
956 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 1997

Schema Evolution of an Object-Oriented
Real-Time Database System
for Manufacturing Automation

Lei Zhou, Elke A. Rundensteiner, Member, IEEE, and Kang G. Shin, Fellow, IEEE

Abstract —The database schemata often experience considerable changes during the development and initial use phases of
database systems for advanced applications such as manufacturing automation and computer-aided design. An automated
schema-evolution system can significantly reduce the amount of effort and potential errors related to schema changes. Although
schema evolution for nonreal-time databases was the subject of previous research, its impact on real-time database systems
remains unexplored. These advanced applications typically utilize object-oriented data models to handle complex data types.
However, there exists no agreed-upon real-time object-oriented data model that can be used as a foundation to define a schema-
evolution framework. Therefore, we first design a conceptual real-time object-oriented data model, called Real-time Object Model
with Performance Polymorphism (ROMPP). It captures the key characteristics of real-time applications}namely, timing constraints
and performance polymorphism}by utilizing specialization-dimension and letter-class hierarchy constructs, respectively. We then
re-evaluate previous (nonreal-time) schema-evolution support in the context of real-time databases. This results in modifications to
the semantics of schema changes and to the needs of schema-change resolution rules and schema invariants. Furthermore, we
expand the schema-change framework with new constructs—including new schema-change operators, new resolution rules, and
new invariants—necessary for handling the real-time characteristics of ROMPP. We adopt and extend an axiomatic model to
express the semantics of ROMPP schema changes. Using manufacturing-control applications, we demonstrate the applicability of
ROMPP and the potential benefits of the proposed schema-evolution system.

Index Terms —Data model, database, envelope/letter classes, letter-class hierarchy, object oriented, performance polymorphism,
real-time, schema evolution.

—————————— ✦ ——————————

1 INTRODUCTION

HE object-oriented approach has been shown to be
an effective way to manage the development and main-

tenance of large complex systems, including real-time sys-
tems [6], [8]. Many advanced real-time manufacturing ap-
plications, such as open-architecture machine tool control-
lers, need a database management system (DBMS) to sup-
port concurrent data access and provide well-defined in-
terfaces between different software components. These ap-
plications typically are subject to a range of timing constraints
and often require the DBMS to provide timing guarantees,
sometimes under complex conditions. The needs of real-
time manufacturing applications in general and machine
tool controllers in particular have motivated the work
reported in this paper. This research is part of the on-
going Open-Architecture Controllers project at the University
of Michigan.

Timing constraints are typically in the form of deadlines.
The deadlines of real-time tasks can be classified as hard,

firm, or soft [39]. A deadline is said to be hard if the conse-
quences of not meeting it can be catastrophic, such as the
deadline of the emergency shutdown task in a machine tool
controller. A deadline is firm if the results produced by the
corresponding task cease to be useful as soon as the dead-
line expires, but the consequences of not meeting the dead-
line are not catastrophic, e.g., the deadline of weather fore-
cast (except for severe weather conditions). A deadline
which is neither hard nor firm is said to be soft. The utility
of results produced by a task with a soft deadline decreases
over time after the deadline expires. An example of soft
deadlines may be the deadline of a transaction of an auto-
matic teller machine. The longer the customer waits, the
unhappier he or she becomes. Conventional DBMSs do not
have any mechanism to specify, and much less to enforce,
such complex timing constraints. Furthermore, they do not
offer the performance levels or response-time guarantees
needed by these real-time applications. Such inadequacy
has spawned the field of real-time database systems
(RTDBSs) [13], [29], [37], [39], [40], [42], [46].

The requirements of a real-time system, like most other
systems, are likely to change during its life-cycle. The sys-
tem must be able to evolve smoothly in order to improve its
performance or to introduce new functionality, without
disrupting existing services. The extent of changes in a
typical working relational database system is illustrated in
[41], which documents the measurement of schema evolu-

1041-4347/97/$10.00 © 1997 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• L. Zhou and K.G. Shin are with the Department of Electrical Engineering
and Computer Science, University of Michigan, Ann Arbor, MI 48109.
E-mail: {lzhou, kgshin}@.eecs.umich.edu.

• E.A. Rundensteiner is with the Department of Computer Science, Worces-
ter Polytechnic Institute, Worcester, MA 01609.

 E-mail: rundenst@cs.wpi.edu.

Manuscript received 8 Mar. 1996.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 104035.

T

ZHOU ET AL.: SCHEMA EVOLUTION OF AN OBJECT-ORIENTED REAL-TIME DATABASE SYSTEM FOR MANUFACTURING AUTOMATION 957

tion during the development and initial use of a health
management system used at several hospitals. There was
an increase of 139 percent in the number of relations and
274 percent in the number of attributes in the system dur-
ing the 19-month period of study. In a separate study [22],
significant changes (about 59 percent of attributes on the
average) were reported for seven applications. These appli-
cations ranged from project tracking, real estate inventory
and accounting and sales management, to government ad-
ministration of the skill trades and apprenticeship pro-
grams. It was observed that the most frequent contributor
to schema changes is changing user requirements. Ad-
vanced database applications, such as engineering design
applications using object-oriented databases (OODBs), are
typically much less understood and thus are even more
prone to changes in the database schemata. In this paper,
we investigate the impact of schema evolution for RTDBSs
in the context of manufacturing applications.

Machine tool controllers have become more sophisti-
cated in recent years by capitalizing on the progress of
computer technology. However, there is still the problem of
high life-cycle cost due to the lack of openness in commer-
cially available controllers. There has been considerable
interest in the subject, in both academia and industry,
North America and Europe. Examples of this activity in-
clude the Open System Architecture for Controls within Auto-
mation Systems (OSACA) project [33], [34] in the European
Community and the Enhanced Machine Controller (EMC)
project [1] at the National Institute of Standards and Tech-
nology. Research in this area is typically based on the ob-
ject-oriented paradigm, since it is found to be very suitable
for managing real-time data in machine tool controllers.

However, at present no agreed-upon real-time object-
oriented data model is available. Thus, we need to define a
real-time data model, based on which we can develop a
real-time schema-evolution framework. Since machine tool
controllers are our target applications, our prime objective
has been to capture their characteristics. There is a general
consensus in the manufacturing community that controllers
should have a modular architecture and well-defined inter-
faces that allow third parties to develop and use these
modules independently. Modules can be either hardware
or software. A VMEbus-based digital I/O board is an ex-
ample of a hardware module, while the device driver for
the board is an example of a software module. The modules
may be selected based on price and/or performance, while
meeting the constraints of the control application. An
OODB that automates this selection process based on appli-
cation requirements would be of major help to application
developers. This is the main goal of our real-time data
model design, namely, to provide facilities for simplifying
reuse of time-constrained modules, and consequently, in-
creasing the productivity of real-time application develop-
ers and optimizing the utility of resources. None of the ex-
isting models used for real-time applications [4], [10], [15],
[17], [20], [24], [47] is found to provide sufficient support in
this regard.

Based on this observation, we first extract a simple yet
powerful real-time object-oriented data model1 called Real-
time Object Model with Performance Polymorphism (ROMPP)
[49]. ROMPP explicitly captures the important characteris-
tics of RTDBS applications, especially in the manufacturing
application domain. These characteristics include timing con-
straints and performance polymorphism.2 Our model uses
two novel constructs: specialization dimensions to model
timing specifications and letter-class hierarchies to capture
performance polymorphism. Although regular object-oriented
programming techniques (e.g., composite object classes) may
be used to implement the concepts of timing specification
and performance polymorphism, they neither explicitly
capture these concepts nor provide a mechanism to enforce
them. By contrast, ROMPP offers not only explicit con-
structs for timing specifications but also an automated
mechanism to support performance polymorphism.

We then develop a framework for changes to schemata
of real-time OODBs based on the schema-change taxonomy
currently being employed by virtually all existing (nonreal-
time) schema-evolution systems [3]. While schema evolu-
tion has been defined for many object-oriented data models
[3], [26], [31], [52], none of them is for RTDBSs. We re-
evaluate this work in the context of RTDBSs, making modi-
fications to the semantics of schema changes and to the
needs of schema-change resolution rules and schema in-
variants. Furthermore, we expand the schema-change
framework with new constructs—including new schema-
change operators, new resolution rules, and new invari-
ants—necessary for handling additional features specific to
the real-time aspects of ROMPP. We use an axiomatic
model [32] to formally express the semantics of schema
changes. This allows well-defined semantics (as opposed to
other schema-evolution models that are vaguely described
in English language) and easy comparison with other yet-
to-be-developed real-time schema-evolution approaches. In
this paper, we also demonstrate the utility of our real-time
object-oriented data model and schema-evolution frame-
work based on manufacturing applications.

A preliminary description of ROMPP can be found in
[49]. We build upon this research by proposing a schema-
evolution framework for real-time object-oriented data-
bases in general and for ROMPP in particular. We also pre-
sent an in-depth evaluation of our approach for machine
tool control applications. The main contributions of this
paper are summarized below (to our knowledge, schema
evolution of RTDBSs has not previously been addressed in
the literature):

• Develop a conceptual real-time object-oriented data
model, ROMPP:

1) provide constructs for two key characteristics of
manufacturing applications}timing constraints and
performance polymorphism;

1. Some authors use the terms “object model” and “object-oriented data
model” differently. They refer to the object model as the programming model
of object-oriented paradigm, and the object-oriented data model as the
extension of the programming model in the realm of database manage-
ment. We make no such distinction and will use the terms interchangeably.

2. The term performance polymorphism first appeared in [17].

958 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 1997

2) allow for explicit annotation of performance met-
rics of database services; and

3) support an automated and transparent mechanism
of service selection.

• Propose a schema-evolution framework for ROMPP:

 1) define new schema-change operators;
 2) add new schema invariants and resolution rules; and
 3) uncover and present new semantics of schema

 changes given real-time constraints, using an ex-
 tended axiomatic model.

• Demonstrate the applicability of ROMPP and poten-
tial benefits of the proposed schema-evolution frame-
work in manufacturing applications.

The remainder of the paper is organized as follows. Sec-
tion 2 describes ROMPP, while Section 3 defines a schema-
evolution framework based on the model. In Section 4, we
discuss the implementation status and demonstrate the
utility of our model in the manufacturing-control domain.
Section 5 briefly covers related work. Conclusions and fu-
ture work are presented in Section 6.

2 ROMPP: A CONCEPTUAL REAL-TIME OBJECT
MODEL

In this section, we describe our conceptual real-time object
model ROMPP. ROMPP is conceptual in the sense that it is
not dependent on any specific implementation. This model
aims to provide a simple, yet sufficiently powerful founda-
tion by explicitly capturing the key characteristics of real-
time applications. In other words, we are not proposing a
complete3 data model, but one that is suitable and sufficient
for manufacturing applications.

2.1 Basic Object-Oriented Concepts
ROMPP adopts basic object-oriented concepts, such as class
and inheritance, as can be found in most object-oriented
data models [7], [11], [18], [27]. For completeness, these
concepts are defined below.

DEFINITION 1. An object is a triple (identifier, state,
behavior), where the identifier is generated by the system
and uniquely identifies the object, the state is determined
by the set of values of the instance variables associ-
ated with the object, and the behavior corresponds to the
methods associated with the object. An instance variable
of an object can hold either a system-provided object or a
user-defined object. Instance variables are private to the
object, i.e., they can only be accessed by the object’s meth-
ods. An instance variable Vi of an object A can be specified
as being composite. In this case, the object B referenced
through the composite instance variable Vi is owned-by
the object A. Deletion of A will cause the deletion of B. A
method is defined by (signature, body), where the signa-
ture consists of a method name M and a mapping from in-
put parameter specifications to an output parameter speci-
fication: M(In1, In2, �, Inn) � Out. A parameter specifi-
cation (either input or output) is a type. The body corre-

3. A complete model would have included many more constructs, for in-
stance, for relative temporal consistency among a set of data values and
transaction correctness criteria.

sponds to the actual code which implements the desired
functionality of the method. Methods can be either private
or public. A public method is accessible to all methods of
the object itself and other objects.

DEFINITION 2. A class is a tuple (name, structure) that repre-
sents a group of objects with the same declaration of in-
stance variables and methods. The name of a class is a
string and the structure consists of the declarations of
common instance variables and methods. The objects of the
same class type are called instances of the class.

DEFINITION 3. For two classes C1 and C2, C1 is a subclass4 of C2,
denoted by C1 is-a C2, if and only if C1 inherits every in-
stance variable and method of C2.

An example system-provided object is an integer, while
a sensor may be a user-defined object. A class can have
multiple superclasses. Note that private instance variables
and methods of a class are not visible to its subclasses, al-
though they are inherited by the subclasses. Only public
methods of its superclasses are accessible to the subclass
and become part of its public interface. Private instance
variables inherited from a superclass are stored in the in-
stances of the subclass, but these private instance variables
(and methods) can only be accessed by the subclass via
public methods defined in the superclass. A public method
of a class can be declared virtual (and a private method
cannot), i.e., it has no code associated with it and must be
implemented in the subclasses (or descendants) of the class.

DEFINITION 4. A class hierarchy is a directed acyclic graph
(DAG)5 S = (V, E), where V is a finite set of vertices and E
is a finite set of directed edges. Each element in V corre-
sponds to a class Ci, while E corresponds to a binary rela-
tion on V � V that represents all subclass relationships be-
tween all pairs of classes in V. In particular, each directed
edge e from C1 to C2, denoted by e = <C1, C2>, represents
the is-a relationship (C1 is-a C2). An OODB schema is
equal to the class hierarchy.

2.2 Model Description
Based on our evaluation of existing real-time systems [4],
[10], [15], [17], [20], [24], [47] and real-time manufacturing
applications [2], [5], [23], we have identified two key char-
acteristics for real-time data models:

• timing constraints, and
• performance polymorphism.

In open-architecture machine tool controllers, control tasks
periodically read sensor data, compute control parameters,
and issue actuator commands. All these operations typi-
cally need to be completed within each control cycle, i.e.,
with timing constraints. Open-architecture requirements of
machine tool controllers mandate and facilitate the devel-
opment of hardware and software modules that have the
same functionality and interface but with different per-
formance. This characteristic, called performance polymor-

4. Throughout this paper, we say that A is a subclass of B (B is a superclass
of A) if and only if A inherits directly from B, and A is a descendant of B (B is
an ancestor of A) if and only if A inherits directly or indirectly from B.

5. A class hierarchy without multiple inheritance corresponds to a tree
rather than a DAG.

ZHOU ET AL.: SCHEMA EVOLUTION OF AN OBJECT-ORIENTED REAL-TIME DATABASE SYSTEM FOR MANUFACTURING AUTOMATION 959

phism [17], is also a fundamental requirement for manu-
facturing automation applications. We will show that a
simple model capturing these two key characteristics can
provide significant help to manufacturing-control applica-
tion developers.

2.2.1 Timing Constraints
A real-time system must allow the users to specify timing
constraints and for the system to enforce them. Any real-
time object model must thus have constructs to specify
timing constraints. The implementation of a real-time
DBMS on the other hand must provide mechanisms to
guarantee these deadlines if it is a hard real-time DBMS or
make a best effort to meet the deadlines if it is a soft real-
time DBMS. The timing constraints of real-time tasks are
typically in the form of deadlines.

DEFINITION 5. A timing constraint is a tuple (type, descrip-
tion), where the type specifies the type of the constraint
and the description gives the content of the constraint.

An example of a timing constraint may be (deadline, 10
milliseconds), which specifies a deadline of 10 ms. In our
real-time object model, timing constraints are associated
with the performance of methods, since the behavior of an
object is represented by its methods. Applications will be
requesting services from objects via their respective meth-
ods. We, thus, need to extend the definition of a method
(Definition 1).

DEFINITION 6. A method in ROMPP is extended to a triple
(signature, body[, performance]), with signature and
body defined as in Definition 1. The optional third field
specifies the performance measures of the method.

In the above definition, the performance measures in-
clude method execution time, memory space needed, and
so on. The exact specification of the performance field of a
method triple depends on the type of its class, as described
in the next subsection.

2.2.2 Performance Polymorphism
To implement a method, typically several different algo-
rithms and/or data structures can be used. Machine tool
controllers need support in selecting one of these imple-
mentations based on performance and/or price, by opti-
mizing the objectives of the control applications. For exam-
ple, a controller for a milling machine may choose among
adaptive, linear and nonlinear control algorithms. Although
these control algorithms have the same input and output
interfaces, they may provide different performance in terms
of the quality of generated control commands and the
amount of time needed to compute them. The controller
may want to select among these different control algo-
rithms based on performance characteristics, but without
having to deal with details of their respective implementa-
tions. This characteristic of a real-time object model is called
performance polymorphism. In type theory, polymorphism
is a concept in which a name may denote objects of many
different classes that are related via some common super-
class [6, page 102]. Performance polymorphism differs from
conventional polymorphism in that the distinct characteris-
tics of these related classes are their performance.

DEFINITION 7. Performance polymorphism refers to multiple
implementations of a method (body) that carry out the same
task but differ in their performance measures.

Performance polymorphism is explicitly supported by
ROMPP, thus allowing an automatic selection of the most
appropriate method implementation based on performance
characteristics desired by the application. If a real-time ob-
ject model did not have explicit constructs for performance
polymorphism, we would have to use one of the following
approaches:

1) The knowledge of performance polymorphism would
be captured and maintained separately from the
schema. For example, the service designer6 may use a
version control tool to maintain different implemen-
tations of the same service (thus having the same
service name). The knowledge about such a version
control mechanism is not part of the system schema.
Although the schema may include a description of
different implementations of the service, it provides
no help to the application developer on how to use
them. Therefore, it is the application developer’s re-
sponsibility to keep track of different implementa-
tions and, more importantly, about their relative
characteristics and performance metrics. The applica-
tion developer must use them appropriately in the
improvement of existing systems or the development
of new applications. Furthermore, it does not offer
an automated mechanism to ensure the proper use
of different implementations of the service. Such
approaches do not provide good support for software
reusability, and put all burden on the application
developer.

2) The service designer could use one implementation of
an object to meet all performance requirements, no
matter how different they are. This over-simplified
approach would typically require us to assume a
worst-case scenario. This approach may not always be
feasible, because requirements may contradict one
another. It also wastes resources and poses true limi-
tation on applications. For example, a system may
have a memory space of 10MB. Suppose an imple-
mentation of object A requires 8MB while object B
needs 3MB. Obviously, A and B cannot co-exist in
memory. Therefore, a real-time task cannot receive
services from A and B concurrently, even if another
implementation of A may need only 2MB to deliver
slower but sufficient performance for this particular
application.

3) Another option would be to duplicate the definition
of the method (or object) with each of its implemen-
tations and give them distinct names in order to
simulate performance polymorphism. This would
again carry all disadvantages of the first approach
above, making the application developer responsible
for maintaining information about individual services
and their relationships. In addition, a system of such a

6. In this paper, we distinguish between the service designer, who builds
the kernel classes required by an application, and the application devel-
oper, who utilizes these kernel classes to construct applications.

960 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 1997

type is difficult to maintain. Any change in the defi-
nition of the method has to be made to all its dupli-
cates, which is inefficient and often prone to errors.

Our model overcomes all of these problems by adopting
the following strategies:

1) It provides a definition of the service offered by a
method, and supports explicit association of distinct
implementations with each service.

2) It allows for the explicit annotation of the perform-
ance features that characterize each implementation
by the service designer, and for their explicit mainte-
nance by the database system.

3) It supports a mechanism for the application developer
to automatically select the most appropriate imple-
mentation of a desired service based on requested per-
formance requirements, without having to explicitly
choose one of the implementations. Should the per-
formance requirements of an application change, the
mechanism would transparently rebind the requested
service with the most appropriate implementation.

Performance polymorphism in ROMPP is captured by
the letter-class hierarchy constructs, which are based on an
object-oriented programming technique: the envelope/letter
structure [9].

DEFINITION 8. An envelope/letter structure is a composite
object structure formed by a pair of classes that act as one:
an outer class (envelope class, or EC) that is the visible
part to the user, and an inner class (letter class, or LC)
that contains implementation details.

DEFINITION 9. A letter-class hierarchy is a class hierarchy as
defined in Definition 4 that consists of an envelope class as
its root and zero or more letter classes. Each letter class can
have exactly one envelope class as its ancestor and no en-
velope class as its descendant. The envelope class and all its
letter classes must have exactly the same public methods.

In other words, letter classes are all descendants of their
corresponding envelope class. While they can have is-a
relationships between themselves, these letter classes can-
not have is-a relationships with any other envelope class
or letter class in different letter-class hierarchies. Letter
classes are not explicitly accessed by the application devel-
oper, but rather are manipulated by the system based on
the performance requirements specified with the envelope
class. Only envelope classes are visible to the application
developer.

DEFINITION 10. An envelope class hierarchy is a class hierar-
chy that consists of a system-provided class, called ROOT
as its root, and one or many envelope classes.

Notice that the definition of an envelope class hierarchy
does not include letter classes, although each envelope class
has an associated letter-class hierarchy. This emphasizes the
fact that, for applications, letter classes are hidden behind
their corresponding envelope classes.

DEFINITION 11. A real-time object-oriented database (RTOODB)
schema is composed of one envelope class hierarchy and
zero or more letter-class hierarchies. Each envelope class
can have an optional associated letter-class hierarchy and

each letter-class hierarchy is associated with exactly one
envelope class.

If an envelope class has no letter classes, it degenerates
to a conventional class. Therefore, a RTOODB schema is
comprised of exactly one envelope class hierarchy and zero
or many letter-class hierarchies. The root of the envelope
class hierarchy is the system-provided class ROOT, while
the root of a letter-class hierarchy is its corresponding en-
velope class. A public method of an envelope class can be
designated as a specialization dimension, as defined below:

DEFINITION 12. A specialization dimension is a performance
measure (Definition 6) of letter classes. A specialization
dimension must be assigned to a public method of an enve-
lope class. There is a specialization space associated with
each letter-class hierarchy and its axes are specialization
dimensions.

The letter classes specialize along one or more speciali-
zation dimensions that have been specified for the public
methods in their corresponding envelope class. The most
common specialization dimension for real-time applications
may be the execution time of a method. Other examples of
specialization dimensions may be the amount of memory
needed and the duration the object is valid. The public
methods corresponding to a specialization dimension must
be declared virtual in the envelope class. This allows the
virtual method to be implemented in different ways in the
letter classes. A public method can represent more than one
specialization dimension. For example, if the implementa-
tion of a method requires a trade-off between execution
time and memory space consumed, different implementa-
tions of the method will represent different points in a two-
dimensional specialization space, whose axes are execution
time and memory space consumed.

The performance-related information of a letter-class hi-
erarchy is reflected in its specialization space. The relative
performance of a letter class could be significant in terms of
its location in the specialization space. Hence any change to
the performance value may map the letter class to a differ-
ent point in its specialization space. A simple implementa-
tion of a specialization space would be to organize all letter
classes in a letter-class hierarchy into an unsorted linked
list. A sequential search through the list would find the best
letter class (if one exists) satisfying the given performance
requirements. This simple approach would work well when
the number of letter classes is small. For more efficient
lookup, letter classes may be sorted along their specializa-
tion dimensions. Envelope classes have complete knowl-
edge of how their corresponding letter-class hierarchies are
organized. This knowledge may be implicit when all letter-
class hierarchies use the same organization technique and it
is known to the system, or explicit when the knowledge of
the organization technique is stored in individual envelope
classes.

2.2.3 Model Constructs
For the specification of the constructs introduced above, we
propose the following data definition notation. Note that
these model constructs are designed to be programming
language independent. They are specified by statements

ZHOU ET AL.: SCHEMA EVOLUTION OF AN OBJECT-ORIENTED REAL-TIME DATABASE SYSTEM FOR MANUFACTURING AUTOMATION 961

with special key words preceded by the character “@.” The
following constructs have been defined:

1) @EC <ec>
 It declares that <ec> is an envelope class, where <ec>

is a class name. This statement is used when defining
classes.

2) @LC <lc> OF <ec>
 It declares that <lc>, a class name, is a letter class

of the envelope class <ec>, again used for class
definition.

3) @DIM: <method> = <identifier>
 It specifies that <method>, the signature of a method,

is a specialization dimension of the letter-class hierar-
chy and gives it a unique identifier (<identifier>).
This construct can only be used within the definition
of an envelope class.

4) @DIM: <identifier> = {<value>
 |<expression>|unknown}

It specifies the performance value of the specialization-
dimension <identifier> that has been declared for its
corresponding envelope class. The performance value can
be a constant <value>, an expression <expression>
(which may use some system-dependent parameters and
evaluate to a constant), or a special word unknown. This
construct can only be used for letter classes.

Several examples are given below to illustrate the newly
introduced concepts. These examples are described in C++,
since C++ and C are among the most popular programming
languages for real-time applications. By placing the model
constructs in programming language comments, we avoid
modifying the programming language itself. The model
constructs can be preprocessed, before the code is sent to
the programming language compiler.

2.2.4 Examples

EXAMPLE 1. A Letter-class hierarchy with one specialization
dimension.

In Fig. 1, the class Sensor is an envelope class, while
classes Sensor1 and Sensor2 are its letter classes. The letter
classes encapsulate two different implementations of the
method sample() defined for the envelope class. The
method sample() has one associated specialization dimen-
sion, identified by STime. STime refers to the requirements
on the execution time of the method, and the two letter
classes associate different values of the execution time with
sample(). In the example, sample() is the only specializa-
tion dimension. Therefore, the specialization space is one-
dimensional as shown in Fig. 1c.

EXAMPLE 2. A Letter-class hierarchy with two specialization
dimensions.

In the example depicted in Fig. 2, there are two speciali-
zation dimensions, associated with the methods sample()
and process(), respectively. Therefore, the specialization
space is a plane, as shown in Fig. 2c. Note that specializa-
tion dimensions may not necessarily be inferred from the
structure of the letter-class hierarchies as, for instance,
shown in Fig. 2b, since these simply capture is-a relation-
ships in terms of property inheritance.

EXAMPLE 3. A RTOODB Schema.

Fig. 3 shows an example RTOODB schema. The shaded
area is an envelope class hierarchy, which is visible to the
application. We now demonstrate how this schema can be
used by an application developer. Suppose that the right-
most letter-class hierarchy (enclosed in the rounded rectan-
gle) is the same as that in Example 2 (Fig. 2), i.e., a letter-class
hierarchy with a two-dimensional specialization space.

Assume that an application requires a Sensor object with
the constraints shown in Fig. 4. Then, an object of Sensor1
will be constructed by our system since it satisfies con-
straints on both STime and PTime. If in the future,
the application adjusts its requested timing requirements
for the Sensor object to “STime<22ms, PTime<5ms,”
then the system will automatically select another imple-
mentation object for Sensor, namely, an object instance of

Fig. 1. Example of one-dimensional specialization space.

962 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 1997

class Sensor2, replacing the initial choice of a Sensor1 ob-
ject. This process of rebinding will be transparent to the ap-
plication developer, since our model supports true per-
formance polymorphism.

3 REAL-TIME DATABASE SCHEMA-EVOLUTION

The requirements of a real-time system, like most other
systems, are likely to change during its life-cycle. The sys-

tem must be able to evolve smoothly in order to improve its
performance or to introduce new functionality, without
disrupting existing services. If the service designer adds a
new implementation Sensor3 to the schema in Fig. 3, for
instance, the existing applications (e.g., the class Axis in
Example 3) should not need any change because of this
schema modification. More importantly, our system may
direct existing applications to use the newly added imple-
mentation, if it is more appropriate for the specified per-
formance requirements, due to ROMPP’s support of per-
formance polymorphism.

Having designed ROMPP, we can now proceed with our
task of defining a schema-evolution framework for the real-
time object model. As we know, there are often several dif-
ferent but all legitimate ways to make a schema change. For
example, when deleting a superclass, sometimes it makes
sense to keep the inherited attributes of the superclass in its
subclasses, while sometimes it does not. There are typically
two approaches in dealing with such ambiguity. One is to
define rules to completely eliminate any ambiguity. The
problem with this approach is that there can be more than
one legitimate rule. For example, if a class has multiple su-
perclasses and they have distinct definitions for a single
method, it is reasonable for the subclass to use any one of
the definitions. Another approach uses no rules and always
lets the user decide what to do. The problem with this ap-
proach is that it may overburden the user.

Instead, we assume a more balanced approach that inte-
grates the two alternatives. We propose a schema-evolution
framework that has default rules to resolve any ambiguity
of all schema changes, but also allows the user to intervene
by confirming or overwriting default rules (before a user-
specified action is admitted, the system will check to see if

Fig. 2. Example of two-dimensional specialization space.

Fig. 3. Example of real-time object-oriented database schema.

1 class Axis {

2 public:

3 ...

4 private:

5 Sensor s(�Stime <= 15ms, Ptime < 7ms�);

6 ...

7 };

Fig. 4. Example of usage of performance polymorphism.

ZHOU ET AL.: SCHEMA EVOLUTION OF AN OBJECT-ORIENTED REAL-TIME DATABASE SYSTEM FOR MANUFACTURING AUTOMATION 963

all schema invariants are preserved). For this purpose, we
need to apply the typical steps of defining schema-evolution
framework [3] to our real-time object model as follows:

1) Identify a schema change taxonomy. We need to deter-
mine which schema changes are meaningful, given
the definition of a ROMPP schema.

2) Identify schema change invariants. In order to keep the
consistency of the schema across different modifica-
tions, these invariant properties of a ROMPP schema
must be preserved.

3) Design schema change rules. When there are alternative
ways to do a schema change without violating any
invariants, rules are designed to eliminate ambiguity
in the context of ROMPP.

4) Define schema change semantics. The effect of each
schema change identified in Step 1 on the rest of the
schema is investigated and its impact on the under-
lying data is also considered.

3.1 Schema Change Taxonomy
One of the first object-oriented schema change approaches
was proposed by Banerjee et al. [3] for ORION [18]. This
taxonomy was adopted in most other schema-evolution
research for OODBs [26], [31], [52] and represents the most
frequently used set of schema changes. In fact, most com-
mercial OODB systems have implemented a subset of this
taxonomy as their schema change support [11], [16], [31].
However, this taxonomy does not consider any real-time
aspects of object models. We extend the taxonomy with
schema changes for ROMPP. A complete list of our ROMPP
schema change taxonomy is given below:

(1) Changes to the contents of a node (a

class)

(1.1) Changes to an instance variable

(1.1.1) Add a new instance

variable to a class

(1.1.2) Drop an existing instance

variable from a class

(1.1.3) Change the name of an

instance variable of a

class

(1.1.4) Change the inheritance

(parent) of an instance

variable

(1.1.5) Drop the composite

property of an instance

variable

(1.2) Changes to a method

(1.2.1) Add a new method

to a class

(1.2.2) Drop an existing

method from a class

(1.2.3) Change the name

of a method of a class

(1.2.4) Change the body of a

method in a class

(1.2.5) Change the inheritance

(parent) of a method

(1.2.6) Add a specialization

dimension to a method

(1.2.7) Drop the specialization

dimension from a method

(2) Changes to an is-a edge

(2.1) Make a class a superclass of a

class

(2.2) Remove a class from the

superclass list of a class

(2.3) Change the order of superclasses

of a class

(3) Changes to a node

(3.1) Add a new class

(3.2) Drop an existing class

(3.3) Change the name of a class

Note that there are two additional schema changes,

• “(1.2.6) Add a specialization dimension to a method”
and

• “(1.2.7) Drop the specialization dimension from a
method,”

which are unique to ROMPP. Although a number of
schema changes in our taxonomy are the same as those in
[3], we show in Section 3.4 that the semantics of some of
these changes are quite different. In order to support
changes of ROMPP schemata, we must evaluate the appli-
cation of the above types of changes to both letter and en-
velope class hierarchies.

3.2 Schema Change Invariants
In order for any schema change to maintain a correct data-
base, it must guarantee the consistency of the schema. We,
thus, need schema invariants to define the correctness of
schema properties. We have adopted the following invari-
ants proposed in [3] with some modifications:

1) Class Hierarchy Invariant. The class hierarchy is a
rooted and directed acyclic graph with uniquely
named nodes (classes) and unlabeled edges (is-a rela-
tionships) (see Definition 4).

2) Distinct Name (Signature) Invariant. All instance vari-
ables of a class must have distinct names. Similarly,
all methods of a class must have distinct signatures.

3) Distinct Origin Invariant. All same-named methods of
a class have distinct origins.7

4) Full Inheritance Invariant. A class inherits all instance
variables and methods from each of its superclasses,
except when full inheritance causes a violation of the
distinct name (signature) and distinct origin invari-
ants. Only public methods are visible to the class and
its descendants.

Moreover, we address the consistency requirements spe-
cific to ROMPP by introducing the following additional
invariants:

5) Envelope Class Hierarchy Invariant. There is only one
envelope class hierarchy in the schema and it must
satisfy the Class Hierarchy Invariant.

6) Letter-Class hierarchy Invariant. There may be zero or
more letter-class hierarchies in the schema and each
of them must satisfy the Class Hierarchy Invariant.

7. Since instance variables are private and invisible to subclasses, they
always have distinct origins. So do private methods. Therefore, this invari-
ant refrains an inherited public method from having the same name as a
locally defined method or a public method inherited from a different class.

964 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 1997

7) Envelope/Letter Class Relationship Invariant. The decla-
ration of any public method in a letter class must
match that in its corresponding envelope class, and
vice versa.

8) Specialization-Dimension Invariant. Each specialization
dimension has a unique identifier, which is specified
for a public method in an envelope class.8 The identi-
fier is used to reference the corresponding method in
the letter classes associated with the envelope class.

3.3 Schema Change Rules
We adopt the following schema change rules for ROMPP.
They apply to both envelope and letter-class hierarchies:

1) If a method is defined within a class C, and its decla-
ration is the same as that of a method of one of its
superclasses, the locally defined method is selected
over that of the superclass.

2) If two or more superclasses of a class C have meth-
ods with the same declaration but distinct origin, the
method selected for inheritance is that from the first9

superclass among conflicting superclasses.
3) If two or more superclasses of a class C have meth-

ods with the same origin, the method of the first su-
perclass is inherited by C.

4) When a method in a class C is changed, the change
is propagated to all descendants of C that inherit
the method, unless it has been redefined within the
descendants.

5) If a newly added public method, or a signature
change to an existing public method, encounters any
signature conflicts in the class or its descendants as a
consequence of this schema modification, this change
is rejected. For the purposes of propagation of changes
to descendants, Rule 5 overrides Rule 2.

6) If a class A is made a superclass of a class B, then A
becomes the last superclass of B. Thus, any method
signature conflicts, which may be triggered by the
addition of this superclass, can be ignored.

7) If class A is the only superclass of class B, and A is
removed from the superclass list of B, then B is
made an immediate subclass of each of A’s super-
classes. The ordering of these new superclasses of B
is the same as the ordering of the superclasses of A.
A corollary to this rule is that, if the class ROOT is
the only superclass of a class B, any attempt to re-
move the edge from ROOT to B is rejected.

8) If no superclasses are specified for a newly added
envelope class, the class ROOT is the default su-
perclass. A superclass, either an envelope or a
letter class, must be specified for a newly added
letter class.

9) For the deletion of edges from class A to its sub-
classes, Rule 7 is applied if any of the edges is
the only edge to a subclass of A. Further, any at-
tempt to delete a system-defined class, e.g., ROOT,
is rejected.

8. Not all methods need to be associated with specialization dimensions.
9. We assume that superclasses are ordered.

10) The composite property may be dropped from a
composite instance variable; however, it may not be
added to a noncomposite instance variable.

11) If a composite instance variable of an object X is
changed to noncomposite, X no longer owns the ob-
ject Y, which it references through the instance vari-
able. The object X continues to reference the object Y;
however, deletion of X will not cause Y to be also
deleted.

The above rules are applicable to ROMPP as well as
many nonreal-time OODBs. In addition, we identify the
following ROMPP-specific rules:

12) Letter classes are dependent on their corresponding
envelope classes. That is, deletion of an envelope
class will cause the deletion of its letter classes, and
letter classes cannot exist before their corresponding
envelope classes exist. This rule is based on the se-
mantics of the letter-class hierarchy concept given in
Definition 9.

13) Changes to an envelope class, such as adding or de-
leting methods, specialization dimensions, etc., must
be propagated to its letter classes. This is to maintain
the consistency of the letter-class hierarchy and the
Full Inheritance Invariant.

14) The public interface of letter classes may not be
changed, unless the changes are initiated by their
corresponding envelope classes and propagated to
letter classes. That is, no direct addition or alteration
of the declarations of the public methods of letter
classes is allowed.

3.4 Schema Change Semantics
All changes to a ROMPP schema can be made to the enve-
lope class hierarchy or letter-class hierarchies. Changes to
the envelope class hierarchy affect its corresponding letter-
class hierarchies, while changes to letter-class hierarchies
have no impact on the envelope class hierarchy. We define
the semantics of both categories of schema changes in this
section. Because of the envelope/letter structure of ROMPP,
all schema changes to letter-class hierarchies and some
changes to the envelope class hierarchy have different se-
mantics from traditional ones (e.g., [3]).

It is often dependent on individual applications whether
it is meaningful to convert existing instances of a class to
those of the modified class. In real-time systems, for exam-
ple, some objects have only a very short lifetime; thus, it
may not be necessary to keep them around after a certain
period of time, i.e., no instance conversion. Therefore, we
only describe the impact of schema changes on existing
data without discussing when and how they are actually
converted.

3.4.1 Axiomatization of Schema Changes
To introduce a formal specification of schema change se-
mantics, we adopt an axiomatic model similar to the one in
[32], which has been proven sound and complete. The main
differences between ours and that in [32] are:

• We use the terminology of class, subclass, and super-
class (descendant and ancestor), instead of type, sub-
type, and supertype.

ZHOU ET AL.: SCHEMA EVOLUTION OF AN OBJECT-ORIENTED REAL-TIME DATABASE SYSTEM FOR MANUFACTURING AUTOMATION 965

• The Axiom of Pointedness is not used, since there is
no single class used as a common base class in
ROMPP (i.e., there is not a single class that is the de-
scendant of all classes).

• Private methods and instance variables of super-
classes are not visible to subclasses.

• Immediate superclasses of a class t, P(t), are ordered.

The notation of the axiomatic model is shown in Table 1.
In ROMPP, a class defines properties of objects. The two
main properties are instance variables and methods. An
instance variable can be further modified by additional
properties, such as “name,” “private,” and “composite.”
Similarly, methods can have additional properties as well,
e.g., “name,” “body,” “private/public,” “specialization di-
mension,” and “performance.”

TABLE 1
NOTATION OF THE AXIOMATIC MODEL

Term Description

T The lattice of all classes in the schema.

s, t, ROOT Class elements of T (with s, t variable
names and ROOT a special-purpose one).

P(t) Ordered list of immediate superclasses of
class t.

Pe(t) Ordered list of essential superclasses or
ancestors of class t.

PL(t) Superclass lattice of class t.

N(t) Native (local) properties of class t.

H(t) Inherited properties of class t.

Ne(t) Essential properties of class t.

I(t) Interface of class t.

Dx(f (x),T �) Apply-all operation (T � ¯ T and �(x ° T �),
apply the unary function f (x)).

T represents all the classes in the schema. Pe(t) are the
classes specified by the database designer as essential to the
construction of the class t. In other words, Pe(t) should be
maintained as superclasses/ancestors of t for as long as
possible during schema evolution. The only way to break a
link from t to an essential superclass or ancestor s is to ex-
plicitly remove s from Pe(t) by either dropping the is-a rela-
tionship between s and t or by dropping s entirely. Immedi-
ate superclasses P(t) are defined as essential, i.e., P(t) ¯
Pe(t). The superclass lattice, PL(t), of a class t is the set of all
classes of which t is a subclass, including t itself. The native
properties, N(t), of a class t are those that are not inherited
from any of the superclasses PL(t). The inherited properties,
H(t), of a class t are the union of all properties defined by all
superclasses of t. The native and inherited properties are
disjoint (because of the distinct name and origin invariants),
i.e., N(t) > H(t) = I. The essential properties, Ne(t), are those
specified by the database designer as essential to the con-
struction of the class t. They consist of all native and possi-
bly some inherited properties, i.e., N(t) ¯ Ne(t). The inter-
face, I(t), of a class t is the union of native and inherited
properties of t, i.e., I(t) = N(t) < H(t). The apply-all opera-
tion, Dx(f, T�), applies the unary function f, over the single
variable x, to the elements of a set of classes T� ¯ T. The
semantics of the apply-all operation is to let x range over

the elements of T� and for each binding of x, evaluate f
and include the result in the final result set. For example,
the inherited properties H(t) of a class t are the union of
the interfaces of its immediate superclasses P(t), i.e., H(t)
= � Dx(I(x), P(t)).

Table 2 shows how various arrangements of classes and
properties in Table 1 can be computed from Pe(t) and Ne(t),
which are specified by the database designer. The axioms
provide a consistent and automatic mechanism for recom-
puting the entire class lattice after a change is made to ei-
ther the essential superclasses Pe(t) or the essential proper-
ties Ne(t) of a class t. These schema change axioms are
sound and complete [32].

TABLE 2
AXIOMS OF SUBCLASSING AND PROPERTY INHERITANCE

Axiom Description

Closure �t ° T, Pe(t) ¯ T

Acyclicity �t ° T, t Ó U Dx(PL(x), P(t))

Rootedness � ROOT ° T, �t ° T |

((ROOT ° PL(t)) » (Pe(ROOT) = I))

Superclasses �t ° T, P(t) = Pe(t)

− U Dx(PL(x) " Pe(t) � {x }, Pe(t))

Superclass Lattice �t ° T, PL(t) = U ax(PL(x), P(t)) < {t }

Interface �t ° T, I(t) = N(t) < H(t)

Nativeness �t ° T, N(t) = Ne(t) − H(t)

Inheritance �t ° T, H(t) = U Dx(I(x), P(t))

In what follows, we describe in detail the semantics
of schema changes for both letter and envelope class
hierarchies.

3.4.2 Schema Changes to a Letter-Class Hierarchy
(1) Changes to the contents of a node (a class)

These changes do not modify the topology of the
schema. Therefore, in general, only the interface (I) and
inherited properties (H) of the affected subclasses need to
be recomputed.

(1.1) Changes to an instance variable
Changes to an instance variable can be further divided

as follows.

(1.1.1) Add a new instance variable v to class t
Ne(t) = Ne(t) + {v};
� (s ° T) » (t ° PL(s)), recompute I(s), H(s);

The instance variable v is added to the essential proper-
ties of the class t. And the descendants of the class are in-
formed of the change in order to adjust their memory allo-
cation.10 This schema change is almost always accompanied
by otherchanges, e.g., ones that modify methods to use the
new instance variable. Adding new instance variables by
itself seldom affects the behavior of the class and its de-
scendants. But in some cases, it could have an impact. For
example, when the new instance variable demands signifi-
cant amount of memory space, it can affect the performance

10. Properties of the class s that are not recomputed, e.g., P(s), Pe(s), PL(s),
N(s), and Ne(s), are not affected.

966 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 1997

of some methods. If it does, the letter-class hierarchy spe-
cialization space may need to be reorganized.11 This change
affects existing instances of the class.

(1.1.2) Drop an existing instance variable v from class t
Ne(t) = Ne(t) � {v};
�(s ° T) » (t ° PL(s)), recompute I(s), H(s);

The descendants of the class are informed of the change.
This may cause consistency problems, since some methods
may still be using the dropped instance variable. Therefore,
such a change is usually accompanied by other changes,
e.g., ones that modify the methods using the instance vari-
able. A software tool to help identify the dependencies will
be very useful. The descendants of the class are informed of
the change in order to adjust their memory allocation. This
change by itself seldom affects the behavior of the class and
its descendants. If it does, the specialization space may
need to be reorganized. This change affects existing in-
stances of the class.

(1.1.3) Change the name of an instance variable v of class t
Ne(t) = Ne(t) � {name(v)}old + {name(v)}new, where name(v)
denotes the name of the instance variable v, and the sub-
scripts “old” and “new” denote the old and new values,
respectively;
� (s ° T) » (t ° PL(s)), recompute I(s), H(s);

No specialization space reorganization is needed. All
methods using the instance variable need to be updated to
utilize the new name. In general, existing instances of the
affected letter classes may be used directly as the instances
of corresponding new letter classes. No instance conversion
is needed.

(1.1.4) Change the inheritance (parent) of an instance vari-
able v of class t
Ne(t) = Ne(t) � {v}old + {v}new;
�(s ° T) » (t ° PL(s)), recompute I(s), H(s);

Since instance variables are private and not visible to
subclasses, this change can only be the side effect of schema
changes (2.2) and (2.3). It could have the same impact on
method performance as in (1.1.1). This change affects ex-
isting instances of the class.

(1.1.5) Drop the composite property of an instance variable
v from class t
Ne(t) = Ne(t) � {composite(v)}, where composite(v) denotes the
composite property of the instance variable v;
� (s ° T) » (t ° PL(s)), recompute I(s), H(s);

Rules 10 and 11 apply. A composite instance variable
may be changed to noncomposite, but not the opposite.
This change is propagated to the descendants of the class.
This change affects existing instances of the class.

11. If the specialization space is organized as a linked list, as mentioned
in Section 2.2, no reorganization will be needed. If it is organized as an
ordered list, then the node representing the affected letter class will have to
be reinserted in the correct position of the list, depending on the new per-
formance value.

(1.2) Changes to a method12

For all changes to a method, existing instances of the af-
fected letter classes can be used directly as the instances of
the corresponding new letter classes, without requiring any
conversion. However, some changes are not allowed for
letter classes (see below).

(1.2.1) Add a new method m to class t
if (m is public) {

reject;
} else {

Ne(t) = Ne(t) + {m};
�(s ° T) » (t ° PL(s)), recompute I(s), H(s);

}
If the new method is public, the change is not allowed

unless it is initiated by the corresponding envelope class
(Rule 14). In this case, the change is made to the root of the
letter-class hierarchy and then propagated to all letter
classes (Rule 13). Such a change may affect the specializa-
tion space, if the new method represents a new specializa-
tion dimension. If the change causes any conflict, it is re-
jected (Rule 5). If the new method is private, the change is
not visible to the descendants of the class. This change does
not affect the specialization space, because the new method
has not been used yet.

(1.2.2) Drop an existing method m from class t
if (m is public) {

reject;
} else {

Ne(t) = Ne(t) � {m};
� (s ° T) » (t ° PL(s)), recompute I(s), H(s);

}
If the method is public, the change is not allowed unless

it is initiated by the corresponding envelope class. In this
case, it must be propagated to all letter classes. Such a
change may affect the specialization space, because the
dropped method may have represented a specialization
dimension or it may have overridden some method that
would now cause a performance change for other methods
that use it. If the method is private, the change is not visible
to the descendants of the class. All other methods using the
dropped method need to be updated using additional
schema changes.

(1.2.3) Change the name of a method m of class t
if (m is public) {

reject;
} else {

Ne(t) = Ne(t) � {name(m)}old + {name(m)}new;
� (s ° T) » (t ° PL(s)), recompute I(s), H(s);

}
If the method is public, the change is not allowed unless

it is initiated by the corresponding envelope class. In this
case, it must be propagated to all letter classes. If the
method is private, the change is not visible to the descen-
dants of the class. This change does not affect the speciali-

12. The impact of schema changes on behaviors of objects is referred to as
the behavior consistency problem in [52].

ZHOU ET AL.: SCHEMA EVOLUTION OF AN OBJECT-ORIENTED REAL-TIME DATABASE SYSTEM FOR MANUFACTURING AUTOMATION 967

zation space and existing instances. Of course, all references
to the old method name must be updated.

(1.2.4) Change the body of a method m in class t
Ne(t) = Ne(t) � {body(m)}old + {body(m)}new;
� (s ° T) » (t ° PL(s)), recompute I(s), H(s);

If the method is public, the change must be propagated
to the descendants of the class (Full Inheritance Invariant).
The performance of the method needs to be re-evaluated, in
order to determine a new performance value for each asso-
ciated dimension.13 If the method is private, the change is
not visible to the descendants of the class. Such a change
may affect the specialization space, as demonstrated by the
example in Section 3.4.4. Providing code to a previously
empty method body is a special case of this change.

(1.2.5) Change the inheritance (parent) of a method m in
class t
Ne(t) = Ne(t) � {m}old + {m}new;
� (s ° T) » (t ° PL(s)), recompute I(s), H(s);

The current method is dropped and the one from the
new parent is added. If the method is public, the change
must be propagated to all descendants (Rule 13), or rejected
if it encounters any conflicts (Rule 5). Such a change may
affect the specialization space.

(1.2.6) Add a specialization dimension to a method m in
class t
if (t is not an envelope class) {

reject;
} else {

Ne(t) = Ne(t) + {dim(m)}, where dim(m) denotes the spe-
cialization-dimension property of the method m;

�(s ° T) » (t ° PL(s)), recompute I(s), H(s);
}

The change is not allowed unless it is initiated by the
corresponding envelope class. In this case, it must be
propagated to all letter classes. The specialization space has
one more dimension now and may need to be reorganized.

(1.2.7) Drop the specialization dimension from a method m
in class t
if (t is not an envelope class) {

reject;
} else {

Ne(t) = Ne(t) � {dim(m)};
� (s ° T) » (t ° PL(s)), recompute I(s), H(s);

}
The change is not allowed unless it is initiated by the

corresponding envelope class. In this case, it must be
propagated to all letter classes. The specialization space has
one fewer dimension now and may need to be reorganized.

(2) Changes to an is-a edge
These changes, in general, modify the topology of the

schema. Therefore, not only the interface (I) and inherited
properties (H) but also the ordered list of immediate su-

13. The performance can be either analyzed and determined empirically
by the service designer or evaluated by an automated analysis system.

perclasses (P) of the affected subclasses may need to be
recomputed.

(2.1) Make a class s a superclass of class c
if (c is not a letter class i s is not in the same letter-class
hierarchy) {

reject;
} else if (s Ó Pe(c)){

Pe(c) = Pe(c) appended with s;
recompute I(c), H(c), P(c);
�(t ° T) » (c ° PL(t)), recompute I(t), H(t), P(t);

}
Class c must be a letter class and s must be in the letter

class hierarchy associated with c. Class s is made the last
one in c’s superclass list. Class c now inherits additional
public methods from s, if any. Any signature conflicts may
be ignored since s is the last of c’s superclasses. This schema
change may change c’s position in the specialization space
and the space may thus need to be reorganized. This change
affects existing instances of the class c.

(2.2) Remove a class s from the superclass list of class c
if (s is an envelope class) {

reject;
} else {

Pe(c) = Pe(c) � {s};
recompute I(c), H(c), P(c);
� (t ° T) » (c ° PL(t)), recompute I(t), H(t), P(t);

}
Class c removes its methods inherited from s. Some

methods from c’s other superclasses may become visible
now. If s is the only superclass of c, s must not be an enve-
lope class (Rule 12). In this case, let s’s superclass(es) be
c’s superclass(es), in the same order. It may change c’s po-
sition in the specialization space and the space may need to
be reorganized. This change needs to be propagated to c’s
descendants. This change affects existing instances of the
class c.

(2.3) Change the order of superclasses of class c
reorder Pe(c);
recompute I(c), H(c), P(c);
� (t ° T) » (c ° PL(t)), recompute I(t), H(t), P(t);

This has no effect, if there are no method signature con-
flicts; otherwise, use Rules 2 and 3. For example, if a
method m is defined in both superclasses s1 and s2, and s2 is
now before s1 in c’s superclass list, the method m defined in
s2 is inherited instead of that in s1. This change affects ex-
isting instances of the class c.

(3) Changes to a node

(3.1) Add a new class c (as the subclass of class s)
create c;
Pe(c) = Pe(c) + {s};

An envelope class or a letter class must be specified as its
parent (Rule 8). It adds a new point in the specialization
space. The new class has no instances.

968 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 1997

(3.2) Drop an existing class s
if (s is an envelope class) {

reject;
} else {

remove s;
� (c ° T) » (s ° P(c)), do (2.2);

}
The class to be dropped must be a letter class, i.e., it can-

not be the root of the letter-class hierarchy. If the class has
any children, perform (2.2) for each of them. It removes a
point in the specialization space. The user may choose to
either drop its existing instances or convert them to in-
stances belonging to its superclass(es).

(3.3) Change the name of class s
rename s;

�(c ° T) » (s ° Pe(c)), Pe(c) = Pe(c) � {name(s)}old + {name(s)}new;

This change does not affect the specialization space. It
may require s’s subclasses to change their parent’s name.

3.4.3 Schema Changes to an Envelope Class Hierarchy
In general, changes to an envelope class hierarchy have
similar semantics to those defined in [3]. In addition, the
changes must be propagated to the corresponding letter
classes, if any, since letter-class hierarchies are descendants
of their corresponding envelope classes. The changes may
cause reorganizations of the specialization spaces associ-
ated with letter-class hierarchies. Because an envelope class
acts as an interface to the user while the letter classes en-
capsulate implementation details (Definition 8), an enve-
lope class is not allowed to have any instances. The fol-
lowing example demonstrates how schema change invari-
ants and rules are used to define the semantics of changes
to an envelope class hierarchy.

(3.2) Drop an existing class s
�(c ° T) » (s ° PL(c)) do {

if (c is in the letter-class hierarchy associated with s) {
drop c;

}
}

This change drops the class s and its associated letter-
class hierarchy (Rule 12). If the envelope class has any sub-
classes (envelope classes, but not letter classes), perform
(2.2) for each of them (Full Inheritance Invariant). Existing
instances of s’s letter classes are dropped. The envelope
class itself has generally no instances, unless it is degener-
ate. In the latter case, its instances are also dropped.

The following two schema changes are unique to ROMPP.
Their semantics for an envelope class hierarchy are different
from that for a letter-class hierarchy. These changes can
be made to an envelope class as needed, but such
changes to a letter class are not allowed unless preceded
by the same change to the corresponding envelope class.

(1.2.6) Add a specialization dimension to a method m of
envelope class s
if (m is not public) {

reject;

} else {
Ne(s) = Ne(s) + {dim(m)};
� (c ° T) » (s ° PL(c)), recompute I(c), H(c);

}
The change must be propagated to all corresponding letter

classes, and the performance value of the corresponding
method is set to unknown in the letter classes (see the exam-
ple in Section 3.4.4). The specialization space has one more
dimension now and may need to be reorganized.

(1.2.7) Drop the specialization dimension from a method m
of envelope class s
Ne(s) = Ne(s) � {dim(m)};
� (c ° T) » (s ° PL(c)), recompute I(c), H(c);

The change must be propagated to all corresponding
letter classes. The specialization space has one fewer di-
mension now and may need to be reorganized.

3.4.4 Example of Schema Changes for a Manufacturing
Database

Suppose we have the following letter-class hierarchy
(Fig. 5), which is very similar to the example in Fig. 2.
Class Sensor is an envelope class, and Sensor1 and
Sensor2 are two letter classes. There is one specialization
dimension, STime, corresponding to the execution time of
the method sample().

1 //@EC: Sensor

2 class Sensor {

3 public:

4 // @DIM: int sample() = STime

5 virtual int sample();

6 //

7 virtual void process();

8 ...

9 };

10

11 // @LC: Sensor1 OF Sensor

12 class Sensor1 : public Sensor {

13 public:

14 // @DIM: STime = 10 ms

15 int sample();

16 //

17 void process();

18 ...

19 };

20

21 // @LC: Sensor2 OF Sensor

22 class Sensor2 : public Sensor {

23 public:

24 // @DIM: STime = 20 ms

25 int sample();

26 //

27 void process();

28 ...

29 };

Fig. 5. An example of schema changes.

The first schema change is to add a new specialization
dimension, PTime, to the method process() using the com-
mand “ADD DIM PTime TO void Sensor :: process()”.
According to the semantics defined for schema change
(1.2.6) in Section 3.4.2, the change must be made to the en-

ZHOU ET AL.: SCHEMA EVOLUTION OF AN OBJECT-ORIENTED REAL-TIME DATABASE SYSTEM FOR MANUFACTURING AUTOMATION 969

velope class and then propagated to all its letter classes
(and all its envelope class descendants). The schema-
evolution system defines the new specialization dimension
at line 6 in Sensor (Fig. 6), which causes the addition of
new performance measures associated with all occurrences
of the process() method (line 16 and line 26). Since the
system does not know the performance of the method
process() in letter classes yet, it puts unknown there. Now,
the letter-class hierarchy has a two-dimensional specializa-
tion space.

1 // @EC: Sensor

2 class Sensor {

3 public:

4 // @DIM: int sample() = STime

5 virtual int sample();

6 // @DIM: void process() = PTime

7 virtual void process();

8 ...

9 };

10

11 // @LC: Sensor1 OF Sensor

12 class Sensor1 : public Sensor {

13 public:

14 // @DIM: STime = 10 ms

15 int sample();

16 // @DIM: PTime = unknown

17 void process();

18 ...

19 };

20

21 // @LC: Sensor2 OF Sensor

22 class Sensor2 : public Sensor {

23 public:

24 // @DIM: STime = 20 ms

25 int sample();

26 // @DIM: PTime = unknown

27 void process();

28 ...

29 };

Fig. 6. After adding a new specialization dimension.

Assume that next the service designer changes the body
of the method process() in the Sensor1 class, using the
command “MODIFY void Sensor1 :: process() BODY =
{<code>}.” This schema change is also available in nonreal-
time object models, but it has different semantics in the
real-time case. That is, after changing the code, an updated
performance value must be provided since the method is
associated with a specialization dimension. The perform-
ance analysis may be done by the service designer, either
by code analysis or by calibration experiments. Suppose
the worst-case execution time for this particular implementa-
tion of process() in Sensor1 is 6 ms, then the system modi-
fies the performance measure associated with the method
as in line 16 of Fig. 7. The schema-evolution mechanism
ensures that performance information of letter classes is
up-to-date. This is essential in order for the require-
ments-driven automatic implementation selection mecha-
nism to work.

4 IMPLEMENTATION STATUS

4.1 System Overview
We have built a prototype of an object-oriented RTDBS for
machine tool controllers. Since existing commercial OODBs
do not meet the performance level and predictability re-
quired for our target domain, we had to build our RTDBS
from scratch. The system architecture is illustrated in Fig. 8.
The RTDBS incorporates ROMPP as a foundation. Modules
used in our RTDBS include reusable libraries, and tools for
performance evaluation and schema evolution. Different
implementations of database services (letter classes) are
organized in reusable class libraries. These libraries also
include many useful system classes, such as a class called
Task. It is a generic real-time task and can be used to com-
pose application tasks [50]. The RTDBS uses performance
evaluation tools to measure, analyze, and store perform-
ance information of database services and application
modules. Schema-evolution tools will help the user make
changes to the application.

Fig. 8. System architecture.

Our initial implementation effort has focused on devel-
oping the object manager supporting the real-time object
model ROMPP defined in Section 2 and the underlying
database services. This is because we need to gain more
first-hand experience of developing control applications
using our RTDBS before implementing the schema-
evolution framework. To demonstrate the utility of ROMPP
and indicate the potential of adding the proposed schema-
evolution framework, we use real-time machine tool con-
trollers to discuss the implementation of our RTDBS. Our
system is currently being utilized by researchers in the De-
partment of Mechanical Engineering and Applied Mechanics
at the University of Michigan for controlling a five-axis milling
machine.

11 // @LC: Sensor1 OF Sensor

12 class Sensor1 : public Sensor {

13 public:

14 // @DIM: STime = 10 ms

15 int sample();

16 // @DIM: PTime = 6 ms

17 void process();

18 ...

19 };

Fig. 7. After changing the code for process() in Sensor1 .

970 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 1997

4.2 UMOAC Testbed
Before discussing implementation details of the RTDBS
software, we need to describe its hardware setup. Different
hardware configurations may result in different software
implementation strategies. Our prototype RTDBS and con-
trol applications are being developed on the University of
Michigan Open-Architecture Controller (UMOAC) testbed
(Fig. 9). Control tasks, as well as the RTDBS, run on
VMEbus-based processor boards}CPUs in the figure (e.g.,
Motorola 680x0s or Intel x86s). In order to achieve good
performance and timing predictability, a real-time operat-
ing system (e.g., VxWorks or QNX) is used for these proc-
essors. Sensors and actuators on the computer numerically
controlled (CNC) machine are accessed through commer-
cial controllers (e.g., Delta Tau PMAC) and/or IO interface
boards (e.g., XYCOM XVME 201 digital IO board). Control
software may be cross-developed on, and downloaded
from, remote computers connected to the testbed via Ether-
net. This testbed architecture allows easy adoption of new
hardware components as they become available, and thus
provides good hardware openness. Well-defined interfaces
and support for performance polymorphism will provide a
foundation of software openness.

Fig. 9. UMOAC testbed.

4.3 Application-Programming Interface (API)
Our RTDBS offers a unique application-programming
interface (API) for manufacturing applications. The API
allows the user to explicitly specify timing constraints.
The constraints are described in a string, thus making it
easy to add new constraint types in the future. The API is
similar to that in Fig. 4, e.g., “Sensor s(“position_sensor”,
“exclusive_update; write <= 50usec”, CREATE);”. The first
argument is the name of the sensor, while the second
captures the constraints on the sensor object. The last ar-
gument indicates that the object should be created if
it does not exist. The API provides the user access to
the underlying ROMPP services, including an automated
mechanism that selects software modules based on appli-
cation requirements, as visualized in Fig. 10. For example,
the service designer provides a collection of system services
that constitute the kernel of the RTDBS. When a machine
tool controller (built by the application developer) needs
some service, it sends the RTDBS a service request, which

specifies the type of service, performance constraints, and
other requirements, using the API. The RTDBS, which
supports ROMPP, will automatically select the most ap-
propriate service for the request. This selection process may
be accomplished either at application start-up time or at
runtime.

Fig. 10. Application-programming interface for manufacturing.

4.4 ROMPP
ROMPP uses specialization dimensions to characterize
timing constraints and letter-class hierarchies to capture
performance polymorphism. Constraints are specified in a
string, which is then passed to the part of RTDBS that im-
plements performance polymorphism. An exemplar-based
technique [9] is adopted to realize the automatic perform-
ance polymorphism mechanism. This mechanism custom-
izes applications by binding appropriate service objects
with the applications at their start-up time, according to
their respective constraints. Exemplars are special, one-per-
class objects that are prototype representatives of an entire
class. Given an exemplar object, applications can construct
copies of the exemplar by invoking a special method. These
copies (corresponding to the instances of letter classes in
ROMPP) represent different implementations of the base
class (corresponding to the envelope class in ROMPP). The
exemplars (letter classes) are organized as a list, sorted by
improving performance values of a chosen specialization
dimension. The first one that satisfies all requirements will
be used by the application.14

Rather than choosing a specific implementation class, an
application chooses a base class and specifies the rest of its
requirements in a string, which is passed to the population
of implementation classes (exemplars) derived from that
base class. The exemplars then examine the application re-
quirements. An object that meets all requirements is re-
turned to the application. Since all exemplars (letter classes)
support the same functional interface, applications can use
the returned object without knowledge of which class was
actually constructed. Therefore, applications need only contain
dependencies on the abstract base classes (envelope classes).
This permits letter classes to be extended, modified, and
reorganized without requiring corresponding modifications
to existing applications.

14. A simple linear organization of letter classes may not be optimal
when there are multiple specialization dimensions. More research is
needed on this issue.

ZHOU ET AL.: SCHEMA EVOLUTION OF AN OBJECT-ORIENTED REAL-TIME DATABASE SYSTEM FOR MANUFACTURING AUTOMATION 971

A number of database service objects, organized as a
class library, have been implemented to facilitate the devel-
opment of control applications. For example, a task tem-
plate may be used as a building block for a periodic control
task [50]. In order to achieve high performance, database
transactions are embedded in application tasks and exe-
cuted directly in main memory, as opposed to in the data-
base server, thus avoiding the context switching cost. Data
integrity and concurrency control are supported since all
data accesses are made through the transaction methods
exported by the database service objects. The object-oriented
approach is, thus, critical to our system. This transaction
execution model maximizes the performance benefits of
using main memory because it eliminates the overhead im-
plicit in client-server architectures [20].

4.5 Performance Evaluation
A key problem in utilizing ROMPP for a particular applica-
tion is how to obtain performance values of methods for a
specialization dimension, in particular, method execution
times. One might think that it would be easy to determine
the execution time of a method by analyzing its source
code. Unfortunately, this is a variant of the famous Turing
machine halting problem, which is in general undecidable
[14]. If restrictions are placed on the code, such as prohib-
iting loops and carefully controlling I/O, it becomes theo-
retically possible to synthesize the execution time.

However, with modern CPU architectures that employ
caches and pipelines, this analysis of method execution
times can be very difficult. Therefore, we are pursuing an
experimental approach to determine execution times. For
example, to obtain the worst-case response time for a
shared object access (read or write) operation with a known
maximum number (say n) of concurrent access operations
for that particular shared object, we can run these n opera-
tions on multiple processors in parallel and measure their
execution times. The longest response time of an operation
will occur when all n operations are released at the same
time and this particular operation gets executed last. Alter-
natively, these n operations can be run sequentially. The
worst-case response time will be the elapsed time between
the release of the first operation and the completion of the
last operation.

Given a clock with a fine resolution and methods that
exhibit predictable performance (which is the case for our
real-time applications), we believe that the experimental
approach is sufficient to characterize worst-case response
times. Tools for performance evaluation are being devel-
oped and will be integrated into ROMPP. The preliminary
results of our empirical studies are reported in [51].

4.6 Need for Schema-Evolution Support
Fig. 11 illustrates how our RTDBS can be used in control
application development. The application developer first
constructs individual control tasks using task templates
provided by the RTDBS and reusable objects previously
developed and stored in the RTDBS. These control tasks
may also be reusable modules for future applications. In the
next step, the application is configured with machine speci-
fications (e.g., work table dimensions and velocity limits)

and control parameters (e.g., gains). These data may be
saved in the persistent storage, so that when the application
runs again, it only needs to retrieve the data from the stor-
age. If the deadlines of the application have not been
checked and guaranteed by the RTDBS, the application
goes into the calibration phase. The RTDBS checks timing
constraints during calibration, using the performance
measurement tools described earlier. If all deadlines can be
guaranteed, the RTDBS “accepts” the application (i.e.,
guarantees all its deadlines). If not, the RTDBS provides
timing information so that the user can modify the tasks or
the application configuration. All accepted applications can
run without any further calibration.

It is obvious that, in the development of a control appli-
cation, the application may require numerous changes be-
fore its functionality and performance can meet all con-
straints. This clearly indicates a need for the support of a
schema-evolution framework. Building such support will
be evolutionary, and we have established a solid founda-
tion for the real-time schema-evolution framework. We will
incorporate the schema-evolution framework into our
RTDBS as we gain more experiences with a variety of
manufacturing applications.

4.7 Prototype Three-Axis Controller
To evaluate the suitability of our RTDBS in the domain
of real-time manufacturing-control applications, a proto-
type three-axis milling machine controller was developed.
Fig. 12 shows the hardware setup (only one axis is shown,
since the other two are similar). There are five main tasks in
this application (Fig. 13). The Graphical User Interface
(GUI) task is aperiodic. It allows the user to enter control
commands and it displays application information. The
Human-Machine Interface (HMI) task runs every 100 ms at
a priority of 24.15 It checks for any command that may be
sent by the user via the GUI task and dispatches appropri-
ate commands to the X-, Y- and Z-Axis control tasks, which
run every 10 ms at a priority of 26. The HMI, X-Axis, Y-
Axis, and Z-Axis tasks are run on the XYCOM XVME 674, a
VMEbus-based 66MHz 486DX2 with 32MB of RAM run-
ning the QNX real-time operating system (see Fig. 12). Since
these tasks are real-time tasks, the communication among
them is via shared memory in order to minimize runtime
overhead. The X-Axis task uses the XVME 203 Counter I/O
board to get the position of the X axis from the rotary and
linear encoders, and uses the XVME 500 Analog Input board
to get the velocity of the X axis from the tachometer. The Y-
and Z-Axis tasks have a similar setting. The GUI task runs
on a different IBM compatible PC connected to the XYCOM
674 via Ethernet (not shown in Fig. 12). The GUI task com-
municates with the HMI task using message passing.

The control functionality is performed by the X-, Y-, and
Z-Axis control tasks. To control the motion of each axis,
either the PID control algorithm or the fuzzy logic control
algorithm (developed by mechanical engineers) [28] is
used. In the PID control, a position error (difference be-
tween a reference position input and a feedback from an
encoder) and velocity feedback from a tachometer (at cur-

15. These tasks are run under QNX, which supports priority-based pre-
emptive scheduling. A larger number represents a higher priority.

972 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 1997

rent and previous time steps) are used as inputs. In the
fuzzy logic control, a position error and a change in the
position errors between the last two time steps are the in-
puts. A control command is calculated using the respective
control algorithm. It is then sent to a PWM board through a
digital I/O board (XVME 201 in Fig. 12).

There are two specialization dimensions in the axis con-
trol tasks: ExecutionTime and ControlLaw. They represent
the characteristics for which the implementations of axis
control tasks may differ. The ExecutionTime dimension

corresponds to the elapsed time from start to end of the
task execution, which includes any time the task is blocked
or preempted. The ControlLaw dimension currently has
two values: stability and accuracy. In our experiments, the
controlled machining process is found sometimes to be-
come unstable when the fuzzy logic control algorithm is
used. By contrast, the controlled process is very stable with
the PID control algorithm. Therefore, when the stability is
important the PID control algorithm is used, and when ac-
curacy is emphasized the fuzzy logic control algorithm is

Fig. 11. Application deadline guarantees using RTDBS.

Fig. 12. Hardware setup of a three-axis controller.

ZHOU ET AL.: SCHEMA EVOLUTION OF AN OBJECT-ORIENTED REAL-TIME DATABASE SYSTEM FOR MANUFACTURING AUTOMATION 973

chosen. This selection is done during the application ini-
tialization in order to eliminate run-time overhead (the ap-
propriate implementation of the axis control task is selected
automatically at the application start-up time based on the
requirements). This method of binding objects at initializa-
tion time is essential for meeting the needs of manufactur-
ing applications, because it provides as small a response
time as tens of microseconds required by the application.

Without the automated mechanism of performance
polymorphism explicitly supported by ROMPP, the appli-
cation developer would have to figure out exactly which
database services to use. Whenever the application require-
ments and/or database service implementations change, the
application developer has to find suitable services again
and modify the application code accordingly. With the
automated mechanism, all the application developer needs
to do is to change the requirement specifications (in the case
of application requirement changes) or nothing (in the case
of service implementation changes). The system will take
care of the service selection and binding. The prototype
controller was effectively utilized to cut metal parts using
the milling machine.

5 RELATED WORK

5.1 Schema Evolution
There has been considerable work on defining schema
evolution for OODBs. Examples are schema evolution for
ORION [3], O2 [52], GemStone [31], and GOOSE [26].
However, none of them addressed schema evolution in the
context of real-time OODBs. The traditional approach is to
define a number of invariants that must be satisfied by the
schema and then to define rules for maintaining these in-
variants (e.g., [3]). To avoid expensive changes to existing
applications dependent on the original schema, researchers
studied other approaches such as object-oriented views
[35], [36], [44] and versions [19], [25]. Peters and Ozsu [32]
propose an axiomatic model to provide a common frame-
work for defining and comparing different schema-
evolution policies. All of these typically support the schema
change taxonomy initially proposed for ORION [3]. In this
paper, we focus instead on the real-time aspects of schema
evolution, in addition to the traditional schema change tax-
onomy. To our knowledge, this work in schema evolution
of real-time object-oriented databases is the first of its kind.

5.2 Real-Time Models
While a large body of work on real-time systems exists, no
agreed-upon, conceptual model for real-time databases has

been established. In this paper, we show that timing con-
straints and performance polymorphism are two key char-
acteristics of real-time applications and should be explicitly
supported by a real-time data model.

CHAOS (Concurrent Hierarchical Adaptable Object
System) [4], [38] is an object-based language and program-
ming/execution system designed for dynamic real-time
applications. One of its key components is a C-based run-
time library for the real-time kernel. CHAOS supports a
limited form of dynamic parameterization of generic classes
to allow easy development of different implementations of
objects. Objects can be adapted at runtime, such as switch-
ing in different versions of object methods, changing the
degree of concurrency, or changing the relative priorities of
object methods. The parameterization of generic classes in
CHAOS can be directly modeled by ROMPP, where enve-
lope classes can represent generic classes and letter classes
correspond to different implementations. These letter classes
are specialized along several dimensions—the parameter-
ized attributes in CHAOS.

ARTS (Advanced Real-time Technology) [24], [45] is a
distributed real-time operating system kernel. RTC++ [15]
is an extension of C++. Both of them are based on the same
real-time object model, which describes real-time properties
in systems and encapsulates rigid timing constraints in an
object. Each object is composed of data, one or more
threads of execution, and a set of exported operations. In
this model, if an active object is defined with timing con-
straints for its methods, it is called a real-time object. In this
real-time object model, the schedulability of a task set is
easily analyzed under the rate-monotonic scheduling. Unfortu-
nately, performance polymorphism is not directly sup-
ported by the model. The use of real-time object libraries is
suggested to remedy this. As discussed in Section 2.2.2, this
is an undesirable solution in comparison with direct sup-
port of performance polymorphism. In ROMPP, we address
this issue by explicitly supporting performance polymor-
phism, using the letter-class hierarchy concept.

Flex [17] is a derivative of C++. It supports two modes of
flexible real-time programs, designed to adjust execution
times so that all important deadlines are guaranteed to be
met. First, it allows computations to return imprecise re-
sults. Programs can be carried out as iterative processes that
produce more refined results as more time is permitted, or
they can use the divide-and-conquer strategy that provides
partial results along the way. Second, it supports multiple
versions of a function that carry out a given computation.
These versions all perform the same task and differ in the
amount of time and resources they consume, the system
configuration to which they are adapted, the precision of
the results that they return, and other performance criteria.

The letter-class hierarchy of ROMPP capturing the per-
formance polymorphism corresponds closely to the second
feature of Flex. A letter class may also be implemented us-
ing the imprecise computation technique. In other words,
the first technique of Flex is simply one of several possible
approaches for guaranteeing the timing constraints of ac-
tual method implementations. In Flex, several language
primitives are provided to describe the alternative imple-
mentations of a method in the class, their performance, and

Fig. 13. Tasks of the three-axis control application.

974 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 1997

the goals, such that the system may make appropriate se-
lections as needed. This approach is not as flexible as the
letter-class hierarchy. For example, with the letter-class hi-
erarchy, letter classes can have different additional private
data and/or methods if needed. Also, the knowledge about
the characteristics of the letter classes may be stored in in-
dividual envelope classes, such that different binding pro-
cedures may be chosen for different letter-class hierarchies.

HiPAC (High Performance ACtive database System) [10]
combines databases with rule capabilities. Rules in HiPAC
are first-class objects. A rule, among other features, allows
the specification of its timing and other properties. When
instances of the same class of rules are applied to different
situations or objects, they may have different timing speci-
fications. HiPAC does not have performance polymor-
phism, though it supports contingency plans. Contingency
plans are alternate actions that can be invoked whenever
the system determines that it cannot complete a task in
time. Examples of contingency plans are the use of less
resolution in a spatial search or the use of old aggregate
data if the aggregate changes only slowly in response to
updates to underlying data. Contingency plans are closer to
the concept of imprecise computation, which mainly deals
with the deadline constraint by sacrificing the quality of
results. HiPAC does not make extensive use of most object-
oriented features like classes or inheritance. Obviously, the
letter-class hierarchy can be used to model this characteris-
tic of rules, where an envelope class represents a generic
rule (or a class of rules) and letter classes represent the
same rule with different timing specifications, which may
require different implementations.

RTSORAC (Real-Time Semantic Objects Relationships
And Constraints) [12], [30], [47] incorporates a comprehen-
sive model for concurrency control in real-time OODBs and
a flexible approach to synchronizing real-time transactions.
It considers a broad range of semantic information regard-
ing logical and temporal consistency, and allows a wide
range of correctness criteria that relax serializability. How-
ever, performance polymorphism is again not provided.

MDARTS (Multiprocessor Database Architecture for
Real-Time Systems) [20], [21] supports explicit declarations
of real-time requirements and semantic constraints within
application code. It examines these declarations during ap-
plication initialization and dynamically adjusts its data
management strategy. The research reported in this paper
is an integral part of the ongoing MDARTS project. Specifi-
cally, we have extracted a conceptual real-time object model
ROMPP and investigated the impact of schema evolution
on real-time data models.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed solutions to the schema-evolution
problem for real-time OODBs. Schema-evolution support is
becoming increasingly important, as advanced real-time ap-
plications are starting to demand database services, rather
than ad hoc data repositories. This demand comes from the
needs to reuse system components and to reduce the amount
of work related to improving existing systems and develop-
ing new applications. Such applications must be flexible in
revamping an existing system based on changes of technol-
ogy and/or environment. They also need support to quickly
configure new customized systems.

Fig. 14. Histograms of the measured execution times of the axis control tasks.

ZHOU ET AL.: SCHEMA EVOLUTION OF AN OBJECT-ORIENTED REAL-TIME DATABASE SYSTEM FOR MANUFACTURING AUTOMATION 975

We identified timing constraints and performance poly-
morphism as two key characteristics of real-time manufac-
turing applications. We presented a conceptual real-time
object model, ROMPP, which explicitly captures these two
features. It uses specialization dimensions to model timing
constraints and utilizes letter-class hierarchy constructs to
capture performance polymorphism. In the context of
RTDBS, we proposed modifications to the semantics of
schema changes and to the needs of schema change resolu-
tion rules and schema invariants. Furthermore, we expand
the schema change framework with new constructs—
including new schema change operators, new resolution
rules, and new invariants—for handling additional features
of the real-time object model. Using manufacturing-control
applications, we demonstrated the applicability of ROMPP
and potential benefits of the proposed schema-evolution
system.

There are still several open questions to be answered. In
particular, we need to improve the utilization of computa-
tional resources when hard deadline guarantees are relaxed
to probabilistic deadline guarantees. We have observed that
the worst-case execution time can be much longer than the
average. Fig. 14 shows the histograms of the axis control
task execution times. For example, among the 658 samples
of the Y-Axis task execution time, all are below 1.20 ms ex-
cept two samples. One of them is about 8.98 ms and the
other is about 8.06 ms. To provide hard deadline guaran-
tees, we have to use the worst-case execution times. How-
ever, there are often situations where the deadline can be
missed once in a while. For example, a sensor-reading task
typically computes the average of several readings. If it
occasionally misses the deadline, there will not be much
impact on the average. Obviously, if the worst-case execu-
tion time is used for the scheduling of such tasks, it can
waste a significant amount of computational resources. In
this case, it may be appropriate to introduce the notion of
completion probability, which specifies the required prob-
ability that a task must meet its deadline. These tasks re-
quire probabilistic deadline guarantees. This is one of the
issues we are currently investigating [51].

We would also like to enhance the real-time object model
by introducing more sophisticated constructs that allow, for
instance, value propagation (e.g., propagation of the per-
formance value of a method to other methods that use it)
and conditional specifications (e.g., performance depend-
ency on system configuration). The results reported here
are a good first step to explore the area of schema evolution
for RTDBSs, and will spawn new research efforts.

ACKNOWLEDGMENTS

This work was performed while Elke A. Rundensteiner was
at the University of Michigan. This research was supported
in part by the Horace H. Rackham School of Graduate
Studies at the University of Michigan under a research
partnership grant, the United Parcel Service Foundation
under a graduate fellowship, and the National Science
Foundation under grants DDM-9313222 and IRI-9504412.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as those
of the sponsors}either expressed or implied.

We thank Nauman A. Chaudhry, Matthew C. Jones,
Harumi A. Kuno, Amy Lee, and Young-Gook Ra for cri-
tiquing this work.

REFERENCES

[1] J. Albus, “RCS: A Reference Model Architecture for Intelligent
Machine Systems,” Proc. Int’l Workshop Open-Architecture Control-
lers for Automation, Apr. 1994.

[2] B. Anderson, “Next Generation Workstation/Machine Controller
(NGC),” Proc. IPC ’92, pp. 19-26, Apr. 1992.

[3] J. Banerjee, W. Kim, H.-J. Kim, and H.F. Korth, “Semantics and
Implementation of Schema Evolution in Object-Oriented Data-
bases,” Proc. SIGMOD, pp. 311-322, 1987.

[4] T.E. Bihari, and P. Gopinath, “Object-Oriented Real-Time Sys-
tems: Concepts and Examples,” Computer, pp. 25-32, Dec. 1992.

[5] S. Birla, “A Conceptual Framework for Modeling Manufacturing
Automation,” Directed Study Report, Dept. of Electrical Engineer-
ing and Computer Science, Univ. of Michigan, Sept. 1993.

[6] G. Booch, Object-Oriented Design with Applications, Benjamin/
Cummings, 1991.

[7] P. Butterworth, A. Otis, and J. Stein, “The Gemstone Object Data-
base Management System,” Comm. ACM, vol. 34, no. 10, pp. 64-
77, Oct. 1991.

[8] R.G.G. Cattell, Object Data Management: Object-Oriented and Ex-
tended Relational Database Systems, Addison-Wesley, 1991.

[9] J. Coplien, Advanced C++ Programming Styles and Idioms, Addison-
Wesley, 1992.

[10] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu,
R. Ledin, D. McCarthy, A. Rosenthal, S. Sarin, M.J. Carey,
M. Livny, and R. Jauhari, “The HiPAC Project: Combining Active
Databases and Timing Constraints,” SIGMOD Record, vol. 17,
no. 1, pp. 51-70, Mar. 1988.

[11] O. Deux et al., “The O2 System,” Comm. ACM, vol. 34, no. 10,
pp. 34-48, Oct. 1991.

[12] L. DiPippo and V. Wolfe, “Object-Based Semantic Real-Time
Concurrency Control,” Proc. Real-Time Systems Symp., pp. 87-96,
Dec. 1993.

[13] M.H. Graham, “Issues in Real-Time Data Management,” J. Real-
Time Systems, vol. 4, pp. 185-202, 1992.

[14] J.E. Hopcroft, and J.D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, 1979.

[15] Y. Ihikawa, H. Tokuda, and C.W. Mercer, “An Object-Oriented
Real-Time Programming Language,” Computer, pp. 66-73, Oct. 1992.

[16] Itasca Systems Inc., ITASCA System Overview, Unisys, Minneapo-
lis, Minn., 1990.

[17] K.B. Kenny and K.-J. Lin, “Building Flexible Real-Time Systems
Using the Flex Language,” Computer, pp. 70-78, May 1991.

[18] W. Kim, J.F. Garza, N. Ballou, and D. Woelk, “Architecture of the
ORION Next-Generation Database System,” IEEE Trans. Knowl-
edge and Data Eng., vol. 2, no. 1, pp. 109-124, Mar. 1990.

[19] W. Kim and H.-T. Chou, “Version of Schema For Object-Oriented
Databases,” MCC Technical Report, ACA-ST-278-87, Rev. 1,
Feb. 1988.

[20] V.B. Lortz, “An Object-Oriented Real-Time Database System for
Multiprocessors,” PhD dissertation, Dept. of Electrical Engineer-
ing and Computer Science, Univ. of Michigan, Mar. 1994.

976 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 1997

[21] V.B. Lortz and K.G. Shin, “MDARTS: A Multiprocessor Database
Architecture for Real-Time Systems,” Technical Report CSE-TR-
155-93, Dept. of Electrical Engineering and Computer Science,
Univ. of Michigan, Mar. 1993.

[22] S. Marche, “Measuring the Stability of Data Models,” European J.
Information Systems, pp. 37-47, 1993.

[23] Martin Marietta Astronautics Group, Next Generation Worksta-
tion/Machine Controller Specification for an Open System Architecture
Standard, NGC-0001-13-000-SYS ed., Mar. 1992.

[24] C.W. Mercer and H. Tokuda, “The ARTS Real-Time Object
Model,” Proc. 11th Real-Time Systems Symp., pp. 2-10, 1990.

[25] S. Monk and I. Sommerville, “Schema Evolution in OODBs Using
Class Versioning,” SIGMOD Record, vol. 22, no. 3, pp. 16-22,
Sept. 1993.

[26] M.M.A. Morsi, S.B. Navathe, and H.-J. Kim, “A Schema Manage-
ment and Prototyping Interface for an Object-Oriented Database
Environment,” F. Van Assche, B. Moulin, and C. Rolland, eds.,
Object Oriented Approach in Information Systems, Elsevier Science
Publishers B.V., pp. 157-180, 1991.

[27] Object Management Group, The Common Object Request Broker:
Architecture and Specification, 1992.

[28] Open-Architecture Controls Team, Developer’s Guide for Open-
Architecture Control of the Robotool, Dept. of Electrical Engineering
and Computer Science and Dept. of Mechanical Engineering and
Applied Mechanics, Univ. of Michigan, Nov. 1995.

[29] G. Ozsoyoglu and R. Snodgrass, “Temporal and Real-Time Data-
bases: A Survey,” IEEE Trans. Knowledge and Data Eng., vol. 7,
no. 4, pp. 513-532, Aug. 1995.

[30] J. Peckham, V.F. Wolfe, J.J. Prichard, and L.C. DiPippo,
“RTSORAC: Design of a Real-Time Object-Oriented Database
System,” Technical Report 94-231, Univ. of Rhode Island, 1994.

[31] J. Penney and J. Stein, “Class Modification in the GemStore
Object-Oriented Database System,” Proc. Second Int’l Conf.
Object-Oriented Programming Systems, Languages, and Applications,
Oct. 1987.

[32] R.J. Peters and M.T. Ozsu, “Axiomatization of Dynamic Schema
Evolution in Objectbases,” Proc. 11th Int’l Conf. Data Eng., pp. 156-
164, Mar. 1995.

[33] G. Pritschow and G. Junghans, Proc. Int’l Workshop Open-
Architecture Controllers for Automation, Ann Arbor, Mich.,
Apr. 1994.

[34] G. Pritschow and C. Daniel, “Open Control System—A Future-
Oriented Concept,” Proc. 27th CIRP Int’l Seminar Manufacturing
Systems, pp. 5-17, May 1995.

[35] Y.G. Ra and E.A. Rundensteiner, “A Transparent Object-Oriented
Schema Change Approach Using View Evolution,” Proc. 11th Int’l
Conf. Data Eng., pp. 165-172, Mar. 1995.

[36] Y.G. Ra and E.A. Rundensteiner, “A Transparent Schema-
Evolution System Based on Object-Oriented View Technology,”
IEEE Trans. Knowledge and Data Eng., vol., 9, no. 4, pp. 600-624,
July/Aug. 1997.

[37] K. Ramamritham, “Real-Time Databases,” Distributed and Parallel
Databases, vol. 1, pp. 199-226, 1993.

[38] K. Schwan, P. Gopinath, and W. Bo, “CHAOS-Kernel Support for
Objects in the Real-Time Domain,” IEEE Trans. Computers, vol. 36,
no. 8, pp. 904-916, Aug. 1987.

[39] K.G. Shin and P. Ramanathan, “Real-Time Computing: A New
Discipline of Computer Science and Engineering,” IEEE Proc.,
vol. 82, no. 1, pp. 6-24, Jan. 1994.

[40] M. Singhal, “Issues and Approaches to Design of Real-Time
Database Systems,” SIGMOD Record, vol. 17, no. 1, pp. 19-33,
Mar. 1988.

[41] D. Sjoberg, “Quantifying Schema Evolution,” Information and
Software Technology, pp. 35-54, Jan. 1993.

[42] N. Soparkar, H.F. Korth, and A. Silberschatz, “Database with
Deadline and Contingency Constraints,” IEEE Trans. Knowledge
and Data Eng., vol. 7, no. 4, pp. 552-565, Aug. 1995.

[43] A. Stevens, C++ Database Development, second ed., MIS:Press,
1994.

[44] V.C. Taube and E.A. Rundensteiner, “Schema Removal Issues for
Transparent Schema Evolution,” Proc. Sixth Int’l Workshop Re-
search Issues Data Eng., Interoperability of Nontraditional Database
Systems, Feb. 1996.

[45] H. Tokuda and C.W. Mercer, “ARTS: A Distributed Real-Time
Kernel,” ACM Operating Systems Rev., vol. 23, no. 3, pp. 29-53,
July 1989.

[46] O. Ulusoy, “Current Research on Real-Time Databases,” SIGMOD
Record, vol. 21, no. 4, pp. 16-21, Dec. 1992.

[47] V.F. Wolfe, L.B. Cingiser, J. Peckham, and J. Prichard, “A Model
For Real-Time Object-Oriented Databases,” Proc. 10th IEEE Work-
shop Real-Time Operating Systems and Software, pp. 57-63, May 1993.

[48] L. Zhou, E.A. Rundensteiner, and K.G. Shin, “Schema Evolution
for Real-Time Object-Oriented Databases,” Technical Report CSE-
TR-199-94, Dept. of EECS, Univ. of Michigan, Mar. 1994.

[49] L. Zhou, E.A. Rundensteiner, and K.G. Shin, “OODB Support for
Real-Time Open-Architecture Controllers,” Proc. Fourth Int’l Conf.
Database Systems for Advanced Applications, pp. 206-213, Apr. 1995.

[50] L. Zhou, M.J. Washburn, K.G. Shin, and E.A. Rundensteiner,
“Performance Evaluation of Modular Real-Time Controllers,” Proc.
ASME Int’l Mechanical Eng. Congress and Exposition, DSC, vol. 58,
pp. 299-306, Nov. 1996.

[51] L. Zhou, K.G. Shin, E.A. Rundensteiner, and N. Soparkar,
“Probabilistic Real-Time Data Access with Deadline and Interval
Constraints,” S.H. Son, K.-J. Lin, and A. Bestavros, eds., Real-Time
Databases Systems: Issues and Applications, Kluwer Academic Pub-
lishers, 1997.

[52] R. Zicari, “Primitives for Schema Updates in an Object-Oriented
Database System: A Proposal,” Computer Standards and Interfaces,
vol. 13, pp. 271-284, 1991.

Lei Zhou received BS and MS degrees from
Fudan University, Shanghai, China, in 1986 and
1989, respectively, both in electrical engineering;
and an MS in computer science and engineering
from Oregon Graduate Institute of Science and
Technology, Beaverton, in 1991. He is currently
a PhD candidate in computer science and engi-
neering at the University of Michigan, Ann Arbor,
where he has been working on real-time object-
oriented data management for manufacturing
applications. His interests include software re-

search and development in databases, real-time systems, VLSI CAD,
and networking.

Elke A. Rundensteiner received a BS degree
(Vordiplom) from the Johann Wolfgang Goethe
University, Frankfurt, Germany, in 1984; a mas-
ter’s degree from Florida State University, Talla-
hassee, in 1987; and her PhD degree from the
University of California, Irvine, in 1992; all her
degrees are in computer science. Dr. Runden-
steiner has received numerous honors and
awards, including a Fulbright Scholarship, a
National Science Foundation Young Investigator
Award in databases in 1994, and an Intel Young

Investigator Engineering Award from the Engineering Foundation. She
recently joined the Department of Computer Science at the Worcester
Polytechnic Institute after having been an assistant professor in the
Department of Electrical Engineering and Computer Science at the
University of Michigan. Dr. Rundensteiner has been investigating data-
base technology for nonconventional applications for more than 10
years. Her research interests include object-oriented view techniques
for data warehousing and database evolution, database tools for a
digital library and electronic commerce applications, multimedia data-
bases, and geographic information systems. She is a member of the
IEEE and the ACM.

ZHOU ET AL.: SCHEMA EVOLUTION OF AN OBJECT-ORIENTED REAL-TIME DATABASE SYSTEM FOR MANUFACTURING AUTOMATION 977

Kang G. Shin received the BS degree in elec-
tronics engineering from Seoul National Univer-
sity, Seoul, Korea, in 1970; and the MS and PhD
degrees in electrical engineering from Cornell
University, Ithaca, New York, in 1976 and 1978,
respectively. From 1978 to 1982, he was on the
faculty of Rensselaer Polytechnic Institute, Troy,
New York. He has held visiting positions at the
U.S. Air Force Flight Dynamics Laboratory;
AT&T Bell Laboratories; the Computer Science
Division in the Department of Electrical Engi-

neering and Computer Science at the University of California at Ber-
keley; the International Computer Science Institute, Berkeley, Califor-
nia; the IBM Thomas J. Watson Research Center; and the Software
Engineering Institute at Carnegie Mellon University. He has authored
or coauthored more than 360 technical papers (about 150 in archival
journals) and numerous book chapters in the areas of distributed real-
time computing and control, fault-tolerant computing, computer archi-
tecture, robotics and automation, and intelligent manufacturing.

With C.M. Krishna, Dr. Shin wrote a textbook Real-Time Systems
(McGraw-Hill, 1996). In 1985, he founded the Real-Time Computing
Laboratory, where he and his colleagues are investigating various
issues related to real-time and fault-tolerant computing; in 1987, he
received the Outstanding IEEE Transactions on Automatic Control
Paper Award for a paper on robot trajectory planning; and in 1989, he

received the Research Excellence Award from the University of Michi-
gan, Ann Arbor. He has been applying the basic research results of
real-time computing to multimedia systems, intelligent transportation
systems, and manufacturing applications ranging from the control of
robots and machine tools to the development of open architectures for
manufacturing equipment and processes. (The latter is being pursued
as a key thrust area of the newly established National Science Foun-
dation Engineering Research Center on Reconfigurable Machining
Systems.)

Dr. Shin chaired the Computer Science and Engineering Division,
EECS Department, the University of Michigan, for three years begin-
ning in January 1991. He is now a professor and director of the Real-
Time Computing Laboratory, Department of Electrical Engineering and
Computer Science, University of Michigan. He was program chair of
the 1986 IEEE Real-Time Systems Symposium (RTSS); general chair
of the 1987 RTSS; guest editor of the August 1987 special issue on
real-time systems of IEEE Transactions on Computers; program co-
chair of the 1992 International Conference on Parallel Processing; and
has served on numerous technical program committees. He chaired
the IEEE Technical Committee on Real-Time Systems in 1991-1993;
was an IEEE Computer Society Distinguished Visitor; editor of IEEE
Transactions on Parallel and Distributed Computing, and area editor of
the International Journal of Time-Critical Computing Systems. He is an
IEEE fellow.

