
310 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 2, APRIL 1997

To prove Theorem 2, we need the following Lemma:
Lemma 1: The gradient,vx(x), of the return functionv(x) for a

single obstacle, defined in (15), satisfies

hvx(x); xi > 0; x 2 R
2
� f0g � O: (26)

Proof of Lemma 1:The lemma is proved in [10] by using the
structure of the optimal path for a circular obstacle (Fig. 1) and noting
that the gradient of the return function is the slope of the optimal path.

We are now ready to prove Theorem 2.
Proof of Theorem 2:Recall that the path,x�(t), is generated by

following the negative gradient of the pseudoreturn function

_x�(t) = �!x(x
�(t); i); i 2 f1; � � � ; mg: (27)

By Corollary 1,!x cannot vanish at any point inR2
� f0g�O for

all i 2 f1; � � � ; mg. Now, Lemma 1 yields

h�!x(x; i); xi < 0 8 i 2 f1; � � � ; mg: (28)

Equations (27) and (28) imply

d

dt
kx

�(t)k2 =2h _x�(t); x�(t)i

= h�!x(x
�(t); i); x�(t)i

< 0: (29)

Hence the path normkx�(t)k is monotonically decreasing. Hence
kx

�(t)k ! 0, i.e., the path is guaranteed to terminate at the goal0.

REFERENCES

[1] J. Barraquand, B. Langlois, and J. C. Latombe, “Numerical potential
field techniques for robot path planning,”IEEE Trans. Syst., Man,
Cybern.,vol. 22, pp. 224–241, 1992.

[2] L. Cesari,Optimization—Theory and Applications: Problems with Ordi-
nary Differential Equations. New York: Springer-Verlag, 1983.

[3] C. Alexopolous and P. M. Griffin, “Path planning for a mobile robot,”
IEEE Trans. Syst., Man, Cybern.,vol. 22, pp. 318–322, 1992.

[4] C. I. Connoly, J. B. Burns, and R. Weiss, “Path planning using Laplace’s
equation,” inProc. IEEE Int. Conf. Robot. Automat.,Cincinnati, OH,
1991, vol. 1, pp. 2102–2106.

[5] S. Dreyfus, Dynamic Programming and the Calculus of Variations.
New York, London, England: Academic, 1965.

[6] R. A. Jarvis, “Collision-free trajectory planning using distance trans-
forms,” Trans. Inst. Eng., Mech. Eng., Australia,vol. ME-10, pp.
187–191, Sept. 1985.

[7] Y. H. Liu and S. Arimoto, “Path planning using a tangent graph for
mobile robots among polygonal and curved obstacles,”Int. J. Robot.
Res.,vol. 11, no. 4, pp. 376–382, Aug. 1992.

[8] A. I. Moskalenko, “Bellman equations for optimal processes with con-
straints on the phase coordinates,”Autom. Remote Cont., A Translation
Avtomatika i Telemekhanika,vol. 4, pp. 1853–1864, 1967.

[9] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial
potential functions,”IEEE Trans. Robot. Automat.,vol. 8, pp. 501–518,
1992.

[10] S. Sundar, “Time optimal obstacle avoidance for robotic manipulators,”
Ph.D. dissertation, Dept. Mech. Eng., Univ. Calif., Los Angeles, June
1995.

[11] S. Sundar and Z. Shiller, “Time-optimal obstacle avoidance,” inProc.
IEEE Int. Conf. Robot. Automat.,Nagoya, Japan, 1995, pp. 3075–3080.

Scheduling Messages on Controller
Area Network for Real-Time

CIM Applications

Khawar M. Zuberi and Kang G. Shin

Abstract—Scheduling messages on the controller area network (CAN)
corresponds to assigning identifiers (ID’s) to messages according to their
priorities. In this paper we present the mixed traffic scheduler (MTS),
which provides higher schedulability than fixed-priority schemes like
deadline-monotonic (DM) while incurring less overhead than dynamic
earliest-deadline (ED) scheduling. Through simulations, we compare the
performance of MTS with that of DM and ED* (an imaginary scheduler
which works like ED, except it incurs less overhead). Our simulations
show that MTS performs much better than DM and at the same level as
ED*, except under high loads and tight deadlines, when ED* is superior.

I. INTRODUCTION

Local area networks (LAN’s) are becoming increasingly popular
in industrial automation and other real-time control applications
[1], [2]. LAN’s allow field devices like sensors, actuators, and
controllers to be interconnected at low cost—using less wiring and
requiring less maintenance than point-to-point interconnections [2].
Several architectures have been proposed for such LAN’s, including
Controller Area Network (CAN) [3], SP-50 FieldBus [4], MAP
[5], TTP [6], etc. Of these networks, CAN has gained wide-spread
acceptance in the industry [7]—first in the automotive industry and
then for industrial automation and computer-integrated manufacturing
(CIM) as well. CAN is popular because of its low cost (a CAN
interface chip costs about $5) and its useful features like reliability
in noisy environments and priority-based bus arbitration.

Control networks must carry both periodic and sporadic real-time
messages, as well as nonreal-time messages. All these messages must
be properly scheduled on the network so that real-time messages
meet their deadlines while co-existing with nonreal-time messages
(we limit the scope of this paper to scheduling messages whose
characteristics like deadline and period are knowna priori). Pre-
vious work regarding scheduling such messages on CAN includes
[8], [9], but they focused on fixed-priority scheduling. Shin [10]
considered ED scheduling, but did not consider its high overhead
which makes earliest-deadline (ED) impractical for CAN. In this
paper, we present a dynamic scheduling scheme for CAN called the
mixed traffic scheduler(MTS) which increases schedulable utilization
and performs better than fixed-priority schemes while incurring less
overhead than ED.

The next section describes the CAN protocol in detail. Section III
describes the various types of messages in our target application
workloads. Section IV gives the MTS algorithm and its schedula-
bility conditions. Section V gives simulation results and the paper
concludes with Section VI.

Manuscript received January 9, 1995; revised February 2, 1996. This work
was supported in part by the National Science Foundation by Grant MIP-
9203895 and Grant DDM-9313222, and by the Office of Naval Research by
Grant N00014-94-1-0229. This paper was recommended for publication by
Associate Editor P. B. Luh and Editor A. Desrochers upon evaluation of the
reviewers’ comments.

The authors are with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109 USA.

Publisher Item Identifier S 1042-296X(97)01026-4.

1042–296X/97$10.00 1997 IEEE

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 2, APRIL 1997 311

II. CONTROLLER AREA NETWORK (CAN)

The CAN specification defines the physical and data link layers
(layers 1 and 2 in the ISO/OSI reference model). Each CAN frame
has seven fields, but we are concerned only with theidentifier (ID)
field. It can be of two lengths: thestandardformat is 11-b, whereas
the extendedformat is 29-b. It controls both bus arbitration and
message addressing, but we are interested only in the former which
is described next.

CAN makes use of a wired-OR (or wired-AND) bus to connect all
the nodes (in the rest of the paper we assume a wired-OR bus). When
a processor has to send a message it first calculates the message
ID which may be based on the priority of the message. The ID for
each message must be unique to prevent a tie. Processors pass their
messages and associated ID’s to their bus interface chips. The chips
wait till the bus is idle, then write the ID on the bus, one bit at a
time, starting with the most significant bit. After writing each bit,
each chip waits long enough for signals to propagate along the bus,
then it reads the bus. If a chip had written a 0 but reads a 1, it means
that another node has a message with a higher priority. If so, this
node drops out of contention. In the end, there is only one winner
and it can use the bus.

III. W ORKLOAD CHARACTERISTICS

Some of the devices in CIM exchange periodic messages (such as
drives) while others are more event-driven (such as smart sensors).
Also, operators may need status information from various devices,
thus generating messages which do not have timing constraints.
So, we classify messages into three broad categories, 1) hard-
deadline periodic messages, 2) hard-deadline sporadic messages, and
3) nonreal-time (best-effort) aperiodic messages. A periodic message
has multiple invocations, each one period apart (note that whenever
we use the termmessageto refer to a periodic, we are referring toall
invocations of that periodic). Sporadic messages have a minimum
interarrival time (MIT) between invocations, while nonreal-time
messages are completely aperiodic, but they do not have deadline
constraints.

A. Low-Speed versus High-Speed Real-Time Messages

Messages in a manufacturing setting can have a wide range of
deadlines ranging from tens of microseconds for drive control to
several seconds or more for temperature sensors. Thus, we further
classify real-time messages into two classes:high-speedand low-
speed, depending on the tightness of their deadlines.

Note that “high-speed” is a relative term—relative to the tightest
deadlined0 in the workload. So, all messages with the same order
of magnitude deadlines asd0 (or within one order of magnitude
difference fromd0) can be considered to be high-speed messages.
All others will be low-speed.

IV. THE MIXED TRAFFIC SCHEDULER

Fixed-priority deadline monotonic (DM) scheduling [11] can be
used for CAN by setting each message’s ID to its unique priority
as in [8] and [9]. However, in general, fixed-priority schemes give
lower utilization than other schemes such as nonpreemptive earliest-
deadline1 (ED). This motivates us to use ED to schedule messages
on CAN, meaning that the message ID must contain the message
deadline (actually, the logical inverse of the deadline for a wired-OR

bus). But as time progresses, absolute deadline values get larger and

1Nonpreemptive scheduling under release time constraints is NP-hard in
the strong sense [12]. However, Zhao and Ramamritham [13] showed that
ED performs better than other simple heuristics.

larger, and eventually they will overflow the CAN ID. This problem
can be solved by using some type of a wrap-around scheme (which
we present in Section IV-A), but even then, puting the deadline in
the ID forces one to use the extended CAN format with its 29-b
ID’s. Compared to the standard CAN format with 11-b ID’s, this
wastes 20–30% bandwidth, negating any benefit obtained by going
from fixed-priority to dynamic-priority scheduling. This makes ED
impractical for CAN.

In this section we present the MTS scheduler which combines ED
and fixed-priority scheduling to overcome the problems of ED.

A. Time Epochs

As already mentioned, using deadlines in the ID necessitates having
some type of a wrap-around scheme. We use a simple scheme which
expresses message deadlines relative to a periodically increasing
reference called thestart of epoch(SOE). The time between two
consecutive SOE’s is called thelength of epoch̀ : Then, the deadline
field in the ID of messagei will be the logical inverse ofdi�SOE =
di�bt=`c`; wheredi is the deadline of messagei andt is the current
time (it is assumed that all nodes have synchronized clocks). Value
of ` depends on what fraction of CPU-time the designer is willing
to allow for ID updates. Let this fraction bex: Let M be the MIPS
of the CPU andn be the number of instructions required to do the
update. Theǹ = n=(xM�106): So at every node, there is a periodic
(timer-driven) process which wakes up every` seconds and updates
ID’s of all ready messages according to the above equation.

B. MTS

MTS attempts to give high utilization (like ED) while using the
standard 11-b ID format (like DM). High-speed messages consume
most of the bus bandwidth, so the idea behind MTS is to try to use
ED for high-speed messages and DM for low-speed ones. First, we
give high-speed messages priority over low-speed and nonreal-time
ones by setting the most significant bit to 1 in the ID for high-
speed messages (Fig. 1(a)). This makes sense because high-speed
messages have tighter deadlines, so they should have higher priority
than low-speed messages.

A uniqueness field is needed within the ID to ensure that no
two ID’s are the same. Intuitively, its length should bedlog

2
(num

high-speed messages)e which would typically be about 5 b (this is
discussed further in Section V). This leaves 5 b for the deadline field
which are not enough to encode message deadlines. Our solution to
this problem is to quantize time intoregions and encode deadlines
according to which region they fall in. To distinguish messages whose
deadlines fall in the same region, we use the DM-priority of a message
as its uniqueness code. This makes MTS a hierarchical scheduler.
At the top level is ED: if the deadlines of two messages can be
distinguished after quantization, then the one with the earlier deadline
has higher priority. At the lower level is DM: if messages have
deadlines in the same region, they will be scheduled by their DM
priority.

We can calculate length of a region(lr) as lr = `=(2m � 1);
wherem is the length of the deadline field. This is clear from Fig. 2
(shown form = 2). We must reserve one coding for messages whose
deadlines fall beyond the end of the current epoch. This leaves2m�1
codings for deadlines before the end of epoch.

A uniqueness field of 5 b allows at most 32 real-time messages to
be treated as high-speed. To accommodate the remaining (possibly
large number of) messages, we use DM scheduling for low-speed
messages and fixed-priority scheduling for nonreal-time ones, with
the latter being assigned priorities arbitrarily. The ID’s for these
messages are shown in Fig. 1(b) and (c). The second most significant

312 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 2, APRIL 1997

(a)

(b)

(c)

Fig. 1. Parts (a) through (c) show the ID’s for high-speed, low-speed, and
nonreal-time messages, respectively.

bit gives low-speed messages higher priority than nonreal-time ones.
In each case, the priority field also acts as the uniqueness code,
allowing 512 low-speed and 480 nonreal-time messages (32 ID’s of
nonreal-time messages are illegal under the CAN protocol, leaving
512 � 32 = 480 valid ID’s).

C. Schedulability Conditions

For MTS, we want off-line schedulability conditions which, when
satisfied, will guarantee that all real-time messages will meet their
deadlines. We will first review similar conditions for nonpreemptive
DM, and then develop those for MTS.

1) Deadline Monotonic:For the nonpreemptive case, a messagei

is feasible if all higher-priority messages are feasible and messagei

finds an opportunity to start transmission sometime during[0; di�Ci];

where Ci is the length of messagei: If messages are numbered
according to their priority withj = 0 being the highest priority
message, theni is schedulable [14] if:
9t 2 S;�i�1

j=1 dt=TjeCj + Cp � t; whereS = fset of all release
times of messages0; 1; � � � ; i � 1 through timedi � Cig [fdi �

Cig; Tj ; Cj ; anddj are the period, length, and deadline of message
j; andCp is the length of the longest possible packet.

2) MTS: First, we will discuss the schedulability check for high-
speed messages and then look at low-speed ones. The worst-case
loading conditions for a high-speed messagei result when there is

1) worst possible traffic congestion;
2) worst possible deadline encoding.

The first situation is created by releasing all messages at the same
time t = 0: The second occurs when deadline-to-start ofi falls at the
start of a region as illustrated in Fig. 3.

Now, we can draw a parallel between schedulability conditions
for MTS and those for DM. To determine schedulability of some
message, consider its first invocationi and allj with priority greater
than that of i under worst-case situations. Then, from the above
discussion, message invocationsj will have priority overi if:

1) (di � Ci)> (dj � Cj), or
2) a) (di � Ci)< (dj � Cj) � (di � Ci + lr);

b) DM of j is greater than that ofi;
c) j is released beforedi � Ci:

Note that j represents individual invocations, not entire “mes-
sages.” Then, if we consideronly those invocationsj which satisfy
the above conditions and schedule them according to MTS and the
bus ever becomes idle during interval[0; di�Ci]; then messagei will
get a chance to run. Formally, a high-speed message is schedulable
under MTS if and only if�n

j=1 Cj=Tj � 1 and its first invocation
i satisfies the condition:
9t 2 S;� (lengths of allj released beforet) + Cp < t; wherej

represents invocations which satisfy the above conditions,S = fset

Fig. 2. Quantization of deadlines form = 2:

(a)

(b)

Fig. 3. Supposej has higher DM-priority thani but k does not. Then in (a),
i has the highest priority, whereas in (b), it has the lowest.

of release times of eachjg [fdi � Cig; and Cp is the size of a
longest possible packet.

Checking schedulability of low-speed messages is simple—just
check DM schedulability for each. Since high-speed messages have
shorter deadlines than low-speed ones, they will automatically have
higher DM priority (which is exactly what we want).

V. EVALUATION

We have designed MTS to offer better schedulability than DM.
Since deadlines in MTS are quantized, we would expect the perfor-
mance of MTS to be close to that of ED if somehow message length
did not increase when using ED. So, let ED* be an ideal (imaginary)
scheduling policy which works the same as ED but requires only
an 11-b ID. Then ED*’s performance should be an upper bound on
MTS’s.

A. Simulation Workload Model

Consider a carriage-mounted drilling machine with an attached
triple-jointed robot arm to move workpieces. Suppose the robot has
a two-fingered gripper. This gives a total of seven drives which must
be controlled to varying degrees of precision as shown in Table I
(note that a pair of messages are needed to control each drive such
that if the first is released att0; the second is released att0 + 0:5c;

wherec is the drive control cycle time).
For each finger there is a smart contact sensor which informs

the controller when the gripper makes contact with the object being
grasped. For simulation, assume that the controller must receive this
message within one-fourth of the drive cycle time.

For low-speed messages, we arbitrarily chose periodic messages to
have periods of 20 ms and deadlines of 8 ms, and sporadic messages
with deadlines of 5 ms and MIT’s of 5 s.

Table I summarizes the choice of parameters. The values marked
with “�” are default and will be varied during simulation.

We chose message lengths as 79 b for periodic messages (including
32 data b) and 47 b for sporadic messages (0 data b, since these
messages are for notification only). Also, if we assume a 20 MIPS
CPU, deadline updates requiring 1000 instructions, and allow 5% of
CPU time for these updates, then` = 1000/(0.05)(20�106) = 1 ms.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 2, APRIL 1997 313

TABLE I
SIMULATION WORKLOAD

Fig. 4. Schedulability under DM, MTS, and ED* as number of messages
are varied.

B. Simulation Results

Current CAN chips are designed for a 1 Mb/s physical medium.
This speed is insufficient for applications like high-speed servoing,
so in our simulations, we assume a 10 Mb/s physical medium (which
implies a time granularity of 0.1�s).

In all our simulations, we use the general drilling machine work-
load described in the previous subsection. Using the schedulability
conditions of Section IV-C, we want to check schedulability of
workloads under different scheduling policies when one workload
parameter (such as the number of a certain type of message) is varied.
To check schedulability under ED*, we use the schedulability check
for nonpreemptive ED in [15].

1) Varying Number of High-Speed Periodics:
We varied the number of 6 kHz periodic messages. The results

are shown in Fig. 4. DM can handle only five 6 kHz messages (total
utilization of 58.5%), whereas both ED* and MTS can handle up to 8
each (72.7% utilization). At least for this workload, MTS performed
better than DM and same as ED*.

2) Varying Number of High-Speed Sporadics:Our simulations
showed that DM can handle only one sporadic message in the
workload, whereas both MTS and ED* handled up to four (Fig. 4).

3) Varying Deadlines of High-Speed Periodics:We varied the
deadlines of 6 kHz periodic messages while keeping their number
fixed at 6, giving a utilization of 63.2%. This workload was found
unschedulable under DM at the deadlines of 99.9�s or less (Fig. 5).
On the other hand, the workload was schedulable under both MTS
and ED* till the deadline of 56.8�s.

D. Varying Deadlines of High-Speed Sporadics

In this simulation, we vary the deadlines of all high-speed sporadic
messages. The workload becomes unschedulable under DM for
sporadic message deadlines of 104.1�s or lower (Fig. 5), but
continues to be feasible under both MTS and ED* till the deadline
of 17.3 �s.

Fig. 5. Deadlines of messages for which workload isunschedulableunder
DM, MTS, and ED*.

Fig. 6. Deadlines of sporadic messages for which workload isunschedulable
under MTS and ED* (number of 6 kHz periodics is 10).

To better compare MTS against ED*, we tested the two under
heavier loads. We increased the number of 6 kHz messages to 10
(82.2% utilization), then started varying sporadic message deadlines.
This workload was unschedulable under MTS for deadlines of 151.5
�s or less, whereas it became unschedulable under ED* only at
deadlines of 72.5�s or less (Fig. 6–left). So under heavy loads and
tight deadlines, ED* outperforms MTS, as expected.

Earlier we stated intuitively thatm should be (length of ID
�1�dlog

2
(num high-speed messages)e) which is five for this work-

load. It turns out that the best value form is really application-
dependent. Fig. 6 shows two workloads. For one workload (with two
4 kHz periodics),m = 5 is the best value but not for the other.
In the second workload (with no 4 kHz periodics), form = 6; the
uniqueness field is only 4 b which forces us to treat two high-speed
messages as low-speed. This decreases schedulability but is more than
offset (in this particular case) by a longer deadline field. But when
m is increased further to seven, too many high-speed messages have
to be treated as low-speed, negating any benefit of a longer deadline
field. In short, the intuitive formula form should be used only as a
starting point to find the optimal value ofm through simulation for
a given workload.

E. Low-Speed Messages

Under default loading conditions, high-speed messages use up
63.2% of the bandwidth. The remaining 36.8% can accommodate
several hundred low-speed sporadic and periodic messages. Thus,
the schedulability of low-speed messages is not a problem. Our
simulations showed no real difference between DM, MTS, or ED*
in scheduling low-speed messages for a fixed load of high-speed
messages.

VI. CONCLUSION

The two most attractive features of CAN are a short worst-case bus
access latency and a bus acquisition scheme based on the priority of
messages, both of which give CAN the potential for high performance
and fewer missed deadlines in distributed control systems. However,

314 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 2, APRIL 1997

the bus arbitration mechanism must be used properly with careful
design of the message ID; otherwise, CAN will give low utilization.

In this paper we presented the MTS scheduler which allowed
three different types of messages—hard sporadic, hard periodic, and
nonreal-time aperiodic—to be carried on the same bus. Then, we
designed the message ID which implements MTS on CAN. MTS not
only gives high schedulability but is also easily implementable on
CAN. Through simulations we compared MTS with DM and ED*.
As expected, MTS performed much better than DM and only slightly
worse than ED*, and in many cases, it matched the performance of
ED*.

REFERENCES

[1] R. S. Raji, “Smart networks for control,”IEEE Spectrum, vol. 31, pp.
49–55, June 1994.

[2] G. W. Lenhart, “A field bus approach to local control networks,”Adv.
Instrum. Contr., vol. 48, no. 1, pp. 357–365, 1993.

[3] Road vehicles—Interchange of Digital Information—Controller Area
Network (Can) for High-Speed Communication. ISO 11898, 1st ed.,
1993.

[4] Instrum. Soc. Amer.,Industrial Automation Systems—Systems Integra-
tion and Communication—Fieldbus (draft) (ISA/SP50–93), 1993.

[5] Users Group, Dearborn, MI,Manufacturing Automation Protocol (MAP)
3.0 Implementation Release, 1987.

[6] H. Kopetz and G. Grunsteidl, “TTP—A protocol for fault-tolerant real-
time systems,”IEEE Comput. Mag., vol. 27, pp. 14–23, Jan. 1994.

[7] H. Zeltwanger, “An inside look at the fundamentals of CAN,”Contr.
Eng., vol. 42, no. 1, pp. 81–87, Jan. 1995.

[8] K. W. Tindell, H. Hansson, and A. J. Wellings, “Analyzing real-time
communications: Controller Area Network (CAN),” inProc. Real-Time
Systems Symp., Dec. 1994, pp. 259–263.

[9] K. Tindell, A. Burns, and A. J. Wellings, “Calculating controller area
network (CAN) message response times,”Contr. Eng. Practice, vol. 3,
no. 8, pp. 1163–1169, 1995.

[10] K. G. Shin, “Real-time communications in a computer-controlled work-
cell,” IEEE Trans. Robot. Automat., vol. 7, pp. 105–113, Feb. 1991.

[11] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,”Perform. Eval., vol. 2, no. 4,
pp. 237–250, Dec. 1982.

[12] K. Jeffay, D. F. Stanat, and C. U. Martel, “On nonpreemptive scheduling
of periodic and sporadic tasks,” inProc. Real-Time Systems Symp., 1991,
pp. 129–139.

[13] W. Zhao and K. Ramamritham, “Simple and integrated heuristic algo-
rithms for scheduling tasks with time and resource constraints,”J. Syst.
Software, vol. 7, pp. 195–205, 1987.

[14] D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time communication
in multihop networks,”IEEE Trans. Parallel Distribut. Syst., vol. 5, pp.
1044–1056, Oct. 1994.

[15] Q. Zheng and K. G. Shin, “On the ability of establishing real-time
channels in point-to-point packet-switched networks,”IEEE Trans.
Commun., vol. 42, pp. 1096–1105, Feb./Mar./Apr. 1994.

