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Abstract 
In object-oriented programming, updates to  the 

state variables of objects (by the methods of the ob- 
ject) have t o  be protected through semaphores t o  ensure 
mutual exclusion. Semaphore operations are invoked 
each time an object is accessed, and this represents 
significant run-time overhead. This is of special con- 
cern in cost-conscious, small-site embedded systems - 
such as those used in automotive applications - where 
costs must be kept to an absolute minimum. Object- 
oriented programming can be feasible in such applica- 
tions only if the OS provides eficient, low-overhead 
semaphores. We present a new semaphore imple- 
mentation scheme which saves one context switch per 
semaphore lock operation in most circumstances and 
gives performance improvements of 18-25% over tra- 
ditional semaphore implementation schemes. 

1 Introduction 
Real-time computing [l] today is no longer limited 

to large and expensive systems such as planetary ex- 
ploration robots or the space shuttle. The sharp drop 
in microprocessor prices over the recent years and the 
introduction of the microcontroller incorporating a mi- 
croprocessor with peripherals like timers, memory, and 
1/0 in a single package has led to digital control now 
being used in much smaller and simpler embedded sys- 
tems such as in automotive control, cellular phones, 
and home electronics (camcorders, TVs, and VCRs). 
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These embedded systems are mass-produced, mak- 
ing low production costs one of the primary concerns 
in their design. Automotive applications alone ac- 
count for millions of embedded systems produced an- 
nually. At these volumes, extra costs of even a few 
dollars per unit translate into a loss of millions of 
dollars overall, so the microcontrollers used in these 
cost-conscious applications are those which have been 
in production for several years and their prices have 
dropped to a few dollars per unit. These microcon- 
trollers have relatively slow processing cores (typically 
running at 10-30 MHz), small, on-chip RAMS (about 
32-64 kBytes, hence the name “small-memory” em- 
bedded systems), and all applications are in-memory 
(there are no disks/file systems in our target applica- 
tions). This necessitates that any real-time operating 
system (RTOS) [a] used in these applications must be 
both time-efficient and memory-efficient . 

In this paper, we focus on OS support for object- 
oriented (00) programming in embedded systems. 
00 design gives benefits such as reduced software 
design time and software re-use [3]. But with these 
benefits comes the extra cost of ensuring mutual ex- 
clusion when an object’s internal state is updated. 
Semaphores’ I4,5] are typically used to provide this 
mutual exclusion. Because semaphore system calls are 
invoked every time an execution thread enters or exits 
an object, it becomes essential that the RTOS provide 
efficient, low-overhead semaphores; otherwise, 00 de- 
sign will not be feasible for embedded applications be- 
cause of high costs. 

‘The optimization scheme presented in this paper applies 
equally well to both semaphores and mutexes. However, for 
simplicity, we concern ourselves only with semaphores in this 
paper. 
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Most research in the area of reducing task syn- 
chronization overhead has focused on multiprocessors 
[6,7]. But our target architectures are either unipro- 
cessor (as in home appliances) or very loosely-coupled 
distributed systems (as in automotive applications). 
Even with the latter, threads typically do not need to 
access remote objects, so our concern is only with im- 
proving task synchronization performance for a single 
processor. Previous work in this area has focused on 
either relaxing the semaphore semantics to get better 
performance [SI or coming up with new semantics and 
new synchronization policies [9]. The problem with 
this approach is that these newlmodified semantics 
may be suitable for some particular applications but 
usually they do not have wide applicability. 

We took the approach of providing full semaphore 
semantics (with priority inheritance [lo]), but opti- 
mizing the implementation of these semaphores by ex- 
ploiting certain features of embedded applications. As 
a result, our semaphore scheme has wide applicability 
within the domain of embedded applications, while 
significantly improving performance over standard im- 
plementation methods for semaphores. We have im- 
plemented this new semaphore scheme in the EMER- 
ALDS (Extensible Microkernel for Embedded, ReAL- 
time, Distributed Systems) RTOS [ll] which is being 
developed in the Real-Time Computing Laboratory 
at the University of Michigan to satisfy the specific 
memory and performance requirements of small-size 
embedded systems. 

In the next section, we give a brief overview of 00 
programming as it pertains to  embedded real-time sys- 
tems, focusing on OS support needed for 00 program- 
ming. In Section 3, we describe our new implementa- 
tion scheme. Section 4 discusses some limitations of 
the scheme and ways to overcome these limitations so 
that our scheme can be used in almost all embedded 
applications. Section 5 evaluates the performance of 
our new scheme, and we conclude with Section 6. 

2 Objects and Semaphores in Embed- 
ded Real-Time Systems 

An object is a collection of private state informa- 
tion (or data) and a set of methods which manipulate 
the data. Objects are ideal for representing real-world 
entities: the object’s internal data represents the phys- 
ical state of the entity (such as temperature, pressure, 
position, RPM, etc.) and the methods allow the state 
to be read or modified. These notions of encapsula- 
tion and modularity greatly help the software design 
process because various system components such as 
sensors, actuators, and controllers can be modeled by 

objects. Then, under the 00 paradigm, real-time soft- 
ware is just a collection of threads of execution, each 
invoking various methods of various objects [12]. 

Conceptually, this 00 paradigm is very appealing 
and gives benefits such as reduced software design 
time and software re-use. But practically speaking, 
these benefits come at a cost. The methods of an 
object must synchronize their access to the object’s 
data to ensure mutual exclusion. Because object in- 
vocations occur very frequently, it is essential that any 
scheme used to achieve this synchronization must be 
both memory-efficient as well as time-efficient; oth- 
erwise, 00 design will be infeasible for small-memory 
embedded systems due to high costs. 

2.1 Active and Passive Object Models 

There are two fundamentally different ways for ob- 
jects and execution threads to interact with each other 
and this has some bearing on the type of synchroniza- 
tion scheme used to ensure mutual exclusion. 

Under the active object model [13], one or more 
server threads are permanently bound to an object. 
When a client thread invokes a method, a server 
thread executes the method on behalf of the client. 

With the passive object model [13], objects do not 
have threads of their own. To invoke a method, a 
thread will enter the object, execute the method, and 
then exit the object. 

From the point of view of synchronization, the ac- 
tive object model has an advantage if only one thread 
is assigned per object. Since only one thread is in the 
object at any time, there is no need to worry about 
mutual exclusion. But the active object model has 
several disadvantages. First of all, having a thread 
per object means that there will be a large number 
of threads in the system (anywhere from several tens 
to more than a hundred depending on the applica- 
tion). Each thread needs its own stack, thread control 
block, etc., which makes the active object model very 
memory-inefficient. Moreover, each object invocation 
requires a context switch from the client thread to the 
server thread, so this model is time-inefficient as well. 

With the passive object model, multiple threads 
can be inside the same object at one time, so they 
must synchronize their activities. Semaphores [4,5] 
are commonly used for this purpose (e.g., to provide 
the monitor construct [14]). Even though locking 
based on semaphores incurs time overhead, it is de- 
cidedly much more memory-efficient than the active 
object model. 
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2.2 00 Design Under EMERALDS 
For the above stated reasons, we advocate the pas- 

sive object model for embedded software design. Be- 
cause a semaphore system call is made every time 
an object’s method is invoked, semaphore opera- 
tions (acquiresem(1 and r e l e a s e s e n 0  calls under 
EMERALDS, used to lock and unlock semaphores, 
respectively) become some of the most heavily used 
OS primitives when 00 design is used. This moti- 
vated us to investigate new and efficient schemes for 
implementing semaphore locking in EMERALDS as 
described next. 

3 An Efficient Semaphore Implemen- 
tation Scheme 

The first step in designing efficient semaphores is to 
look at  the way semaphores are typically implemented 
in various systems, identify distinct steps involved in 
locking/unlocking semaphores, and try to eliminate 
or optimize those steps which incur the greatest over- 
head. To do these optimizations, we will use charac- 
teristics peculiar to small-memory embedded applica- 
tions. 

3.1 Standard Semaphore Implementation 
The standard procedure to lock a semaphore can 

be summarized as follows: 

i f  (sem locked) { 
do prior i ty  inheritance; 
add c a l l e r  thread t o  wait queue; 
block; 

lock sen; 
1 

If the semaphore happens to be already locked by some 
other thread, the thread making the semaphore lock 
system call is put on a wait queue and is blocked. It 
is unblocked as part of the semaphore release opera- 
tion and it then proceeds to reserve the semaphore for 
itself. 

If the caller is to block, priority inheritance [9,10] 
also takes place under which the current lock holder 
thread’s priority is increased to that of the caller 
thread (if the former is less than the latter). This 
is needed to avoid unbounded priority inversion [lo]. 
If a high-priority thread Th calls acquiresen() on 
a semaphore already locked by a low-priority thread 
3, the latter’s priority is temporarily increased to 
that of the former. Without priority inheritance, a 
medium priority thread T, can get control of the CPU 
by preempting Tl while T h  remains blocked on the 

E 

\ 
Tx - 

\ - 
L time T2 

thread - - context L:Lock U: Unlock 
execution switch semaphore semaphore 

- 

Figure 1: A typical scenario showing thread T2 at- 
tempting to lock a semaphore already held by thread 
TI .  Tz is an unrelated thread which was executing 
while T2 was blocked. Conceptually, T, can be TI .  

semaphore, thus causing priority inversion. With pri- 
ority inheritance, will keep on running until it un- 
locks the semaphore. At that point, its priority will 
go back to its original value, but now Th will be un- 
blocked and it can continue execution. 

First of all, notice that if the semaphore is free when 
acquiresemo is called, then the semaphore lock op- 
eration has very little overhead2. In fact, for this case, 
only one counter has to be incremented and some other 
variables updated, 

The situation is very different when the semaphore 
is already locked by thread TI when some thread T2 
invokes the acquiresemo call. Figure 1 shows a typ- 
ical scenario for this situation. Thread T2 wakes up 
(after completing some unrelated blocking system call) 
and then calls acquiresemo. This results in prior- 
ity inheritance and a context switch to T I ,  the current 
lock holder. After TI releases the semaphore, its pri- 
ority returns to its original value and a context switch 
occurs to Tz. 

We observe that it is these context switches which 
are responsible for much of the overhead (as much 
as 40-50%) associated with locking and unlocking 
semaphores (see Section 5 for timing measurements). 

Schedulability Analysis: In all critical real-time 
systems, an off-line guarantee is needed that the task 
workload is feasible and all execution deadlines will be 
met at  run-time. Schedulability tests [15-171 are used 
for this purpose. The worst-case execution time of 
each task is first calculated and then the appropriate 
schedulability test is used to determine feasibility. 

The worst-case execution time for acquiresem() 
occurs when the semaphore is already locked when 

2This is especially true in EMERALDS where system call 
overhead is comparable to subroutine call overhead even with 
full memory protection between processes [ll]. 

27 



E 

Switch to TI \ 

Tz instead of T2 - 
L time 

- thread - - context L:Lock U: Unlock 
execution switch semaphore semaphore 

Figure 2: The new semaphore implementation 
scheme. Context switch Cz is eliminated. 

the system call is made. This means that the con- 
text switches C2 and C3 shown in Figure 1 must be 
included when calculating worst-case task execution 
times. 

Any scheme to make semaphores more effi- 
cient must target this worst-case scenario. The 
other scenario (semaphore happens to be free when 
acquiresemo is called) is quite efficient as is and 
is of no concern when calculating worst-case execu- 
tion times, so, from now on, we focus on optimizing 
the worst-case scenario when the semaphore is already 
locked by some thread when acquiresemo is called. 

3.2 Semaphore Implementation in 

Going back to Figure 1, we want to eliminate con- 
text switch C2. Recall that the progression of events 
was as follows: T2 blocks (say, waiting for an event 
such as a message arrival; call this event E); some 
other threads execute; then event E occurs and T2 is 
unblocked. Now, the next blocking call T2 is to make is 
to acquire semaphore S. Under our scheme - as part 
of the blocking call just preceding acquire-sem() - 
we instrument the code (using a code parser described 
later) to indicate which semaphore Tz intends to lock 
(semaphore S in this case). When event E occurs and 
T2 is to be unblocked (Figure 2), the OS checks if S 
is available or not. If S is unavailable, then priority 
inheritance from T2 to the current lock holder TI oc- 
curs right here. T2 is added to the waiting queue for 
S and it remains blocked, waiting for S .  As a result, 
the scheduler picks TI to execute - which eventu- 
ally releases S - and T2 is unblocked as part of this 
r e l e a s e s e m o  call by T I .  Comparing Figure 2 to 
Figure 1, we see that context switch C2 is eliminated. 
The semaphore lock/unlock pair of operations now in- 
cur only one context switch instead of two, resulting in 
considerable savings in execution time overhead (see 
Section 5 for performance results). 

EMERALDS 

Code Parser: In EMERALDS, all blocking calls 
take an extra parameter which is the identifier 
of the semaphore to be locked by the upcoming 
acquiresemo call. This parameter is set to -1 if 
the next blocking call is not acquiresemo.  

Semaphore identifiers are statically defined (at 
compile time) in EMERALDS as is commonly the case 
in 0% for small-memory applications, so it is possi- 
ble to write a parser which examines the application 
code and automatically inserts the correct semaphore 
identifier into the argument list of blocking calls just 
preceding acquiresem( ) calls. Parser design issues 
are discussed further in Section 4. 

Schedulability Analysis for the New Scheme: 
From the viewpoint of schedulability analysis, there 
can be two concerns regarding the new semaphore 
scheme (refer back to Figure 2): 

1. What if thread T2 does not block on the call pre- 
ceding acquiresem( )?  This can happen if event 
E has already occurred when the call is made. 

2. Is it safe to delay execution of T2 even though it 
may have higher priority than TI (by doing pri- 
ority inheritance earlier than would occur other- 
wise)? 

Regarding the first concern, if Tz does not block 
on the call preceding acquiresemo,  then a context 
switch has already been saved. For such a situation, T2 
will continue to execute till it reaches acquiresem() 
and a context switch will occur here. What our scheme 
really provides is that a context switch will be saved 
either on the acquiresem0 call or on the preceding 
blocking call. Where the savings actually occur at run- 
time do not really matter for calculation of worst-case 
execution times for schedulability analysis. 

For the second concern, the answer is that yes, it is 
safe to let TI execute earlier than it would otherwise. 
The concern here is that Tz may miss its deadline. But 
this cannot happen because under all circumstances, 
T2 must wait for TI to release the semaphore before 
T2 can complete. So from the schedulability analysis 
point of view, all that really happens is that chunks of 
execution time are swapped between TI and Tz with- 
out affecting the completion time of Tz. Another sim- 
ilar concern is that after event E, Tz may have to 
produce an output or send a message/signal to an- 
other thread (call it T3). Delaying Tz may cause T3 
to miss its deadline. The answer to all such scenarios 
is that as just discussed, T2 completes by its deadline 
(even though it may be delayed). As long as TZ com- 
pletes by its deadline, no other thread that depends 
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for  (;;) { 
read sensor I; 
read sensor 2; 

read sensor I ;  
update actuator I; 
update actuator 2;  

update actuator y; 
block till timer expiry 

... 

... 

or event occurrence; 
I 
Figure 3: A typical sensor-controller-actuator loop 
commonly found in embedded control applications 

on T2 will miss its deadline, so schedulability of the 
task workload is not adversely affected. 

4 Applicability of the New Scheme 

proposed semaphore scheme may not work: 
There can be three circumstances under which our 

1. The code parser is unable to identify which 
semaphore is to be locked next due to conditional 
constructs such as loops with a variable number 
of iterations or if -then-else statements. 

2. The blocking call preceding an acquiresemo is 
another acquiresem() so that only one context 
switch is saved between these two calls. 

3. The lock holder TI (Figure 2) blocks after event 
E but before releasing the semaphore. Then with 
standard semaphores, TZ will be able to execute, 
but under our scheme it cannot which may lead 
to T2 missing its deadline. 

In the rest of this section, we discuss how often (if 
at all) these scenarios can occur in embedded real-time 
systems, which specific forms they can occur in, and 
how these problems can be resolved. 

4.1 Code Parser Issues 
Most threads in embedded systems execute sensor- 

controller-actuator loops as shown in Figure 3. Each 
device (sensor or actuator) is represented by an object 
protected by its own semaphore. Each device may be 
a real sensor/actuator or a logical one representing 
several devices being controlled as one group. 

Note that the same devices are accessed each time 
the loop executes. The order in which semaphores are 
locked is fixed, so there is no ambiguity for the code 

parser. At run-time, the method which gets invoked 
on an object may depend on the input data: 

i f  (sensorReading > A )  valve.open; 
e l s e  valve .c lose;  

but this does not change the order in which 
semaphores are locked because all methods of an ob- 
ject are protected by the same semaphore. In other 
words, most embedded applications are structured as 
in Figure 3, and for such a structure, the parser can 
easily determine which semaphore is to be locked after 
a given blocking call. 

In case a blocking call occurs inside a loop followed 
by acquiresemo outside the loop, the argument to 
be passed for the semaphore identifier is calculated 
conditionally as follows: 

while (cond) < 
i f  (cond) 

e l s e  

some-blocking-call(. . . , sem) ; 

... 

sen = -1; 

sem = S ;  

. . .  
1 

acquire-sem(S); 
... 

This way, -1 is passed as the parameter for all but 
the last iteration of the loop. Again, this code can 
be automatically inserted by the code parser without 
the application programmer having to make any man- 
ual modifications to the code. Note that this scheme 
works as long as the condition cond does not depend 
on the blocking call or code after the call. This is 
true for loops which execute for a fixed number of it- 
erations which is the most common case in embedded 
control systems. One example is code which steps a 
stepper motor 2 number of times. Value of x may de- 
pend on sensor readings, but it stays fixed while the 
loop executes. 

Regarding loops with a variable number of itera- 
tions, our experience shows that such loops typically 
do not contain blocking calls in embedded real-time 
systems. A variable-iteration loop is used to wait for 
a condition to come true (such as a spin lock), but that 
is what blocking calls do as well (wait for a condition). 
The two may be combined if the result of the block- 
ing call is uncertain (such as for condition variables 
with Mesa semantics used in general-purpose comput- 
ing), but such a situation rarely occurs in embedded 
real-time systems. 
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4.2 Consecutive acquiresem() Calls 
Going back to Figure 3, the bodies of the methods 

invoked by the thread may contain blocking calls, es- 
pecially condition variable and message-passing calls. 
In these calls, the parser will insert the identifier of 
the upcoming acquiresemo.  But if such calls are 
not present, then two or more acquiresen0 calls 
can occur with no other blocking call in between them. 
Then, only one context switch will be saved per pair 
of acquiresemo calls. This leads to an interesting 
avenue for future research. Our scheme can be gen- 
eralized so that the blocking call at the end of the 
control loop will not unblock until all the semaphores 
needed by the thread for execution become available. 
In other words: 

for ( : ; I  C 
obj-1.method 
obj-2.method 

obj-n.method 
b l o c k ( . .  . , S i ,  S2, . .., Sn); 

// protected by sem SI 
// protected by sem S2 

// protected by sen Sn 
. . .  

> 
This is somewhat similar to the Spring kernel’s 

notion of reserving all resources a task needs before 
letting the task execute [18], but with an impor- 
tant difference: the Spring kernel executes tasks non- 
preemptively while under our proposal, threads exe- 
cute preemptively. This allows higher priority threads 
to preempt a given thread (giving good schedula- 
ble utilization) while reducing the number of context 
switches seen by the thread to wait for resources (giv- 
ing shorter execution times). However, advance reser- 
vation of all semaphores will increase scheduler com- 
plexity and may also adversely affect task schedula- 
bility. Impact of these issues on performance must be 
studied to determine the viability of this extension. 

4.3 Blocking by the Lock Holder Thread 
Going back to Figure 2, suppose the lock holder 

TI blocks after event E but before releasing the 
semaphore. With standard semaphores, T2 will 
then be able to execute (at least, till it reaches 
acquiresemo),  but under our scheme, T2 stays 
blocked. This gives rise to the concern that with this 
new semaphore scheme, T2 may miss its deadline. 

In Figure 2, TI had priority less than that of T2 (call 
this case A ) .  A different problem arises if TI has higher 
priority than T2 (call it case B ) .  Suppose semaphore 
S is free when event E occurs. Then T2 will become 
unblocked and it will start executing (Figure 4). But 
before T2 can call acquiresen() ,  TI wakes up, pre- 
empts T2, locks s, then blocks for some event. T2 

E 
T -  T2 nreemnted 

L 

thread - - context L:Lock B: block 
execution switch sem. 

- 

Figure 4: If a higher priority thread TI preempts T2, 
locks the semaphore, and blocks, then T2 incurs the 
full overhead of acquireSam() and a context switch 
is not saved. 

resumes, calls acquiresemo,  and blocks because S 
is unavailable. The context switch is not saved and no 
benefit comes out of our semaphore scheme. 

All these problems occur when a thread blocks 
while holding a semaphore. To resolve these problems, 
we first make a small modification to our semaphore 
scheme to change the problem in case B to be the 
same as the problem in case A .  This leaves us with 
only one problem to address. Then, by looking at the 
larger picture and considering threads other than just 
TI and T2, we can show that this problem is easily 
circumvented and our semaphore scheme works for all 
blocking situations that occur in practice as discussed 
next. 

Modification to the Semaphore Scheme: For 
the situation shown in Figure 4, we want to somehow 
block T2 when the higher-priority thread TI locks S ,  
and unblock Tz when TI releases S .  This will prevent 
T2 from executing while S is locked, which makes this 
the same as the situation in case A.  

Recall that when event E occurs (Figure 4), the OS 
first checks if S is available or not before unblocking 
Tz. Now, let us extend the scheme so that the OS 
adds T2 to a special queue associated with S .  This 
queue holds the threads which have completed their 
blocking call just preceding acquiresem( ) but have 
not called acquiresen0 yet. 

Thread TI will also get added to this queue as 
part of its blocking call just preceding acquiresem() . 
When TI calls acquiresemo,  the OS first removes 
TI from this queue, then puts all threads remaining 
in the queue in a blocked state. Then, when TI calls 
r e l e a s e s e n ( ) ,  the OS unblocks all threads in the 
queue. This way, T2 is prevented from executing while 
S is locked which results in the same behavior as in 
case A. Also, if done properly, addition and removal 
of threads from this queue incurs very little overhead 
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\ 
T2 slays blocked: \ 

switch to Ts - T2 

L time 

thread - - context L:Lock U; Unlock B: Block S; Signal 
execution switch sem. sem. 

- 

Figure 5: Situation when the lock holder TI blocks 
for a signal from another thread T, . 

(about 5-7 ,us on a 25 MHz MC 68040 without caches 
and just 1-2 ,us with caches). 

With this modification, the only remaining concern 
(for both cases A and B )  is: if execution of T2 is de- 
layed like this while other threads (of possibly lower 
priority) execute, then T2 may miss its deadline. This 
concern is addressed next. 

Applicability under Various Blocking Situa- 
tions: There can be two types of blocking: 

Wait for an internal event, i.e., wait for a sig- 
nal from another thread after it reaches a certain 
point. 

Wait for an external event from the environment. 
This event can be periodic or aperiodic. 

The first type of blocking is used by threads to syn- 
chronize with each other and the second type is used 
to interact with the environment. 
Blocking for Internal Events: The typical scenario 
for this type of blocking is for thread TI to enter an 
object (and lock semaphore S )  then block waiting for 
a signal from another thread T,. Meanwhile, T2 stays 
blocked (Figure 5). The question is: is it safe to delay 
T2 like this even if T, is lower in priority than T2? The 
answer is yes, because T2 cannot lock S till TI releases 
it, and TI will not release it till it receives the signal 
from T,, so even though T, may be lower in priority 
than Tz, it is safe to let Ts execute earlier. This leads 
to TI releasing S earlier than it would otherwise which 
leaves enough time for T2 to complete by its deadline. 
Blocking for External Events: External events can 
be either periodic or aperiodic. For periodic events, 
polling is usually used to interact with the environ- 
ment and blocking does not occur. A common exam- 
ple is a periodic sensor-controller-actuator loop where 

sensors are read and actuator commands are updated 
periodically and no blocking calls are involved. One 
common exception is to block on a timer (usually, to 
wait for the current period to end), but this block- 
ing call occurs at the end of the main loop of execu- 
tion of the thread and is not inside any object and no 
semaphores are held by the thread when this call is 
made. 

Blocking calls are used to wait for aperiodic events, 
but it does not make sense to have such calls inside an 
object. There is always a possibility that an aperiodic 
event may not occur for a long time. If a thread blocks 
waiting for such an event while inside an object, it 
may keep that object locked forever, preventing other 
threads from making progress. So the usual practice 
is to not have any semaphores locked when blocking 
for an aperiodic event. 

In short, dealing with external events (whether pe- 
riodic or aperiodic) does not affect the applicabil- 
ity of our semaphore scheme under the commonly- 
established ways of handling external events. But in 
case some application does require blocking for ex- 
ternal events while inside an object, our semaphore 
scheme can be turned off by specifying -1 as the 
semaphore identifier in the blocking call just preced- 
ing acquiresem0. This will cause EMERALDS’ 
semaphores to behave just like standard implemen- 
tation semaphores, but we do not believe this will be 
needed very often, if at all. 

5 Performance Evaluation 
To measure the improvement in performance result- 

ing from our new semaphore scheme, we implemented 
it under EMERALDS and measured performance on 
a 25 MHz Motorola 68040 processor [19]. 

When a thread enters an object, it first acquires 
the semaphore protecting the object, and when it ex- 
its the object, it releases the semaphore. The cumula- 
tive time spent in these two operations represents the 
overhead associated with synchronizing thread access 
to objects. To determine by how much this overhead 
is reduced when our scheme is used, we measured the 
time for the acquire/release pair of operations for both 
standard semaphores and our new scheme and then 
compared the two results. In the following, we first 
describe our evaluation procedure, then present the 
results. 

5 .1  The Test Procedure 
We want to measure the worst-case overhead for 

acquire/release because this is what is used in schedu- 
lability analysis. The worst case occurs if 
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- r l +  

- thread - - context L:Lock U: Unlock B: Block S: Signal 
execution switch sem. sem. thread 

Figure 6 :  Test procedure for standard semaphores. 
Interval t l  is the overhead for acquire/release opera- 
tions. 

e the semaphore is already locked when 
acquiresem() is called, and 

e priority inheritance occurs. 

To get this behavior, we use two threads in our tests, 
TI and T2, with T2 having higher priority. For the 
standard semaphore implementation, the test pro- 
ceeds as shown in Figure 6. T2 executes first and 
blocks waiting for a signal from Ti. Ti executes, locks 
semaphore S, and signals T2 which is unblocked, goes 
on to execute acquiresem() , and priority inheritance 
occurs. Thread TI then releases S, its priority goes 
back to its original value, and a context switch oc- 
curs back to Tz. We measure interval t l  which is the 
time for an acquire plus a release and includes relevant 
context switches. 

We repeated this test with the new semaphore 
scheme. Figure 7 shows the new sequence of events. In 
this case, priority inheritance is done by the OS when 
TI signals Tz, so TI continues after the signal and un- 
locks S .  TI’S priority goes back to its original value, T2 

is unblocked, and it goes on to lock S without needing 
any more context switches. Then the difference t 2  - t 3  

(Figures 6 and 7) represents the improvement due to 
the new scheme and tl  - ( t 2  - t 3 )  is the overhead for 
acquire/release under the new scheme. Note that we 
cannot directly measure the acquire/release overhead 
for the new scheme because priority inheritance occurs 
well before the rest of the acquire operation. 

5.2 Experimental Results 
EMERALDS uses dynamic thread sched~ling,~ so 

the context switch overhead depends on the number of 
threads in the system. Because our semaphore scheme 
eliminates one context switch, the improvement in 
performance depends on the number of threads in the 

With priority inheritance, thread priorities change so often 
that it makes no sense to have fixed priority scheduling. 

‘ - t 3 - - C :  

- thread - - context L:Lock U: Unlock B: Block S:Signal 
execution switch sem. sem. thread 

Figure 7: Test procedure for the new semaphore 
scheme. 

scheduler queue. Experience shows that typical em- 
bedded applications have about 10-20 threads (any- 
thing more will consume too much memory for stack, 
thread control block, etc.). For evaluation purposes, 
we chose a slightly wider range of thread counts, from 
3 to 30. For each case, two of the threads are TI and T2 
mentioned in Section 5.1 while the remaining threads 
just execute infinite loops and serve only to fill the 
scheduler queue. 

First, we ran our tests on the MC 68040 with caches 
disabled (to simulate processors which do not have 
caches). Figure 8 shows the results for both the stan- 
dard and the new semaphore implementation schemes. 
Since the context switch overhead is a linear function 
of the number of threads, the acquire/release times 
also increase linearly with the thread count. But 
the standard implementation’s overhead involves two 
context switches while our new scheme incurs only 
one, which is why the measurements for the standard 
scheme have a slope twice that of our new scheme. For 
a typical thread count of 15 threads, our new scheme 
gives savings of about 35 p s  over the standard imple- 
mentation and these savings grow even larger as the 
thread count increases. 

We repeated our tests on the MC 68040 with both 
instruction and data caches enabled. The results are 
shown in Figure 9. Again, the results for our new 
scheme have a slope roughly half that of the standard 
scheme. But, notice that the percent improvement in 
performance is more with caches enabled than with 
caches disabled as shown in Figure 10. The reason 
is that the context switch overhead is greater (rela- 
tively speaking) when caches are used because of the 
cache misses incurred when a new thread begins to ex- 
ecute. The old context is flushed out to main memory, 
the new context is fetched, and this increases the con- 
text switch overhead, which is why our scheme gives 
greater improvement over the standard implementa- 
tion with caches enabled than with caches disabled. 

These results show that our new scheme improves 
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Figure 8: Performance measurements with caches 
disabled. The overhead for the standard implementa- 
tion increases twice as rapidly as for the new scheme. 

performance by 10-40%, depending on the number of 
threads in the application and whether caches are used 
or not. Since most embedded applications have about 
10-20 threads, they can expect improvements of about 
18-25% (without caches) or 25-30% (with caches). 

6 Conclusion 
Embedded application programmers generally tend 

to avoid object-oriented programming, one reason be- 
ing the high overhead associated with synchronizing 
thread access to objects. Semaphores must be used to 
ensure mutual exclusion when updating the state vari- 
ables of objects, and this usually means a large enough 
overhead to make object-oriented programming infea- 
sible for cost-conscious embedded applications. 

In this paper, we presented a new semaphore im- 
plementation scheme which saves one context switch 
per semaphore acquire/release pair of operations (for 
most scenarios found in embedded applications) and 
improves performance by 18-25%. We used the fact 
that in small-size embedded applications, the identi- 
fiers of semaphores are fixed at compile time. Then, 
during run-time, we use these known identifiers to 
do ahead-of-time checks on the status of semaphores 
(whether they are available or not). If a semaphore 
is unavailable, we delay the execution of threads until 
the semaphore is released. This way, the semaphores 
are always available when threads actually make the 
acquiresemo system call and the call does not 
block, saving one context switch. 

Future work includes studying the advantages and 
disadvantages of extending our scheme so that instead 
of looking ahead only to the next acquiresem0 call, 
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Figure 9: Performance measurements with caches 
disabled. 
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Figure 10: Percent improvement in performance due 
to our new semaphore scheme. 
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the scheduler will consider all  the semaphores a thread 
may need to execute so that all resource conflict- 
related context switches are eliminated. Also, in this 
paper we focused only on improving the semaphore 
lock operation. In the future, we plan to investigate 
optimizations related to the release operation to get 
further improvements in synchronization overheads. 
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