data. If header lengths are small compared to the packets, VO 
bus contention is low; this permits evaluation of adapter perfor- 
mance for a wide range of network speeds. 

Interface h lay  Compbnon 
Opmtbns  Notlfkatbn 

Figure 4. Emulator system configuration. 

3.4. Implementation 

Figure 4 depicts our implementation of one emulator node (each 
additional node is another HOST-END pair; the time device is 
shared). The nodes communicate with each other via the VME- 
bus. The internal structure of END comprises an emulation core 
and several components (described below). The emulation core 
is a minimal executive supporting threads, interrupt handling, 
and semaphores. It is essentially a cyclic executive that polls 
the host for commands, executes them, and notifies the host of 
command completion. Its components may be configured and 
parameterized to realize any desired adapter behavior. 
Host-emulator interface: The host-emulator interface uses 
commadresponse queues to exchange information. The inter- 
face is determined by the actual commands, and whether syn- 
chronization is via interrupts and/or polling. 
Data transfer control: In our prototype, no actual data is trans- 
ferred, except for packet headers for two-way traffic and pure 
reception. We supply generic time models for DMA and PI0 
in order to capture the associated timing correctly. DMA has a 
fixed, non-zero startup time for each block of memory, and an 
incremental cost per byte transferred, while the PI0 has little 
or no startup cost, but, typically, a higher incremental cost. In 
addition, for PIO, the emulator CPU is idled for the duration of 
the PIO, and not allowed to perform any other functions, since 
it is supposed to be busy copying data. 
Wansmission and reception queuing: Packets can be queued 
for various operations during transmission and reception. These 
queues are determined by the data type and the operation, and 
queuing policies are selected independently for each queue. 
FIFO and Earliest Due Date (EDD) queuing policies have been 
implemented, and the selection of queues may either be round 
robin or based on their relative priorities. 
Buffer management: Buffers are allocated for outgoing pack- 
ets from a shared pool on the host, while incoming packets are 
allocated buffers on the adapter. Buffers on the host and/or 
adapter may also be reserved on a per-connection basis [ 151. 
Network interface: The network interface for data transmis- 
sion is a delay model. Data transmission may be synchronous 
(the emulator waits until the transmission delay elapses), or 
asynchronous (the emulator performs other operations during 
the “data transmission” delay). The delay services are provided 
by the time device, described below. 
Time Device: To model a delay operation, END computes the 
completion time by adding the desired delay to the current time, 
and writes a delay request to the time device. The time device 
is a cyclic executive that executes on a processor board without 



any OS support, reading delay requests and issuing completion 
notifications. A completion function associated with each re- 
quest is executed when the time interval expires. In operations 
involving more than one emulator (as in two-way communica- 
tion), all nodes are notified of the completion. The time de- 
vice also provides for creating and destroying event-generating 
stochastic processes. Any arbitrary function or stored traces 
may be used to determine event arrival times. 

END is implemented as a multi-stage device using the above 
components. Each sfage corresponds to an activity like data 
movement (e.g., copying, transmission) or transformation (e.g., 
encoding, segmentation), and requires certain resources which 
are typically shared (e.g., CPU, buffers, buses, network links). 
Activities in different stages may proceed concurrently as long 
as they do not contend for the same resources. 

c 

Initialization 

4. Emulating the Ancor CIM 250 Using END 

In this section, we conduct a case study of the Ancor CIM 250 
and emulate it using END. The CIM is a suitable candidate for 
this study given that our version of the adapter had several per- 
formance bottlenecks [ 1 11 caused by poor design decisions. To 
identify some of the performance characteristics of the CIM, we 
have used the results obtained in [13]. Note that END has been 
designed independently of the CIM; this study therefore serves 
as a fair test of END’S ability to model real adapters. 

Our methodology is to first construct a base model represen- 
tative of the device. A representative model is one that performs 
the same functions and has performance equivalent to that of 
the target device. Once the base model is constructed, design 
changes can be incorporated in END. Subsequent changes in 
observed performance of the modified model would be similar 
to those due to similar design modifications in the real adapter. 
Constructing a representative model of an existing adapter re- 
quires systematic “black box” performance analysis of the de- 
vice. While we have implemented receive mechanisms and per- 
formed end-to-end experiments, we focus on data transmission 
in a single-node configuration with a single transmitting node. 

send w r i t e  - start transmit sequence - sendwrite  ack 

4.1. Ancor VME CIM 250 

Fiber Channel 

The Ancor VME CIM 250 [ 11 (CIM) is a network adapter for 
ANSI Fiber Channel (FC) 3.0 networks. Besides communica- 
tion interface hardware, the CIM has an NEC 32 MHz 70236 
UO processor, 8MB DRAM, independent DMA controllers, and 
VMEbus interface logic. The CIM communicates with the host 
using commandresponse FIFOs; it supports commands to initi- 
ate read and write operations, set up DMA, and signal the com- 
pletion of DMA and network transmission. The CIM polls the 
command FIFO for commands from the host, and uses inter- 
rupts to notify the host of responses in the response FIFO. A 
simplified sequence of the events involved in CIM transmis- 
sion is listed in Figure 5 .  Similar events occur on reception 
as well (see [ 1, 131 for details). Note that the host may issue 
additional commands before a previous one completes. This in- 
creases concurrency since different operations may now occur 

- Interrupt Request 
Transfer data to Fiber Chan- 
ne1 networkinterface 

c sendtransmit  a c k  
e Interrupt Request 

I c Interrupt Request 
DMA I sendaddress list - DMA list of a d d r e s s  

I /  commands to local memory 
DMA data to local memory 

c sendaddress a c k  

Figure 5. Host-adapter interaction (transmit). 

simultaneously. We call the number of incomplete write opera- 
tions the pipeline depth on the CIM. 

4.2. CIM Functional Model 
The END model and the CIM appear functionally identical to 
the host if both have the same commands and responses. The 
main loop of END polls for commands from the host, executes 
them and sends appropriate responses to the host. The host- 
END interface is almost identical to the host-CIM interface. 
The only difference is that the CIM has hardware support for 
commandresponse FIFOs, so the host writes commands to (and 
reads responses from) a fixed address in its YO space. In con- 
trast, END writes commands to (and read responses from) cir- 
cular FIFOs in END’S memory. The functions supported are 
adequate to completely define the host-END interface, Le., this 
model interacts correctly with the host device driver. 

4.3. CIM Performance Emulation 
To accurately emulate the CIM using END, it is necessary to 
compute the delay functions for the DMA and FC phases. We 
gathered information for these functions from three sources: ex- 
isting literature [13], our own measurements [I 11, and conver- 
sations with staff at Ancor Communications, Inc. Lin et al. [ 131 
characterized the delays of various components of the CIM. 
These delays deliver a performance significantly different from 
ours since they used a different platform. We utilized only those 
measurements that are internal to the CIM, and hence, not af- 
fected by the platform. These include the delays for setting up 
the DMA and the FC phase. The delays during DMA, for exam- 
ple, are computed from measurements made on our platform. 
Accurate Base Model: We construct an accurate base model 
for the CIM by computing 70 and 7 F ,  the times for the DMA 
and FC phases, respectively. While 7 F  is obtained from [13], 
‘TD must be computed via measurements since it is platform- 
dependent. The definitions and values of the terms used in this 
section are given in Table 1. 7 F  is given by 

(1) 
s 
3 8  

I F ( s )  = T o  + 1-1 x Fd 

we compute 7-0 by measuring TZ=’, the transmission time on 
the CIM with a pipeline depth of 1, as follows: 

7$=’(s) = Mo + 7D(s) + 7 F ( s ) ,  (2) 
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Table 1. Important system parameters 

Message overhead - FC delay 
WOO END DMA delay 

Real DMA delay /" 
0 /' 

7 0 0 t  moo 

/" 
/' 

I I I I I I 
'0 4096 8192 12288 16384 20480 24576 28672 32768 

Message Size (bytes) 

Figure 6. Sources of delay in the model. 

where M, corresponds to the cost of generating the message, 
traversing the protocol stack, and crossing the host-CIM inter- 
face for the entire message. 7 D  can now be computed as the 
only unknown in Eq. (2). Our computed value for 70 showed 
that the incremental delay is a non-linear function of S, being 
much higher for messages smaller than S,,  and lower for larger 
messages (see Figure 6), as shown below: 

x v , + s x D ;  if S < S, 

+ ( S  - Ss) x Di otherwise. 
7D(s) = x DO -k s, X Di (3) { 
This approximation works well except for the region around 
S = 4KB,  where the CIM's DMA performance diverges. 
Accounting for Concurrency and Contention: When multi- 
ple packets are being transmitted or received on the CIM, 70 of 
one message may (partially) overlap M, of another, permitting 
some concurrency. However, not all operations can occur con- 
currently. Both the DMA and FC phases use the CIM's local 
memory bus. Hence, for pipeline depth of 2, the DMA and FC 
phases occur successively, and may overlap with M,. Since the 
DMA and FC phases take longer than M,, the average message 
delay with pipeline depth of 2 may be estimated as: 

(4) 

In Figure 7, Eq. (2) corresponds to the timeline for Mes- 
sage 1, while Eq. (4) corresponds to Message 2 (case 
1) . However, some of 3, may overlap with other operations. 
From empirical observations, the revised equation below yields 
good agreement between the CIM and END. 

This corresponds to Message 2 (case 2 ) in Figure 7, 
where Td is split into two parts, Tdl and Tdz. Tdl overlaps with 
F,, after which the FC operations seize the bus and preempt any 
further DMA transfer. The remaining part, Tdz, resumes when 
Message 1 completes transmission. 
Equivalence of the CIM and the END model: To show the 
equivalence of the CIM and its END model, throughput and de- 
lay were measured for various message sizes and various values 
of pipeline depth. Figure 8 shows the mean throughput for the 
CIM and END. The curves for pipeline depth of 1 are almost 
identical in both graphs (mean error = 1.1%). The error in- 
creases to 3.3%, 6.5% and 7.9% for pipeline depths of 2, 3 and 
4, respectively. The reason for this increase in error is that this 
model does not capture all the details of the hardware interac- 
tions in the CIM, and these interactions increase as the number 
of messages increases. Similar results are observed for mes- 
sage delays (not shown here). It should be noted that all per- 
formance information regarding the CIM was inferred purely 
from external measurements and without knowledge of the ex- 
act firmware. When designing a real network adapter, knowl- 
edge of the exact firmware and hardwarehoftware interactions 
would help build even more accurate models. In such cases, 
it would be possible not only to determine potential interac- 
tions, but, if such interactions were considered undesirable, to 
redesign the architecture or firmware to minimize their impact. 

5. Improving the Design of Ancor CIM 250 
We now demonstrate the use of END as a design tool to evalu- 
ate design alternatives to improve the handling of outgoing traf- 
fic. Since END emulates a representative model of the CIM, we 
may reasonably conclude that performance enhancements ob- 
served due to any changes in the END model of the CIM would 
be representative of performance enhancements due to similar 
changes in the real CIM. We consider two design modifications 
to improve performance: (i) simplification of the host-adapter 
interface to reduce overhead, and (ii) architectural changes to 
increase concurrency in CIM operations. 

5.1. Reducing Host-Adapter Interface Overhead 

Figure 5 describes the CIM write operation. The host sends 
two commands to the CIM, and gets three responses, each with 
an interrupt. In the initialization phase, the host and the CIM ex- 
change transaction identifiers. However, the initiator of a trans- 
action (the host for w r i  t e  and the CIM for read) can create a 
unique transaction ID. The CIM also sends a response for both 
the DMA and FC phases, when a single response should suffice. 
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Figure 7. Inter-message overlap during CIM transmissions. 
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Figure 8. Comparison of CIM and END’S transmission throughput. Note that the graph uses a log-log scale, 
and throughput increases by about 50% when maximum pipeline depth increases from 1 to 2. 

The equations for delay in this case will be almost identical to 
Eq. (2) and Eq. (5); only the value of M ,  will be reduced. 

5.2. Exploiting Increased Concurrency 

The DMA and FC phases cannot proceed in parallel since they 
share the same memory bus. Dual memory banks with inde- 
pendent memory buses have been suggested as a cost effective 
technique to increase the memory system’s bandwidth, as op- 
posed to more expensive memory organizations like dual-ported 
memory [ 181. If alternate transfers are placed in alternate mem- 
ory banks (similar to double-buffering), most of the time it will 
be possible for the DMA and FC phases to proceed in parallel. 
With pipeline depth of 1, there is no benefit to having two buses. 
When the pipeline depth is 2, however, the DMA and FC phases 
proceed concurrently. As in Eq. (5) ,  the message overhead and 
copy time for the address list get completely overlapped with 
the data transfer time, and the message delay is determined by 
the slower of the DMA or the FC phases: 

5.3. Performance of the Improved CIM 

We modified the END model of the CIM to reflect the changes 
described above. For the changes in the interface, modifications 
were required both in the device driver and END. To capture the 
performance with dual ported memory banks, it suffices to mod- 

ify the model so that DMA and FC phases proceed in parallel, 
i.e., the FC phase no longer preempts the DMA phase. 

With a pipeline depth of 1 (Figure 9(a)), since at most 
one message is processed at a time, there is no benefit from 
dual memory banks; all performance improvements arise from 
the faster interface. Throughput increases by 12-15%, with a 
greater increase for smaller packets since, in these cases, the 
cost of the interface was more significant compared to the cost 
of transmission’. With a pipeline depth of 2 (Figure 9(b)), 
throughput rises significantly due to the dual memory banks. 
For small messages, there is not much additional concurrency, 
and the throughput increases by about 8%. For larger messages, 
the throughput increases by as much as 28%. For very large 
messages, since the FC phase is much faster than the DMA 
phase, the cost of the DMA phase begins to dominate again, 
and the improvements decline to about 17%. With both fea- 
tures, throughput increases by 15-50%. 

6. General Applicability of END 
As outlined below, END can be readily ported to different plat- 
forms and utilized in several interesting ways. 
Portability and Scalablity of END: END is written almost en- 
tirely in C (about 3000 lines of code for END and 2000 lines 
for the time device) and is easily portable. It requires a minimal 

‘The FC phase has a large setup cost, and this dominates the transmission 
time for very small messages. This bounds the improvement in throughput. 
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executive for process management and interrupt handling ser- 
vices, and a high resolution clock for time services, all widely 
available on other platforms. 

While END operates in real time and interacts with a real 
system, the END model is essentially a real-time simulation 
and only as accurate as the underlying model. Since END runs 
on a general-purpose processor board, it may not always be 
able to represent all hardwarelfirmware interactions on an ac- 
tual adapter. Further, the accuracy of END is limited by emu- 
lation overheads and the relative CPU speed, interrupt latency, 
and memory bandwidth on END and the target device. Some of 
these concerns can be circumvented by using a processor signif- 
icantly faster than the host CPU. With two processor boards per 
node, and nodes interacting across the 1/0 bus, bus contention 
may limit the scalability of END. I/O bus contention may be 
partially alleviated by only exchanging packet headers instead 
of the entire data payload. 
END as a Prototype: As mentioned in Section 4, the device 
drivers for the real and emulated adapters were almost identi- 
cal. The high degree of code reusability afforded by END 
allows software development and testing to proceed in parallel 
with hardware design and implementation. In addition, the END 
model itself can serve as a prototype for the adapter firmware. 
END as a Programmable Traffic Source: END can be config- 
ured as a special network interface in the host operating system 
to act as a stochastic source of network traffic. Applications or 
higher software layers can open this interface and "program" it 
to generate network traffic with characteristics such as a given 
arrival distribution, source and destination addressedports, etc. 
This could potentially be extremely useful to designers for de- 
bugging and/or evaluating protocol implementations. 

In other work [lo], we have demonstrated the versatility of 
END by studying a range of issues affecting end host commu- 
nication subsystem design, as summarized below. 
Quality-of-Service: Many applications have specific quality- 
of-service (QoS) requirements on communication, such as a 
minimum bandwidth and maximum delay in end-to-end com- 
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munication. Support for QoS is necessary not only in the net- 
work, but also in the end-host operating system and commu- 
nication subsystem. We studied network adapter design to sup- 
port QoS for two distinct network configurations: point-to-point 
networks and shared networks. Our study highlighted the trade- 
offs involved in partitioning QoS support between the adapter 
and the host, especially the impact of the relationship between 
available CPU processing capacity and network bandwidth. 
Receive Livelock In a poorly designed communication sub- 
system, a network host can suffer from receive livelock [ 171 un- 
der sustained network input overload. In this condition, since 
packet reception is performed at a very high priority, the host 
is swamped with handling arriving packets, to the extent that 
effective system throughput falls to zero. Receive livelock may 
be avoided via careful modifications applied to the operating 
system [16]. We used END to propose and evaluate intelli- 
gent interface backof, a novel approach to eliminating receive 
livelock in which the adapter dynamically adjusts its interrupt 
generation rate based on host processing load. 
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Our work relates to the following areas of research. 
Communication subsystem design and performance: Several 
researchers have studied the issues affecting the design and per- 
formance of network adapters [6, 17, 21, 81, and communica- 
tion subsystems in general [7, 191. While many of these studies 
have influenced our work, we have focused as much on the de- 
sign process, as the design itself. 
Simulation-based evaluation: Recently, significant atten- 
tion has been given to accurate, low-level simulation to study 
machine architectures while capturing operating system over- 
heads [22,2]. Other efforts have focused on protocol-level sim- 
ulation with the ability to run the actual protocol stack during 
simulation [4], and network-level simulation with a focus on 
routing and end-to-end protocol performance [12, 141. Most 
relevant to our work is architecture-level and protocol-level sim- 
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ulation. Since END executes on its own processor concurrently 
with the host, it avoids any intrusion on the host operating sys- 
tem executing on the host CPU. More importantly, END utilizes 
actual hardware resources on the host (system I/O bus, inter- 
rupts) just as a real adapter would; capturing events at this low 
granularity in simulation models would require highly accurate 
resource models and render the simulation extremely slow. 
Network adapter as sourcehink of data: Network adapters have 
been modeled as simple data sources and sinks for parallel 
protocol implementations [3], with the models executing on a 
separate processor within the host. Besides modeling network 
sourcelsink behavior, our approach captures significantly more 
details of adapter design and interaction with the protocol stack. 
I/O device modeling: Other researchers have studied the issues 
involved in modeling disks [23]. While the focus of our work 
is network device emulation, our emulation framework can be 
extended to emulate disks and interact with the file system layer 
in the operating system. This would provide a reasonable mech- 
anism to study storage subsystem performance. 

8. Conclusions and F’uture Work 

In this paper, we described the architecture and implementation 
of END, a tool for designing network adapters via device emula- 
tion. We used END to accurately model a real network adapter, 
the Ancor VME CIM 250, and extend its original design to 
remove performance bottlenecks. These design improvements 
yielded throughput increases of 15-50%, depending on the traf- 
fic load. We argued that END is a versatile tool that can be 
employed by device designers to compare and evaluate design 
alternatives before actually building a prototype. 

We have implemented reception functionality in END, us- 
ing both true two-way communication as well as synthetic traf- 
fic generation. We have also added a control interface to END 
through which protocol designers and applications can request 
various synthetic traffic patterns and exercise dynamic control 
over incoming traffic. END is also being extended to make it 
more generally applicable, especially in WAN environments. 
This will enable us to model larger networks and study end-to- 
end protocols. To further enhance the usability of END, we are 
considering developing libraries for interrupt wrappers, FIFO 
and priority queues, and stochastic models for traffic sources. 
Finally, we would also like to extend END to inject communi- 
cation faults in a data stream, allowing it to be used to study the 
reliability and performance of communication protocols. 
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