
End-host Architecture for QoS-Adaptive Communication �

Tarek Abdelzaher and Kang G. Shin

Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, Michigan 48109{2122

fzaher, kgshing@eecs.umich.edu

Abstract

Proliferation of communication-intensive real-time ap-
plications with \elastic" timeliness constraints, such as
streaming stored video, requires a new design for end-
host communication subsystems. The design should
(i) provide per-ow or per-service-class guarantees, (ii)
maximize the aggregate utility of the communication
service across all clients, (iii) gracefully adapt to tran-
sient overload, and (iv) avoid, if possible, starving
lower-priority service classes during the period of sus-
tained overload.

We propose a QoS-optimization algorithm and com-
munication subsystem architecture that satisfy the
above requirements. It provides each client its con-
tracted QoS, while adapting gracefully to transient over-
load and resource shortage. A new concept of exible
QoS contract is introduced, specifying multiple accept-
able levels of service (or QoS levels for short) and their
corresponding rewards for each client. Allowing clients
to specify multiple QoS levels permits the server to per-
form QoS-optimization and degrade client's QoS un-
der transient overload predictably, as speci�ed in the
QoS contract. Clients receive a money-back guaran-
tee if the contracted QoS is violated by the server.
The proposed resource-management mechanism maxi-
mizes server's total reward under resource constraints.
We implemented and evaluated the architecture on a
Pentium-based PC platform running under The Open
Group (TOG) MK7.2 kernel, demonstrating the capa-
bility of our communication subsystem in meeting its
design goals.

�The work reported in this paper was supported in part by the
O�ce of Naval Research under Grant No. N00014-94-1-0229 and
Defense Advanced Research Projects Agency, monitored by the
U.S. Air Force Rome Laboratory under Grant F30602-95-1-0044.
Any opinions, �ndings, and conclusions or recommendations ex-
pressed in this publication are those of the authors and do not
necessarily reect the view of the funding agencies.

1. Introduction

This paper presents a new communication subsystem
architecture for QoS-adaptive real-time applications.
The main contribution of this architecture is its dy-
namic QoS-optimization mechanism and support for
exible QoS contracts. The QoS contract between the
communication client and server speci�es not only the
QoS requirements of the nominal mode of operation (or
nominal QoS level), but also degraded acceptable QoS
levels. Thus, under overload, the communication sub-
system can degrade connections predictably as speci�ed
in their respective QoS contracts. In order to express
the relative desirability of the acceptable QoS levels
speci�ed in a QoS contract, the contract associates a
reward with each level. The reward may be commen-
surate with the client-perceived utility of receiving ser-
vice at that level. Ideally, each client receives service at
the maximum QoS level speci�ed in its QoS contract.
To achieve graceful degradation, under overload a QoS-
optimization algorithm determines how to degrade in-
dividual clients. Thus, instead of inicting arbitrary
degradation, the aggregate system bandwidth is subdi-
vided among clients so as to optimize a selected perfor-
mance measure. If it is impossible to service the client
even at the lowest acceptable QoS level, the client must
be \reimbursed" for his broken contract. The QoS con-
tract speci�es a QoS-violation penalty to be paid by the
service provider in such a case. Resource management
ensures that clients will either receive their contracted
service (and get \billed" for the given QoS level), or
receive a \rebate" corresponding to the speci�ed QoS-
violation penalty. The goal of the server is to maximize
its reward. The QoS-optimization algorithm chooses
clients' QoS levels that optimize the aggregate reward
subject to resource constraints, given the information
on rewards and QoS-violation penalties.

Our work is complementary to the research on real-
time communication protocols [2,10, 18, 21], network
support for QoS [6,19], and real-time operating system
support [9, 12, 15, 17]. We address end-host design that
supports a QoS-adaptive service model [1, 4, 7, 8]. Un-
like integrated end-to-end architectures geared towards
multimedia QoS [3,5, 16, 20], we focus on providing ap-
propriate QoS guarantees for both soft and hard real-
time applications by the composition of individually-
designed independent components. In this approach
the desired end-to-end behavior is achieved by compos-
ing several independent resource-management modules
(for computing and network resources), each appropri-
ate for the particular resource it manages and the par-
ticular environment in which it executes. For this com-
posability, no built-in assumptions should be made in
a module regarding others with which it might be com-
posed. In this paper, we focus on the end-host QoS-
management module only. To achieve its independence
from other modules in an end-to-end scheme our design
makes no assumptions about the communication proto-
col stack, type of network, resource-reservation support
in the network, OS support for QoS on the server, and
does not require exact system-load characterization and
pro�ling.

Ideally, QoS adaptation should be coordinated at
both ends and all internal/intermediate points of the
connection. Real-time communication protocols such
as RTP [18], can be used with our scheme to help clients
adapt application-level performance to network delays.
RSVP [21], or real-time channels [2, 10] can be used
to reserve host and network bandwidths, when applica-
ble. Further development of such techniques for exible
end-to-end guarantees is beyond the scope of this pa-
per. We design an end-host communication subsystem
to meet the following goals.

� Provide per-ow or per-service-class guarantees on
the end-host. Once a QoS contract is established
with a client, it will be enforced.

� Maximize the aggregate reward (for delivered QoS)
across all clients. In applications such as video-on-
demand servers where clients pay for their received
QoS, this maximization translates into maximiza-
tion of the total server's revenue.

� Adapt responsively to transient load uctuations
and resource shortage. This is in sharp con-
trast to indiscriminate degradation that applies to
premium-service clients as well as to basic-service
clients alike.

� Avoid starving lower-priority service classes un-
der prolonged overload conditions, if possible. De-
pending on how reward values and QoS-violation

penalties (rebates) are set, it may be more prof-
itable to \mildly" degrade the performance of some
set of clients rather than to discontinue the ser-
vice completely. Under overload, our algorithmde-
grades clients in a way that optimizes the reward;
this is in sharp contrast with simple �xed priority
schemes that will starve lower-priority clients.

Section 2 de�nes the proposed new service model and
present the corresponding communication subsystem
architecture. The main components of the architecture
are elaborated on in Sections 3 and 4, respectively. Sec-
tion 5 details our implementation of the adaptive com-
munication subsystem. Evaluation and testing results
are presented in Section 6. The paper concludes with
Section 7.

2. Real-time Communication Model
A real-time communication subsystem must enforce the
semantics of its QoS contract with clients. We now
elaborate on these semantics and present the general
architecture of the communication subsystem.

2.1. QoS Levels

In order to provide a predictable communication ser-
vice, the amount of communication tra�c generated
at the source must be bounded. The leaky bucket
model [11] has been commonly used to control input
tra�c. Thus, at the communication subsystem level,
each QoS level may be represented by a leaky-bucket-
like tra�c speci�cation of di�erent size and rate. From
a resource-management viewpoint, the abstraction is
somewhat similar to a resource-capacity reserve. A
QoS level can be viewed as a communication-capacity
reserve Ci, speci�ed by a number Mi of bytes,1 a pe-
riod Pi (the inverse of rate) and a bu�er size Bi. The
reserve can be of sender or receiver type. At the sender
side, the reserve holds enough computing and bu�er re-
sources for Mi bytes to be transmitted every Pi units
of time. The bu�er-size parameter speci�es the maxi-
mumnumber of bytes to be bu�ered due to the sender's
burstiness. Without loss of generality, we can assume
that Bi is speci�ed in multiples of Mi. The maxi-
mum number Nmax(t) of bytes that can be generated
within an interval of length t is (Bi + bt=Pic)Mi. Since
bt=PicMi of these bytes will have been transmitted by
time t, the expression for Nmax(t) implies that at most
BiMi can be awaiting transmission at the sender at any
given time. A byte generated at time t at the source
is said to be conformant if the total number of bytes
generated by time t is less than Nmax(t). Guarantees

1
Mi can be speci�ed in bytes if messages are much larger than

the maximum packet size. Otherwise, it is speci�ed in packets.
In any case we should be able to estimate (approximately) an
average number of packets givenMi.

Client

Guarantee
I certify that your request will

I reserve the right to choose
and/or change the QoS level
(among supplied options) as
I see fit to maximize the sum
of rewards of all my clients.

levels specified if possible.
by honored at one of the QoS

Rejection

less than cost of admission
Request rejection penalty is

Provider

Service
Request

Service

Service Request

Level
QoS QoS Reward

#1

#2

#n

$

$

$

Parameters

(M, P, B)

Yes/No

Request Violation Penalty
Request Rejection Penalty

Figure 1. Connection-establishment request

are given to conformant bytes only. Since Mi bytes are
guaranteed to be transmitted every Pi units of time, a
conformant byte is guaranteed to be transmitted within
BiPi time units after its generation at the source. Thus,
the transmission deadline of a byte generated at time t
is Di = t+ BiPi.

At the receiver the QoS level is a communication-
capacity reserve that holds enough computing resources
to receive Mi bytes every Pi time units. The bu�er size
parameterBi speci�es the maximumsize of the delivery
bu�er, measured in multiples of Mi. This parameter is
useful when the receiver task is not synchronized with
the communication service, in which case the service
must bu�er incoming packets until the application ex-
ecutes a receive. A byte is said to have been delivered
when it has been processed by the protocol stack at the
receiver and deposited in a delivery bu�er.

2.2. The QoS Contract

A QoS contract is signed between the server and
client upon connection establishment. The QoS con-
tract speci�es alternative QoS levels acceptable to
the client, their corresponding rewards, and a QoS-
violation penalty . Each QoS level is expressed in terms
of its M , P , and B tra�c parameters described in Sec-
tion 2.1. Technically, the server may also specify a QoS-
rejection penalty incurred if a new request is rejected
prior to contract establishment (as opposed to the QoS-
violation penalty which represents the cost of violating
an existing contract). For many applications one may
argue that there should be no rejection penalty since
no contract has yet been established. Figure 1 shows
an example connection-establishment request. Should
the QoS contract be \signed" by the server, the client
is guaranteed to receive the service at one of its re-
quested QoS levels, or be \paid" the speci�ed amount
of QoS-violation penalty. The selection of a particular

QoS level is delegated to the server (in this case, the
communication subsystem). Furthermore, the commu-
nication subsystem may change the delivered QoS to
another level in the client's QoS contract at its discre-
tion, when appropriate, without consulting the client.
This gives the subsystem enough leeway for QoS adap-
tation and the optimization of aggregate reward.

Note that specifying only one acceptable QoS level
with a default (e.g., in�nite) violation penalty reduces
the QoS contract to a traditional on-line admission con-
trol API. An in�nite violation penalty would mean that
a QoS violation results in a system failure, as is the
case in hard real-time systems.2 If such is the case, the
underlying system should also support resource reserva-
tion, and the worst-case resource requirements of arriv-
ing requests should be known upon their arrival. Since
we are primarily interested in applications which have
exible QoS requirements, we do not require resource-
reservation support in the general case.

2.3. Reward Estimation

The problem of specifying rewards for di�erent QoS
levels (as well as the QoS levels themselves) warrants
additional discussions. In those real-time applications
interacting with a human user (rather than a physical
environment), QoS levels and rewards are somewhat
subjective. For example, the parameters of QoS levels
may be set by application designers to correspond to
\poor", \good" and \excellent" performance, respec-
tively. The reward values may be set by the end users
at the time of their service requests using an intuitive
GUI, such as a slide rule which quanti�es user satisfac-
tion with each of the above-prede�ned QoS levels on
a 0{100% scale. In a commercial, however, QoS levels
and rewards may be selected by the service provider.
For example, a communication server serving multiple
human users can use reward information based on a
combination of customized user preferences and user
membership fees.

QoS-level and reward speci�cation for applications
that deal with an external physical environment, as
opposed to a human user, should be done based on
an objective performance measure. For example, in [1]
we illustrated a case where QoS levels and rewards
were speci�ed by an AI agent representing an applica-
tion domain expert for an automated ight application
to minimize the mission failure probability. In gen-
eral, the speci�cation of QoS levels and rewards is an
application-speci�c policy that should be discussed in
the context of the particular application. Our main
goal in this paper is to provide general mechanisms for
such speci�cation that are rich enough to express elas-

2Indeed, incurring an in�nite penalty makes it meaningless to
maximize the accrued reward.

tic service requirements, whenever such information is
available.

2.4. System Architecture

This subsection highlights the basic architectural ele-
ments used to satisfy our communication subsystem de-
sign requirements. The �rst and most basic objective of
our architecture is to provide per-client or per-service-
class QoS on the server. For this, each client (or service
class) is handled within the communication server by
a separately schedulable entity. We will henceforth call
it an adaptive negotiation agent (ANA). An ANA is
created at the time of connection setup within a com-
munication server on behalf of an application client. It
expresses the client's QoS contract terms to the com-
munication server and is scheduled in accordance with
the client's assigned QoS level. Associating di�erent
ANAs with di�erent clients allows clients to be serviced
concurrently at di�erent QoS levels.

The second objective of our architecture is to max-
imize the server's aggregate reward. This is accom-
plished by a proper choice of QoS levels that \opti-
mally" utilizes available resources. The reward maxi-
mization problem can be translated into that of proper
ANA scheduling and schedulability analysis. At any
given time, the communication subsystem contains a
set of ANAs, each scheduled at a particular QoS level
speci�ed in its QoS contract. To maximize the aggre-
gate achieved reward subject to resource constraints,
our design utilizes a combination of (i) a load control
module implementing a QoS-optimization algorithm
that maximizes aggregate reward using an estimate of
current load, and (ii) a monitoring module that mea-
sures and updates estimated load parameters. The load
control module is activated when a new ANA is to be
created or destroyed. Upon activation, it (i) performs
an admission test on the new ANA, if any, and (ii) re-
computes the active QoS level for all current ANAs to
adapt to the current load. The amount of resources
available to the communication subsystem as a whole
may be �xed (dedicated resources), or may vary dy-
namically (e.g., in the absence of appropriate resource-
reservation mechanisms) in which case the load control
module may also be executed periodically to adapt to
dynamic load changes. Due to the relative complexity
of QoS optimization, the invocation period of the load
control module must be relatively slow. The module is
described in more detail in Section 3.

The third objective of our architecture is to adapt
responsively to transient load or resource-capacity
changes. Such changes can occur between successive
invocations of the load control module and may re-
quire immediate response. Since re-executing the QoS-
optimization algorithm upon every load change may

System
Monitoring

Load
Control

State

Load
Incoming

ResultsProtocol
Processing

Data Transmission Cost

Disturbance
Load

Unaccounted Load

QoS Levels
Admitted Load,

Estimated

Adjustment
QoS Level

Measured Utilization
Deadline Hits/Misses

Figure 2. The communication subsystem

consume too much bandwidth, we provide a fast feed-
back loop, implemented by the monitoring module,
that detects transient overload or underutilization con-
ditions and makes small incremental adjustments to
the QoS levels selected by load control using a sim-
ple heuristic as described in Section 4. Together the
periodic optimization and the fast QoS level adjust-
ment heuristic ensure that during overload clients are
gracefully degraded, but not starved, whenever such
degradation leads to a higher aggregate achieved re-
ward. This feature satis�es the fourth objective of the
architecture. Figure 2 depicts the major components
of the communication subsystem.

3. Load Control
In this section, we describe the communication subsys-
tem component responsible for admission control and
near-optimal selection of QoS levels for ANAs such that
the aggregate achieved reward is maximized. We �rst
consider a special case where the computing power and
communication bandwidth available to the communi-
cation subsystem are �xed. This may be the case with
hard real-time systems where resources are dedicated
a priori . We then extend the result to the case where
these parameters vary dynamically.

3.1. QoS-Optimization

Assume that the communication subsystem is allotted
a fraction Userver of CPU utilization, and that the host
has an amount BW of network bandwidth dedicated
to it. Upon invocation, the load control module ex-
ecutes a QoS-optimization algorithm that selects QoS
levels to maximize the aggregate reward subject to the
aforementioned resource constraints. Let there be n
ANAs considered by the load control module (including
any newly-arrived ANA-creation request). Let the QoS
contract Qi of ANAi containmi QoS levels, denoted by
Li[1]; :::;Li[mi], let their rewards be Ri[1]; :::; Ri[mi],
respectively, and let the QoS-violation penalty be Vi.
As mentioned in Section 2.1 each QoS level Li[k] is
given by a maximum data size Mi[k], a period Pi[k],

and a bu�er size requirement Bi[k]. At this point we
introduce an additional (arti�cial) QoS level for each
ANA, called the null level (at which the client receives
no service), with the cost of starving or rejecting the
client. The level has no resource requirements (i.e.,
Mi[k] = 0; Pi[k] = 1; Bi[k] = 0), and a negative re-
ward numerically equal to its QoS violation penalty
(i.e., Ri[k] = �Vi) if the client has a contract, or its
QoS-rejection penalty if it is a new client being con-
sidered for admission. Let fc(x) be the cost function
which gives the total time it takes to process and trans-
mit x bytes. Let's de�ne the periodic execution cost,
Ei[k], such that:

Ei[k] = fc(Mi[k]): (1)

The processor utilization requested by a QoS level Li[k]
is:

Ui[k] = Ei[k]=Pi[k]: (2)

This utilizationmust be less than Userver for the QoS to
be feasible. Furthermore, the requested network band-
width, BWi[k], is Mi[k]=Pi[k] which must not exceed
the available bandwidth BW . The QoS-optimization
problem is NP-complete because it is a derivative of
the multiple-choice knapsack problem. To reduce the
NP-complete optimization problem to a polynomial-
time problem, we assume that Ui[k] can only take dis-
crete values which are multiples of some small con-
stant �. In practice, this means that the actual uti-
lization allotted by the communication system to an
ANA will always be approximated to the next multiple
of �. The value of � can be chosen appropriately small.
Now, let's de�ne S(i; U) to be the subproblem of op-
timally assigning QoS levels to ANA1, ..., ANAi with-
out exceeding some arbitrary utilization U of the com-
puting resource. For notational simplicity, let S(i; U)
also denote the corresponding aggregate reward. Let
BW (i; U) represent the corresponding network band-
width consumed. Furthermore, let S(i; �) be the set of
subproblems fS(i; �); S(i; 2�); :::; S(i; Userver)g. Given
n ANAs in the subsystem we need to solve the problem
S(n; Userver). Using the dynamic programming the fol-
lowing recursive relation is derived:

S(i; U) = max1�k�mi
fRi[k] + S(i � 1; U � Ui[k]) j

BWi[k] + BW (i � 1; U � Ui[k]) � BWg (3)

Note that if k� is the value of k in the above equation
that yields the computed maximum, then:

BW (i; U) = BWi[k
�] +BW (i � 1; U � Ui[k

�]) (4)

For the special case of i = 1,
S(1; U) = max

1�k�m1

fR1[k] j U1[k] � U;BW1[k] � BWg

(5)

and if k� is the value of k that yields the maximum in
the above equation:

BW (1; U) = B1[k
�] (6)

The above recursive relation computes the solution to
a subproblem in S(i; �) given solutions to the subprob-
lems in S(i � 1; �), taking one O(mi) step. Note, how-
ever, that since the utilization is discretized, there is
only a �nite constant, K, of possible utilization val-
ues in the range [0; Userver], i.e., jS(i; �)j = K, for i =
1; : : : ; n. Thus, there are a total of only nK subprob-
lems S(i; U) to be solved. Solving all of these subprob-
lems (in increasing order of index i) will therefore take
O(K

P
1�i�nmi) which is equivalent to O(KnLav),

since Lav = (
P

1�i�nmi)=n. Finally, note that K is a
constant that does not grow with problem size, making
the complexity of the algorithm O(nLav). The com-
plete algorithm is given below.

Algorithm A

1 for i = 1 to n

2 for U = 0 to Userver in steps of �

3 compute S(i; U) from Equation 3

4 compute BW (i; U) from Equation 4

5 return S(n;Userver)

The above algorithm exhaustively searches the space
of all solutions in the discretized CPU utilization space
and returns the optimal one. The returned solution as-
signs a QoS level for each ANA such that the aggregate
server reward is maximized. From a scheduling per-
spective, the QoS level determines the period at which
each ANA is to be invoked. From the ANA's perspec-
tive, the QoS level determines the amount of data to be
processed per period, and the size of the data bu�er.

3.2. Practical Approximation of QoS-Level
Selection

The algorithm presented above is a multiple-choice
knapsack problem with the CPU being the knapsack,
and network bandwidth requirements being an addi-
tional constraint. From a mathematical perspective,
the CPU and network bandwidth can be viewed as two
abstract resources. If the knapsack problem is solved
for the bottleneck resource (of these two), the constraint
on the other resource will always be satis�ed. In our
architecture, CPU processing at the host and packet
transmission by the network device occur concurrently
for successive packets as a two-stage pipeline. The cost,
fc(x), of transmitting x bytes is therefore the cost of
the bottleneck stage. We lump the components of fc(x)
into a per-packet processing cost and use a linear ap-
proximation fc(x) = dx=MTUe, where is an es-
timated per-packet processing cost of the bottleneck
stage, and MTU is packet size. Using Equations 2,

and 1, the bottleneck resource utilization requested by
a QoS level Li[k] is:

U bottle
i [k] = Ei[k]=Pi[k] = dMi [k]=MTUe=Pi[k]: (7)

Equations 3 and 5 can now be rewritten for the bot-
tleneck resource by substituting in them the above uti-
lization and omitting the always-satis�ed constraint on
the non-bottleneck resource.

S(i; U) = max
1�k�mi

fRi[k] + S(i� 1; U �U bottle
i [k])g (8)

S(1; U) = max
1�k�m1

fR1[k]g (9)

Finally, let's examine , the per-packet processing cost
of the bottleneck stage. If V is the observed system
throughput in packets per second, and U b

server is the
current utilization of the bottleneck resource, then =
U b
server=V . Since U

b
server changes dynamically and may

be di�cult to measure, we scale utilization units by
1=U b

server. Thus, expressed in the new units, called
effect, is 1=V . Consequently, Algorithm A can be
rewritten in the new units as follows:

Algorithm A'

1 for i = 1 to n

2 for U = 0 to 1 in steps of �

3 compute S(i; U) from Equation 8

4 return S(n; 100)

where the (scaled) utilization values in Equation 8 are
computed from:

Ui[k] = Ei[k]=Pi[k] = effectdMi[k]=MTUe=Pi[k]:
(10)

The approximate version of the algorithm means that
in soft real-time systems where (i) the allotted resource
capacity Userver and BW are neither �xed nor known,
(ii) the bottleneck resource is not known or can change
dynamically depending on end-host and network load
conditions, and (iii) the system is not pro�led (i.e.,
fc(x) is not exactly speci�ed), we can still compute
near-optimal QoS levels by measuring system through-
put, V , computing its inverse effect, then applying
Algorithm A'. In a system where resource availabil-
ity changes dynamically, the computed value of effect
may change at run-time. Algorithm A' will be exe-
cuted periodically to recompute QoS levels accordingly.

3.3. Client Aggregation

It is possible to aggregate clients into a number of
generic classes. Each class may have standard prede-
�ned QoS levels and rewards. The value of Mi[k] for
a class Ci will be interpreted as a \budget," and may

be chosen to be su�cient for serving some pre-selected
number M of clients of that particular class. A client
requesting connection to the server will specify the class
of service it desires. The communication requirements
of the client will then be debited to the ANA of the
class. When enough clients request a speci�ed class to
exceed its budget, a new ANA may be created to serve
the \overow" clients in the class.

4. Monitoring and Feedback Control

In the previous section we described how QoS levels
are near-optimally selected for ANAs. Since the algo-
rithm incurs a relatively high cost, it is more suitable
for adaptation to long-term resource variations. Thus,
in our implementation it is executed once every 5 sec-
onds. effect is computed by averaging the monitored
throughput V over a su�ciently large window, then
obtaining its inverse. In the current implementation
V is averaged over 50 readings, each collected over a
100ms time interval. A more responsive mechanism is
needed to adapt to short-term load changes. In order
to respond to fast load uctuations, we check for tran-
sient overload or underutilization conditions every P
time units, and make a small incremental adjustment
to the QoS levels of some ANAs around the operat-
ing point computed by Algorithm A'. The purpose of
QoS-level adjustment is to keep the system from get-
ting underutilized or overloaded due to transient load
or inaccurate effect. Adjusted QoS levels are always
selected among those speci�ed in the QoS contract for
the ANAs in question. Overload conditions are de-
tected by checking whether or not scheduled ANAs fail
to execute by their deadlines (end of their invocation
period). When d deadlines are violated, \overload" is
agged. The parameter d can be con�gured according
to deadline criticality. For example, if meeting every
deadline is very important, then d = 1 is the most
favorable choice. However, if a certain number n of
deadline misses can be tolerated before an adverse ef-
fect is perceived then a good choice would be d = n. In
addition, every period P , the monitoring module looks
up the total time �, out of P , during which at least one
ANA was ready or running. The ratio �=P represents
system utilization by the scheduled ANAs. Underuti-
lization conditions are agged when �=P drops below
a pre-con�gured threshold.3 Once overload or under-
utilization is agged, a QoS-adjustment heuristic is ex-
ecuted to adapt QoS levels accordingly. It executes a
fast greedy algorithm attempting to maximize the ag-
gregate achieved reward as shown below:

3In our implementation a threshold of 85% utilization is used.

QoS Level Adjustment Heuristic

1 if overload then

2 Choose the ANA, Ci, whose degradation

by one QoS level results

in the minimum decrease in reward

(i.e., Ri[current]�Ri[current� 1] is minimum)

3 Degrade Ci to next QoS level.

4 if underutilization then

5 Choose the ANA, Ci, whose promotion

by one QoS level results

in the maximum increase in reward

(i.e., Ri[current+ 1]� Ri[current] is maximum)

6 Promote Ci to next QoS level.

The algorithmwill alter system load hopefully resolving
the overload or underutilization conditions. In the cur-
rent implementation, these conditions are checked at a
10-Hz frequency. Note that since the heuristic starts
from a near-optimal solution for the QoS-level selec-
tion problem, it has a good chance of �nding a global
optimum.

5. Implementing QoS Contracts
A thread-per-connection model has been suggested for
communication subsystem design in [14]. We extend
this model to ANAs, o�ering a thread-per-ANA ar-
chitecture. We implement a user-level thread pack-
age, called qthreads, whose scheduler transparently
performs the QoS optimization and dynamic QoS-level
adjustment algorithms described in Sections 3 and 4,
and assigns thread scheduling priorities appropriately
to satisfy the selected QoS levels. This scheduling pack-
age is novel in that its threads are explicitly aware of
their own QoS levels.

5.1. qthreads: QoS-Adaptive Threads

The qthread package has been implemented with the
intention of supporting generic adaptive server archi-
tectures. The package is novel in that its scheduler ex-
plicitly recognizes per-thread QoS levels, rewards, and
QoS-violation penalty. This information is passed in
the qthread create() primitive. A QoS level Li[k] of
thread Ti is expressed in terms of a period Pi[k] and
an execution budget Ei[k] specifying that the thread
must execute for Ei[k] every period Pi[k]. This im-
plies a requested CPU utilization Ui[k] = Ei[k]=Pi[k].
For architectures with a self-pro�ling capability, Ei[k]
is speci�ed as two values. An absolute computation
time ei[k] that speci�es computational requirements in
application-speci�c absolute load units, and a pointer
p to a scaling factor �, presumably maintained by the
self-pro�ling subsystem that expresses the actual exe-
cution time per unit of absolute load on the underlying
platform. Thus, Ei[k] = �ei[k]. In our use of the pack-
age ei[k] is set to dMi[k]=MTUe, while p points to the

computed effect. When a thread is created using the
qthread create() primitive, QoS optimization is invoked
to compute a QoS level for each thread, as described
in Section 3, so that the aggregate achieved reward is
maximized. The qthread create() call fails if the algo-
rithm rejects the thread. Otherwise, the thread is cre-
ated and invoked periodically with a period determined
by its selected QoS level. Threads are scheduled using
EDF with deadline equal to thread period, which is an
optimal scheduling strategy.

5.2. Implementing ANAs

Each ANA is realized as a separate qthread. ANA ob-
jects are implemented within a communication library
called CLIPS (Communication Library for Implement-
ing Priority Semantics). The main tasks performed by
CLIPS are as follows:
QoS-level-sensitive message dequeuing: Each ANAi at
the sender has an input message bu�er sized to take
Bi[k]Mi[k] bytes, where k is the ANA's QoS level. The
sending source deposits messages in that bu�er while
the ANA dequeues them asynchronously, every period
Pi[k] as speci�ed by its QoS level. If the bu�er �lls up,
the source is blocked by the ANA on the next message
enqueue operation, until bu�er space becomes avail-
able, or alternatively returns an error code. If several
sources deposit messages into the same ANA (as might
be the case with client aggregation, described in Sec-
tion 3.3) they are assigned separate message queues in
the common input message bu�er, and are dequeued in
a round-robin fashion to achieve fair bandwidth shar-
ing, and guarantee each client a minimum share of the
ANA bandwidth.
Packetization/Depacketization: This function is typi-
cally performed by a protocol layer in the protocol stack
executed by the ANA. The ANA can be con�gured to
execute an arbitrary protocol stack.
Per-ANA policing: In order to prevent clients from vi-
olating their tra�c speci�cation, client tra�c is policed
on a per-ANA basis to ensure that each connection is
conformant to the rate of service dictated by its cur-
rent QoS level. Tra�c is policed by limiting each ANA
to send (receive) no more than dMi[k]=MTUe packets
during each period Pi[k]. This is achieved by counting
the number of processed packets and blocking once the
ANA has used its allotted packet budget for the given
period, until the start of the next period. Note that
such voluntary blocking (yielding) indirectly enforces a
CPU run-time limit on each invocation of the ANA.
Outgoing packet queuing: The ANA, on the sender side,
deposits processed packets in an outgoing queue. When
the communication link becomes available to the send-
ing host, link bandwidth must be allocated to outgoing
packets in proper priority order to provide the QoS lev-

els selected by qthreads. Outgoing packets are there-
fore queued at the network device interface in a priority
heap sorted by ANA deadline, as assigned to it by the
qthread scheduler.
Receive side demultiplexing: Incoming packets are de-
multiplexed by the receiver which then invokes the
qthread (ANA) responsible for serving the particular
connection. The communication subsystem scheduler
then schedules each ANA to run in accordance with
the deadline assigned to it from its QoS level.

5.3. Implementation Platform

We implemented the proposed communication archi-
tecture on a Pentium-based PC network, each run-
ning the MK 7.2 microkernel developed by The Open
Group (TOG).4 MK 7.2 is a derivative of CMU's Mach.
The communication subsystem architecture was im-
plemented using the facilities of TOG's CORDS envi-
ronment which is based on x-kernel support originally
developed at the University of Arizona. At present,
the communication subsystem is realized as a CORDS
server implementing the communication protocol stack
on top of the microkernel and communicating directly
with the network device driver via kernel ports.

6. Evaluation
We conducted several experiments to stress-test the
performance of the communication subsystem server
and verify its ability to meet the contracted QoS re-
quirements. The server was run on a single Pentium-
based PC with an MK 7.2 kernel. To emulate natural
operating conditions, the machine was placed on one
segment of a shared Departmental Ethernet serving 204
machines. The Ethernet is connected to a campus-wide
network via an FDDI ring that is in turn connected
to an Internet backbone. First, we identi�ed the cost
of QoS adaptation in the proposed architecture. Our
pro�ling results indicate that the monitoring module
overhead is about 7�s, the QoS-optimization overhead
is approximately 32�s per QoS-ANA, and the heuristic
QoS-adjustment overhead is 8�s. Currently, monitor-
ing and heuristic QoS adjustment are performed once
every 100ms, and QoS-optimization is invoked every 5
seconds. For 10 ANAs created in the system (due to
client aggregation the number of clients can be much
more), the above �gures indicate that the aggregate
overhead consumed by QoS-adaptation mechanisms is
less than 0.1 %.

To test server performance we created a set of
threads, each of which generates messages persistently
and sends them using our communication subsystem
API. Each thread represented the endpoint of a con-
nection. We shall henceforth call it a generator thread .

4TOG is formerly known as the Open Software Foundation.

An ANA was created for each connection to enforce the
QoS contract, and police the generator. Connection
throughput was measured at the bottom of the proto-
col stack of the sender just above the network device
driver. Since we are not addressing end-to-end QoS in
this paper, we ignore the receiving end in this evalua-
tion. Figure 3 shows the measured throughput versus
time for each of three connections. In this experiment
the contacted rates for the connections were 1:5Mb=s,
1Mb=s and 0:5Mb=s, respectively.5 The �gure shows
that although the generator threads dump messages
persistently to the communication subsystem without
regard to a maximum rate, their measured throughput
does not violate the contracted QoS due to appropriate
policing.

1

2

Rate (MB/s)

10 20 30 40 Time (s)
0

0

Figure 3. Policing effect

The rate-policing mechanism alone, however, is not
su�cient for enforcing the QoS contract. In Figure 4
we show what happens when we increase the number of
connections above the schedulable limit. In this exper-
iment, we incrementally add 1Mb generator threads,
creating a new ANA for each. The QoS contract for
each connection has Mi = 100kb, and Pi = 100ms.
As we can see, the system becomes overloaded and the
average connection throughput decreases below its con-
tracted value as the aggregate bandwidth consumed by
the system saturates. In our experiments the maximum
aggregate consumed bandwidth was found to be ap-
proximately 3:7Mb=s. The inability of individual con-
nections to receive their contracted rate calls for an
admission-control mechanism to ensure that the set of
all connections is schedulable.

We incorporated the admission-control algorithm
presented in Section 3.2. The algorithm uses an ap-
proximate estimate of the transmission-cost-per-packet
effect (which it gets from run-time monitoring) to
compute the maximum allowable load. The on-line es-
timated value of effect was about 3:25ms=pkt, which
yields a maximum throughput of about 307 (Ethernet)
packets per second. This throughput permits admit-
ting only three 1Mb connections. From Figure 4 we

5where b, in this section, refers to bits.

0
0 2 4 6 81 3 5 7

Number of Connections

9

1.0
Contracted Connection Rate

Connection Rate
Measured Average

Rate (Mb/s)

Figure 4. Overload and violation of contracted
QoS

can see that running more than 3 connections resulted
in QoS contract violation.

In the next experiment we analyzed system response
to transient load disturbances. We �xed the number of
connections, de�ned multiple QoS levels for each, then
varied the load on the host letting the QoS-optimization
algorithm run every 5 seconds to recompute the QoS
levels based on the most recent estimate of effect.
Two long compilation tasks were started concurrently
with packet transmission to overload the CPU. Fig-
ure 5 shows the results of a representative run. The
top part of the �gure shows 5 connections, labeled
C1; :::; C5, where C1 is the least important connection,
and C5 is the most important. The QoS contract for
each connection had 3 QoS levels of bandwidth 1Mb
(Mi = 100kb; Pi = 100ms), 0:33Mb (Mi = 67kb; Pi =
200ms) and 0:11Mb (Mi = 33kb; Pi = 300ms) re-
spectively. Rewards were assigned proportionally to
the bandwidth and weighted by connection importance.
Thus, the reward for QoS level k of connection Ci was
Ri[k] = iMi[k]. The �gure depicts the QoS level se-
lected for each connection at every invocation of the
load control module. The bottom part of the �g-
ure shows the change in the measured cost-per-packet,
effect, as well as the number of missed deadlines be-
tween successive invocations of the load control module.
(A deadline miss means that Mi bits weren't transmit-
ted within Pi time units.) As can be seen from the �g-
ure, less important connections were degraded during
overload intervals to keep aggregate system through-
put below saturation. The aggregate reward was thus
signi�cantly higher than in the case of indiscriminate
degradation (where all of the connections would have
been degraded below the nominal QoS level). Further-
more, it is easy to verify that the QoS-optimization
algorithm performed by the load control module near-
optimallyutilizes the bottleneck resource. For example,
consider point t = 40 in Figure 5. The measured value
of is about 3:9ms=pkt which allows a throughput
of 256pkts=second. The aggregate throughput main-
tained at the chosen QoS-levels is 230pkts=second. The

utilization found by the chosen QoS-level assignment is
therefore about 90%. Since the QoS level optimiza-
tion algorithm runs at a slow period (5 seconds), we
observed a relatively large number of deadline viola-
tions. This is because QoS level selection was not re-
sponsive to short term load uctuations which caused
some deadlines to be missed. When the experiment was
repeated with the fast feedback loop enabled (with un-
derutilization detection threshold set to 85% and over-
load detection set to d = 2, i.e., two missed deadlines).
Since QoS levels were now adjusted in response to tran-
sient load disturbances, most of the deadline misses
were eliminated, as shown in Figure 6. Higher values
of d would result in a more lax overload detection, and
thus, more missed deadlines. Lower values of the un-
derutilization detection threshold would result in less
e�cient resource utilization.

γ
effect

γ
effect

3

4

5
Missed Deadlines

100

50

0
0 20 40 60 80 120100

Time
(seconds)

C1

C2

C3

C4

C5

Connections

L2

L3)

L1 (1.0 MB)

L2

L3)

L1 (1.0 MB)

L2

L3)

L1 (1.0 MB)

L2

L3)

L1 (1.0 MB)

L2

L3)

L1 (1.0 MB)

(0.33 MB)

(0.11 MB

(0.33 MB)

(0.11 MB

(0.33 MB)

(0.11 MB

(0.33 MB)

(0.11 MB

(0.11 MB

Deadline
Misses

(0.33 MB)

Figure 5. QoS level adaptation

effect

γ
effect

γ

0 20 40 60 80 120100
Time

(seconds)
3

4

5
Missed Deadlines

100

50

Figure 6. Improved responsiveness due to
QoS level adjustment heuristic

The above experiments illustrate the function and
e�ectiveness of the main architectural elements of our
design. We highlight the fact that our design meets its

four objectives presented in the abstract. Namely, it
(i) provides per-ANA guarantees on the end-host, (ii)
maximizes the aggregate reward of the end-host's com-
munication service across all clients, (iii) adapts respon-
sively to transient overloads and resource shortage, and
(iv) does not starve lower-priority service classes during
the period of sustained overload (but degrades them to
a lower QoS level).

7. Conclusion
We presented the design and implementation of a new
model and structuring methodology for communication
subsystems on end-hosts based on the notion of a ex-
ible QoS contract. Both QoS-speci�cation API and
QoS optimization have been addressed to maximize
aggregate reward based on a combination of periodic
optimization and fast heuristic adjustment. We dis-
cussed monitoring and feedback mechanisms for detect-
ing overload and underutilization conditions, as well as
policies for adjusting QoS levels in response to such
conditions. The impact of such mechanisms on system
performance was illustrated experimentally on an ac-
tual implementation of the communication subsystem.
The analysis has shown the design to be capable of
meeting its stated goals.

References
[1] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin. QoS

negotiation in real-time systems and its application to
automated ight control. In IEEE Real-Time Technol-
ogy and Applications Symposium, Montreal, Canada,
June 1997.

[2] A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. Verma,
and H. Zhang. The tenet real-time protocol suite: De-
sign, implementation, and experiences. IEEE/ACM
Transactions on Networking, 4(1):1{10, February
1996.

[3] A. Cambell, G. Coulson, and D. Hutchison. A quality
of service architecture. ACM Computer Communica-
tions Review, April 1994.

[4] S. Chatterjee, J. Sydir, B. Sabata, and T. Lawrence.
Modeling applications for adaptive qos-based resource
management. In Proceedings of the 2nd IEEE High-
Assurance System Engineering Workshop, Bethesda,
Maryland, August 1997.

[5] D. Chen, R. Colwell, H. Gelman, P. K. Chrysanthis,
and D. Mosse. A framework for experimenting with
QoS for multimedia services. In International Confer-
ence on Multimedia Computing and Networking, 1996.

[6] L. Georgiadis, R. Guerin, V. Peris, and R. Rajan. E�-
cient support of delay and rate guarantees in an Inter-
net. In ACM SIGCOMM, Stanford, California, August
1996.

[7] D. Hull, A. Shankar, K. Nahrstedt, and J. W. S. Liu.
An end-to-end qos model and management architec-
ture. In Proceedings of IEEE Workshop on Middleware

for Distributed Real-time Systems and Services, pages
82{89, San Francisco, California, December 1997.

[8] M. Humphrey, S. Brandt, G. Nutt, and T. Berk.
The DQM architecure: middleware for application-
centered qos resource management. In Proceedings of
IEEE Workshop on Middleware for Distributed Real-
time Systems and Services, San Francisco, California,
December 1997.

[9] M. Jones, D. Rosu, and M.-C. Rosu. CPU reservations
and time constraints: E�cient, predictable scheduling
of independent activities. In 16th ACM Symposium
on Operating Systems Principles, Saint-Malo, France,
October 1997.

[10] D. D. Kandlur, K. G. Shin, and D. Ferrari. Real-time
communication in multi-hop networks. IEEE Trans.
on Parallel and Distributed Systems, 5(10):1044{1056,
Oct. 1994.

[11] V. G. Kulkarni and N. Gautam. Leaky buckets : Sizing
and admission control. In Proceedings of the 35th IEEE
Conference on Decision and Control, Kobe, Japan,
1996.

[12] C. Lee, K. Yoshida, C. Mercer, and R. Rajkumar. Pre-
dictable communication protocol processing in real-
time Mach". In Proceedings of the Real-time Tech-
nology and Applications Symposium, June 1996.

[13] A. Mehra, A. Indiresan, and K. G. Shin. Resource
management for real-time communication: Making
theory meet practice. In 2nd IEEE Real-Time Tech-
nology and Applications Symposium, June 1996.

[14] A. Mehra, A. Indiresan, and K. G. Shin. Structuring
communication for quality of service guarantees. In
IEEE Real-Time Systems Symposium, pages 144{154,
Washington, DC, December 1996.

[15] C. Mercer, S. Savage, and H. Tokuda. Processor ca-
pacity reserves: Operating system support for multi-
media applications. In Proceedings of the IEEE In-
ternational Conference on Multimedia Computing and
Systems, pages 90{99, May 1994.

[16] K. Nahrstedt and J. Smith. Design, imlementation,
and experiences with the OMEGA end-point architec-
ture. IEEE JSAC, September 1996.

[17] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa.
Resource kernels: A resource-centric approach to real-
time systems. In Proceedings of the SPIE/ACM Con-
ference on Multimedia Computing and Networking,
January 1998.

[18] H. Schulzrinne. RTP: The real-time transport pro-
tocol. In MCNC 2nd Packet Video Workshop, vol-
ume 2, Research Triangle Park, North Carolina, De-
cember 1992.

[19] H. Schulzrinne. A comprehensive multimedia control
architecture for the Internet. In NOSSDAV, St. Louis,
Missouri, May 1997.

[20] C. Volg, L. Wolf, R. Herrwich, and H. Wittig. HeiRAT
{ quality of service management for distibuted multi-
media systems. Multimedia Systems Journal, 1996.

[21] L. Zhang, S. Deering, D. Estrin, S. Shenker, and
D. Zappala. RSVP: A new resource reservation proto-
col. IEEE Network, September 1993.

