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Abstract —Many applications require communication services with guaranteed timeliness and fault tolerance at an acceptable level
of overhead. We present a scheme for restoring real-time channels, each with guaranteed timeliness, from component failures in
multihop networks. To ensure fast/guaranteed recovery, backup channels are set up a priori, in addition to each primary channel.
That is, a dependable real-time connection consists of a primary channel and one or more backup channels. If a primary channel
fails, one of its backup channels is activated to become a new primary channel. We propose a protocol which provides an integrated
solution for dependable real-time communication in multihop networks. We also present a resource sharing method that significantly
reduces the overhead of backup channels. Good coverage (in recovering from failures) is shown to be achievable with about 30
percent degradation in network utilization under a reasonable failure condition. Moreover, the fault tolerance level of each
dependable connection can be controlled, independently of other connections, to reflect its criticality.

Index Terms —Real-time communication, primary and backup channels, fast failure recovery, multihop networks.

——————————   ✦   ——————————

1 INTRODUCTION

EAL-TIME communication services have become essen-
tial for many applications, such as digital continuous

media (audio and motion video) and distributed real-time
control. Unlike traditional datagram services in which av-
erage performance is of prime interest, guaranteeing such
“quality of service”(QoS) as message delay and error rate is
the key requirement of real-time communication services.
In recent years, considerable efforts have been made to
guarantee the timeliness QoS. The survey paper by Aras et
al. [1] discusses many of existing real-time communication
schemes. By contrast, the importance of guaranteeing fault
tolerance QoS has been far less recognized. While fault-
tolerant real-time communication in multiaccess networks
has been relatively well studied, only a few research results
are available for the fault tolerance QoS guarantee in multi-
hop networks. However, there are growing needs for com-
munication services with a guaranteed level of fault toler-
ance in large-scale networks. Suppose, for example, there is
a very important video conference and unanticipated net-
work failures disconnect one or more participants from the
conference for an unpredictably long period. This may lead
to a failure or delay in reaching important strategic deci-
sions, which can cause a significant economic loss. Cata-
strophic social consequences have actually been witnessed
in recent breakdowns of the U.S. telecommunication net-
work.

Most real-time communication schemes for multihop
networks share three common properties: QoS-contracted,

connection-oriented, and reservation-based. A contract between
a client and the network is established before messages are
actually transferred. To this end, the client must first spec-
ify its input traffic behavior and required QoS. Then, the
network computes the resource needs (e.g., link and CPU
bandwidths, and buffer space) from this information, se-
lects a path, and reserves necessary resources along the
path. (If there are not enough resources to meet the QoS
requirement, the client’s request is rejected.) The client’s
messages are transported only via the selected path with
the resources reserved, and this virtual circuit is often
called a real-time channel.

While this reservation-based approach has been success-
ful in providing “hard” guarantees on timeliness QoS, it
causes a serious difficulty in achieving fault tolerance
(because the approach relies on static routing). Traditional
failure-handling techniques for datagram services are in-
adequate, because a real-time message is allowed to trav-
erse only the path on which resources are reserved a priori
for it and, hence, cannot be detoured around failed compo-
nents on the fly. Instead, a new channel which does not use
the failed components should be established before resum-
ing the data transfer. However, establishing a new channel
is usually a time-consuming process, which can result in a
long service disruption. Moreover, such an approach can-
not make any guarantee on successful failure recovery, be-
cause there may not exist a proper detour. Fig. 1 illustrates
such a situation.

Fig. 1a shows a network which contains three real-time
channels. Suppose two network nodes are connected by
two simplex links, each of which can accommodate up to
two channels. When node N2 fails, channels 1 and 2 need to
be detoured around N2. Both channels may need to use
shortest possible paths in order to maximize the chance of
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meeting their timeliness QoS requirements. As a result, the
resource needs on the link from N5 to N6 exceed its capac-
ity, and the link can accommodate only one of them, say
channel 1, as shown in Fig. 1b. Now, channel 2 has to be
rerouted over a longer path. If channel 2’s QoS requirement
is too tight to fit the longer path, channel 2 cannot be recov-
ered from N2’s failure. An option is moving channel 3 to a
different path in order to accommodate channel 2 at the
link from N5 to N6. However, this is not a good idea, since
moving an existing channel can cause domino effects with-
out guaranteeing successful rerouting of the affected chan-
nels. A better solution is not to set up channel 3 over the
link from N5 to N6 in the original network.

In this paper, we propose an efficient scheme to quickly
restore real-time channels from network component fail-
ures in multihop networks. To assure successful rerouting
and avoid the time-consuming channel reestablishment
process, one or more backup channels are set up a priori, in
addition to each primary channel. That is, a dependable real-
time connection (or a '-connection for short) consists of a
primary channel and one or more backup channels.

A backup channel remains a cold-standby until it is acti-
vated. In other words, it does not carry any data in a nor-
mal situation, so that the resources reserved for the backup
channel may be used by other traffic. Not only non-real-
time traffic but also other real-time traffic can utilize the

resources reserved for backups, if the underlying real-time
channel scheme has a dynamic QoS-control capability like
the layered transmission method [2]. However, backups
degrade the network’s capability of accommodating real-
time channels, because they reserve resources which can be
used to accommodate other real-time channels otherwise. If
the application requires high-volume message streams (e.g.,
motion video), the degradation will become serious. To
cope with this problem, we have developed a resource-
sharing method, called backup multiplexing, in which re-
sources are shared among backup channels in such a way
that fault tolerance QoS is not compromised.

Fig. 2 illustrates how the same failure in Fig. 1 is handled
in the proposed scheme. Note the difference between the
initial channel setups. In Fig. 2a, primary-3 is routed over
N9 instead of N5, because of the resource shortage on the
link from N5 to N6. On that link, backup-3 is multiplexed
with backup-1 and backup-2. In this example, we assumed
that channels are established in the ascending order of their
indices, using a shortest-path routing method.

The rest of the paper is organized as follows. Section 2
states our design goals. Sections 3 and 4 describe, respec-
tively, the connection-establishment and failure-handling
procedures of the proposed scheme. Section 5 analyzes the
service-disruption time caused by failures. Section 6 ad-
dresses the scalability issue. Section 7 presents the simula-

(a)

(b)

Fig. 1. Failure recovery based on blind rerouting: (a) initial network, (b)
after failure recovery.

(a)

(b)

Fig. 2. Failure recovery by the proposed scheme: (a) initial network, (b)
after failure recovery.
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tion results, demonstrating the efficiency of the proposed
scheme. Section 8 discusses related work giving a compara-
tive perspective, and the paper concludes with Section 9.

2 DESIGN GOALS

A real-time channel is a unidirectional virtual circuit with
the capability of timeliness-guaranteed, in-order, but unre-
liable message delivery. A real-time channel service is usu-
ally implemented with two protocols: Real-time Network
Manager Protocol (RNMP) and Real-time Message Trans-
mission Protocol (RMTP). The main function of RNMP is
channel establishment and teardown, while that of RMTP is
runtime control, such as traffic shaping and message
scheduling.

When a client requests a real-time channel to be estab-
lished, it has to specify its traffic parameters (e.g., maxi-
mum message rate) and QoS requirements (e.g., message
delay bound). Using this information, RNMP performs an
“admission test,” which checks the availability of the re-
sources necessary to meet the channel’s QoS requirement.
RNMP reserves resources if the admission test is positive.
In RMTP, a traffic regulator is used to smooth (oftentimes
bursty) packet arrivals, and one or multiple output queues
are serviced for message scheduling and transmission.
RMTP is closely related to RNMP, because the admission
control of RNMP assumes a certain message-scheduling
policy used by RMTP.

The main intent of this paper is to develop a protocol
which augments the existing real-time channel service with
the fault tolerance capability. To provide a fault-tolerant
service, we must first define the underlying failure model.
We assume that (infrequent) transient packet losses are ac-
ceptable to the target applications, or are dealt with by
other techniques, like forward error correction. Our scheme
restores the real-time channel service which is disabled by
“persistent” or “permanent” failures, e.g., crash failures.

The proposed protocol, called the Backup Channel Protocol
(BCP), establishes '-connections, reports detected failures
to the nodes which are responsible for recovery operations,
activates backup channels, resumes the disrupted real-time
channel service, and reconfigures resources to cope with
future failures. (BCP does not deal with failure detection.)
There are five goals that drive the design of BCP:

• Per-connection fault tolerance control: Each '-
connection is allowed to have a different fault toler-
ance capability depending on its criticality. A success-
ful recovery is guaranteed as long as the number and
type of failures occurred do not exceed the fault toler-
ance capability of the connection.

• Fast (time-bounded) failure recovery: The service-
disruption time of a '-connection caused by failures is
very short, and is bounded if certain conditions are met.

• Robust failure handling: Failures are always handled
properly, regardless of the number of their occur-
rences, so as not to affect the QoS of nonfaulty real-
time channels at all.

• Small fault tolerance overhead: The amount of the
additional resources required for fast/guaranteed re-
covery is acceptably small.

• Interoperability/scalability: BCP can be placed on
top of any real-time channel protocol, so it can be
used in wide-area networks equipped with various
(heterogeneous) protocols. Also, BCP scales well,
since it doesn’t require each node to maintain global
knowledge of network status.

3 ESTABLISHMENT OF A DEPENDABLE CONNECTION

Instead of providing an identical level of fault tolerance to
all connections, we allow each client to specify his fault tol-
erance QoS requirement. BCP then establishes necessary
backups to meet the QoS requirement. Described below are
the client interface and the channel-establishment proce-
dure of BCP.

3.1 Fault-Tolerance QoS Parameter, 3r

Generally, the reliability of a system, denoted by R(t), is de-
fined as the probability that the system provides the required
service from time 0 to t. In our case, the required fault-
tolerant real-time channel service will be provided unless all
channels of a '-connection fail (near) simultaneously.

Let’s consider how to derive R(t) of a '-connection. As-
suming a Poisson failure process with rate l, we derive R(t)
of each network component to be e-lt. For the convenience
of presentation, we further assume that the failure rates of
all network components are same and all failures are statis-
tically independent. Then, R(t) of a channel can be ex-
pressed as e-nlt, where the channel path consists of n com-
ponents. In other words, the failure rate of the channel is
nl. Finally, the reliability of a '-connection can be modeled
with a Markov process using the failure rates of its chan-
nels. For example, Fig. 3a shows a continuous-time Markov
model to derive R(t) of a '-connection with a single
backup channel, where m is the channel repair (or re-
establishment) rate, l1 and l2 are failure rates of the pri-
mary and backup channels, respectively, and l3 is the fail-
ure rate of the shared part of both channels. State 0 is the
initial state and state 3 is the absorbing state. Fig. 3b is a
simplified model when the primary and backup channels
are of the same length. For example, if both the primary
and backup channels of a '-connection are of four hops
length and are routed disjointly, l1 is 9l and l3 is 2l, con-
sidering two end nodes shared by both channels. Using the
technique in [3], one can calculate R(t) of this '-connection
from the Markov model of Fig. 3b; that is, R(t) = 1 - P(the
system is in the absorbing state at time t). We plot the reli-
ability of this connection in Fig. 4 by setting l to 0.00005
(1/l measured in minutes) which results in 332 hours of
MTBF and setting m to 0.1 (1/m measured in minutes),
which means 10 minutes of channel repair time.

However, representing the QoS parameter as a function
of time is unsuitable for the client-interface model. Thus,
instead of using Markov models, we use a combinatorial
model to approximate the reliability of a '-connection. The
approximation is possible because the channel repair rate
(m) is much larger than the channel failure rate—the chan-
nel reestablishment time is in the order of seconds or min-
utes, whereas MTBF is on the order of 100 or 1,000 hours.
Thus, a '-connection affected by a failure returns to the
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initial state (state 0) much before the second failure occurs.
Fig. 4 shows that the '-connection’s R(t) is very close to
that of its end-nodes, which implies that the quick recovery
results in a nearly perfect reliability except for the cases of
end-node failures. In our combinatorial model, each net-
work component is assigned a probability, l, of failure oc-
currence during one time unit, and the '-connection under
consideration is assumed to be in the initial state at the start
of each time unit. When 3r represents the '-connection’s
reliability under this combinatorial model, 3r is equal to the
probability that at least one channel of the '-connection
remains healthy during one time unit. For example, the 3r
of a '-connection with a single backup is P(primary not
fail) + P(primary fails > backup not fail).

3.2 The Number and Routing of Backup Channels
Unless l is very large, additional backups will not increase
the R(t) value of a '-connection much, because the first
backup provides nearly the maximal reliability, as shown in
Fig. 4. Instead, we find the benefit of multiple backups from
a different perspective; we can take advantage of multiple
backups to reduce resource overhead in conjunction with
backup multiplexing. More details on this will be discussed
in Section 7.2.

In contrast to the effects of the number of backup chan-
nels, the routing of a backup channel has a significant im-
pact on the reliability of its connection. Essentially, the
links/nodes used by a primary channel may preferably be
avoided in routing its backups, because overlapping routes
among the channels of the same '-connection will degrade
the reliability of the connection. The reliability degradation
by nondisjoint routing is illustrated in Fig. 5. Throughout
this paper, we assume disjoint routing of the channels be-
longing to the same '-connection. The routing of backup
channels affects the resource overhead as well, because
backup multiplexing is largely determined by route infor-
mation. Here, we use the shortest path routing method to
select backup paths; the issue of backup route selection was
treated in [4].

3.3 Backup Multiplexing
As far as actual resource consumption is concerned, a
backup channel costs nothing, since it does not actually
transport any information until it is activated. However, a
backup channel is not free, as it requires the same amount
of resources as its primary channel to be reserved, for im-
mediate activation upon failure of the primary. As a result,
equipping each '-connection with a single backup routed
disjointly with its primary reduces the network capacity by

(a)

(b)

Fig. 3. Example Markov models to derive R(t ): (a) Model A, (b) Model B.

Fig. 4. R(t ) of a '-connection with a single backup.

Fig. 5. The effect of nondisjoint routing on R(t ).
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50 percent or more.1 We call the resources reserved for
backups “spare resources.” The large amount of spare re-
sources can seriously degrade the attractiveness of the
backup-channel scheme.

To alleviate this problem, we have developed a resource
sharing technique, called backup multiplexing. Its basic idea is
that, at each link, we reserve only a very small fraction of spare
resources needed for all backups going through the link. That is,
resources for backup channels are “overbooked.” (In this paper,
we consider only link bandwidth resources, for simplicity, but
other resources, like buffer and CPU, can be treated similarly.)
One of the key problems in backup multiplexing is to decide
which backups will share the same resources. A natural solution
to this problem is to choose those backups which are less likely
to be activated simultaneously. The probability of simultaneous
activation of two backups belonging to two different '-
connections is bounded by the probability of simultaneous fail-
ure of their respective primary channels. This probability de-
pends on the routing of the primary channels, and increases
with the number of components shared between the primary
channels.

For each link, we calculate the probability—denoted by
6(Bi, Bj)—of simultaneous activation of two backups, Bi and
Bj, whose primary channels are Mi and Mj, respectively.
Assuming that failures occur independently with the same
probability l, we get:
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where c(Mi) and c(Mj) are the component counts in Mi and
Mj, respectively, and sc(Mi, Mj) is the number of compo-
nents shared between them. Here, components include both
nodes and links. One can use different failure rates for
nodes and links by slightly modifying the equation.

Based on this probability, the set of backups to be multi-
plexed together is determined for each backup on each link,
i.e., multiplexing is done hop-by-hop. Bi and Bj are multi-
plexed if 6(Bi, Bj) is smaller than a certain threshold n,
called the multiplexing degree, which is specific to each
backup. The smaller n of a backup, the higher fault toler-
ance will result. For instance, if n for a backup Bi is set to l,
fast recovery of the corresponding '-connection from any
single node/link failure is guaranteed, because Bi will not
be multiplexed with any other backup whose primary
overlaps with Mi. This way, per-connection control of fault
tolerance is possible, thus allowing more important con-
nections to have higher fault tolerance (e.g., tolerating
harsher failures). In this paper, each backup is required to
have the same multiplexing degree on all of its links for
ease in managing 3r.

1. This is because the backup channel may run over a path longer than
the primary channel’s path.

Let PBi
B B, { , , }

,
= a b �  denote the set of backups which

are not multiplexed with Bi on link ,. One way to determine
the spare resources at link , is to find the highest resource
requirement among all sets of { },PB ii

B
,

+ , where all back-

ups are considered equally regardless of their multiplexing
degrees. This method may overestimate the amount of re-
quired spare resources at a link, when there are multiple
backups with different multiplexing degrees running over
the link. Suppose there is one backup with a very small n
and many backups with large n on a link. Then, P, of the

backup with a very small n will determine the amount of
spare resources at the link, which may be much larger than
actually needed. To get around this problem, we consider
only backups with no greater multiplexing degrees than
that of Bi when PBi ,, is constructed.

3.4 Calculation of 3r

When a backup channel is activated, it draws necessary
resources from the spare resources. Since backup multi-
plexing is based on probabilistic relations, there is a possi-
bility, albeit rare, that the multiplexed backups need to be
activated simultaneously. Such unlikely backup activations
can cause the exhaustion of spare resources, so that the re-
maining backups cannot be activated; “multiplexing failures”
are said to occur to these backups.

Calculation of 3r for a '-connection with backup multi-
plexing requires us to consider the possibility of multi-
plexing failures. The 3r of a '-connection composed with a
primary channel Mi and a backup channel Bi is:

3r i i

i muxf i

i P M P M

P B P B

0 5 2 7 2 7
2 7 2 7J L
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 not fail  fails

 not fail 1 ,

where Pmuxf(Bi) is the probability that Bi is not available due
to a multiplexing failure. Pmuxf(Bi) is not greater than
Â,Pmuxf(Bi, ,), where Pmuxf(Bi, ,) is the probability that Bi
suffers from a multiplexing failure at link ,. The 3r value
associated with more backups can be derived similarly.
Presented below are two methods for calculating Pmuxf(Bi, ,).

3.4.1 Method 1
A backup channel may suffer a multiplexing failure at a
link if the total resource needs by simultaneous backup ac-
tivations exceed the total spare resources at the link. Sup-
pose the number of backups on link , is Z and the spare
resource at , is s,. Then, there can be 2Z-1 different patterns
of simultaneous backup activation with Bi. Since we can,
without loss of generality, label the k backups activated
along with Bi from 1 to k and label the remaining Z - k - 1
backups from k + 1 to Z - 1, the probability associated with
each activation pattern is 6(Bi, B1, º, Bk) ◊ {1 - 6(Bi, Bk+1, º,
BZ-1)}. Here, 6(Bi, B1, º, Bk) indicates the probability of si-
multaneous activation of Bi, B1, º, Bk. Among the 2Z-1 sets,
we can tell which requires more resources than s,, and
which does not. Pmuxf(Bi, ,) is equal to the sum of the prob-
abilities associated with those cases which require more
resources than s,.
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We use an incremental approach to calculate 6(B1, º, Bk).

We first choose a component Cj shared by more than one
primary channel of the backups under consideration, and
calculate 6(B1, º, Bk) after removing Cj, which is denoted
by 6{ }( , , )C kj

B B1 � . Then,

6 6( , , ) ( ) ( , , ){ }B B B Bk C kj1 11� �= + - ◊l l ,

where the second term represents the probability that all k
backups will be activated simultaneously when Cj does not
fail. 6{ }( , , )C kj

B B1 �  can be obtained similarly. Thus, by se-

lecting another shared component Cm,

6 6{ } { , }( , , ) ( ) ( , , )C k C C kj j m
B B B B1 11� �= + - ◊l l .

The same step is applied recursively until there remains no
shared link. The last term

6{ , , }
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1 1 1 1

1 1

1 2l l

l

where c(Mi) is the component count in Mi.

3.4.2 Method 2
Multiplexing failures do not necessarily occur, even if mul-
tiplexed backups are activated simultaneously. Thus, to
capture the exact probability of multiplexing failures, we
have to compare the total resource demands by simultane-
ous backup activations against s, as in Method 1. This
method, however, overestimates Pmuxf(Bi, ,) by simply ac-
cumulating the probabilities of simultaneous backup acti-
vations which are ignored in multiplexing. This method
requires much simpler calculation than Method 1 at the cost
of accuracy. Note that the overestimation of Pmuxf(Bi) leads
to the underestimation of Pr(i), thus erring on the safe side.

Bj is multiplexed with Bi at link ,, only if 6(Bi, Bj) is

smaller than ni, the multiplexing degree of Bi. Thus, the

probability that Bi will suffer from a multiplexing failure on

link , due to the simultaneous activation of Bj is not greater

than 6(Bi, Bj). Let YBi ,, denote the set of backup channels

which are multiplexed with Bi at , (i.e.,

Y PB B ii i
B, ,, ,

,= - -all backups on < A ).

Then, we get
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where YBi ,,  is the number of backups multiplexed with Bi

on link ,.

3.5 Spare Resource Reservation Procedure
As in the case of primary channels, QoS negotiation and
resource reservation are crucial steps of backup channel
establishment. There can be several different schemes to
determine the number of backups and the associated mul-
tiplexing degrees. Here, we describe two possible schemes.

In the first scheme, BCP selects the multiplexing degrees

by considering the client-specified 3r requirement and/or
the network status. After establishing backups, BCP calcu-
lates the resultant 3r of the connection and notifies it to the
client. The client may or may not be satisfied with the of-
fered fault tolerance QoS level, and may accept or reject the
offer. In this scheme, the client-specified 3r requirement is
met “loosely” or in a “best-effort” manner. The number of
backups can be decided beforehand, or multiple backups
can be established incrementally.

In the second scheme, the client’s 3r requirement is met
as requested, or the request gets rejected. Assume that the
channel establishment is initiated by the source node.2 A
backup channel is established by using a pair of channel-
establishment messages:

1) the “resource reservation message” from source to
destination and

2) the “resource relaxation message” from destination to
source.

In the forward pass (reservation message) to the destina-
tion, spare resources are reserved for the backup without
multiplexing, while YBi ,, is calculated on each link , of the

channel path with various n values. The reservation mes-
sage collects the YBi ,, information and passes them to the

destination node. Then, the destination node selects the
largest n which satisfies the required 3r based on the col-
lected information. Essentially, the problem of meeting the
3r requirement is transformed to that of deciding the mul-
tiplexing degree. Fortunately, we need to try only a couple
of different n values, because the values of 6(Bi, Bj) are dis-

tributed around integer multiples of l when l is small, i.e.,
6(Bi, Bj) < c(Mi) ◊ l + c(Mj) ◊ l - {c(Mi) + c(Mj) - sc(Mi, Mj)} ◊
l = sc(Mi, Mj) ◊ l. Thus, the backups on a link can be
grouped into a certain number of classes according to their
multiplexing degrees. The number of classes is not greater
than the number of components on the longest possible
path in the network. In the backward pass (relaxation mes-
sage) from destination to source, the spare resources on the
channel path are multiplexed according to the selected n. If
the required 3r is too high to satisfy, the client’s request
will be rejected. (The rejected client may opt to retry with a
lower 3r requirement.) BCP can decide the number of
backups a priori or can establish backups incrementally
until the required 3r is achieved.

For both schemes, the BCP daemon at each node has to
maintain the information about each backup running
through the node, including the path of its primary, the
multiplexing threshold, the nonmultiplexable channel set,
and other information like the current channel state (which
will be discussed in Section 4). We will discuss the com-
plexity and scalability of the backup-channel establishment
procedure in Section 6.

2. This is not a restriction. The destination can initiate the channel estab-
lishment.
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4 FAILURE RECOVERY PROCEDURE

The first step in handling a failure is its detection. Depending
on the semantic of a failure, all channels on the failed com-
ponent may fail or only part of them may fail. QoS require-
ments can also make an impact on the manifestation of a fail-
ure. For instance, real-time channels for certain applications
may not be able to tolerate an error rate which is acceptable
to other channels set up for different applications. We have
developed techniques for detecting channel failures, evalu-
ated their efficiency experimentally, and reported the results
in [5]. In this paper, we assume the existence of a proper fail-
ure-detection mechanism in which failed components are
detected by their neighbor nodes, and focus on the procedure
necessary after failure detection.

4.1 Overview
If the node which detects a failure is different from the
node which is responsible for channel switching, the failure
should be reported to the latter node. There are three im-
portant issues in failure reporting. First, who will need to
receive failure reports ? Second, which path will be used for
failure reporting? Third, what information needs to be car-
ried in a failure report? Our approach to these issues is:

1) Failure reports are sent from the failure-detecting
nodes only to the end-nodes of failed channels,

2) Failure reports are delivered through healthy seg-
ments of the failed channels’ paths,

3) Each failure report contains the “channel-id” of the
failure channel.

Our approach handles multiple (near-) simultaneous
failures very naturally and easily. A failure report will be
discarded by a node when the same report had already
been received/passed through. Thus, if multiple failures
occur to a channel, only one failure report will reach its
end-nodes, and all the other reports will be lost due to the
failures themselves or discarded by intermediate nodes.

When an end-node of a '-connection receives a failure
report on its primary channel, it selects one of its backups
and sends an “activation message” along the path of the se-
lected backup. To determine the health of backups, failures
of backup channels are reported to their end-nodes in the
same way as primary channel failures. During its journey,

the activation message can come across a node which had
already received a failure report of the backup being acti-
vated. In such a case, the activation message is simply dis-
carded, because this new failure will be reported and an-
other activation message will follow.

After activating a backup channel to become a new pri-
mary channel, BCP needs to reconfigure the resource reser-
vation at the intermediate nodes of the new primary channel,
because some resources shared with other backups are now
dedicated to the new primary channel. If the spare resources
at a link are exhausted by the activation, the remaining
backup channels on the link cannot function as standby
channels, i.e., multiplexing failures. Multiplexing failures are
reported in the same way as component failures.

The key principle of our failure-recovery process is lo-
calization, so that the traffic on nonfaulty parts of the net-
work remains unaffected by failure recovery.

4.2 Failure Reporting and Backup Activation
The failure-recovery process outlined in the previous sec-
tion is elaborated on with a state transition diagram in
Fig. 6. At each node, a channel can be in one of four states:
nonexistent state (N), healthy primary channel state (P),
healthy backup channel state (B), and unhealthy channel
state (U). The initial state is N. Upon reception of a “channel-
establishment message,” the state machine enters state P or B.
When a node receives a failure report (or detects a failure)
in state P or B, the state machine enters U and the failure
report is forwarded to the appropriate node. Additional
failure reports received in state U are ignored. When an
activation message is received in state B, the state machine
enters P. The activation messages received in state U are
ignored. The state transition for resource reconfiguration
(e.g., from U to N, or from U to B) will be detailed later.

Now, we describe and compare schemes for failure re-
porting and backup activation. Fig. 7 illustrates three
schemes. The main distinction among these schemes is
where the failure reports and activation messages are gen-
erated and destined for. In Scheme 1 (Fig. 7a), the down-
stream node of the failed component generates a failure
report and sends it to the destination node of the failed
channel. Then, the destination node initiates an activation
message, which travels in the opposite direction of the

Fig. 6. Channel state transition.
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backup channel to be activated. By contrast, in Scheme 2
(Fig. 7b), the upstream node generates the failure report,
the channel source node receives the failure report, and the
activation message is sent to the channel destination node.
Scheme 3 (Fig. 7c) is a hybrid of the first two schemes. Both
the end-nodes of a failed channel receive failure reports,
and backup-channel activation is done in both ways. If an
activation message reaches a node on which the backup
channel has already been activated by the activation mes-
sage from the other end-node, the activation message is
discarded by the node.

Scheme 2 and Scheme 3 have an advantage over Scheme 1
in terms of recovery delay, because data transfer through
the new primary channel can be resumed immediately after
sending the activation message,3 while, in Scheme 1, the
data transfer has to wait until the activation message is re-
ceived by the source node. If a failure occurs near the desti-
nation node, this advantage will be minimal. Scheme 3 has
an edge over Scheme 2 in two aspects. First, all nodes of a
failed channel are informed of the failure, which is useful
for resource reconfiguration. Second, the channel destination
node can prepare early for channel switching, and the acti-
vation delay will be reduced by the bidirectional activation. If

3. Albeit unlikely, if a data message arrives at intermediate nodes of the
new primary channel before the channel is activated, the data message will
be discarded with no harm.

a '-connection is equipped with multiple backups, it is
necessary that both end-nodes activate the same backup. If
the destination node activates a different backup, the
backup need to be deactivated, since data messages have
already been transmitted over the backup activated by the
source node. One way to accomplish this synchronization is
to allocate serial numbers to the backups of each '-
connection, and select a backup according to the serial
number. In the remainder of this paper, we assume the use
of Scheme 3.

4.3 Priority-Based Activation
Connection priorities can be considered in the activation of
backup channels. The idea is to activate the backups be-
longing to higher-priority '-connections ahead of those of
lower-priority '-connections, if there are not enough re-
sources to grant all activation requests. This priority-based
activation can be achieved by delaying the activation of
lower-priority backups. Thus, an activation message is sent
after a certain delay determined by the multiplexing degree
of the backup channel to be activated. (Recall that the im-
portance of a backup channel is represented by the multi-
plexing degree.) The activation of backups with a large
multiplexing degree (i.e., lower-priority backups) is de-
layed so as to activate the backups with small multiplexing
degrees (i.e., higher-priority backups) first. The main draw-
back of this method is that the “activation wait delay” is
always imposed on lower-priority backups. To completely
avoid priority inversion, this delay should be longer than
the transmission delay of the activation message over the
longest channel path in the network. In a large-scale net-
work, the recovery delay incurred to lower-priority back-
ups could be unacceptably long.

Another way is to allow a higher-priority backup to pre-
empt lower-priority backups, if the lower-priority backups
have already been activated and there are not enough spare
resources to activate all of them. Preempted channels are
handled as if they were disabled by failures. So, the over-
head associated with a preemption is the same as that for a
failure recovery. Note that the recovery delays of lower-
priority connections would be extended only if preemp-
tions actually occur. An important issue of this method is
the time granularity with which lower-priority connections
can be preempted. If the preemptable interval is longer than
the time needed for a backup activating operation, higher-
priority backups will preempt active channels (i.e., primary
channels of lower-priority connections). To avoid oscilla-
tion, the preemptable interval should be short, so that
lower-priority connections may be preempted only by the
higher-priority connections which fail (near-) simultane-
ously with them.

4.4 Resource Reconfiguration
After the disrupted service is resumed, the faulty channels
will be torn down and, if necessary, new backup channels
will be established. To tear down a channel, a “channel-
closure message” is usually sent over the channel’s path, so
that resources for the channel may be released. However, if
failures disconnect a channel’s path or disable the channel
end-nodes, the resource-release process becomes complicated.

(a)

(b)

(c)

Fig. 7. Channel-switching schemes: (a) Scheme 1, (b) Scheme 2, (c)
Scheme 3.
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To facilitate the reclaiming of the resources on failed chan-
nels, we borrow the concept of “soft-state connections” in
RSVP [6]. When an intermediate node of a channel receives
a failure report (or detects a failure), it sets a rejoin timer
whose expiration automatically triggers the channel tear-
down at the node. Recall that, in our failure reporting
scheme (Scheme 3), all intermediate nodes either detect
failures or receive failure reports, regardless of the number
and location of failures. The purpose of the rejoin timer is to
give the unhealthy channels (i.e., in U state) a chance to
repair themselves. Channel repair can eliminate the need of
establishing new channels, in case the unhealthy channels
become usable again soon.

When the channel’s source receives a failure report, it
sends its destination a “rejoin-request message” via the path
of the failed channel, and each healthy intermediate node
forwards this message. If the failed component becomes
healthy again before the rejoin timer expires, it will also
forward the rejoin-request message. Otherwise, the rejoin-
request message will not propagate beyond the failed com-
ponent. If a (backup) channel enters U state because of a
multiplexing failure, more spare resources have to be allo-
cated to restore the channel. If it is impossible to allocate
additional spare resources because of resource shortage, the
rejoin-request message will be dropped.

If the channel destination node receives the rejoin-
request message, the channel can be considered healthy
(repaired). The destination node then sends a “rejoin mes-
sage” back to the source node over the same path, and the
channel state is changed from U to B, meaning that a re-
paired channel becomes a backup channel. If the rejoin
timer had already expired when the rejoin message arrives
at a node (i.e., in N state), the channel should be torn down
as the resources for the channel had already been released.
To undo the rejoin operations which have already done for
the channel, a channel-closure message is generated by that
node and is sent toward the channel destination. Fig. 8 il-
lustrates this case. The initial value of the rejoin timer
should be chosen carefully. While it should be small for a
quick teardown of unhealthy channels, it should also be
large enough to allow their repair, including

1) the failure reporting delay,
2) the round-trip time of the rejoin-request message and

the rejoin message,
3) the time for additional resource allocation.

If all channels of a '-connection fail simultaneously, a
new primary channel has to be established from scratch.
When there is no route which can meet the QoS require-
ment of the '-connection, its client will be informed of the
unrecoverable failure. Similarly, if any channel end-node
fails or the network is partitioned, all attempts of channel
reestablishment will be unsuccessful and the client will be
informed of the unrecoverable failure. In any of these cases,
all the resources reserved for the connection will be re-
leased, when the rejoin timer expires.

So far, we have discussed the tear-down and repair of
failed channels. Another issue which must be addressed is
how to reconfigure spare resources after backups are acti-
vated. Because spare resources are shared among multiple

backups, the activation of some backups can degrade the
fault tolerance capability of the remaining backups. The
required spare resources should be recalculated, and addi-
tional resources should be reserved, if necessary, to pre-
serve the fault tolerance capability of the remaining back-
ups. If the required spare resources are not available, some
of the remaining backups have to be closed (and/or moved
to different paths). Then, one has to determine which back-
ups to close or move. This problem should be dealt with
carefully, since a connection is vulnerable to failures during
the reestablishment of its backups.

5 BOUNDED-TIME FAILURE RECOVERY

Most resource-reconfiguration operations, especially chan-
nel reestablishment, are time-consuming. Fortunately,
however, unlike failure detection, failure reporting, or
channel switching, resource reconfiguration is not a time-
critical action, because its delay does not directly affect the
service-disruption time except for the case of loss of all
channels of a '-connection. But resource-reconfiguration
delay can influence the recovery capability/delay in han-
dling future failures.

The transmission delay of control messages, such as fail-
ure reports, is a major component of the recovery delay, if
we assume that there is at least one backup surviving fail-
ures so as to avoid the need of channel reestablishment. The
delay of such control messages is unpredictable, if they
were transported as best-effort messages. Assigning the
highest priority to control messages is not a good solution
either, as it may affect the QoS of regular real-time commu-
nication services. Suppose there are malicious nodes or a
large number of coincident failures. In such cases, the flood
of control messages can paralyze the whole (or part of)
network. To achieve fast and robust transmission of control
messages, we use a special-purpose real-time channel,
called the real-time control channel (RCC). The messages
transported over RCCs are called “RCC messages.”

5.1 The RCC Network
An RCC is a single-hop real-time channel which connects
two BCP daemons for the transmission of time-critical con-
trol messages. When the network is initialized, BCP estab-
lishes a pair of RCCs, one in each direction, on every link of
the network. RCCs will also be established, when failed
components rejoin the network.

The format of an RCC message is shown in Fig. 9. Basi-
cally, an RCC message contains a combination of failure
reports, activation messages, and acknowledgments. The
control messages related to resource reconfiguration are ex-
cluded, since their delays are not time-critical. An interesting

Fig. 8. Repair/closure of an unhealthy channel.
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component of the RCC message format is acknowledg-
ments, which are used to ensure reliable transmission of
control messages. Generally, real-time communication does
not support message retransmission, because there is not
usually enough time for retransmission before the message
deadline expires, and occasional losses of real-time (data)
messages are tolerable in many applications. However, the
loss of control messages is critical even in these applica-
tions. Each RCC message is acknowledged hop-by-hop
between BCP daemons, and, if a BCP daemon does not re-
ceive an acknowledgment of the RCC message which it
sent, it resends the unacknowledged RCC message. Each
RCC message contains a sequence number, so that dupli-
cated messages may be easily detected and discarded.

While the exact specification depends on the underlying
real-time channel protocol, we model an RCC by three pa-
rameters without loss of generality: maximum message size
Smax

RCC , maximum message rate Rmax
RCC , and maximum mes-

sage delay Dmax
RCC . RCC messages are transmitted as follows.

Each RCC-message has its eligible time and is held until it
becomes eligible for transmission. Thus, the minimum in-
terval (1 Rmax

RCC ) is enforced between two RCC messages.
Until the next time to transmit RCC messages, the BCP
daemon at a node collects the outgoing control messages
and forms RCC messages according to the destinations of
the control messages. In the next node, the received RCC
message is fragmented and new RCC messages are formed.
The sequence of disassembly and assembly of RCC mes-
sages continues.

The collection of RCCs on all links forms a virtual net-
work,4 called the RCC network, of the same topology as the
underlying physical network. One can consider a (physical)
network as a composition of three logically-separated net-
works—the primary-channel network, the backup-channel
network, and the RCC network.

5.2 RCC Message Delay
The delay of RCC messages depends directly on the capac-
ity of the RCC network, i.e., if the capacity of the RCC on
each link is large enough to accommodate all RCC mes-
sages on the link, the timely delivery of RCC messages can
be guaranteed.

There is an upper bound on the RCC message traffic for

4. A separate network in terms of resource reservation.

the reasons given below. The number of failure reports on a
link , cannot exceed the number of primary/backup chan-
nels on a pair of links between two nodes incident to ,. We
have to consider both links, because failure reports for a
channel can travel in both forward and backward directions
of the channel, depending on the failure location. Similarly,
the number of activation messages on link , is bounded by
the number of backup channels on the pair of links between
the two nodes incident to ,. Since both the failure report
and the activation message for the same channel cannot be
transported over the same link at the same time, the maxi-
mum RCC traffic is determined by the largest number of
channels on a link pair among all link pairs. The RCC mes-
sage delay on any link is bounded by Dmax

RCC , if Smax
RCC  is

greater than the maximum RCC traffic. If the maximum
RCC traffic on a certain link exceeds Smax

RCC , some RCC mes-

sages may experience a longer delay than Dmax
RCC  at that link.

5.3 Failure-Recovery Delay Bound
Now, let’s consider the failure-recovery delay of a '-
connection. We assume that at least one of its backup sur-
vives failures, the failures are immediately detected, RCC
messages are delivered without loss/retransmission, and
the computational delays for recovery operations are negli-
gible compared to the control message delays. Then, the
failure-recovery delay, G, is the sum of “failure reporting
delay” and “activation retrial delay.” The delay for the acti-
vation message is not included in G, because services are
resumed immediately after sending the activation message
by the source node, assuming the activation message is de-
livered faster than the data message. If the RCC message
delay on each link is bounded by Dmax

RCC , we can derive an

upper bound of G as follows:
The “failure reporting delay” is less than ( ). - 1 Dmax

RCC ,
where . is the number of hops of the longest-route channel
of the '-connection. The “activation retrial delay” needs to
be considered in case the connection has multiple backups.
When the activation message for a backup encounters fail-
ures during its journey, one additional round-trip delay is
added to the recovery delay—the transfer delay of the unsuc-
cessful activation message itself and the delay for reporting
the new failure. It is bounded by 2 1 1( )( )b D- -. max

RCC , where
b is the number of backups. With a single backup, the

Fig. 9. The RCC message format.
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failure-recovery delay of a '-connection is equal to the
failure reporting delay. If the failed component is located
close to the source node, the recovery delay will be very
short. Fig. 10 illustrates the message loss during failure re-
covery (shaded messages are lost). The number of message
losses (or the service disruption time) is determined by the
sum of

1) messages which are sent over the failed primary
channel during failure recovery, and

2) messages which are already on the failed primary
channel but do not yet pass the failed component,
when failure is detected.

Thus, the worst-case service disruption time is the message
round-trip delay (plus the failure detection latency).

6 SCALABILITY

The proposed scheme scales well because it does not re-
quire each node to maintain global knowledge of the net-
work traffic conditions or to generate any type of messages
to be broadcast. Backup multiplexing is performed hop-by-
hop, and therefore, at each link, only the knowledge of
primary channels whose backups traverse the link is re-
quired. Such information can be easily collected, if a backup
channel-establishment message carries the path information
of its primary channel.5 Control messages are sent only
over those paths of channels affected by failures, instead of
broadcasting them to the entire network.

The efficiency of backup multiplexing does not degrade
as the network gets large. In fact, backup multiplexing will
become more effective in large-scale and highly-connected
networks, because such networks contain more versatile
paths between the two end nodes of a connection, thus
lowering the probability that primary channels overlap
with one another.

The backup-multiplexing delay does not directly affect
the failure recovery delay, but the computational complex-
ity of backup multiplexing is a matter of concern. Its essen-
tial part is the construction of a set of nonmultiplexable
backups, PBi ,,, on each link ,, taking O(n) time, where n is

the number of backup channels on link ,. (This is because
each calculation of 6(Bi, Bj) requires constant time.) To find
the largest set, BCP needs to construct PBi ,, for all backups

on ,, which requires O(n2) time. However, if we store each

5. Assuming that a backup is established after its primary has been routed.

PBi ,, calculated before the new establishment request for Bj

is made, we only need to update each PBi ,, by calculating

6(Bi, Bj). Hence, the complexity can be reduced to O(n) at
the expense of additional memory.

7 EVALUATION

The proposed scheme is evaluated by simulating an 8 ¥ 8
torus (wrapped mesh) network and an 8 ¥ 8 mesh network.
In these simulated networks, neighbor nodes are connected
by two simplex links, one for each direction, and all links
have an identical bandwidth. To obtain a similar total ca-
pacity for both networks, we set the link capacity of the
torus network to 200 Mbps and set that of the mesh net-
work to 300 Mbps.

Channels of each '-connection were routed disjointly
by a sequential shortest-path search algorithm. Thus, the
primary channel was routed first over a shortest path, then
the backup was routed without using the components of
the primary channel. For simplicity, the same traffic model
was used for all channels, so each channel requires 1 Mbps
of bandwidth on each link of its path. The end-to-end delay
requirement of each channel is assumed to be met if the
channel path is not longer than the shortest-possible path
by more than two hops. A total of 4,032 connections were
established incrementally, so that there may exist a '-
connection between each node pair, i.e., 64 ◊ 63 = 4,032.

7.1 Spare Resource Overhead
We first measure the average spare bandwidth for various
backup configurations. For ease of comparison, all '-
connections are assumed to require the same number of
backups and the same multiplexing degree. Single and
double backup configurations are simulated in the torus
network, but only the single backup configuration can be
simulated in the mesh network because of its topological
limitation. Seven different multiplexing degrees are applied
in each case.

Fig. 11 shows the simulation results. The “network load”
is a metric to indicate the ratio of the total bandwidth con-
sumed by all primary channels to the total network band-
width capacity. The establishment of 4,032 connections re-
sulted in a 33 , 34 percent network load in both networks.

The notation “mux = a” means that two backups are
multiplexed when their primary channels share less than a
network components, i.e., n = al. (“mux = 0” implies that
multiplexing is disabled). The results of “mux = 2” and

Fig. 10. Message loss during failure recovery.
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“mux = 4” are not plotted in Fig. 11 because, due to the
nature of channel routing, they were very close to the cases
of “mux = 3” and “mux = 5,” respectively. Two channel
paths are not likely to share two nodes without sharing a
link between the nodes, so the results of “mux = 2” and
“mux = 3” are very close to each other. The case of sharing
two consecutive links (i.e., “mux = 4” and “mux = 5”) can
be reasoned similarly.

There are several interesting observations to make from
Fig. 11. First, the network capacity is reduced by more than
50 percent for each backup. It is because a backup channel
may be routed over a longer path than the corresponding
primary channel and the path of second backup becomes
longer than that of the first backup. For example, in a torus
network, there are usually two shortest disjoint paths be-
tween any two nodes that are more than one hop apart. If
the source and destination nodes lie on the same principal
axis and the distance between the two is not exactly one
half of the torus dimension, there exists only one shortest
path. Therefore, without backup multiplexing, the use of
multiple backups will lower the network utilization to an
unacceptably low level. Second, the spare bandwidth in-
creases proportionally to the network load regardless of the
multiplexing degree. There was no drastic change in the
amount of spare bandwidth. Third, with high multiplexing
degrees, the overhead of multiple backups becomes close to
that of a single backup. See the case of “mux = 6” in Figs. 11a
and 11b. Fourth, in the mesh network, the reduction of
spare bandwidth by multiplexing is not as much as in the
torus network. This is because the absence of wrapped links
in the mesh network makes the primary-channel paths
more concentrated on the central region of the network,
thus discouraging multiplexing among their backups.

We performed other simulations with inhomogeneous
traffic, such as mixed bandwidth requirements or hot-spots
in resource reservation. The results indicate that the effi-
ciency of backup multiplexing is relatively insensitive to
network traffic conditions, but is more sensitive to network
topology—less effective in sparsely connected networks.

7.2 Degradation of Fault-Tolerance Due to
Multiplexing

The next issue to address is the impact of backup multiplex-
ing on fault tolerance. We assess the fault tolerance degrada-
tion caused by backup multiplexing by simulating three fail-
ure models: single link failure, single node failure, and dou-
ble node failures. Failures are injected into the network after
establishing 4,032 connections. Each single link failure dis-
ables about 64 primary channels in the torus network, and
about 85 primary channels in the mesh network. By injecting
a single node failure, about 139 and 276 primary channels are
disabled in the torus and mesh network, respectively. Each
double node failure causes the disconnection of about 365
and 512 primary channels, respectively.

To measure the fault tolerance level achieved by each
backup configuration, we use the fast recovery rate, Rfast, as
a metric. Rfast is the ratio of fast recovery by using backup
channels to the number of failed primary channels. Thus,
the (1 - Rfast) of '-connections, whose primary fails, require
the establishment of new channels for failure recovery.

Since Rfast accounts for only those connections whose pri-
mary fails, it will be smaller than another fault tolerance
metric, Pr. The resultant Rfast values are summarized in Ta-
ble 1, where N/A indicates that the total bandwidth re-

(a)

(b)

(c)

Fig. 11. Average spare-bandwidth reservation: (a) single backup in 8 ¥ 8
torus, (b) double backups in 8 ¥ 8 torus, (c) single backup in 8 ¥ 8
mesh.
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quirement had exceeded the network capacity before es-
tablishing all connections. We exclude from consideration
the connections whose end nodes fail.

As expected, the use of a smaller multiplexing degree re-
sults in higher fault tolerance (a larger Rfast value). Under the
single failure model, Rfast solely reflects the impact of backup
multiplexing failures, because no connection loses all of its
channels due to a single failure. So, “mux = 1” guarantees a
perfect recovery coverage from all single failures, and
“mux = 3” does from all single link failures. Interestingly, a
similar level of fault tolerance was achievable with signifi-
cantly less spare resources in the double backup configura-
tion. For example, let’s compare the case of single backup
with “mux = 3” with the case of double backups with “mux =
6” in the torus network. Using a much smaller spare band-
width, we achieved comparable Rfast, demonstrating the use-
fulness of multiple backup channels with effective resource
sharing. The comparison between double backups with
“mux = 6” and a single backup with “mux = 5” more clearly
reveals the benefit of the multiple backup configuration.

Considering the fact that the values in Table 1 are meas-
ured under a 33 , 34 percent network-load condition, one
has to double the values to estimate the spare bandwidth
requirement in fully loaded networks. Thus, in fully loaded
networks (with a 66 , 68 percent network load), 26 to 32
percent and 34 percent spare resource overheads will be
induced in the torus and mesh network, respectively, to
achieve around 90 percent of Rfast from single failures. This
overhead level can be reduced substantially by employing a
more efficient backup routing method (e.g., see [4]).

7.3 Per-Connection QoS Management

The Rfast data in Table 1 are average values, so they do not
reflect the QoS level each connection actually receives. To
examine if the required QoS is actually provided for each
connection, we measure the QoS each connection experi-
ences. Then, this measured QoS is compared with the QoS
estimated by BCP. Let P ir

msr( ) denote the actual QoS re-

ceived by the ith connection and P ir
est( )  be its QoS esti-

mated by BCP. P ir
msr( ) is the ratio of the number of cases of

the ith connection not suffering from failures or recovering
from failures with a backup, to all simulation runs. Method 2,

(a)

(b)

(c)

Fig. 12. Distribution of QoS differences: (a) 8 ¥ 8 torus (mux = 3), (b)
8 ¥ 8 torus (mux = 5), (c) 8 ¥ 8 mesh (mux = 5).

TABLE 1
Rfast WITH SAME MULTIPLEXING DEGREES

Muxing degree mux = 1 mux = 3 mux = 5 mux = 6
Spare bandwidth 30.25% 22.5% 16% 9.5%
1 link failure 100% 100% 97.27% 74.11%
1 node failure 100% 100% 89.99% 64.72%
2 node failures 93.11% 92.98% 84.05% 58.36%

(a) SINGLE BACKUP IN 8 ¥ 8 TORUS

Muxing degree mux = 1 mux = 3 mux = 5 mux = 6
Spare bandwidth N/A 30.25% 21.25% 12.88%
1 link failure N/A 100% 100% 100%
1 node failure N/A 100% 100% 97.68%
2 node failures N/A 100% 99.82% 93.28%

(b) DOUBLE BACKUPS IN 8 ¥ 8 TORUS

Muxing degree mux = 1 mux = 3 mux = 5 mux = 6
Spare bandwidth 33.11% 24.47% 19.69% 17.22%
1 link failure 100% 100% 97.63% 90.39%
1 node failure 100% 99.94% 91.74% 84.08%
2 node failures 89.22% 88.83% 81.82% 75.32%

(c) SINGLE BACKUP IN 8 ¥ 8 MESH
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presented in Section 3.4, is used for calculating Pr
est .

We first used the same simulation setup as for the first
column of Table 1a. We calculated the QoS difference
(P Pr

msr
r
est- ) for each connection with a single backup in the

torus network, where Pr
msr  is measured after injecting single-

link failures. In the calculation of Pr
est , BCP follows the “single-

link failure hypothesis” and sets l for links to 1/(64 ◊ 4),
while l for nodes is set to 0. Figs. 12a and 12b show the
distribution of QoS differences of 4,032 connections in case
of “mux = 3” and “mux = 5,” respectively. The average val-
ues of QoS difference were 0.0003 for “mux = 3” and 0.002
for “mux = 5,” showing very accurate QoS estimation. As
explained in Section 3.4, Method 2 underestimates (i.e.,
positive QoS differences) the QoS level of each connection.
We get negative QoS differences for some high-indexed
connections, because we attempted to recover low-indexed
connections first in the simulation. The margin of QoS dif-
ference is increased (i.e., less accurate estimation) as the
multiplexing degree gets higher, because the QoS underesti-
mation by Method 2 gets worse. More accurate QoS estimation
is possible by using Method 1 presented in Section 3.4. We
also simulated the mesh network using the same setup as
for the first column of Table 1c. The simulation results are
plotted in Fig. 12c. Comparing this with Fig. 12b, one can
observe a slightly larger QoS difference.

So far, we have assumed that all '-connections require
the same level of fault tolerance. We now show how the
fault tolerance level of each '-connection is maintained
when different connections require different levels of fault
tolerance. To this end, we simulated a combination of four
types of connections: 1/4 of connections with “mux = 1,”
1/4 of connections with “mux = 3,” 1/4 of connections with
“mux = 5,” and the remaining 1/4 of connections with
“mux = 6.” The number of backups was the same for all
connections. Table 2 shows that the fault tolerance level of
each class of '-connections can be readily controlled, while
the overhead remains to be around the average of all the
classes. From the simulations measuring QoS difference, we

obtained similar results to the case of the same level fault
tolerance requirement for all connections.

7.4 Comparison with Brute-Force Multiplexing
We compare the efficiency of the proposed scheme with
that of a simple multiplexing method, called brute-force mul-
tiplexing. In the brute-force multiplexing method, the same
amount of spare resource is reserved for all links without
considering the network status.

First, we applied the brute-force multiplexing to the
torus network, with reservation of the same amount of
spare resources as the average amount required by our
proposed scheme. The comparison between Table 1a and
Table 3a shows that the proposed scheme is only margin-
ally better than the brute-force scheme. We attribute this to
the homogeneity of the simulated network in terms of net-
work topology, channel traffic model, and the distribution
of channel end-nodes. The resource demands for backup
activations are therefore evenly distributed throughout the
network. In case of a very large multiplexing degree, the
proposed scheme’s estimation of the spare resource re-
quirement may become less accurate, hence the brute-force
scheme results in even higher Rfast than the proposed
scheme when mux = 6.

However, when any sort of inhomogeneity exists, the
proposed scheme outperforms the brute-force scheme by a
larger margin. The simulation results of the mesh network
supports this observation (compare Table 3b with Table 1c).
Furthermore, if the channel end-nodes are not evenly dis-
tributed or the required bandwidths of all channels are not
identical, hot-spots (in term of the spare resource demands)
occur, and the efficiency of the brute-force scheme degrades
significantly, unlike the proposed scheme. (Simulation re-
sults under inhomogeneous conditions are reported in [4].)
For the same reason, the proposed scheme outperforms the
brute-force scheme in terms of per-connection fault toler-
ance control.

8 RELATED WORK

The failure-handling techniques for datagram communication
are inadequate for real-time communication, because real-time
messages cannot be detoured around the failed component on
the fly. Fault-tolerance techniques for real-time communica-
tion in multiaccess networks, such as [7], [8] are not applicable
to multihop point-to-point networks, either.

There have been roughly two types of approaches to
achieving fault tolerance in real-time multihop networks. The

TABLE 2
Rfast WITH MIXED MULTIPLEXING DEGREES

Spare bandwidth 12.43%
Muxing degree mux=1 mux=3 mux=5 mux=6
1 link failure 100% 100% 93.48% 50.43%
1 node failure 100% 99.64% 69.92% 44.14%
2 node failures 93.11% 92.41% 65.88% 39.29%

(a) SINGLE BACKUP IN 8 ¥ 8 TORUS

Spare bandwidth 16.88%
Muxing degree mux=1 mux=3 mux=5 mux=6
1 link failure 100% 100% 100% 100%
1 node failure 100% 100% 100% 100%
2 node failures 100% 100% 99.45% 93.67%

(b) DOUBLE BACKUPS IN 8 ¥ 8 TORUS

Spare bandwidth 17.41%
Muxing degree mux=1 mux=3 mux=5 mux=6
1 link failure 100% 100% 97.29% 68%
1 node failure 100% 99.61% 88.15% 52.18%
2 node failures 89.46% 89.04% 78.55% 47.47%

(c) SINGLE BACKUP IN 8 ¥ 8 MESH

TABLE 3
Rfast WITH BRUTE-FORCE MULTIPLEXING

Spare bandwidth 30.25% 22.5% 16% 9.5%
1 link failure 100% 98.05% 92.19% 76.31%
1 node failure 100% 95.34% 87.98% 68.87%
2 node failures 93.11% 89.82% 82.23% 63.53%

(a) 8 ¥ 8 TORUS

Spare bandwidth 33.11% 24.47% 19.69% 17.22%
1 link failure 96.18% 89.74% 83.18% 78.18%
1 node failure 96.56% 88.31% 79.49% 72.86%
2 node failures 86.78% 79.62% 71.88% 66.03%

(b) 8 ¥ 8 MESH
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first type is the forward-recovery approach, as described in
[9], [10], where multiple copies of a message are sent simul-
taneously via disjoint paths to mask the effects of failures. A
variation of this approach coupled with the error-correction
coding scheme can be found in [11]. This approach has an
advantage that failures are handled without service disrup-
tion, but it is too expensive for certain applications, like mul-
timedia networking. If infrequent packet losses due to tran-
sient failures are tolerable, the approach to detect and recover
from persistent failures is a more attractive and cost-effective
alternative. The methods proposed in [12], [13], [14], [15],
[16], [17], [18], [19] belong to this second type of approach.
The proposed scheme also falls into this type.

The method proposed in [12] requires all failures to be
broadcast to the entire network. When a source node is noti-
fied of the failure of its channel, it tries to establish a new
channel from scratch. Since no resource is reserved in ad-
vance for the purpose of fault tolerance, this method causes a
small overhead in the absence of faults. However, it does not
give any guarantee on failure recovery. The channel re-
establishment attempt can fail due to resource shortage at
that time. Even when there are sufficient resources, the con-
tention among simultaneous recovery attempts for different
faulty connections may require several trials to succeed, thus
delaying service resumption and increasing network traffic.

In contrast, the method of [13] provides guaranteed fail-
ure recovery under a deterministic failure model (i.e., single
failure). In this method, additional resources are reserved in
the vicinity of each real-time channel, and the failed com-
ponents are locally detoured using the reserved resources.
Since failures are handled without intervention of source
nodes, the recovery latency will be small. However, this
method requires reservation of substantial amounts of extra
resources, and resource usage becomes inefficient after fail-
ure recovery, because channel path-lengths are usually ex-
tended by local detouring. Similar approaches in telecom-
munication networks can be found in [14], [15], [16].

The work reported in [17], [18], [19] comes closest to our
scheme. They proposed VP-restoration methods in ATM
networks based on the backup channel concept. The main
difference of these from ours is that they are unable to control
the fault tolerance level of each connection (i.e., VP). Another
difference is that they assume that a fixed traffic demand (i.e.,
VP setup requests) is given beforehand and remains un-
changed, while we consider the dynamic setup and teardown
of channels. Thus, at the network design stage, all channel
paths and spare resources are determined using a computa-
tionally very expensive algorithm, to minimize resource
overhead while guaranteeing recovery from a certain type of
deterministic failures (typically single-link failures). Addition
or removal of a channel requires recalculation of all channel
paths and spare resources. Therefore, these schemes cannot
be applied to an environment where short-lived channels are
set up and torn down frequently. By contrast, in our scheme,
we separated the spare resource allocation problem from the
channel routing problem, so that

1) channel path may be selected by any algorithm, and
2) channel establishment may be done in a distributed

manner without requiring global knowledge about all
channels in the network.

We have also presented an integrated solution to the prob-
lem of channel switching, resource reconfiguration, and
control-message transmission, which is not specific to a
particular type of network.

9 CONCLUSION

We have proposed a failure-recovery scheme for depend-
able real-time communication services in multihop net-
works. The main contributions of this paper are threefold.
First, we defined the client interface model for fault-tolerant
real-time communication. Second, we devised a mechanism
to reduce the fault tolerance overhead to an acceptably low
level. Third, we developed a robust protocol for fast and
guaranteed failure recovery. We evaluated the efficiency of
the proposed scheme through simulations and showed that
with minor degradation of the network’s capability of ac-
commodating channels, a desired fault tolerance QoS level
can be achieved.
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