
An Efficient Semaphore Implementation Scheme for
Small-Memory Embedded Systems*

Khawar M. Zuberi and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

{ zuberi, kgshin} @eecs. umich. edu

Abstract
In object-oriented programming, updates to the

state variables of objects (by the methods of the ob-
ject) have t o be protected through semaphores t o ensure
mutual exclusion. Semaphore operations are invoked
each time an object is accessed, and this represents
significant run-time overhead. This is of special con-
cern in cost-conscious, small-site embedded systems -
such as those used in automotive applications - where
costs must be kept to an absolute minimum. Object-
oriented programming can be feasible in such applica-
tions only if the OS provides eficient, low-overhead
semaphores. We present a new semaphore imple-
mentation scheme which saves one context switch per
semaphore lock operation in most circumstances and
gives performance improvements of 18-25% over tra-
ditional semaphore implementation schemes.

1 Introduction
Real-time computing [l] today is no longer limited

to large and expensive systems such as planetary ex-
ploration robots or the space shuttle. The sharp drop
in microprocessor prices over the recent years and the
introduction of the microcontroller incorporating a mi-
croprocessor with peripherals like timers, memory, and
1/0 in a single package has led to digital control now
being used in much smaller and simpler embedded sys-
tems such as in automotive control, cellular phones,
and home electronics (camcorders, TVs, and VCRs).

~

*The work reported in this paper was supported in part by
the Advanced Research Projects Agency, monitored by the US
Airforce Rome Laboratory under Grant F30602-95-1-0044, by
the NSF under Grant MIP-9203895, and by the ONR under
Grant N00014-94-1-0229. Any opinions, findings, and conclu-
sions or recommendations are those of the authors and do not
necessarily reflect the views of the funding agencies.

1080-1812/97 $10.00 @ 1997 IEEE

These embedded systems are mass-produced, mak-
ing low production costs one of the primary concerns
in their design. Automotive applications alone ac-
count for millions of embedded systems produced an-
nually. At these volumes, extra costs of even a few
dollars per unit translate into a loss of millions of
dollars overall, so the microcontrollers used in these
cost-conscious applications are those which have been
in production for several years and their prices have
dropped to a few dollars per unit. These microcon-
trollers have relatively slow processing cores (typically
running at 10-30 MHz), small, on-chip RAMS (about
32-64 kBytes, hence the name “small-memory” em-
bedded systems), and all applications are in-memory
(there are no disks/file systems in our target applica-
tions). This necessitates that any real-time operating
system (RTOS) [a] used in these applications must be
both time-efficient and memory-efficient .

In this paper, we focus on OS support for object-
oriented (00) programming in embedded systems.
00 design gives benefits such as reduced software
design time and software re-use [3]. But with these
benefits comes the extra cost of ensuring mutual ex-
clusion when an object’s internal state is updated.
Semaphores’ I4,5] are typically used to provide this
mutual exclusion. Because semaphore system calls are
invoked every time an execution thread enters or exits
an object, it becomes essential that the RTOS provide
efficient, low-overhead semaphores; otherwise, 00 de-
sign will not be feasible for embedded applications be-
cause of high costs.

‘The optimization scheme presented in this paper applies
equally well to both semaphores and mutexes. However, for
simplicity, we concern ourselves only with semaphores in this
paper.

25

Most research in the area of reducing task syn-
chronization overhead has focused on multiprocessors
[6,7]. But our target architectures are either unipro-
cessor (as in home appliances) or very loosely-coupled
distributed systems (as in automotive applications).
Even with the latter, threads typically do not need to
access remote objects, so our concern is only with im-
proving task synchronization performance for a single
processor. Previous work in this area has focused on
either relaxing the semaphore semantics to get better
performance [SI or coming up with new semantics and
new synchronization policies [9]. The problem with
this approach is that these newlmodified semantics
may be suitable for some particular applications but
usually they do not have wide applicability.

We took the approach of providing full semaphore
semantics (with priority inheritance [lo]), but opti-
mizing the implementation of these semaphores by ex-
ploiting certain features of embedded applications. As
a result, our semaphore scheme has wide applicability
within the domain of embedded applications, while
significantly improving performance over standard im-
plementation methods for semaphores. We have im-
plemented this new semaphore scheme in the EMER-
ALDS (Extensible Microkernel for Embedded, ReAL-
time, Distributed Systems) RTOS [ll] which is being
developed in the Real-Time Computing Laboratory
at the University of Michigan to satisfy the specific
memory and performance requirements of small-size
embedded systems.

In the next section, we give a brief overview of 00
programming as it pertains to embedded real-time sys-
tems, focusing on OS support needed for 00 program-
ming. In Section 3, we describe our new implementa-
tion scheme. Section 4 discusses some limitations of
the scheme and ways to overcome these limitations so
that our scheme can be used in almost all embedded
applications. Section 5 evaluates the performance of
our new scheme, and we conclude with Section 6.

2 Objects and Semaphores in Embed-
ded Real-Time Systems

An object is a collection of private state informa-
tion (or data) and a set of methods which manipulate
the data. Objects are ideal for representing real-world
entities: the object’s internal data represents the phys-
ical state of the entity (such as temperature, pressure,
position, RPM, etc.) and the methods allow the state
to be read or modified. These notions of encapsula-
tion and modularity greatly help the software design
process because various system components such as
sensors, actuators, and controllers can be modeled by

objects. Then, under the 00 paradigm, real-time soft-
ware is just a collection of threads of execution, each
invoking various methods of various objects [12].

Conceptually, this 00 paradigm is very appealing
and gives benefits such as reduced software design
time and software re-use. But practically speaking,
these benefits come at a cost. The methods of an
object must synchronize their access to the object’s
data to ensure mutual exclusion. Because object in-
vocations occur very frequently, it is essential that any
scheme used to achieve this synchronization must be
both memory-efficient as well as time-efficient; oth-
erwise, 00 design will be infeasible for small-memory
embedded systems due to high costs.

2.1 Active and Passive Object Models

There are two fundamentally different ways for ob-
jects and execution threads to interact with each other
and this has some bearing on the type of synchroniza-
tion scheme used to ensure mutual exclusion.

Under the active object model [13], one or more
server threads are permanently bound to an object.
When a client thread invokes a method, a server
thread executes the method on behalf of the client.

With the passive object model [13], objects do not
have threads of their own. To invoke a method, a
thread will enter the object, execute the method, and
then exit the object.

From the point of view of synchronization, the ac-
tive object model has an advantage if only one thread
is assigned per object. Since only one thread is in the
object at any time, there is no need to worry about
mutual exclusion. But the active object model has
several disadvantages. First of all, having a thread
per object means that there will be a large number
of threads in the system (anywhere from several tens
to more than a hundred depending on the applica-
tion). Each thread needs its own stack, thread control
block, etc., which makes the active object model very
memory-inefficient. Moreover, each object invocation
requires a context switch from the client thread to the
server thread, so this model is time-inefficient as well.

With the passive object model, multiple threads
can be inside the same object at one time, so they
must synchronize their activities. Semaphores [4,5]
are commonly used for this purpose (e.g., to provide
the monitor construct [14]). Even though locking
based on semaphores incurs time overhead, it is de-
cidedly much more memory-efficient than the active
object model.

26

2.2 00 Design Under EMERALDS
For the above stated reasons, we advocate the pas-

sive object model for embedded software design. Be-
cause a semaphore system call is made every time
an object’s method is invoked, semaphore opera-
tions (acquiresem(1 and r e l e a s e s e n 0 calls under
EMERALDS, used to lock and unlock semaphores,
respectively) become some of the most heavily used
OS primitives when 00 design is used. This moti-
vated us to investigate new and efficient schemes for
implementing semaphore locking in EMERALDS as
described next.

3 An Efficient Semaphore Implemen-
tation Scheme

The first step in designing efficient semaphores is to
look at the way semaphores are typically implemented
in various systems, identify distinct steps involved in
locking/unlocking semaphores, and try to eliminate
or optimize those steps which incur the greatest over-
head. To do these optimizations, we will use charac-
teristics peculiar to small-memory embedded applica-
tions.

3.1 Standard Semaphore Implementation
The standard procedure to lock a semaphore can

be summarized as follows:

i f (sem locked) {
do prior i ty inheritance;
add c a l l e r thread t o wait queue;
block;

lock sen;
1

If the semaphore happens to be already locked by some
other thread, the thread making the semaphore lock
system call is put on a wait queue and is blocked. It
is unblocked as part of the semaphore release opera-
tion and it then proceeds to reserve the semaphore for
itself.

If the caller is to block, priority inheritance [9,10]
also takes place under which the current lock holder
thread’s priority is increased to that of the caller
thread (if the former is less than the latter). This
is needed to avoid unbounded priority inversion [lo].
If a high-priority thread Th calls acquiresen() on
a semaphore already locked by a low-priority thread
3, the latter’s priority is temporarily increased to
that of the former. Without priority inheritance, a
medium priority thread T, can get control of the CPU
by preempting Tl while T h remains blocked on the

E

\
Tx -

\ -
L time T2

thread - - context L:Lock U: Unlock
execution switch semaphore semaphore

-

Figure 1: A typical scenario showing thread T2 at-
tempting to lock a semaphore already held by thread
TI . Tz is an unrelated thread which was executing
while T2 was blocked. Conceptually, T, can be TI .

semaphore, thus causing priority inversion. With pri-
ority inheritance, will keep on running until it un-
locks the semaphore. At that point, its priority will
go back to its original value, but now Th will be un-
blocked and it can continue execution.

First of all, notice that if the semaphore is free when
acquiresemo is called, then the semaphore lock op-
eration has very little overhead2. In fact, for this case,
only one counter has to be incremented and some other
variables updated,

The situation is very different when the semaphore
is already locked by thread TI when some thread T2
invokes the acquiresemo call. Figure 1 shows a typ-
ical scenario for this situation. Thread T2 wakes up
(after completing some unrelated blocking system call)
and then calls acquiresemo. This results in prior-
ity inheritance and a context switch to T I , the current
lock holder. After TI releases the semaphore, its pri-
ority returns to its original value and a context switch
occurs to Tz.

We observe that it is these context switches which
are responsible for much of the overhead (as much
as 40-50%) associated with locking and unlocking
semaphores (see Section 5 for timing measurements).

Schedulability Analysis: In all critical real-time
systems, an off-line guarantee is needed that the task
workload is feasible and all execution deadlines will be
met at run-time. Schedulability tests [15-171 are used
for this purpose. The worst-case execution time of
each task is first calculated and then the appropriate
schedulability test is used to determine feasibility.

The worst-case execution time for acquiresem()
occurs when the semaphore is already locked when

2This is especially true in EMERALDS where system call
overhead is comparable to subroutine call overhead even with
full memory protection between processes [ll].

27

E

Switch to TI \

Tz instead of T2 -
L time

- thread - - context L:Lock U: Unlock
execution switch semaphore semaphore

Figure 2: The new semaphore implementation
scheme. Context switch Cz is eliminated.

the system call is made. This means that the con-
text switches C2 and C3 shown in Figure 1 must be
included when calculating worst-case task execution
times.

Any scheme to make semaphores more effi-
cient must target this worst-case scenario. The
other scenario (semaphore happens to be free when
acquiresemo is called) is quite efficient as is and
is of no concern when calculating worst-case execu-
tion times, so, from now on, we focus on optimizing
the worst-case scenario when the semaphore is already
locked by some thread when acquiresemo is called.

3.2 Semaphore Implementation in

Going back to Figure 1, we want to eliminate con-
text switch C2. Recall that the progression of events
was as follows: T2 blocks (say, waiting for an event
such as a message arrival; call this event E); some
other threads execute; then event E occurs and T2 is
unblocked. Now, the next blocking call T2 is to make is
to acquire semaphore S. Under our scheme - as part
of the blocking call just preceding acquire-sem() -
we instrument the code (using a code parser described
later) to indicate which semaphore Tz intends to lock
(semaphore S in this case). When event E occurs and
T2 is to be unblocked (Figure 2), the OS checks if S
is available or not. If S is unavailable, then priority
inheritance from T2 to the current lock holder TI oc-
curs right here. T2 is added to the waiting queue for
S and it remains blocked, waiting for S . As a result,
the scheduler picks TI to execute - which eventu-
ally releases S - and T2 is unblocked as part of this
r e l e a s e s e m o call by T I . Comparing Figure 2 to
Figure 1, we see that context switch C2 is eliminated.
The semaphore lock/unlock pair of operations now in-
cur only one context switch instead of two, resulting in
considerable savings in execution time overhead (see
Section 5 for performance results).

EMERALDS

Code Parser: In EMERALDS, all blocking calls
take an extra parameter which is the identifier
of the semaphore to be locked by the upcoming
acquiresemo call. This parameter is set to -1 if
the next blocking call is not acquiresemo.

Semaphore identifiers are statically defined (at
compile time) in EMERALDS as is commonly the case
in 0% for small-memory applications, so it is possi-
ble to write a parser which examines the application
code and automatically inserts the correct semaphore
identifier into the argument list of blocking calls just
preceding acquiresem() calls. Parser design issues
are discussed further in Section 4.

Schedulability Analysis for the New Scheme:
From the viewpoint of schedulability analysis, there
can be two concerns regarding the new semaphore
scheme (refer back to Figure 2):

1. What if thread T2 does not block on the call pre-
ceding acquiresem()? This can happen if event
E has already occurred when the call is made.

2. Is it safe to delay execution of T2 even though it
may have higher priority than TI (by doing pri-
ority inheritance earlier than would occur other-
wise)?

Regarding the first concern, if Tz does not block
on the call preceding acquiresemo, then a context
switch has already been saved. For such a situation, T2
will continue to execute till it reaches acquiresem()
and a context switch will occur here. What our scheme
really provides is that a context switch will be saved
either on the acquiresem0 call or on the preceding
blocking call. Where the savings actually occur at run-
time do not really matter for calculation of worst-case
execution times for schedulability analysis.

For the second concern, the answer is that yes, it is
safe to let TI execute earlier than it would otherwise.
The concern here is that Tz may miss its deadline. But
this cannot happen because under all circumstances,
T2 must wait for TI to release the semaphore before
T2 can complete. So from the schedulability analysis
point of view, all that really happens is that chunks of
execution time are swapped between TI and Tz with-
out affecting the completion time of Tz. Another sim-
ilar concern is that after event E, Tz may have to
produce an output or send a message/signal to an-
other thread (call it T3). Delaying Tz may cause T3
to miss its deadline. The answer to all such scenarios
is that as just discussed, T2 completes by its deadline
(even though it may be delayed). As long as TZ com-
pletes by its deadline, no other thread that depends

28

for (;;) {
read sensor I;
read sensor 2;

read sensor I ;
update actuator I;
update actuator 2;

update actuator y;
block till timer expiry

...

...

or event occurrence;
I
Figure 3: A typical sensor-controller-actuator loop
commonly found in embedded control applications

on T2 will miss its deadline, so schedulability of the
task workload is not adversely affected.

4 Applicability of the New Scheme

proposed semaphore scheme may not work:
There can be three circumstances under which our

1. The code parser is unable to identify which
semaphore is to be locked next due to conditional
constructs such as loops with a variable number
of iterations or if -then-else statements.

2. The blocking call preceding an acquiresemo is
another acquiresem() so that only one context
switch is saved between these two calls.

3. The lock holder TI (Figure 2) blocks after event
E but before releasing the semaphore. Then with
standard semaphores, TZ will be able to execute,
but under our scheme it cannot which may lead
to T2 missing its deadline.

In the rest of this section, we discuss how often (if
at all) these scenarios can occur in embedded real-time
systems, which specific forms they can occur in, and
how these problems can be resolved.

4.1 Code Parser Issues
Most threads in embedded systems execute sensor-

controller-actuator loops as shown in Figure 3. Each
device (sensor or actuator) is represented by an object
protected by its own semaphore. Each device may be
a real sensor/actuator or a logical one representing
several devices being controlled as one group.

Note that the same devices are accessed each time
the loop executes. The order in which semaphores are
locked is fixed, so there is no ambiguity for the code

parser. At run-time, the method which gets invoked
on an object may depend on the input data:

i f (sensorReading > A) valve.open;
e l s e valve .c lose;

but this does not change the order in which
semaphores are locked because all methods of an ob-
ject are protected by the same semaphore. In other
words, most embedded applications are structured as
in Figure 3, and for such a structure, the parser can
easily determine which semaphore is to be locked after
a given blocking call.

In case a blocking call occurs inside a loop followed
by acquiresemo outside the loop, the argument to
be passed for the semaphore identifier is calculated
conditionally as follows:

while (cond) <
i f (cond)

e l s e

some-blocking-call(. . . , sem) ;

...

sen = -1;

sem = S ;

. . .
1

acquire-sem(S);
...

This way, -1 is passed as the parameter for all but
the last iteration of the loop. Again, this code can
be automatically inserted by the code parser without
the application programmer having to make any man-
ual modifications to the code. Note that this scheme
works as long as the condition cond does not depend
on the blocking call or code after the call. This is
true for loops which execute for a fixed number of it-
erations which is the most common case in embedded
control systems. One example is code which steps a
stepper motor 2 number of times. Value of x may de-
pend on sensor readings, but it stays fixed while the
loop executes.

Regarding loops with a variable number of itera-
tions, our experience shows that such loops typically
do not contain blocking calls in embedded real-time
systems. A variable-iteration loop is used to wait for
a condition to come true (such as a spin lock), but that
is what blocking calls do as well (wait for a condition).
The two may be combined if the result of the block-
ing call is uncertain (such as for condition variables
with Mesa semantics used in general-purpose comput-
ing), but such a situation rarely occurs in embedded
real-time systems.

29

4.2 Consecutive acquiresem() Calls
Going back to Figure 3, the bodies of the methods

invoked by the thread may contain blocking calls, es-
pecially condition variable and message-passing calls.
In these calls, the parser will insert the identifier of
the upcoming acquiresemo. But if such calls are
not present, then two or more acquiresen0 calls
can occur with no other blocking call in between them.
Then, only one context switch will be saved per pair
of acquiresemo calls. This leads to an interesting
avenue for future research. Our scheme can be gen-
eralized so that the blocking call at the end of the
control loop will not unblock until all the semaphores
needed by the thread for execution become available.
In other words:

for (: ; I C
obj-1.method
obj-2.method

obj-n.method
b l o c k (. . . , S i , S2, . .., Sn);

// protected by sem SI
// protected by sem S2

// protected by sen Sn
. . .

>
This is somewhat similar to the Spring kernel’s

notion of reserving all resources a task needs before
letting the task execute [18], but with an impor-
tant difference: the Spring kernel executes tasks non-
preemptively while under our proposal, threads exe-
cute preemptively. This allows higher priority threads
to preempt a given thread (giving good schedula-
ble utilization) while reducing the number of context
switches seen by the thread to wait for resources (giv-
ing shorter execution times). However, advance reser-
vation of all semaphores will increase scheduler com-
plexity and may also adversely affect task schedula-
bility. Impact of these issues on performance must be
studied to determine the viability of this extension.

4.3 Blocking by the Lock Holder Thread
Going back to Figure 2, suppose the lock holder

TI blocks after event E but before releasing the
semaphore. With standard semaphores, T2 will
then be able to execute (at least, till it reaches
acquiresemo), but under our scheme, T2 stays
blocked. This gives rise to the concern that with this
new semaphore scheme, T2 may miss its deadline.

In Figure 2, TI had priority less than that of T2 (call
this case A) . A different problem arises if TI has higher
priority than T2 (call it case B) . Suppose semaphore
S is free when event E occurs. Then T2 will become
unblocked and it will start executing (Figure 4). But
before T2 can call acquiresen() , TI wakes up, pre-
empts T2, locks s, then blocks for some event. T2

E
T - T2 nreemnted

L

thread - - context L:Lock B: block
execution switch sem.

-

Figure 4: If a higher priority thread TI preempts T2,
locks the semaphore, and blocks, then T2 incurs the
full overhead of acquireSam() and a context switch
is not saved.

resumes, calls acquiresemo, and blocks because S
is unavailable. The context switch is not saved and no
benefit comes out of our semaphore scheme.

All these problems occur when a thread blocks
while holding a semaphore. To resolve these problems,
we first make a small modification to our semaphore
scheme to change the problem in case B to be the
same as the problem in case A . This leaves us with
only one problem to address. Then, by looking at the
larger picture and considering threads other than just
TI and T2, we can show that this problem is easily
circumvented and our semaphore scheme works for all
blocking situations that occur in practice as discussed
next.

Modification to the Semaphore Scheme: For
the situation shown in Figure 4, we want to somehow
block T2 when the higher-priority thread TI locks S ,
and unblock Tz when TI releases S . This will prevent
T2 from executing while S is locked, which makes this
the same as the situation in case A.

Recall that when event E occurs (Figure 4), the OS
first checks if S is available or not before unblocking
Tz. Now, let us extend the scheme so that the OS
adds T2 to a special queue associated with S . This
queue holds the threads which have completed their
blocking call just preceding acquiresem() but have
not called acquiresen0 yet.

Thread TI will also get added to this queue as
part of its blocking call just preceding acquiresem() .
When TI calls acquiresemo, the OS first removes
TI from this queue, then puts all threads remaining
in the queue in a blocked state. Then, when TI calls
r e l e a s e s e n () , the OS unblocks all threads in the
queue. This way, T2 is prevented from executing while
S is locked which results in the same behavior as in
case A. Also, if done properly, addition and removal
of threads from this queue incurs very little overhead

30

\
T2 slays blocked: \

switch to Ts - T2

L time

thread - - context L:Lock U; Unlock B: Block S; Signal
execution switch sem. sem.

-

Figure 5: Situation when the lock holder TI blocks
for a signal from another thread T, .

(about 5-7 ,us on a 25 MHz MC 68040 without caches
and just 1-2 ,us with caches).

With this modification, the only remaining concern
(for both cases A and B) is: if execution of T2 is de-
layed like this while other threads (of possibly lower
priority) execute, then T2 may miss its deadline. This
concern is addressed next.

Applicability under Various Blocking Situa-
tions: There can be two types of blocking:

Wait for an internal event, i.e., wait for a sig-
nal from another thread after it reaches a certain
point.

Wait for an external event from the environment.
This event can be periodic or aperiodic.

The first type of blocking is used by threads to syn-
chronize with each other and the second type is used
to interact with the environment.
Blocking for Internal Events: The typical scenario
for this type of blocking is for thread TI to enter an
object (and lock semaphore S) then block waiting for
a signal from another thread T,. Meanwhile, T2 stays
blocked (Figure 5). The question is: is it safe to delay
T2 like this even if T, is lower in priority than T2? The
answer is yes, because T2 cannot lock S till TI releases
it, and TI will not release it till it receives the signal
from T,, so even though T, may be lower in priority
than Tz, it is safe to let Ts execute earlier. This leads
to TI releasing S earlier than it would otherwise which
leaves enough time for T2 to complete by its deadline.
Blocking for External Events: External events can
be either periodic or aperiodic. For periodic events,
polling is usually used to interact with the environ-
ment and blocking does not occur. A common exam-
ple is a periodic sensor-controller-actuator loop where

sensors are read and actuator commands are updated
periodically and no blocking calls are involved. One
common exception is to block on a timer (usually, to
wait for the current period to end), but this block-
ing call occurs at the end of the main loop of execu-
tion of the thread and is not inside any object and no
semaphores are held by the thread when this call is
made.

Blocking calls are used to wait for aperiodic events,
but it does not make sense to have such calls inside an
object. There is always a possibility that an aperiodic
event may not occur for a long time. If a thread blocks
waiting for such an event while inside an object, it
may keep that object locked forever, preventing other
threads from making progress. So the usual practice
is to not have any semaphores locked when blocking
for an aperiodic event.

In short, dealing with external events (whether pe-
riodic or aperiodic) does not affect the applicabil-
ity of our semaphore scheme under the commonly-
established ways of handling external events. But in
case some application does require blocking for ex-
ternal events while inside an object, our semaphore
scheme can be turned off by specifying -1 as the
semaphore identifier in the blocking call just preced-
ing acquiresem0. This will cause EMERALDS’
semaphores to behave just like standard implemen-
tation semaphores, but we do not believe this will be
needed very often, if at all.

5 Performance Evaluation
To measure the improvement in performance result-

ing from our new semaphore scheme, we implemented
it under EMERALDS and measured performance on
a 25 MHz Motorola 68040 processor [19].

When a thread enters an object, it first acquires
the semaphore protecting the object, and when it ex-
its the object, it releases the semaphore. The cumula-
tive time spent in these two operations represents the
overhead associated with synchronizing thread access
to objects. To determine by how much this overhead
is reduced when our scheme is used, we measured the
time for the acquire/release pair of operations for both
standard semaphores and our new scheme and then
compared the two results. In the following, we first
describe our evaluation procedure, then present the
results.

5 .1 The Test Procedure
We want to measure the worst-case overhead for

acquire/release because this is what is used in schedu-
lability analysis. The worst case occurs if

31

- r l +

- thread - - context L:Lock U: Unlock B: Block S: Signal
execution switch sem. sem. thread

Figure 6 : Test procedure for standard semaphores.
Interval t l is the overhead for acquire/release opera-
tions.

e the semaphore is already locked when
acquiresem() is called, and

e priority inheritance occurs.

To get this behavior, we use two threads in our tests,
TI and T2, with T2 having higher priority. For the
standard semaphore implementation, the test pro-
ceeds as shown in Figure 6. T2 executes first and
blocks waiting for a signal from Ti. Ti executes, locks
semaphore S, and signals T2 which is unblocked, goes
on to execute acquiresem() , and priority inheritance
occurs. Thread TI then releases S, its priority goes
back to its original value, and a context switch oc-
curs back to Tz. We measure interval t l which is the
time for an acquire plus a release and includes relevant
context switches.

We repeated this test with the new semaphore
scheme. Figure 7 shows the new sequence of events. In
this case, priority inheritance is done by the OS when
TI signals Tz, so TI continues after the signal and un-
locks S . TI’S priority goes back to its original value, T2

is unblocked, and it goes on to lock S without needing
any more context switches. Then the difference t 2 - t 3

(Figures 6 and 7) represents the improvement due to
the new scheme and tl - (t 2 - t 3) is the overhead for
acquire/release under the new scheme. Note that we
cannot directly measure the acquire/release overhead
for the new scheme because priority inheritance occurs
well before the rest of the acquire operation.

5.2 Experimental Results
EMERALDS uses dynamic thread sched~ling,~ so

the context switch overhead depends on the number of
threads in the system. Because our semaphore scheme
eliminates one context switch, the improvement in
performance depends on the number of threads in the

With priority inheritance, thread priorities change so often
that it makes no sense to have fixed priority scheduling.

‘ - t 3 - - C :

- thread - - context L:Lock U: Unlock B: Block S:Signal
execution switch sem. sem. thread

Figure 7: Test procedure for the new semaphore
scheme.

scheduler queue. Experience shows that typical em-
bedded applications have about 10-20 threads (any-
thing more will consume too much memory for stack,
thread control block, etc.). For evaluation purposes,
we chose a slightly wider range of thread counts, from
3 to 30. For each case, two of the threads are TI and T2
mentioned in Section 5.1 while the remaining threads
just execute infinite loops and serve only to fill the
scheduler queue.

First, we ran our tests on the MC 68040 with caches
disabled (to simulate processors which do not have
caches). Figure 8 shows the results for both the stan-
dard and the new semaphore implementation schemes.
Since the context switch overhead is a linear function
of the number of threads, the acquire/release times
also increase linearly with the thread count. But
the standard implementation’s overhead involves two
context switches while our new scheme incurs only
one, which is why the measurements for the standard
scheme have a slope twice that of our new scheme. For
a typical thread count of 15 threads, our new scheme
gives savings of about 35 p s over the standard imple-
mentation and these savings grow even larger as the
thread count increases.

We repeated our tests on the MC 68040 with both
instruction and data caches enabled. The results are
shown in Figure 9. Again, the results for our new
scheme have a slope roughly half that of the standard
scheme. But, notice that the percent improvement in
performance is more with caches enabled than with
caches disabled as shown in Figure 10. The reason
is that the context switch overhead is greater (rela-
tively speaking) when caches are used because of the
cache misses incurred when a new thread begins to ex-
ecute. The old context is flushed out to main memory,
the new context is fetched, and this increases the con-
text switch overhead, which is why our scheme gives
greater improvement over the standard implementa-
tion with caches enabled than with caches disabled.

These results show that our new scheme improves

32

250.0

h

9
V

.- ; 200.0
I
*

d

2
2

. 150.0 e .-

35.0

30.0

3 25.0

a 15.0
ER

10.0

5.0

*

U

5 20.0

e--. Standard implementation
t - - - New implementation

-

-

-

-

-

-

100.0
0.0 10.0 20.0 30.0

Number of Threads

Figure 8: Performance measurements with caches
disabled. The overhead for the standard implementa-
tion increases twice as rapidly as for the new scheme.

performance by 10-40%, depending on the number of
threads in the application and whether caches are used
or not. Since most embedded applications have about
10-20 threads, they can expect improvements of about
18-25% (without caches) or 25-30% (with caches).

6 Conclusion
Embedded application programmers generally tend

to avoid object-oriented programming, one reason be-
ing the high overhead associated with synchronizing
thread access to objects. Semaphores must be used to
ensure mutual exclusion when updating the state vari-
ables of objects, and this usually means a large enough
overhead to make object-oriented programming infea-
sible for cost-conscious embedded applications.

In this paper, we presented a new semaphore im-
plementation scheme which saves one context switch
per semaphore acquire/release pair of operations (for
most scenarios found in embedded applications) and
improves performance by 18-25%. We used the fact
that in small-size embedded applications, the identi-
fiers of semaphores are fixed at compile time. Then,
during run-time, we use these known identifiers to
do ahead-of-time checks on the status of semaphores
(whether they are available or not). If a semaphore
is unavailable, we delay the execution of threads until
the semaphore is released. This way, the semaphores
are always available when threads actually make the
acquiresemo system call and the call does not
block, saving one context switch.

Future work includes studying the advantages and
disadvantages of extending our scheme so that instead
of looking ahead only to the next acquiresem0 call,

60.0

h

2.
V

8 50.0
.E! *

4
40.0

I

\
U

30.0 f
-4

- Standard implementation
- - -a New implementation

20.0
0.0 10.0 20.0 30.0

Number of Threads

Figure 9: Performance measurements with caches
disabled.

40.0 I I

. - - - m- -

0.0 ' I
0.0 10.0 20.0 30.0

Number of Threads

Figure 10: Percent improvement in performance due
to our new semaphore scheme.

33

the scheduler will consider all the semaphores a thread
may need to execute so that all resource conflict-
related context switches are eliminated. Also, in this
paper we focused only on improving the semaphore
lock operation. In the future, we plan to investigate
optimizations related to the release operation to get
further improvements in synchronization overheads.

References
[l] K . G. Shin and P. Ramanathan, “Real-time com-

puting: a new discipline of computer science and
engineering,” Proceedings of the IEEE, vol. 82,
no. 1, pp. 6-24, January 1994.

[21 K. Ramamritham and J . A. Stankovic, “Schedul-
ing algorithms and operating systems support for
real-time systems,’’ Proceedings of the IEEE, vol.
82, no. 1, pp. 55-67, January 1994.

[3] B. Meyer, Object-Oriented Software Construc-
tion, Prentice-Hall, 1988.

[4] E. W. Dijkstra, ‘Cooperating sequential pro-
cesses,” Technical Report EWD-123, Technical
University, Eindhoven, the Netherlands, 1965.

[5] A. N. Habermann, “Synchronization of communi-
cating processes,” Communications of the ACM,
vol. 15, no. 3, pp. 171-176, March 1972.

[6] J . Mellor-Crummey and M. Scott, “Algorithms
for scalable synchronization on shared-memory
multiprocessors,’’ ACM Transactaons on Com-
puter Systems, vol. 9, no. 1, pp. 21-65, February
1991.

[7] C.-D. Wang, H. Takada, and K. Sakamura, “Pri-
ority inheritance spin locks for multiprocessor
real-time systems,” in 2nd International Sympo-
sium on Parallel Architectures, Algorathms, and
Networks, pp. 70-76, 1996.

[8] H. Takada and K. Sakamura, “Experimental im-
plementations of priority inheritance semaphore
on ITRON-specification kernel,” in f f t h TRON
Project Internatzonal Symposaum, pp. 106-113,
1994.

[9] H. Tokuda and T . Nakajima, “Evaluation of real-
time synchronization in Real-Time Mach,” in
Second Mach Symposium, pp. 213-221. Usenix,
1991.

[lo] L. Sha, R. Rajkumar, and J. Lehoczky, “Prior-
ity inheritance protocols: an approach to real-
time synchronization,” IEEE Trans. on Comput-
ers, vol. 39, no. 3, pp. 1175-1198, 1990.

[ll] K. M. Zuberi and K. G. Shin, “EMERALDS:
A microkernel for embedded real-time systems,”
in Proc. Real- Time Technology and Applications
Symposium, pp. 241-249, June 1996.

[12] Y. Ishikawa, H. Tokuda, and C. W. Mercer,
“An object-oriented real-time programming lan-
guage,” IEEE Computer, vol. 25, no. 10, pp. 66-
73, October 1992.

[13] R. S. Chin and S. T. Chanson, “Distributed
object-based programming systems,” ACM Com-
puting Surveys, vol. 23, no. 1, pp. 91-124, March
1991.

[14] C. A. R. Hoare, “Monitors: An operating sys-
tem structuring concept,” Communications of the
ACM, vol. 17, no. 10, pp. 549-557, October 1974.

[15] C. L. Liu and J. W. Layland, “Scheduling algo-
rithms for multiprogramming in a hard real-time
environment,” Journal of the ACM, vol. 20, no.
1, pp. 46-61, January 1973.

[16] A. C. Audsley, A. Burns, and A. J . Wellings,
“Deadline monotonic scheduling theory and ap-
plication,” Control Engineering Practice, vol. 1,
no. 1, pp. 71-78, 1993.

[17] Q. Zheng and K. G. Shin, (‘On the ability
of establishing real-time channels in point-
to-point packet-switched networks,” IEEE
Trans. Communications, pp. 1096-1105, Febru-
ary/March/April 1994.

[18] J . Stankovic and K. Ramamritham, “The Spring
Kernel: a new paradigm for real-time operating
systems,” ACM Operating Systems Review, vol.
23, no. 3, pp. 54-71, July 1989.

[19] M68040 User’s Manual, Motorola Inc., 1992.

34

