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Abstract 

Memory protection is an important OS feature for  the re- 
liability and safety of real-time control systems. In this pa- 
pel; we study the feasibility oj memory protection in small 
embedded systems in which memory size ranges from sev- 
eral tens of KBytes to several hundreds oj KBytes. We eval- 
uate various protection methods in terms of memory con- 
sumption, processing overhead, multiple-thread support, 
region enlargement, and hardware support. We present 
a new Protection method called Intermediate-level Skip 
Multi-Size Paging which skips unused intermediate-level 
page tables of Multi-level Paging and supports several page 
sizes. Our evaluation results show that this method along 
with Paged Segmentation and Short-Circuit Segment Tree 
are more cost-effective than other known memory protec- 
tion methods. Also, the feasibility of Intermediate-level Skip 
Multi-Size Paging can be improved ; f a  MMU supporting 
several page sizes is available for  microprocessors. 

Key Words:Embedded system, memory protection, virtual 
memory, paging, segmentation, memoty management unit 
(MMW 

1. Introduction 

In next-generation control systems, devices will be in- 
terconnected by field networks instead of the wire har- 
ness in use today. This means not only the reduction of 
wiring cost but also a paradigm shift from centralized con- 
trol using high-performance microprocessors to coopera- 
tive and distributed control with several small microproces- 

'The work reported in this paper was done dunng S Suzuki's visit to 
the RTCL under a cooperative contract from Hitachi Research Laboratory. 

sors controlling up to tens of devices such as sensors, mo- 
tors, valves, etc., and communicating with each other via 
field networks. Moreover, the progress of VLSI technolo- 
gies will make low-cost single-chip small embedded sys- 
tems available soon, consisting of high-performance RISC 
microprocessors, built- in memory of several tens to sev- 
eral hundreds of KBytes, communication transceivers, A/D 
converters, and ten or so I/O ports. The processes running 
on such embedded systems are usually quite small (at most 
several KBytes of code and hundreds of bytes of data and 
stack). Most of their memory requirements are known a pri- 
ori and fixed (though the data and stack area sizes may vary 
dynamically which requires OS support). Also, embedded 
software is constructed with many modules, so it requires 
efficient multiple-thread service. Hence, any real-time oper- 
ating system (RTOS) to be used in such embedded systems 
must not only have a small code size (10K to 20 KBytes) 
but must also provide support for the above-mentioned re- 
quirements of embedded systems. 

Zuberi and Shin [ 11 developed a small distributed RTOS 
for embedded systems, called EMERALDS (Extensible Mi- 
crokernel for Embedded ReAL-time Distributed Systems). 
EMERALDS provides various RTOS functions particu- 
larly suitable for small- to medium-sized embedded sys- 
tems. The micro-kernel architecture of EMERALDS con- 
sists of procesdthread management (real-time scheduling 
and memory protection), communication primitives, syn- 
chronization primitives (semaphores and condition vari- 
ables), timer, interrupt handler and device driver primitives, 
and supports the extensibility of many necessary functions. 
These features are realized with a small RTOS of 13-KByte 
kernel code. 

One key feature of EMERALDS is memory protection 
among processes and kernel. Memory protection is effec- 
tive in enhancing system reliability and safety. For exam- 
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ple, though 99% processes on some system may be bug- 
free and execute correctly, if the remaining 1% processes 
have bugs in them, they may corrupt the data of other bug- 
free processes and result in a system crash. Memory pro- 
tection is effective in preventing such a crash and is es- 
sential for safety-critical embedded applications such as 
avionics, life support systems, and various other products 
in transportation or consumer electronics. Memory pro- 
tection is generally realized by memory management soft- 
ware with MMU hardware support making the memory- 
protection method hardware-dependent. For example, mi- 
croprocessors like Motorola 68040 [2], PowerPC’ [3], etc., 
have hardware support for Paging while Inte1386’ [4] has 
support for Paged Segmentation. As far as software man- 
agement aspects of memory management are concerned, 
they have been studied for more than 30 years, including 
working set [ 5 ]  and virtual memory [6] concepts. 

EMERALDS uses 3-level Paging of the MC68040 mi- 
croprocessor for memory protection. Besides EMERALDS, 
there are several RTOSs for embedded systems support- 
ing memory protection. MiThOS [7] supports physical- 
address-based memory protection with Paging. Chorus3 
[8] and LynxOS4 [9] support logical-address-based memory 
protection with Paging. VRTX5 x86 [ 101 supports logical- 
address- based memory protection with Paged Segmenta- 
tion. In general, they are for mission-critical embedded ap- 
plications or scalable RTOSs ranging from small embedded 
systems to general-purpose systems. 

However, at present, we cannot just apply current 
memory-protection methods to cost-sensitive small embed- 
ded systems. Memory protection requires a MMU and 
memory management tables (e.g., page tables or segment 
tables). The MMU adds to hardware costs while the 
memory management tables consume RAM. The memory- 
protection procedure (equivalent to translation lookaside 
buffers (TLBs) miss handling routine in case of software- 
managed TLBs) decreases the processing speed of the mi- 
croprocessor, or these penalties require higher-performance 
microprocessors with MMU and more memory. Further- 
more, the page sizes which current microprocessors sup- 
port are 4-8 KBytes, but these are too large for small em- 
bedded systems. We must therefore reduce page size, but 
the smaller the page size, the larger the amount of mem- 
ory needed for memory management tables. Small page 
sizes also increase the TLB miss ratio and decrease the 
processing speed. This indicates a need to modify current 
memory-protection methods for small embedded systems. 
Moreover, in small embedded systems, it is very impor- 
tant to improve the efficiency of memory usage and reduce 

PowerPC is a trademark of Motorola, Inc 
Intel386 is a trademark of Intel Corporation. 
Chorus is a registered trademark of Chorus systkmes. 
LynxOS is a trademark of Lynx Real-Time Systems, Inc. 
VRTX is a registered trademark of Microtec Research 

the memory requirements. So, it is necessary to use and 
share thread stacks efficiently among processes in a multi- 
ple threads support environment. If it is possible to enlarge 
or shrink data or stack area dynamically on demand, one 
can also improve the efficiency of memory usage. 

In this paper, we focus on the feasibility of memory pro- 
tection for small embedded systems, using the following 
metrics: 

efficiency of memory usage 

- efficient threads support 

- data and stack region enlargement 

0 memory consumption 

0 processing overhead 

The rest of this paper is organized as follows. In Sec- 
tion 2, we give a brief description of the current memory- 
protection methods for large systems, compare them quali- 
tatively, and state the problems associated with them. Then, 
we describe a new memory-protection method for small em- 
bedded systems. In Section 3, we evaluate the feasibility of 
each memory-protection method, and in Section 4, we de- 
scribe the effect of page size and logical-address-space size 
on memory-protection methods. In Section 5, we describe 
the MMU features needed to support memory-protection 
methods. Finally, we conclude the paper with Section 6. 

We will use the following parameter values for our eval- 
uation: 

0 The page size is set to 128 bytes. Page is the smallest 
unit for memory protection, and this page size - which 
can have 32 four-byte data - is feasible for data or stack 
areas of small embedded applications. 

0 Logical address space is 4 MBytes. This size is enough 
for small embedded system. 

In general, the smaller the page size or the larger the logical 
address space becomes, the more memory consumed by the 
memory-protection method. We will discuss this in Section 
4. 

2. Memory-Protection Methods 

Memory-protection methods are either physical-address- 
based or logical-address-based. Bit Map and Linked List 
belong to the former, while Paging, Segmentation belong to 
the latter. Described below are Bit Map, Multi-level Paging, 
Segmentation, Paged Segmentation, and Short- Circuit Seg- 
ment Tree as currently available memory-protection meth- 
ods, as well as a new protection method we have developed. 
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2.1. Classification of Protection Methods 

Currently-available protection methods can be classified 
into the following five types. 

(1) Bit Map: divides physical memory into pages for mem- 
ory protection. Each process checks the protection informa- 
tion of the corresponding page whenever it accesses mem- 
ory. For example, the memory management information per 
page could be constructed with just the 2-bit-size read/write 
protection information. 

--c-. 

(2) Segmentation: divides the logical address space into 
several segments each of which is mapped onto the phys- 
ical address space. This method requires a memory man- 
agement table (segment table) which contains segment ta- 
ble entries (STEs) managing their own segments. 

(3) Multi-level Paging: divides the logical address space 
into fixed-size pages and each page is mapped onto the 
physilcal address space. The memory management tables 
(page tables) are constructed in several levels of hierarchy 
in order to reduce the total size of page tables. Figure 1 
shows the page table structure of 3-level Paging. 

4 22 b 

L5k5b5k7L 
(1) Logical Address 

1 St 
level I 

2nd 
level 

Physical Memory 
(2) 3-level Page Table Structure 

Figure 1. Multi-level Paging (3-level) 

(4) Paged Segmentation: divides each segment of the logi- 
cal address space into pages, and each page is mapped onto 
the physical address space. Memory is managed using a 
segment table and several page tables. 

(5) Short-circuit Segment Tree: of EROS (the Extremely 
Reliable Operating System) of the University of Pennsylva- 
nia [ 111 is based on Multi-level Paging. It skips page tables 
in which only the first page table entries (PTEs) is used, re- 
sulting in a decrease of both the processing overhead and 
the total table size as compared to Multi-level Paging. 

4 77 b 
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Physical Memory 

(2) Page Table Structure 

Figure 2. Short-circuit Segment Tree (modi- 
fied a little from the original in order to fit the 
small embedded system) 

Figure 2 shows the page table structure of Short-circuit 
Segment Tree. For the logical address format of 5-level Pag- 
ing as shown in Figure 2 (l), we show an example of the 
page table structure of this method in Figure 2 (2). This ex- 
ample shows that the second- to the fourth-level page tables 
of data and stack area are skipped and the first-level PTE 
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links directly to the fifth (bottom)-level page tables. The 
PTE contains the LEVEL information in the figure which 
indicates the level of the page table to be linked and makes 
it possible to omit intennediate-level page tables. 

2.2. Efficiency of Memory Usage 

It is important to improve the efficiency of memory 
usage in cost-sensitive small embedded systems. In a 
multiple-thread support environment, it is necessary to use 
thread-stack areas efficiently among processes by attaching 
and detaching them to each process on demand basis. Also, 
it is necessary to enlarge or shrink data or stack area dynam- 
ically on demand. 

Efficient threads support: In case of Bit Map which 
is one of the physical-address-based memory-protection 
methods, we can use thread-stack areas efficiently among 
processes by dividing part of the memory a priori into a set 
of thread stacks, and making a pool of free thread stacks. In 
case of logical-address-based memory protection, the mem- 
ory manager handIes thread stacks with either segments or 
pages. In Segmentation, it is possible to use the segment 
table to support multiple threads by mapping one segment 
onto one thread stack, but this requires many STEs in seg- 
ment table which increases the memory requirements. In 
paging-based management (Multi-level Paging, Paged Seg- 
mentation and Short-circuit Segment Tree), the memory 
manager can handle thread stacks flexibly per page by get- 
ting one from the pool of free physical pages (page frames), 
making it easy to use thread-stack areas among processes. 
So we see that Bit Map and paging-based managements are 
suitable for multiple-thread support. 

Region enlargement: In Bit Map and Segmentation, it is 
difficult to enlarge regions (data or stack) dynamically be- 
cause regions must be mapped contiguously in memory and 
there is no guarantee of free space next to them. In paging- 
based management, the memory manager gets a new phys- 
ical page from the pool of free physical pages and enlarges 
the region and can manage it flexibly. So, paging-based 
managements are suitable for region enlargement. 

2.3. New Memory-Protection Method for Small 
Embedded Systems 

To improve the efficiency of memory usage mentioned 
above, we present a new memory-protection method for 
small embedded systems. 

Intermediate-level Skip Mnlti-Size Paging: skips the 
intermediate-level page tables of Multi-level Paging like 
Short-circuit Segment Tree. The major differences between 

the two are that Intermediatz-level Skip Multi-Size Paging 
supports multiple page sizes by enabling a PTE in each level 
page table to map onto the physical address space, and it 
can also skip page tables in which only one PTE (not just 
the first PTE) is used. The page size of a PTE in a level is 
the total size of the address space covered by the next level. 
This method supports as many page sizes as the number 
of levels of Paging. This feature makes it possible to omit 
intermediate-level page tables and to use larger-size pages, 
and decreases both the processing overhead and the total 
table size as Short-circuit Segment Tree does. 

(1) Logical Address 

I I I 

( 2 )  Page Table Structure 

Figure 3. Intermediate-level Skip Multi-Size 
Paging 

Figure 3 shows the page table structure of Intermediate- 
level Skip Multi-Size Paging. In the case of logical address 
format of 5-level Paging as shown in Figure 3 (1), we show 
an example of the page table structure of this method in 
Figure 3 (2). This example shows that the second through 
fourth-level page tables of the stack area are skipped and the 
first (top)-level PTE links directly to the fifth (bottom)-level 
page table. 

Figure 4 ( 1 )  shows the page table of each level. Each 
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get physical address & 
(2) Address Translation step 

Figure 4. Page Table and Address Transla- 
tion Step of Intermediate-level Skip Multi-Size 
Paging 

table contains its level number and its logical page number. 
Each PTE IS almost same as that of P E  of Multi-level Pag- 
ing except for including one bit (L/P bit in Figure 4 (1)) to 
indicate which type of information is stored: a pointer to the 
lower-level page table or a physical page number. 

Figure 4 (2) shows the procedure of address translation 
in Intermediate-level Skip Multi-Size Paging. The memory 
mantiger accesses the P E  corresponding to the logical ad- 
dress and checks if the entry has either the pointer to the 
lower-level page table or its physical page number with L/P 
bit. If the physical page number is found, it derives the 
physical address from it. If the pointer to the lower-level 
page table is found, it accesses the page table. The level 
numder of the page table is first checked to see if one or 
 more^ levels have been skipped. In case of skipping level(s), 
it chqcks if the logical page number in the table equals that 
of the logical address - this enables Intermediate-level Skip 
Multi-Size Paging to skip page tables in which only one 
PTE (not just the first PTE) is used - then repeats the same 
procedure. 

3. Evaluation 

In this section, we evaluate the memory consumption and 
processing overhead of each memory-protection method. 
We have written evaluation programs which emulate each of 
the memory-protection methods, and compared their code 
size and processing overhead. We evaluated Bit Map, Seg- 
mentation, Multi-level Paging (3- , 5- and 7-level), Paged 
Segmentation, Short-circuit Segment Tree (5- and 7-level) 
and Intermediate-level Skip Multi-Size Paging (5- and 7- 
level) mentioned above. 

Memory consumption: We compared the memory con- 
sumption of memory- protection methods (the code size of 
a memory-protection procedure + the total table size) under 
the following conditions: 

Logical address space is 4 MBytes and page size is 128 
bytes, 

0 The code size of kernel is 16 KBytes, the data size is 8 
KBytes, and the stack size is 256 bytes, 

0 The code size of each process is 2 KBytes, the data 
size is 128 bytes, and the stack size is 128 bytes, 

No code or data sharing between processes, 

Memory size is 128 KBytes and the number of pro- 
cesses is 40. 

O,a,a 

Memory-Protection Methods 

SCST (Short-circuit Segment Tree) 
ISMSP (Intermidiate-level Skip Multi-Size Paing) 

Figure 5. Comparison of the memory con- 
sumption 
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Figure 5 shows the memory consumption of the 
memory- protection methods. 7-level Intermediate-level 
Skip Multi-Size Paging consumes the least amount of mem- 
ory (3.0% of the memory), Segmentation is the second 
(3.9%), 5-level Intermediate-level Skip Multi-Size Paging 
is the third (4.5%), 7-level Short-circuit Segment Tree is 
the fourth (5.7%), 5-level Short-circuit Segment Tree is the 
fifth (6.6%), Paged Segmentation is the sixth (6.7%), and 
Bitmap is the seventh (8.0%) respectively. Multi-level Pag- 
ing is the worst (12-28%). 

In this evaluation, the code size of each memory- 
protection procedure is about 0.2-1% of the memory and 
very small compared with the total table size. The code size 
could become smaller and negligible in this evaluation if the 
procedure is optimized and written in assembly language. 

Processing overheads: In both Intermediate-level Skip 
Multi-Size Paging and Short-circuit Segment Tree, only the 
top-level and the bottom-level of page tables are accessed 
(2-level access) in the best-case, while the worst-case over- 
head is much longer than the best-case overhead because 
page tables at all levels are accessed, resulting in a vari- 
able processing overhead, which is undesirable in real-time 
systems. In Short-circuit Segment Tree, with the lowest 
and the second lowest-level Page Tables, 8-KByte areas (5- 
level) and 2-KByte areas (7-level) are supported. This is the 
case of 3-level access (the second best-case overhead). With 
3-level access, almost all areas in processes in small em- 
bedded systems can be managed. So, the average overhead 
is almost same as the second best-case overhead. In case 
of Intermediate-level Skip Multi-Size Paging, by managing 
areas of processes with almost identical page sizes, almost 
all areas can be accessed with 2-level access (the best-case 
overhead). So, the average overhead becomes almost same 
as the best-case overhead. 

Figure 6 shows the processing overheads of the memory- 
protection methods. The overheads are normalized with re- 
spect to the overhead of 3-level Paging which is viewed as a 
general memory management method. The overhead of Bit 
Map is the smallest (0.2), Segmentation is the second (0.4), 
Paged Segmentation is the third (0.7), 3-level Paging is the 
fourth (l), Intermediate-level Skip Multi-Size Paging (the 
best-case overhead) is the fifth (1.3), Short-circuit Segment 
Tree (the second best-case overhead) is the sixth (1.4), 5- 
level Paging is the seventh (1.5), and 7-level Paging is the 
worst (2.0). These overheads are about tens to hundreds of 
machine cycles, but they could be made smaller if the pro- 
cedure is optimized and written in assembly language. 

Table 1 summarizes the results of our evaluations from 
which we can make the following conclusions: 

0 Despite the problem Paged Segmentation and Short- 
Circuit Segment Tree have regarding the memory con- 
sumption and the problem Intermediate- level Skip 

4 

n n 

Memory-Protection Methods 

SCST (Short-circuit Segment Tree) 
ISMSP (Intermidiate-level Slup Multi-Size Paing) 

rlyulc U. ~ U l l l ) r d l l 3 U I I  UI Lllcf plu~cf331lly over-  

heads 

Multi-Size Paging and Short-circuit Segment Tree 
have regarding processing overhead, these memory- 
protection methods can support multiple threads and 
region enlargement efficiently and improve the effi- 
ciency of memory usage, and are feasible for small 
embedded systems. 

0 Bit Map is suitable for small memory, but it is not good 
for region enlargement and IS inferior to the above 
three methods. 

0 Segmentation is not good for multiple-thread support 
and region enlargement. 

0 Multi-level Paging cannot be used because it consumes 
too much memory space. 

4. Logical address space and page size 

<n f a r  W P  have e v a l i i a t d  the f e n c i h i l i t v  n f  csweral 

I l l C l l l U l y - ~ l U L G ~ L l U l l  IIIGLIIUUS IUI b l l ld l l  Cl1lUCUUt;U byblClIlS 

assuming a 128- byte page size under a 4-MByte logical 
address space. In general, the size of logical address space 
influences the total table size only in paging-based manage- 
ment, not in segmentation-based management. Here, we 
will focus on paging-based management and describe its 
effect on memory consumption for different logical address 
space and page sizes. 

Logical address space size: 
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Segment Multi- Paged Short- Intermidi; 
-ation level Segment- Circuit te-level 

Paging ation Segment Skip 
Tree Multi-Siz 
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Address I-level 
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128KBytes 4096 

Small in 

I memory, 
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fiOCfSS- j 1  Small Small Moderate Small Slightly Slightly 
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Ovedhead large .Most Most 

2-level 3-level 4-level 5-level 6-level 7-level 

2560 896 608 416 368 320 

512 320 224 208 208 208 
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regions 
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accessed 
in the 
best- case 
overhead. 

I overhead 
Efficient 1 Difficult Difficult Easy Easy Easy Easy 
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support / I  
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Enldge II I menk ' I  

memory 

Easy. 

- 
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for small 
embeddec 
systems. 

- 
T ble 1. Comparison of feasibility between 
memory a protection methods 

The larger the logical address space, the more memory 
the protection method consumes. In case of Short-circuit 
Segrqent Tree and Intermediate-level Skip Multi-Size Pag- 
ing s ipping the intermediate- level page tables of Multi- 
level ,Paging, we can keep memory consumption small by 
makiqg the page table size of the layer always skipped (e.g., 
the sqcond level page table) very large. 

Bx making the logical address space much smaller, we 
can reduce memory consumption to some extent. Table 2 
show$ the minimum total table size per process in 1- to 7- 
level paging. It also shows the table size both in 4-MByte 
(22 bits) logical address space and 128- KByte (1 7 bits) log- 
ical apdress space. Table 2 shows that the effect of the log- 
ical address space shrinkage to decrease the total table size 
is ratqer large on a small number of levels, but it becomes 
smalliin case of a large number of levels. The shrinkage 
of thq logical address space also limits the size of physical 
memc)ry to be used. 

i( 

 page^ size: 
In beneral, increasing page size decreases TLB miss ra- 

Table 2. The total page size per process in 
Multi-level Pagings 

tio and the memory space occupied by page tables, and im- 
proves the processing speed, but the efficiency of memory 
usage gets worse because of internal fragmentation. On 
the other hand, a small page size increases memory con- 
sumption and TLB miss ratio, and decreases the processing 
speed, but the efficiency of memory usage improves. The 
page size is inversely proportional to the total size of PTEs 
necessary for directly managing all of the physical memory. 
For example, for page size of 128 bytes, the total PTEs con- 
sume 3% of physical memory. On the other hand, for page 
size of 32 bytes they consume 12%, while for page size of 
1 KBytes they consume just 0.4%. The best page size de- 
pends on the application-program size, memory size and the 
cost/performance requirements. 

Almost all of the above evaluation results should apply 
to the case when the ratio of page size to logical address 
space is the same as that of 128-byte page size to the 4- 
MByte address space considered in this paper except for the 
physical memory space occupied by PTEs. 

5. Hardware implementations 

Today, many microprocessors support hardware- man- 
aged TLBs, while some micro-processors like MIPS 
R30006 support software-managed TLBs generating a trap 
to the operating system when a TLB miss occurs. In gen- 
eral, the processing overhead of memory- protection proce- 
dure is up to ten machine cycles in the former, while tens 
to hundreds of machine cycles in the latter. But in order to 
implement MMUs in microprocessors for small embedded 
systems, it is desirable to support the latter because it can 
simplify the hardware, keep its cost low, and also provide 
the flexibility to support paging-based managements men- 
tioned in this paper. Design tradeoffs for software-managed 
TLBs are studied by the authors of [ 121. 

With a MMU supporting 128-byte pages, it is possible 
to implement Paged Segmentation and Short-circuit Seg- 

R3000 is a registered trademark of MIPS Technologies, Inc. 
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ment Tree. For Intermediate-level Skip Multi-Size Pag- 
ing, it can be implemented by calculating 128-byte physi- 
cal page numbers in the memory-protection procedure sup- 
ported by the operating system. The processing speed of an 
application program is affected not only by the processing 
overhead of the memory-protection method but also by the 
frequency of TLB misses (which depends on the access lo- 
cality of the program), the number of TLB entries and TLB 
entry caching method. It is difficult to estimate processing 
speed precisely and is beyond the scope of this paper. 

Next, we study the structure of MMU which is suitable 
for each memory-protection method. For segmentation- 
based memory- protection methods (Paged Segmentation), 
the MMU must support the function to check if an access- 
ing address is within segments, making the MMU hardware 
complex and costly. For Intermediate-level Skip Multi- Size 
Paging, if the TLB supports all page sizes of this memory- 
protection method, the frequency of TLB misses may be 
rather small and this can increase the processing speed dra- 
matically. For example, if I-KByte page size as well as 
128-byte page size are supported, only one TLB miss occurs 
while executing I-KByte code. On the other hand, if only 
a 128- byte page size is supported, many TLB misses may 
occur. For example, when the code is executed sequentially 
from lower address to higher address, 8 TLB misses occur. 
This simple example indicates the importance of supporting 
all page sizes of this memory-protection method. The au- 
thors of [ 131 observed the fact that supporting multiple page 
sizes will generally improve processing speed, especially 
with a fully- associative TLB. However, the MMU hard- 
ware supporting multiple page sizes with a fully-associative 
TLB is complex and costly, making it difficult to use for 
cost-sensitive embedded systems. But this feature may be 
cost-effective if the number of TLB entries in the MMU is 
decreased. 

6. Conclusion 

In this paper, we studied memory-protection meth- 
ods for small embedded systems. Paged Segmenta- 
tion, Intermediate-level Skip Multi-Size Paging and Short- 
Circuit Segment Tree are most suitable in terms of multiple 
threads support, region enlargement, processing overhead, 
and memory consumption. The feasibility of Intermediate- 
level Skip Multi-Size Paging can also be improved with a 
MMU which supports several page sizes. 

Future work includes study of more detailed functions 
of the MMU and evaluation of each memory-protection 
method by measuring the improvement in the performance 
of a microprocessor. 
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