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ABSTRACT

We propose an efficient flow-control scheme for ATM ABR multicast services. We develop a second-order
rate-control algorithm to deal with the variation in feedback delay resulting from dynamic “drift” of
the bottleneck location within a multicast tree. The proposed scheme makes the rate process converge
to the available bandwidth of the multicast-connection’s most congested link. It also confines the
buffer occupancy to a target regime bounded by a given (finite) buffer capacity at the bottleneck
node. Using fluid approximation, we model the proposed scheme and study the system dynamics
under the most stressful traffic conditions. We derive expressions for queue buildups and average
throughputs in both transient and equilibrium states. We identify the system control factors that
govern the system dynamics and develop an optimal control condition which guarantees monotonic
convergence of the system state to the target regime from an arbitrary initial value.
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1 Introduction

The Available-Bit-Rate (ABR ) service, targeted primarily towards adaptive applications, is an in-
creasingly popular and important class of service in ATM networks. Ever since the conception of
ABR service by the ATM Forum in September 1994, it has attracted significant attention from re-
searchers in the networking community. While the literature on ABR is extremely rich, a vast majority
of it focus only on point-to-point (unicast) connections. Our objective in this paper is to develop ef-
ficient and scalable control mechanisms for supporting ABR service on point-to-multipoint (pt-to-mpt

or multicast) connections.

Supporting ABR pt-to-mpt connection service poses a number of new challenges not encountered
in providing ABR service on unicast connections. One of the major problems, especially in large
multicast trees, is commonly known as the feedback implosion problem [1]. Since our goal is to
adjust the source transmission rate to match the bottleneck link bandwidth, the source need to collect
congestion feedback from all branches in the multicast tree. Simultaneous congestion feedback from
all branches can cause an implosion at the source, especially when the multicast tree is large. Hence,
for reasons of scalability, it is important to consolidate the congestion feedback at each branch point
and only the consolidated feedback is forwarded upstream. Consolidation requires synchronization
of feedback from all downstream branches of each branch point. Since different branches may have
different round trip delays, receiver-generated feedback may arrive at the branch point at significantly
different times. If a branch-point switch waits for feedback from all of its downstream nodes, it may
have to wait a long time, thus resulting in a long feedback delay. On the other hand, if the branch-point
switch forwards an early feedback upstream without waiting for feedback from all of its downstream

nodes, the source may receive incomplete/incorrect information.

Another important but subtle problem in multicast flow control is that the bottleneck may shift from
one path to another. As a result, the round trip delay in the bottleneck path may change significantly.
Since the round trip delay plays a critical role in determining the effectiveness of any feedback flow-
control scheme, it is important to identify and handle such dynamic drifts of the bottleneck. The
flow-control scheme should also be able to detect and remove non-responsive branches in order to

prevent them from stalling the entire connection.

Roberts [2,3] proposed a multicast flow-control scheme which is based on EPRCA (Explicit Pro-
portional Rate Control Algorithm) and extends unicast to multicast operations. The authors of [4-6]
established a framework for extending an existing unicast congestion-control protocol to a multicast
environment. The features of these two schemes are simple, and easy to migrate from a unicast envi-
ronment to a multicast environment. They both employ a simple level-by-level feedback mechanism
where feedback RM cells from downstream nodes are aggregated and then sent upward whenever a
forward RM cell cell is received at each level of the multicast tree. While level-by-level feedback is
conceptually very simple, it suffers from the problems of large feedback delays, feedback inefficiency
(due to no synchronization), and poor scalability (round trip feedback delay proportional to the height

of the multicast tree).

In contrast to the schemes presented in [2—6], we propose a new scheme that employs leaf-to-root



feedback that achieves excellent feedback efficiency. At the heart of our solution is a second-order rate-
control algorithm. More specifically, besides adapting the transmission rate based on the congestion
feedback, the source also adjusts the second-order parameters that determine the rate at which the
transmission rate itself is adjusted. We show that this second-order rate-control mechanism helps
the source adapt itself to the changes in round trip delay based on leaf-to-root feedback even when
the bottleneck location drifts from one path to another. We use a soft synchronization protocol
for consolidation of feedbacks at each branch-point. This not only solves the feedback implosion and
synchronization problems, but also makes the round trip delay independent of the height and structure

of the multicast tree, and readily detects and eliminates non-responsive branches.

Using the fluid approximation, we model the proposed scheme and develop an optimal control
condition, under which the second-order rate-control guarantees the monotonic convergence of system
state to the optimal regime from an arbitrary initial value. We analytically derive the relationship
between the rate-control parameter and round trip delay subject to finite buffer-capacity constraints.
We derive expressions for queue buildups and average throughputs in both transient and equilibrium
states as functions of rate-control parameters, feedback delay, target bandwidth, and target buffer
occupancy. The results show that the proposed scheme is efficient and stable in the sense that both
the source rate and queue length at the bottleneck rapidly converge to a small neighborhood of the

designated operating point.

The paper is organized as follows. Section 2 describes the proposed scheme in detail. Section 3
introduces the concept of system bottleneck and leaf-to-root feedback delay, and constructs the system
and control models for the proposed scheme. Section 4 describes the second-order rate-control law
and demonstrates how it adapts itself to round trip delays so as to achieve lossless transmission. In
Section b, we derive analytical solutions for both transient and equilibrium states and evaluate the
scheme’s performance for the single-connection case. Section 6 deals with modeling and performance

analysis for the cases of multiple concurrent multicast connections. The paper concludes with Section

7.

2 The Proposed Scheme

As in the existing schemes, we also use the Erci (Explicit Forward Congestion Indication) bit and
RM (Resource Management) cells to convey network congestion information. However, we refine the
rM cell format [7] such that it contains both the cell-rate (first-order) control and the rate-parameter
(second-order) control information. More specifically, two new one-bit fields, Bc1 (Buffer Congestion
Indication) and NMQ (New Maximum Queue), are defined. Our scheme classifies congestion into two
types: (1) when the queue length Q(?) at a switch exceeds a predetermined threshold @, we call
it bandwidth congestion. Under this condition the switch sets the local c1 (Congestion Indication)
bit. (2) when the maximum queue length @4 at a switch exceeds the target buffer occupancy
Qgoals (Qn < Qgoal < Criaz), Where Cyqp is the buffer capacity, we call it buffer congestion. Under

this condition the switch sets the local BcI state to 1.

Switches maintain a congestion state for each pt-to-mpt connection passing through them. When



a switch receives a backward rRM cell from a downstream node, it consolidates the explicit rate (ER ),
congestion indication (c1 ), and buffer congestion indication (BcI ) for the associated connection. The
ER is set to the minimum of the ER computed by the branch-point node and the ER received from the
downstream nodes of the multicast tree. The c1 field associated with the connection state is set to 1,
if the local c1 state is 1, or c1 field in RM cell received form any one of the downstream neighbors is
1. The BcI field associated with the connection state is computed in the same way. When feedback
from all downstream nodes have been accumulated, a single feedback rM cell is generated with the
consolidated congestion information and sent upward with c1 and BcCI fields set to their respective
values in the connection state. Note that our algorithm allows branch-point switches to consolidate
feedback information from the backward rM cells that are generated by the leaves in response to
different forward RM cells. This distinguishes our algorithm from both (i) “strict synchronization”,
where only the backward rM cells generated in response to the same forward rRM cell are consolidated,
thus making feedback delay determined by the longest branch, and (i) “no synchronization” at all
in [2-6], which may produce incomplete feedback information to the source and thus defeats the
feedback efficiency. In the proposed scheme, the feedback rRM cells are “softly synchronized” at each
branch-point, providing fast, complete, and efficient feedback, and making the feedback delay scalable
with the height and structure of multicast tree. Additionally, each node also dynamically identifies the
non-responsive downstream nodes and removes them from the set of state variables associated with

the responsive branches. For lack of space, we do not describe this part of algorithm in detail.

There are two rate-control modes at the source corresponding to the two types of congestion re-
spectively: (1) bandwidth congestion control, and (2) buffer congestion control. If the bandwidth
congestion information with c1 = 1 (or 0) is detected from a feedback rM cell, then the cell rate is
reduced multiplicatively (or increased additively) from its current value. The buffer congestion control
is triggered when the source detects a transitions from c1 = 1 to c1 = 0 (i.e., from a rate-decrease
cycle to a rate-increase cycle). Depending on the state of the BcI field, three different variations of
this control is exercised by the source. If the BcI indicators in both the current and the last RM cells
received are set to 0s, the rate-increase parameter is increased additively. When BcI indicator tog-
gles from 1 to 0, the rate-increase parameter is increased multiplicatively. If the current RM cell has
BcI field set to 1, the rate-increase parameter is decreased multiplicatively. Each time when buffer
congestion control is triggered, the source sets NMQ field to 1 in the next forward rRM cell to “request”

the switches to recalculate @),,4, for the next measurement-cycle.

A snippet of the pseudocode for the source control algorithm is presented in Figure 1. This algorithm
deals with the receipt of feedback rRM cells. Upon receiving a feedback rM cell, the source must first
check if it is the time to exercise the buffer-congestion (second order) control. This algorithm is
triggered when the source detects a transition from a rate decrease cycle to a rate increase cycle, that
is when vrc1 (local congestion indicator) 1, and the cI field in the RM cell received is set 0. In this
phase, the rate-increase parameter is adjusted depending on the current state of the local Bc1 indicator
(LBCI ) and the state of the BcI field (Bc1 ) in the RM cell received. As mentioned before, we consider
three cases: (i) if BCI is set to 1 in the RM cell received, the rate increase parameter AR (Additive

Increase Rate) is decreased multiplicatively by a factor of ¢ (0 < ¢ < 1), (ii) if both LBcCI and BcCI are



On receipt of an RM cell:
if (CI=0 A LCI=1)
begincase
case (BCI=1):
AIR « q x AIR
case (BCI=0 A LBCI=0):
AIR « p + AIR

Buffer congestion control
Consider different cases

BClI is set in the RM cell
AIR (Additive Increase Rate)
BCI stays at 0

case (BCI=0 A LBCI=1): ! BCI toggles from 1 to 0
AIR «— AIR/q

endcase

MDF — = AIR/BW_EST ! MDF (Multiplicative Decrease Factor)

LNMQ =1 ! Start a new measurement cycle
endif
if (CI=0) ! Bandwidth control

ACR = ACR + AIR ! Increase cell rate additively
else

ACR = ACR x MDF ! Decrease cell rate multiplicatively
endif
LCI « CI ! Save the CI value
LBCI «— BCI ! Save the BCI value

Figure 1: Source control algorithm.

set to 0, the rate-increase parameter AIR is increased additively by a step-size of p (p > 0), (iii)
if LBcris 1 and BcI is 0, AIR is increased multiplicatively by the same factor of ¢. For all these 3
cases, the rate-decrease parameter MDF (Multiplicative Decrease Factor) is adjusted according to the
estimated bottleneck bandwidth BW_EST (see Section 4.2 for a detailed account). Additionally, the
local new maximum queue indication (NMQ ) bit is marked and BcI field is saved in LBCI . The source
always exercises the cell-rate (first order) control whenever an RM cell is received. Using the same,
or updated, rate-parameter, the source additively increases, or multiplicatively decreases, its ACR
(Allowed Cell Rate) according to the c1 field in received RM cell. The new c1 is saved in rcI for the

second-order rate control.

At the receiver, when a data cell is received, the EFcCI bit is saved. When an RM cell is received,
its CI bit is set using the EFCI bit saved from the data cell last received. The RM cell is then sent

backward with the congestion information.

3 The System Model

An ATM network with ABR pt-to-mpt connections flow-controlled by the proposed scheme is a dy-
namic feedback-control system. We model this system using the first-order fluid approximation, which

models the system with coupled time-delayed differential equations [8,9]. In this model, we use the
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Figure 2: The system model for a pt-to-mpt connection.

real-valued deterministic functions R(¢) and Q(t) to approximate a discrete stochastic rate process
R(t) at the source and a queue length process Q(t) at the bottleneck node, respectively. Due to its
simplicity, effectiveness, and approximation accuracy (particularly for heavy traffic), the fluid modeling

has been used effectively for the analysis and evaluation of ABR unicast flow-control schemes [9-17].

The existence of multiple paths in an ABR pt-to-mpt connection complicates its modeling and
analysis. As in any feedback-control system, the RM cell round trip delay plays a critical role in
determining system performance. In all previous analyses of unicast flow control using the fluid
model, the round trip delay is treated as a constant equal to the value found/determined during the
setup of each ABR connection [9-17]. However, as mentioned earlier, the RM cell round trip delay in
a pt-to-mpt connection varies significantly with time. Our model, therefore, takes this variation into
account. By applying the proposed second-order rate control (to be discussed in Section 4), the source
rate-control can be adapted quickly to the variation of RM cell round trip delay so as to guarantee
lossless transmission for a given buffer size. We also assume the existence of only a single bottleneck!
at a time with queue length Q(¢) and a “persistent” source with ACR = R(t) for each pt-to-mpt
connection. Such a data-source model enables us to examine the proposed scheme under the most
stressful condition. Figure 2 depicts the system model for a pt-to-mpt connection flow-controlled by

the proposed scheme.

3.1 System Description

As shown in Figure 2, a pt-to-mpt connection consists of n paths with RM cell round trip delays

T1,T2, "+, Tn, and bottleneck bandwidths pq,pg,- -+, p,. There is only a single bottleneck on each

path and its location may change with time. Thus, we use Tj(f) to represent the “forward” delay

from the source to the bottleneck, and Tb(i) the “backward” delay from the bottleneck to the source

via the destination node of the i-th path. Clearly, Tlfi) =7 - Tj(j). Each path’s bottleneck has its

!This is not a restriction, because the bottleneck is defined as the most congested link/switch.



own Q;(t),7=1,2,---,n. According to the proposed control algorithm, all paths of a flow-controlled
pt-to-mpt connection share the same R(t) which dictates every path’s dynamic behavior. As a result,
all the paths in a pt-to-mpt connection “interact” with each other via their “shared” R(t¢). Thus,
the system model consists of n coupled subsystems, each corresponding to an individual path of the

pt-to-mpt connection. The i-th subsystem/path is characterized by the following parameters:

Jor Multiplicative decrease factor for rate reduction
a: Additive rate-increase slope
A: Rate-update time interval

ng) (Q;Z)) High (low) threshold of the ABR queue

Tb(i) (T)(,i)): Backward (forward) delay

& Bottleneck’s maximum buffer allocation (C)nqz)
JIEs Bottleneck link bandwidth (BW)

We use the synchronous model for rate control in which the periodic update interval A is usually a

fraction of the round trip delay. QEZ) and Q;Z) are used for detecting traffic overload and underload,
respectively. Based on the proposed control algorithms in Section 2, the additive increase and the

multiplicative decrease of rate during the n-th rate-update interval are expressed as:

R, = { Ry 1+ a; additively increase (a > 0) (3.1)

N bR, _1; multiplicatively decrease (0 < b < 1)

where @ (ATR in the source node algorithm) is the rate increment, and & (MDF in the source node
algorithm) the rate decrease factor. Thus, the rate adjustment at the source can be modeled by

linear-increase and exponential-decrease in a continuous-time domain as follows [10]:

R(1) = { R(to) + a(t —tp); linear increase (o > 0) (3.2)

(t=to)
R(tg)e~(1=A) =° ; exponential decrease (4 < 1)

where t is the current time; ¢y the time of the last rate-update; @« = a/A and 8 = 1+ log b within one

rate-update interval A.

3.2 System Control Factors

At any given time, the most congested path of a pt-to-mpt connection governs the dynamic behavior
of the flow-control system. To explicitly model this feature, we introduce the following definition.
Definition 1 The system bottleneck is the bottlenecked path whose feedback dictates the source rate-
control actions. The system feedback bottleneck delay is the RM cell round trip delay experienced

on the system bottleneck.

According to the proposed algorithm, the rate-control actions are based on the following feedback
signals: (1) ER = mingeq ..} {ER(D)}; (2) CT = Uien 2, {C1(0)}; (3) BCT = Usie g 2,y {BCI(i)}
where ER(i), CI(t), and BCI(i) are the requested minimum rate, bandwidth-congestion indication,

and buffer-congestion indication for path 7, respectively. Obviously, F R is determined by the minimum



bottleneck bandwidth, and c1 or BCI is marked first in the path with minimum available bandwidth.
Thus, the system bottleneck is located along the path which has the minimum bottleneck bandwidth.
Since the system bottleneck dictates the source rate-control actions, we can analyze the multicast
flow-control system by focusing on its system bottleneck’s state equations. Let Q(t) be the queue
length function at the system bottleneck and 7 = Ty + T} be the system bottleneck feedback delay.
Then, the system bottleneck state is specified by the two state variables, R(?) and Q(¢). According to

the proposed algorithms, the system bottleneck state equations are given as:

Source-rate function:

R(to) + a(t —tp); it Q(t —13) < Qp, condition for the rate-control rule
to switch to linear increase
R(t) = _(1_5)M . . (3.3)
R(tp)e X if Q(t —Ty) > Qp, condition for the rate-control rule

to switch to exponential decrease

System bottleneck queue-length functions:

Qt) = { 0; if Q(t)=0and R(t) < p (3.4)

ftZ[R('v —Ty) — pldv+ Q(to); if R(t) > p, orif R(t) < p and Q(t) >0

where g = min{pq, pto, - - -, ftn } is the system bottleneck bandwidth, and @, is the high queue-threshold

for the system bottleneck’s buffer. Here R(%) represents the fluid approximation to cell-transmission
throughput. The average throughput is then given by lim;_ ., % fg R(v)dv. Q(t) is an approximation

to the system bottleneck queue-length process. This first-order fluid model has been shown in [8] to

be a good approximation when the system is heavily-loaded.

As mentioned earlier, the system bottleneck dynamically drifts around different paths of the pt-to-
mpt connection as the cross-traffic of other connections varies with time. Consequently, the system
bottleneck feedback delay also dynamically changes with time, which can significantly affect the per-
formance of multicast flow-control. Thus, we explicitly include the variation of round trip delay in our
model, and study its relationship with multicast flow-control algorithms. We discuss this issue in the

next section.

4 The Second-Order Rate-Control

As discussed in [17], increasing or decreasing R(t) is not effective enough to have @, upper
bounded by C,,,, when the system bottleneck feedback delay 7 varies. This is because rate-increase/decrease
control can only make R(t) fluctuate around the designated bandwidth, but cannot adjust the rate-
fluctuation amplitude that determines ¢),,4.,. It can be shown that ¢),,,, increases with both 7 and

. dR(t . .
rate-increase parameter a = dl(f ) and can be written as, Qmaz(T,a), or Qpaz(a) for a given 7. Thus

@ maz can be controlled by adjusting « in response to the variation of 7. The control over a — which
we call a-control — is the second-order control over R(t), providing one more dimension to control

the dynamics of the proposed flow-control.



4.1 o-Control

The a-control is a discrete-time control process since it is only exercised when the source rate

control is in a “decrease-to-increase” transition based on the the buffer congestion feedback signal,

BCI(n) =0 (1) if Q%L{lr < Qgoal (Q%Lgx > Qgoal)s Where Qgoat (Qr < Qgoal < Crag) is the target
buffer occupancy (also called setpoint) in the equilibrium state. If the system bottleneck shifts from a
shorter path to a longer one, then 7 will increase, making @), larger. When @), eventually grows
beyond @) 4,41, buffer will overflow, implying that the current a is too large for the increased 7. The
source must reduce a to prevent cell loss. On the other hand, if 7 decreases from its current value due
to the shift of the system bottleneck from a longer path to a shorter one, then @),,,, will decrease.
When @z < @ goal, only a small portion of buffer space will be utilized, implying that the current o
is too small for the decreased 7. The source should increase a to avoid buffer under-utilization and to
improve the system responsiveness in grabbing available bandwidth. Keeping Q1 < @ goa1 < Cpaz has
two benefits: (1) the source can quickly grab available bandwidth; (2) it can achieve high throughput
and high bandwidth utilization.

The main purpose of a-control is to handle the buffer congestion resulting from the variation of 7.
We set three goals for a-control: (1) ensure that Qg,?,;)m quickly converges to, and stays within, the
neighborhood of ()04, which is upper-bounded by C,,,,, from an arbitrary initial value by driving
their corresponding rate-increase parameters o, to the neighborhood of ., for a given 7; (2) main-
tain statistical fairness on the buffer occupancy among multiple pt-to-mpt connections which share
a common system bottleneck; (3) minimize the extra cost incurred by the a-control algorithm. To

achieve these goals, we propose a “converge and stay” a-control law in which the new value a1 is
determined by «a,, and the feedback information BCI on (),,4,’s current and one-step-old values, Q%gz

and Q%ﬁ) The a-control law can be expressed by the following equations:

an+p; i BCI(n—1,1)=(0,0) (@Y < Quoat A QW < Qyoat)
R it BCI(n—1,n) = (0,1) (Q%?:{; < Qgoat N Q%?;I > Quont) (41

qou,; it BCI(n—1,n) = (1,1)  (Qmas’ > Qgoat N Qmaz > Qgoal)

an/q; if BCI(n—1,n) = (1,0)  (Q¥2) > Quont A QW < Qgont)

where ¢ is the a-decrease factor such that 0 < ¢ < 1 and p is the a-increase step-size whose value will

be discussed next.

4.2 The Properties of the a-Control

To characterize the a-control convergence, we first introduce the following two definitions.

Definition 2  The neighborhood of target buffer occupancy @Q 4oq1 is specified by {Qéoah Q" ) with

goal
JAN n n
pout = max  {QU | Qe < Quout} (4.2)
A . n n
;Loal = ne{r()ninZ ! {ant)m: | angz > ngal} (43)



where Qg,?gr is governed by the proposed a-control law.

Definition 3 {Qﬁ,?gr} 2 {Qmaz(ay,)} is said to monotonically converge to Q) 4ou1’s neighborhood
at time n = n* from its initial value Qﬁ,?()m = Qmaz(ao), if BCI1(0,1,2,3,---,n* — 1,n*,n* 4+ 1,n* +
2,n*+3,---) = (0,0,0,0,---,0,1,0,1,0,--) for ap < agoq; and BCI1(0,1,2,3,---,n* — 1,n*,n* +
17n*‘|’27n* ‘|’37) = (17171717"'71707170717"') fOT Qg > Qgoql-

The a-control is applied either in a transient state, during which Qﬁ,ﬁr has not yet reached Qg41’s
neighborhood, or in an equilibrium state, in which Q%Lgx fluctuates within @ gq:’s neighborhood

periodically. The a-control aims at making Q&?&r converge fast in transient state and staying steadily
within its neighborhood in equilibrium state. The following theorem summarizes the a-control law’s
convergence properties, operating conditions, and the method of computing the control parameter in

both the transient and equilibrium states. Note that Qéoal and Q;Odl are the closest attainable points

h

goal” The actual

around @ goq1, but Q4001 may not necessarily be the midpoint between Q;oal and @)

location of Q4041 between Qéoal and ngal depends on all rate control parameters and initial value of
ag.
Theorem 1. Consider the proposed a-control law Fq. (4.1) which is applied to a pt-to-mpt connection

with its system bottleneck characterized by @Q goq1, Qp, and 7. If (1) a = ag, an arbitrary initial value
N\ 2
at time n, (2) 0 < ¢ <1, and (3)p < (lq;q) <M) , then (1) in the transient state the

a-control law guarantees Q%ng to monotonically converge to Q) g,q1’s neighborhood, and (2) in the

equilibrium state the fluctuation amplitudes of Q%ﬁz around @) 4oq1 are bounded as follows:

{ Qs = Quont < 700 (3 = 1) + 7B (5 = 1) (2.4)
anol - ngal < TQngal(l - q) + T\/m(l N \/6)7

and the diameter of neighborhood for the target buffer occupancy @) 4001 is bounded by

1 1
gaol - iyoal S T2agoal <§ - Q> + T4/ 8agoal@h (ﬁ - \/a) ) (45)

where o4 15 the rate-increase parameter corresponds to @ goq1.

Proof: The proof is omitted here due to lack of space. |
Remarks: The a-control law is similar to, but differs from, additive-increase/multiplicative-decrease
algorithm in the following terms. During the transient state, the a-control law behaves like an additive-
increase/multiplicative-decrease algorithm, which accommodates statistical convergence-to-fairness of
buffer utilization among the multiple pt-to-mpt connections sharing a common system bottleneck.
On the other hand, in the equilibrium state, the a-control law guarantees the buffer occupancy to be
locked with its setpoint the first time when Q&?}m reaches () 4,q1’s neighborhood, regardless of the initial

value ag. In contrast, the additive-increase/multiplicative-decrease does not guarantee this monotonic



convergence since a-control is a time-discrete control process and its convergence is ag-dependent. The
monotonic convergence ensures that Qg,ﬁx quickly converges to, and stays within, the neighborhood
of its target value @ 041. The extra cost paid for achieving these benefits is minimized since only a
binary bit, BcCI , is conveyed from the system bottleneck and two bits are used to store the current and
one-step-old feedback information, BCI(n—1) and BCI(n), at the source. The a-increase step-size p
specified in condition (3) in Theorem 1 is a function of a-decrease factor ¢. A large ¢ (small decrease
step-size) requests a small p for the monotonic convergence. By the condition (3) if ¢ — 1, then p — 0,
which is expected since for a steady convergency system, zero decrease corresponds to zero increase
in system state. According to Eq. (4.4) and Eq. (4.5), when ¢ — 1, Qé}oaHngal — Qgoal, 1.€., Q%ngg’s
fluctuation amplitude approaches to zero, which also makes sense since ¢ — 1 implies p — 0, thus
Q%ZZI approaches to a constant for all n.

To balance R(t)’s increase and decrease rates and to ensure the average of the offered traffic load
not to grow beyond the bottleneck bandwidth, each time when «, is updated by the a-control law

specified by Eq. (4.1), the proposed algorithm also updates j,, as
Bn=1-2"A, (4.6)
I

Since a,, represents R(t)’s increase rate and (1 — f3,)/A determines R(t)’s decrease speed, by rewriting

Eq. (4.6) we get o,/ (115”) = p, and hence, near the point (R(t) = u, Q(t) = 0), the rate of R(?)’s

increase is equal to its decrease rate. In addition, letting o, (%) = p reduces to a simpler scenario
n

where we only need to control one parameter a,, instead of both «,, and 3,.

5 System-Bottleneck Dynamics of a Single Connection

We derive analytical expressions for both equilibrium and transient state dynamics, which determine
such performance measures as maximum queue length, average throughput, and oscillation periods
of the rate/queue-length function. Also derived are expressions which can be used to compute the

evolution of rate/queue-length functions.

5.1 Equilibrium-State Analysis

The system is said to be in the equilibrium state if B(¢) and (t) have already converged to a certain
regime and oscillate with a constant frequency and a steady average amplitude. In this state, R(?)
fluctuates around g, and Q%ng around () ,04;. The fluctuation amplitudes and periods are determined
by the rate-control parameters o, 3; link bandwidth pu; target buffer occupancy @) goqi; a-control
parameters p, ¢; congestion detection thresholds @5, ¢;; and delays T}, Ty. To simplify the analysis

of equilibrium state, we assume that the a-control parameters (i.e., ag, @ goal, P, and ¢) are properly

selected according to the conditions specified in Theorem 1, such that Q%ﬂx converges to a symmetric

neighborhood of @ you Where Qgou1 = £( fqoal 1+ ngal) and Q;ml < Craz-
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Figure 3: Dynamic behavior of E(t) and ((t) for a single pt-to-mpt connection.

Figure 3 illustrates the first 4 cycles of rate fluctuation and the associated queue-length function

at the bottleneck link in the equilibrium state with a; = o” At time tg, the rate reaches the link

goal*

bandwidth p and the queue starts to build up after a delay of 7. At time to 4+ T3 + Tq(l), Q(t) reaches
@, and bandwidth congestion is detected. After a backward delay of Tj, the source receives c1 = 1
feedback and its rate begins to decrease exponentially. () reaches the peak as R(¢) drops back to
the link bandwidth g. When the rate falls below the link bandwidth, Q(¢) starts to decrease. After a
time period of 7 elapsed, Q(¢) reaches @), then the non-congestion condition (c1 = 0) is detected and
sent backward to the source. After a backward delay of T3, the (c1 = 0) feedback arrives at the source,
then the rate-decrease to rate-increase transition condition is detected at the source. Subsequently,

the source updates the next rate-increase parameter az with a smaller value of qa; (3; is also updated

accordingly using Eq. (4.6)) since Bc1 = 1 (due to ng)m > () goat) is received in the feedback rM cell.
When R(t)

Then, the source rate increases linearly with the new rate-parameter ay = qay =

(1)

reaches p after a time period of Ty

goal
, the system starts the second fluctuation cycle.
The dynamic behavior of the second cycle of fluctuation follows a similar pattern to that in the

first cycle except for the updated rate-control parameters ay and 9 resulting in a longer cycle length

due to smaller increase/decrease rates. When the transition from rate-decrease to rate-increase is

detected again for the second fluctuation cycle, the source sets as = ag/q because Q%?H < Qgoal
., BCI(2) = 0, hence BCI(1,2) = (1,0). But as = az/q = (qo1)/q = o1 since a,, has already

converged to {a }in the equilibrium state. Thus, the dynamic behavior of the third fluctuation

goal? goal
cycle is exactly the same as the first cycle. In general, all odd-numbered fluctuation cycles have the
same dynamic pattern and all even-numbered fluctuation cycles have another identical pattern, i.e.,

Qg = Qg = aéoal and agi41 = agjy1 = agoal Vi, j positive integers. So, we focus only on the dynamic
behavior during the first fluctuation cycle Ty = 2(Tf +13) + Tq(l) + Tcgl) + Tl(l) + T}l) and the second

fluctuation cycle T, = 2(Tf + T3) + Tq(Z) + Td(z) + TI(Z) + T}z), and define the system period to be
T =T +T5.

11



In the i-th fluctuation cycle (i = 1,2), let R%)M and Ri?m be its the maximum rate and minimum

rate, respectively, and Q%)az be its maximum queue length, then we have
RGs = p+ ai(TY) + Ty + Ty) (5.1)

where Tq(i) = 1/23—_h is the time for the queue length to grow from 0 to @y, a1 = agoal = aéoal/q and

Qg = qov; = al

goal- TOr convenience of presentation, we define

2Qn

k3

T, ST+ 10 + Ty =T, +

+ Ty (5.2)

(1)

which is the time for R(¢) to increase from pu to its maximum Ry, by exercising linear rate-increase

control. Then, the maximum queue length is expressed as
. T4 T .
Q= [ st it [ (R 0TE < (5.3
0 0

where Tcgi) is the time for R(t) to drop from R, to 1, and is obtained by letting R)(T;) = p as:

4 (1 - ﬁl) g R%)az ( )

Then, we have
() X T 12 4 a; A TW 4 A lo a 5.5
Qmaa; 9 [ maa;] (1 — ﬁz) max H(l _ ﬁz) i R%)az ( )

Note that the queue becomes empty during the fluctuations in equilibrium state as the utilization

is < 100 %. Tl(i) is the duration for Q(t) to decrease from Q%)ar_ to Qr:

o)

Q== [ p1 = (5.6)
0

So, Tl(i) is the non-negative real root of the nonlinear equation:

—(1=3: Tl(i) 1_52' 7 Q%)aw_Ql 1_52'
-~ mA+< . )T;)_[ - ( ~ )+1]:0. (5.7)
(i) (V41 47))
The minimum rate is then given as R,”. = pe—(1=5) A . The system period is
2 2 ' , : :
T=%1T= Z[ O+ 19 + 1 4 27 4 T}”] (5.8)
=1 i=1

12
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Figure 4: Average throughput and High/Low target buffer occupancy with p = 367 and C,,,, = 711.

where T\ = (1 — Rinm)/azﬂ is the time for R(?) to grow from R;?,m to p with the increase-rate
parameter a1 (a3 = a1). Note that each 7; contains two round trip delays, which correspond to the

two transitions of R(¢) (from linear to exponential and then back to linear).

The average equilibrium throughput can be calculated by averaging R(¢) over one cycle T as

)
— 1 Tmaa: .
R = TZ / (1 + ait) dt+/ R =(1=5:) i dt—|—/ mm + aZ_Ht)dt] (5.9)
=1 0
where Te(i) = Tcgi) + Tl(i) + 7 is the time spent on exponential-decrease rate control within the i-th

cycle. The above equation is reduced to:

2 . S . () N : .
= 30|ttt S + 2 (7255) (1 - e—@—m%) TR, + SLTOR] (65.10)
=1 M

5.2 Numerical Evaluation of Equilibrium-State Performance

Using the analytical results derived thus far, we now compute equilibrium-state performance. We
assumed that (i) the bottleneck link bandwidth g = 155 Mbps (367 cells/ms) and C,qp = 711 cells,
and (ii) the bottleneck is detected at a node farthest away from the source — the worst case in view
of feedback delay — so Ty = Ty = 1 ms, thus 7 = T, + Ty = 2 ms. Also, we use A = 0.57 = 1 ms,
Q1 = 50 cells, @; = 25 cells, and the initial source rate Ry = p as we are dealing with the equilibrium
state.

First, we examine how the a-control parameter ¢ affects R. Figure 4(a) plots R vs. ¢ for different

values of )41 According to the proposed a-control, we first focus on the ideal case where @ 041 =

( goal T ngal) ie., Qﬁ,ﬁr fluctuates symmetrically above and below @ goq;. Figure 4(a) shows that

R monotonically increases as ¢ grows from 0.1 to 1.0. This is expected since a smaller ¢ leads to a

13
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Figure 5: High/Low target rate parameter and Oscillation frequency with g = 367 and C,,,, = 711.

(m)

larger fluctuation of R4, and Q%Lgx, which defeats the equilibrium-state performance of R. When q
(n)

gets larger, the fluctuation amplitudes of Qgﬂx and Ry 4. get smaller, as shown in Theorem 1. In the

extreme case when ¢ — 1 (¢ cannot be equal to 1 since ¢ = 1 means that the a-control is shut down),

R%@x approaches a steady constant value, and the equilibrium-state performance of R attains its

maximum. Figure 4(a) also indicates that for the same value of ¢, a smaller value of Q001 = kChraz,
0 < k < 1, leads to a larger R in equilibrium state since a smaller () goar implies a smaller ago,;.

Figure 4(a) shows (i) a sharp drop in R when ¢ gets smaller than 0.4, and (ii) a slow gain in R when
g > 0.6, providing information on how to select ¢ for the a-control to operate in a balanced region

within which an optimal balance between average throughput and response speed is achieved.

Figure 4(b) plotted Q" , and @' , against q for different values of Q,o.. Figure 4(b) shows that

goa goa

for a given @ goal, ngal ( éoal) is a monotonically decreasing (increasing) function of g. Moreover, as

¢ increases, Qéoal and ngal approach each other symmetrically with respect to the given @) .45 this is
{

goal?

expected since Qo0 = %(Q;Loal + ngoal). As g — 1, Q;Loaz will become close to ¢) thus resulting in

almost no fluctuation in Q%ng, which is consistent with the Eq. (4.4) in Theorem 1. Also, for a given

¢, a smaller setting of @ o4 (0T @goq1) resulted in a smaller difference between Ql ;and @ thus a

h
goa goal?
smaller fluctuation amplitude of Q%ﬁz, which also verifies Eq. (4.5) in Theorem 1.

{

goa

h

goa

Figure 5(a) plots a; ,; and a” , vs. ¢ for different values of @);041, showing a similar pattern to

{

that in Figure 4(b). However, as ¢ increases, o’ goa

goal and «

; approach each other asymmetrically,
due to the nonlinear functionality of ()4, in a. Moreover, given ¢ a larger () ;.4 leads to a larger

(agoal - aéoal)‘

. . . A .
Selection of ¢ also affects the oscillation frequency, F = %, of the flow-controlled system in the

equilibrium state, where 7" is the oscillation cycle defined by Eq. (5.8). Figure 5(b) plots I’ against ¢
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Figure 6: Maximum buffer occupancy )4z Vs. a,-decrease pace q.

for different values of ()j0q;. I is observed to monotonically increase with ¢ regardless of @) 4., value.
Thus, together with Figure 4(b), Figure 5(b) also shows that the oscillation frequency is inversely

proportional to the oscillation amplitude of Q%AQI Moreover, given ¢ a larger Q.01 gives rise to a

higher oscillation frequency.

In general, the ideal case of Q4001 = %( goal + Qéoal) does not always hold, depending on the initial

value of ag, but the a-control algorithm guarantees the relationship nyoal < Qgoal < ngal to hold.

In the more general case described by this relationship, Q%ng fluctuates around Q.01 after Q%LQI

converged to ()g,q1’s closest neighborhood {QéoaHngal}‘ But (4041 can be anywhere between Qéoal

and ngal. To analyze how ¢ affects the maximum buffer requirement, we consider the worst case when

Qgoal > ngoal. Figure 6 plots )4z vs. g in the worst case of buffer requirement. @4, is observed
to increase as ¢ decreases, which makes sense since a smaller ¢ implies a larger fluctuation amplitude

of Q&?&r Moreover, when ¢ is very small, particularly below the range of 0.4 ~ 0.6, (),,4 shoots up

quickly. Also, when ¢ is beyond the range of 0.4 ~ 0.6, () 4, drops slowly as ¢ increases.

5.3 Transient-State Analysis

An equilibrium state can be broken by either (1) the change of 7 due to the change of system
bottleneck location, or (2) the change of available bandwidth due to the variation in cross traffic. The

the rate

h
goal

transient state can be caused by the variation of 7 in two different cases: (I) ag > O‘goalv
l

convergence is under-damped, and (II) ag < ay,,,

the rate convergence is over-damped, where o

and algoal are specified by the target buffer occupancy 4041, and the a-control parameter ¢ and p are
selected and adjusted according to the variation of 7. Since the new system bottleneck usually has

a smaller target bandwidth g than the old one pu, it is reasonable to assume that Ry > p after the
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system bottleneck shifted to a different path. Thus, the previous system bottleneck path’s target rate
parameters become the new system bottleneck’s initial values, denoted by ag and (p. Let the new
system bottleneck’s target rate parameters be a,,,; which corresponds to the new system bottleneck’s
feedback delay 7. To quantitatively characterize transient-state performance, we define and determine

an important performance parameter as follows.

Definition 4. The number of transient cycles is defined by

N JAN man€{071727"'}{k | qkao > agoal}; Zf ag > agoal (5 11)
manE{O,l,Z,m}{k | ap + kp < agoal}; Zf ag < agoal

Theorem 2. If the initial rate-control parameter a = ag, the new system bottleneck feedback delay

T =T, and new system bottleneck target bandwidth p = i, then N is determined by

log [~22] : -
N = _ log q J’ Zf Qg 2 ®goal (512)
Lagoapﬁj; Zf (%] S agoal

where 0041 15 the non-negative real solution of

2
Agoal | ~ 2 . 2 & 7
Oaont (= 2O g(xy [2@n) L, a ~ Qgoar =0 (5.13)
2 Qgoal Qgoal Qgoqal ﬁ 1+ &goal <7_ n / 2Qh )
X goal

and can be approrimated as

Qgogl ~

~ (\/ ngal V2Qh) ‘ (514)

Proof: The proof follows from the derivations of Eqs. (5.1) through Eq. (5.5) and definition of N
given in Eq. (5.11). The proof for Eq. (5.14) is omitted here for lack of space.
a

Now let R( ) . and Qp . be the peak source rate and queune length, respectively, in the i-th transient
cycle, i = 1,2,---, N(> 1) (by assuming ag > %agoal or ag < @goqr — p). Let’s start from the first

transient cycle, or ¢ = 1. Since the rate-increase function in the first transient cycle is R(t) = Ro+ aot,
we have

rM = Ry + ao( 71 4 7) (5.15)

peak —

(1)
where Tq(l) = aio [—(Ro — )+ V(Ro— )%+ QaOQh] is obtained by solving @, = fo (R(t) — p)dt.

For convenience, let T(eik = T( ) 4 7 be the time for R(t) to increase from Ry to R)E)e)ak Then,

7(1) ¢
Q;lelk - / ' k(Ro + agt — fi)dt + / peake ~UP)E — f)dt (5.16)
0
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where Tcgl) = - (1—Aﬁo) log (j) - is the time for R(t) to drop from R, back to ji. Reducing Eq. (5.16)
pea
gives
peak — 0 — peak peak — —~ - — og - :| .
1 Bo H [t ,;elk

When Ry = [, Eq (5.17) reduces to Eq. (5.5), which is consistent with the fact that Q%)M is the

special case of Q Wk With Rg =

To compute the first transient-state cycle, we need to find Tl(l) which is the non-negative real root

of nonlinear equation:

1m0 e (2) g | (Qpea% Ql) (F52) +1] =0 (5.18)

~ T(1)+T
This transient-state cycle is T = Tq(l) —I—Tcgl) —}—Tl(l) + 2?—|—T7§1) where TP) = a% (1 —(1=0) )

is the time for R(t) to reach i from its lowest value in the first transient cycle.

Finally, the average throughput during the first transient-state cycle is expressed by

(1) (D7
=1 _ 1 7 7 (1) A —(1-po) et 1T
R - WI:R eak+ [ peak]2+Rpeak <1_ﬁ0) (1—6 (1=5o) A
(1)~
Tr(l) ( -(1- ﬁo)T i ) + %[Tﬁl)]z] (519)

Now, let’s consider cases for 2 < 7 < N; since the performance parameters are derived similarly to the
case of 1 = 1, we only give the final expressions for the average throughput, the peak queue length,
and the length of the i-th transient cycle (2 <7 < N):

() (),
20 _ L[, Qi1 0) (i) A —(1= i) LT
= T(z’)[“Tpe”ﬂ’”r 7 Mpeail’ +Rpeak<1—ﬁi_1 e T
. T(z)+‘r al .
+ 1) (ue (1=Bi-1) -4 ) + 7[TT(Z)P] (5.20)
QU = Mpi g B g0 g log — (5.21)
peak 2 el D= Big) et TR = i) T RO
T = 29 Oy 9r (5.22)
a1

17



where

i ~ 2Qn
70
peak T+ a1
R;(Qak = [+ O‘i—lT;E?ak
: A ii
T(Z) = — lo -
d (1=Bic) 7 RO

=
=
=
l

~ (047
I (1 _ e (1=Bi-1) ZA+ )
a;

and Tl(i) is the non-negative real root of the following nonlinear equation

(8 1— 8 ) Q(l) -Q 1- 8
—(1-Bi_1)~ ﬁz—l) (%) . [ peak l < ﬂz—l) :| _
¢ it} <7A T - =) ) =o. (5.23)

The entire transient-state period is then Ty.,, = Zf\il T, and its average throughput is expressed
by
1 N

Ttran i

ROTO), (5.24)

Rtran =

The peak queue length for the case of ag > agoal is Qpeak = Q;le)ak Here N is defined by Eq. (5.11)

and a; by the a-control law Eq. (4.1).

5.4 Numerical Evaluation of Transient-State Performance

Based on the analysis in Section 5.3, we derived numerical results of transient-state performance.
We use the same network flow-control settings as in the equilibrium-state analysis: Qp = 50 cells,
@1 = 25 cells, A = 1 ms. But for the transient-state flow control, we set C,,,, = 700 cells and
Qgoal = %me = 350 cells, and the previous equilibrium state is specified by po = 367 cells/ms
and initial system bottleneck feedback delay 79 = 2 ms. We use the new system bottleneck target
available bandwidth g = 267, and focus on the worst case when the system bottleneck moves from

the shortest path to the longest one. So, the system bottleneck feedback delay changes from 75 =

Tmin 2 min;egq 9. )17} 10 T = Tragr 2 Max;e(12...,}17 ), for an n-branch pt-to-mpt connection.
Figure 7(a) plots N, the number of cycles in the transient state, versus (7w — Tmin) for different
values of ¢. N is found to increase stepwise monotonically with (7,42 — Tmin). This was expected
since a large change in system bottleneck feedback delay requires more transient cycles to converge to
the new optimal equilibrium state. A smaller ¢ results in a fewer number of transient cycles. Thus, ¢
measures the speed of convergence. When 7,,,, = 107,,;, and ¢ = 0.4, the flow control takes only 5

cycles to converge to the new optimal equilibrium state.
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Figure 7: Number of transient cycles and Transient-state peak queue length.

Figure 7(b) plots @ peak VS. (Trmaz — Tmin ) for a different target buffer occupancy @ o4, and Ry = 367,
po= 267, 790 = 2 ms, Qp = 50 cells, @; = 25 cells, and A = 1 ms. @peqr is observed to shoot up
quickly with (7,42 — Tmin) and a larger target buffer occupancy is found to result in a faster increase
of Qpeak- Figure 8(a) plots the period of transient state 744y versus (Tpas — Tmin) for different values
of q. Tiran increases piecewise linearly with (742 — Tmin ). Given (Tpas — Timin ), @ smaller ¢ results in a
faster transient convergence (shorter T},4,,), which is also expected since ¢ is a measure of a-decrease
rate. A small ¢ implies a large a-decrease pace. Furthermore, while T%,,, decreases as ¢ gets smaller,
T increases in each transient cycle, leading to a smaller N. In general, a smaller ¢ results in faster
convergence. Figure 8(b) shows that for the given (7,40 — Tin) and N, the smaller ¢ ;47 is, the slower

the convergence process is.

6 Multiple Multicast Connections

We now analyze the performance of the proposed scheme for N (> 1) concurrent multicast connec-

tions that share a common system bottleneck.

6.1 System Model

N concurrent flow-controlled connections with a common system bottleneck are modeled by a single
buffer and a server shared by N sources as shown in Figure 9. The parameters characterizing the ¢-th

multicast connection (¢ = 1,2,---, N) are given as follows.
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R;i(): Data transmission rate for the ¢-th multicast connection

ali): Additive rate-increase parameter for the 7-th multicast connection
A0 Multiplicative decrease factor for the ¢-th multicast connection
JAVE Time interval of rate update for the ¢-th multicast connection
T}@ (Tb@): Forward (backward) delay for the i-th multicast connection

Q(1): Length of the shared queue at the system bottleneck

Qn (Q1): High (low) threshold of the system-bottleneck queue

e System-bottleneck link bandwidth (BW)

We now derive the equations describing the dynamical behavior of this system by proceeding as in

Section 3. At time ¢ the aggregate arrival rate at the system bottleneck is Zf\il Ri(t — T}@), S0

0; | it Q) =0 A TN, Ri(t) < p
Q)= [ SN, Ri(o =) = phdv+ Qo) if (1) £, Rit) > ps or (6.1)
(2) SN, Rilt) < A Q1) > 0

Applying the same rate-control algorithm proposed in Section 2, for ¢ = 1,2,---, N, we get:

Ri(to) + a0 (t —to);  if Q(t —T") < Qu

Ri(t) = iy (E=to) ;
Rito)e " PNEE Qe -1 > Q,

(6.2)

The a-control is applied in the same fashion as in the single multicast connection case, but Q%gz

is contributed, and () ;.4 is shared, by all N connections.

Derivation of analytical results for multiple concurrent multicast connections is quite lengthy and
thus omitted. Using these analytical results, we now present two examples to demonstrate the efficacy
of the proposed scheme in terms of convergence to target buffer occupancy and link bandwidth, and

fairness of buffer and link bandwidth sharing.
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Figure 9: The system model for N concurrent connections sharing a system bottleneck.

6.2 Adaptations to Variation in Feedback Delay and Available Bandwidth

In the first example, we consider 3 multicast connections VCy, VCg, VCs, such that VC; and VCy
first share the system bottleneck By, then VC; and VCg3 share the system bottleneck By after the
system bottleneck shifts from By to Bz. By’s parameters are u = 45 cells/ms, 7 = 3 ms (assumed the
same for both VCs for simplicity), A = 0.4 ms, Cy,q = 500 cells, Qgoa1 = 250 cells, @ = 50 cells,

Q1 = 25 cells. We assume that Ry(¢) and Ry(t) have already entered their equilibrium states with

gola)l = Zéz = 1 cell/ms?, algga?l = 1 cell/ms?, a;éi% = 0.5
(:ell/nr1527 MCRy = MCRy = 0. At time t = 325.66 ms, the system bottleneck shifts from B; to Bs.
The system bottleneck feedback delay of By is doubled to 7 = 6 ms while the available bandwidth

decreases to p = 40 cells/ms (smaller than B;’s), and all the other parameters remain the same as B;’s.

parameters g1 = ¢q3 = 0.5, « 2 cells/ms?,

In By, we assume that VCp shares the buffer and bandwidth with VCs, and R;(?) starts competing
for bandwidth with a higher steady value a(? = 2 cells /ms? at the end of a-control cycle with a lower
steady value of @ and R3(t) with initial a(®) = 1 cell/ms? and Ré?’) = 20 cells/ms. Using the analytical
results for multiple concurrent multicast connections, we obtained the evolution functions of R(¢) and

R3(t) and their shared Q(¢) with and without a-control, as shown in Figures 10 and 11, respectively,

For the scheme with a-control, we observe from Figure 10 that while in equilibrium state, Qgggz

fluctuates periodically around its target buffer occupancy @) 0q1 = 250. At system bottleneck transition
time ¢ = 325.66 ms, Figure 10 shows that the shared Q%L{LE shoots up to Qpeqr = 472 due to the
doubling of system bottleneck feedback delay 7 and decreasing of available bandwidth. By applying
the a-control, Q%ﬁr converges to, and stays in, its target’s neighborhood within 3 cycles. Moreover,

(1)

the proposed scheme ensures that R;(¢) and Rs(t) converge to their target bandwidth share, Iug}?al =
@ _

Pyoar = 20 cells/ms in a fair manner. The resulting bottleneck average bandwidth utilization in the

equilibrium state is R_,l/,u;?al = 0.986 and R_g/,ué?al = 0.967, respectively.
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Figure 10: Qﬁ,ﬁr adapts to system bottleneck feedback delay variation with a-control.

By contrast, for the scheme without a-control, Figure 11 illustrates that it cannot control Q%Lgx

shoot-up when the system bottleneck feedback delay increases and available bandwidth decreases. We

assume the same network and flow-control conditions for the scheme without a-control and Q%Lgx

has been within ) 4..’s neighborhood since the system entered equilibrium state initially. When the
system bottleneck shifts from By to By at time t = 325.66 ms, Figure 11 shows that Q%I jumps up

t0 Qpeak = 476 cells while in the transient state, and stays at as high as Q%x = 461 cells in the

equilibrium state, which is almost two times of its setpoint @ ,041 = 250 cells. However, total average
bandwidth utilization in the equilibrium state is R_l/,ué?al = 0.951 and R_g/uéizll = 0.863, respectively,
which is lower than the a-controlled scheme.

This example indicates that our proposed scheme adapts well to the variations of system bottleneck
feedback delay and available bandwidth of system bottleneck of a multicast connection while the
scheme without a-control does not. Thus, our scheme scales well in terms of buffer requirement and

average throughput as compared to the existing schemes.

6.3 Fairness of System Bottleneck Buffer Occupancy and Link Bandwidth

In the second example, we consider two multicast connections VC; and VC; sharing a single system
bottleneck B;. We assume Rq(f) of VC; start ramping up from Ré” = 0 with aél> = 2 cells/ms?,

p=2 cells/ms?, and ¢'1=0.6. By’s parameters are kept the same as those of By’s in the first example.

VC, joins VC; after VC; has reached its equilibrium state.
We assume VC; starts sending data at ¢ = 0, and VCy at ¢ = 250.23 ms which equals 3 a-
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Figure 11: Q%@x does not adapt to system bottleneck feedback delay variation without a-control.

control cycles after VCy has already reached its equilibrium state. For the proposed scheme, using the
analytical results derived from multiple multicast connection model, we computed the evolutions of
Q1(1), Qa(t), and Q(t) = Q1(1)+ Q2(t) for both transient and equilibrium states as shown in Figure 12.

After 4 transient cycles from ¢t = 0, Q%gz is observed to converge to the neighborhood of () 0.1 = 250

cells, instead of its share of Q Qngal = 125 cells, because there are no other VCs sharing C, 4z

goal —
with VCq, and thus, VC; grabs the entire () ., = 250. At ¢t = 250.23 ms, VC, starts competing for
use of By’s bandwidth capacity g and buffer capacity C,4-. At the same time, the equilibrium state

of VCy is broken and @1(t) and R;(t) start to give up the link bandwidth and buffer occupancy above
their shares: p; = 22.5 cells/ms and Q "1 = 125 cells. Note that right after VC; joins in By, there is
a transient period during which R(t) = Rq(t) + R2(t) and Q(t) = Q1(t) + Q2(t) overtake their target
values. After 4 transient cycles, the proposed flow-control scheme not only brings R1(t), R2(?) towards

to their shares p; = L = 22.5 cells/ms® (i = 1,2), but also makes Qg,?c)m’s of Q1(t) and Q2(t) converge

to their target shares: Qé?al = %ngal = 125 cells (¢ = 1,2) as shown in Figure 12. Especially, the

ratio of Q%@x shares between VCq’s and VCy’s is improved on average from 64% : 36% in transient
state to 53% : 47% in equilibrium state.

This example shows that the proposed scheme is fair among the competing multicast connections
in term of bandwidth and buffer capacity. In the scheme without a-control, since @ which determines
both target bandwidth and buffer occupancy is fixed, the fairness for both bandwidth and buffer

occupancy is difficult to achieve for multiple multicast connections with different a’s.

23



120 T T T T T

T T

R2(t) -
100 System Bottineck B_1's target_ BW: \mu_{goal}=45 cells/ms ----- i
VC_i's (i=1,2) target_BW: \mu_{goal}=22.5 cells/ms

::EA/\ /\ M -
AV A A ACA ALACAL
ML A SA S A

Y

n n

00 500 600 700
450 T T T T T

R_1(t) and R_2(t) (cell/ms)

T T

. Q=Q_1(H)

a00 L i QM=Q_1(1)+Q_2(t) ——— 1
i Q*%S) """

350 |- Q_(goan:zsg cells ——— |

VC_i's (i=1,2) Q_{goal}=125 cells -----

()=Q_1()+Q_2(t) (cells)

Q_1(9, Q_2(), and QW
- g 8

S
\
I
——

LW || £
500 600 700

1i
0 100 200 300 400
time (ms)

Figure 12: Fairness of bandwidth and buffer occupancy with a-control.

7 Conclusion

In this paper we proposed and evaluated a flow-control scheme for ATM ABR multicast services,
which scales well and is efficient in dealing with the variations in the multicast-tree structure and
feedback round trip delay. We proposed a second-order rate control algorithm to handle the variation
of feedback round trip delay. By exercising two-dimensional rate control, the proposed scheme not only
makes the transmission rate converge to the available bandwidth of the connection’s most congested
branch, but also brings the buffer occupancy to a small neighborhood of the target setpoint bounded

by buffer capacity.

Using the fluid approximation, we modeled the proposed flow-control scheme and analyzed the
system dynamics under the most stressful traffic condition. We derived closed-form expressions for
queue buildups, average throughput, and other measures. These expressions were then used to evaluate
the system performance, design the optimal rate-control parameters, and compute the evolution of
the rate and queue-length functions. We also analyzed the convergence property of the second-order
rate control law.

Using numerical examples, we have shown that the proposed scheme can achieve fairness among
competing multicast connections in terms of both bandwidth and buffer capacity. We are currently
developing a simulator based on NetSim to further evaluate the performance for more complicated

network configurations under the proposed flow control, which will be reported in a forthcoming paper.
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