
On Memory Protection in Real-Time OS
for Small Embedded Systems *

Shoji Suzuki Kang G. Shin
The 1st Department of Systems Research

Hitachi Research Laboratory
Hitachi Ltd.
7- 1- 1 Omika

Hitachi, Ibaraki 3 19- 12, Japan
suzu kish @ hrl . hitachi.co.j p

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer

The University of Michigan
1301 Beal Avenue

Ann Arbor, MI 48 109-2122, USA
kgshin @eecs.umich.edu

Abstract

Memory protection is an important OS feature for the re-
liability and safety of real-time control systems. In this pa-
pel; we study the feasibility oj memory protection in small
embedded systems in which memory size ranges from sev-
eral tens of KBytes to several hundreds oj KBytes. We eval-
uate various protection methods in terms of memory con-
sumption, processing overhead, multiple-thread support,
region enlargement, and hardware support. We present
a new Protection method called Intermediate-level Skip
Multi-Size Paging which skips unused intermediate-level
page tables of Multi-level Paging and supports several page
sizes. Our evaluation results show that this method along
with Paged Segmentation and Short-Circuit Segment Tree
are more cost-effective than other known memory protec-
tion methods. Also, the feasibility of Intermediate-level Skip
Multi-Size Paging can be improved ; f a MMU supporting
several page sizes is available for microprocessors.

Key Words:Embedded system, memory protection, virtual
memory, paging, segmentation, memoty management unit
(MMW

1. Introduction

In next-generation control systems, devices will be in-
terconnected by field networks instead of the wire har-
ness in use today. This means not only the reduction of
wiring cost but also a paradigm shift from centralized con-
trol using high-performance microprocessors to coopera-
tive and distributed control with several small microproces-

'The work reported in this paper was done dunng S Suzuki's visit to
the RTCL under a cooperative contract from Hitachi Research Laboratory.

sors controlling up to tens of devices such as sensors, mo-
tors, valves, etc., and communicating with each other via
field networks. Moreover, the progress of VLSI technolo-
gies will make low-cost single-chip small embedded sys-
tems available soon, consisting of high-performance RISC
microprocessors, built- in memory of several tens to sev-
eral hundreds of KBytes, communication transceivers, A/D
converters, and ten or so I/O ports. The processes running
on such embedded systems are usually quite small (at most
several KBytes of code and hundreds of bytes of data and
stack). Most of their memory requirements are known a pri-
ori and fixed (though the data and stack area sizes may vary
dynamically which requires OS support). Also, embedded
software is constructed with many modules, so it requires
efficient multiple-thread service. Hence, any real-time oper-
ating system (RTOS) to be used in such embedded systems
must not only have a small code size (10K to 20 KBytes)
but must also provide support for the above-mentioned re-
quirements of embedded systems.

Zuberi and Shin [11 developed a small distributed RTOS
for embedded systems, called EMERALDS (Extensible Mi-
crokernel for Embedded ReAL-time Distributed Systems).
EMERALDS provides various RTOS functions particu-
larly suitable for small- to medium-sized embedded sys-
tems. The micro-kernel architecture of EMERALDS con-
sists of procesdthread management (real-time scheduling
and memory protection), communication primitives, syn-
chronization primitives (semaphores and condition vari-
ables), timer, interrupt handler and device driver primitives,
and supports the extensibility of many necessary functions.
These features are realized with a small RTOS of 13-KByte
kernel code.

One key feature of EMERALDS is memory protection
among processes and kernel. Memory protection is effec-
tive in enhancing system reliability and safety. For exam-

51
0-8186-8073-3/97 $10.00 0 1997 IEEE

mailto:eecs.umich.edu

ple, though 99% processes on some system may be bug-
free and execute correctly, if the remaining 1% processes
have bugs in them, they may corrupt the data of other bug-
free processes and result in a system crash. Memory pro-
tection is effective in preventing such a crash and is es-
sential for safety-critical embedded applications such as
avionics, life support systems, and various other products
in transportation or consumer electronics. Memory pro-
tection is generally realized by memory management soft-
ware with MMU hardware support making the memory-
protection method hardware-dependent. For example, mi-
croprocessors like Motorola 68040 [2], PowerPC’ [3], etc.,
have hardware support for Paging while Inte1386’ [4] has
support for Paged Segmentation. As far as software man-
agement aspects of memory management are concerned,
they have been studied for more than 30 years, including
working set [5] and virtual memory [6] concepts.

EMERALDS uses 3-level Paging of the MC68040 mi-
croprocessor for memory protection. Besides EMERALDS,
there are several RTOSs for embedded systems support-
ing memory protection. MiThOS [7] supports physical-
address-based memory protection with Paging. Chorus3
[8] and LynxOS4 [9] support logical-address-based memory
protection with Paging. VRTX5 x86 [101 supports logical-
address- based memory protection with Paged Segmenta-
tion. In general, they are for mission-critical embedded ap-
plications or scalable RTOSs ranging from small embedded
systems to general-purpose systems.

However, at present, we cannot just apply current
memory-protection methods to cost-sensitive small embed-
ded systems. Memory protection requires a MMU and
memory management tables (e.g., page tables or segment
tables). The MMU adds to hardware costs while the
memory management tables consume RAM. The memory-
protection procedure (equivalent to translation lookaside
buffers (TLBs) miss handling routine in case of software-
managed TLBs) decreases the processing speed of the mi-
croprocessor, or these penalties require higher-performance
microprocessors with MMU and more memory. Further-
more, the page sizes which current microprocessors sup-
port are 4-8 KBytes, but these are too large for small em-
bedded systems. We must therefore reduce page size, but
the smaller the page size, the larger the amount of mem-
ory needed for memory management tables. Small page
sizes also increase the TLB miss ratio and decrease the
processing speed. This indicates a need to modify current
memory-protection methods for small embedded systems.
Moreover, in small embedded systems, it is very impor-
tant to improve the efficiency of memory usage and reduce

PowerPC is a trademark of Motorola, Inc
Intel386 is a trademark of Intel Corporation.
Chorus is a registered trademark of Chorus systkmes.
LynxOS is a trademark of Lynx Real-Time Systems, Inc.
VRTX is a registered trademark of Microtec Research

the memory requirements. So, it is necessary to use and
share thread stacks efficiently among processes in a multi-
ple threads support environment. If it is possible to enlarge
or shrink data or stack area dynamically on demand, one
can also improve the efficiency of memory usage.

In this paper, we focus on the feasibility of memory pro-
tection for small embedded systems, using the following
metrics:

efficiency of memory usage

- efficient threads support

- data and stack region enlargement

0 memory consumption

0 processing overhead

The rest of this paper is organized as follows. In Sec-
tion 2, we give a brief description of the current memory-
protection methods for large systems, compare them quali-
tatively, and state the problems associated with them. Then,
we describe a new memory-protection method for small em-
bedded systems. In Section 3, we evaluate the feasibility of
each memory-protection method, and in Section 4, we de-
scribe the effect of page size and logical-address-space size
on memory-protection methods. In Section 5, we describe
the MMU features needed to support memory-protection
methods. Finally, we conclude the paper with Section 6.

We will use the following parameter values for our eval-
uation:

0 The page size is set to 128 bytes. Page is the smallest
unit for memory protection, and this page size - which
can have 32 four-byte data - is feasible for data or stack
areas of small embedded applications.

0 Logical address space is 4 MBytes. This size is enough
for small embedded system.

In general, the smaller the page size or the larger the logical
address space becomes, the more memory consumed by the
memory-protection method. We will discuss this in Section
4.

2. Memory-Protection Methods

Memory-protection methods are either physical-address-
based or logical-address-based. Bit Map and Linked List
belong to the former, while Paging, Segmentation belong to
the latter. Described below are Bit Map, Multi-level Paging,
Segmentation, Paged Segmentation, and Short- Circuit Seg-
ment Tree as currently available memory-protection meth-
ods, as well as a new protection method we have developed.

52

2.1. Classification of Protection Methods

Currently-available protection methods can be classified
into the following five types.

(1) Bit Map: divides physical memory into pages for mem-
ory protection. Each process checks the protection informa-
tion of the corresponding page whenever it accesses mem-
ory. For example, the memory management information per
page could be constructed with just the 2-bit-size read/write
protection information.

--c-.

(2) Segmentation: divides the logical address space into
several segments each of which is mapped onto the phys-
ical address space. This method requires a memory man-
agement table (segment table) which contains segment ta-
ble entries (STEs) managing their own segments.

(3) Multi-level Paging: divides the logical address space
into fixed-size pages and each page is mapped onto the
physilcal address space. The memory management tables
(page tables) are constructed in several levels of hierarchy
in order to reduce the total size of page tables. Figure 1
shows the page table structure of 3-level Paging.

4 22 b

L5k5b5k7L
(1) Logical Address

1 St
level I

2nd
level

Physical Memory
(2) 3-level Page Table Structure

Figure 1. Multi-level Paging (3-level)

(4) Paged Segmentation: divides each segment of the logi-
cal address space into pages, and each page is mapped onto
the physical address space. Memory is managed using a
segment table and several page tables.

(5) Short-circuit Segment Tree: of EROS (the Extremely
Reliable Operating System) of the University of Pennsylva-
nia [111 is based on Multi-level Paging. It skips page tables
in which only the first page table entries (PTEs) is used, re-
sulting in a decrease of both the processing overhead and
the total table size as compared to Multi-level Paging.

4 77 b
I I I I I

4 ~ 3 ~ . 3 H 3 W 3 - 7 -)
(1) Logical Address

1st
level

2nd
level

3rd
level

vl
I1 4th 4

level Y
Y

Physical Memory

(2) Page Table Structure

Figure 2. Short-circuit Segment Tree (modi-
fied a little from the original in order to fit the
small embedded system)

Figure 2 shows the page table structure of Short-circuit
Segment Tree. For the logical address format of 5-level Pag-
ing as shown in Figure 2 (l), we show an example of the
page table structure of this method in Figure 2 (2). This ex-
ample shows that the second- to the fourth-level page tables
of data and stack area are skipped and the first-level PTE

53

links directly to the fifth (bottom)-level page tables. The
PTE contains the LEVEL information in the figure which
indicates the level of the page table to be linked and makes
it possible to omit intennediate-level page tables.

2.2. Efficiency of Memory Usage

It is important to improve the efficiency of memory
usage in cost-sensitive small embedded systems. In a
multiple-thread support environment, it is necessary to use
thread-stack areas efficiently among processes by attaching
and detaching them to each process on demand basis. Also,
it is necessary to enlarge or shrink data or stack area dynam-
ically on demand.

Efficient threads support: In case of Bit Map which
is one of the physical-address-based memory-protection
methods, we can use thread-stack areas efficiently among
processes by dividing part of the memory a priori into a set
of thread stacks, and making a pool of free thread stacks. In
case of logical-address-based memory protection, the mem-
ory manager handIes thread stacks with either segments or
pages. In Segmentation, it is possible to use the segment
table to support multiple threads by mapping one segment
onto one thread stack, but this requires many STEs in seg-
ment table which increases the memory requirements. In
paging-based management (Multi-level Paging, Paged Seg-
mentation and Short-circuit Segment Tree), the memory
manager can handle thread stacks flexibly per page by get-
ting one from the pool of free physical pages (page frames),
making it easy to use thread-stack areas among processes.
So we see that Bit Map and paging-based managements are
suitable for multiple-thread support.

Region enlargement: In Bit Map and Segmentation, it is
difficult to enlarge regions (data or stack) dynamically be-
cause regions must be mapped contiguously in memory and
there is no guarantee of free space next to them. In paging-
based management, the memory manager gets a new phys-
ical page from the pool of free physical pages and enlarges
the region and can manage it flexibly. So, paging-based
managements are suitable for region enlargement.

2.3. New Memory-Protection Method for Small
Embedded Systems

To improve the efficiency of memory usage mentioned
above, we present a new memory-protection method for
small embedded systems.

Intermediate-level Skip Mnlti-Size Paging: skips the
intermediate-level page tables of Multi-level Paging like
Short-circuit Segment Tree. The major differences between

the two are that Intermediatz-level Skip Multi-Size Paging
supports multiple page sizes by enabling a PTE in each level
page table to map onto the physical address space, and it
can also skip page tables in which only one PTE (not just
the first PTE) is used. The page size of a PTE in a level is
the total size of the address space covered by the next level.
This method supports as many page sizes as the number
of levels of Paging. This feature makes it possible to omit
intermediate-level page tables and to use larger-size pages,
and decreases both the processing overhead and the total
table size as Short-circuit Segment Tree does.

(1) Logical Address

I I I

(2) Page Table Structure

Figure 3. Intermediate-level Skip Multi-Size
Paging

Figure 3 shows the page table structure of Intermediate-
level Skip Multi-Size Paging. In the case of logical address
format of 5-level Paging as shown in Figure 3 (1), we show
an example of the page table structure of this method in
Figure 3 (2). This example shows that the second through
fourth-level page tables of the stack area are skipped and the
first (top)-level PTE links directly to the fifth (bottom)-level
page table.

Figure 4 (1) shows the page table of each level. Each

54

Ixvel No I ogical-Page No

!::;I 1.P 1 ower Levell Physical Page No
! I

not equal

get physical address &
(2) Address Translation step

Figure 4. Page Table and Address Transla-
tion Step of Intermediate-level Skip Multi-Size
Paging

table contains its level number and its logical page number.
Each PTE IS almost same as that of P E of Multi-level Pag-
ing except for including one bit (L/P bit in Figure 4 (1)) to
indicate which type of information is stored: a pointer to the
lower-level page table or a physical page number.

Figure 4 (2) shows the procedure of address translation
in Intermediate-level Skip Multi-Size Paging. The memory
mantiger accesses the P E corresponding to the logical ad-
dress and checks if the entry has either the pointer to the
lower-level page table or its physical page number with L/P
bit. If the physical page number is found, it derives the
physical address from it. If the pointer to the lower-level
page table is found, it accesses the page table. The level
numder of the page table is first checked to see if one or
 more^ levels have been skipped. In case of skipping level(s),
it chqcks if the logical page number in the table equals that
of the logical address - this enables Intermediate-level Skip
Multi-Size Paging to skip page tables in which only one
PTE (not just the first PTE) is used - then repeats the same
procedure.

3. Evaluation

In this section, we evaluate the memory consumption and
processing overhead of each memory-protection method.
We have written evaluation programs which emulate each of
the memory-protection methods, and compared their code
size and processing overhead. We evaluated Bit Map, Seg-
mentation, Multi-level Paging (3- , 5- and 7-level), Paged
Segmentation, Short-circuit Segment Tree (5- and 7-level)
and Intermediate-level Skip Multi-Size Paging (5- and 7-
level) mentioned above.

Memory consumption: We compared the memory con-
sumption of memory- protection methods (the code size of
a memory-protection procedure + the total table size) under
the following conditions:

Logical address space is 4 MBytes and page size is 128
bytes,

0 The code size of kernel is 16 KBytes, the data size is 8
KBytes, and the stack size is 256 bytes,

0 The code size of each process is 2 KBytes, the data
size is 128 bytes, and the stack size is 128 bytes,

No code or data sharing between processes,

Memory size is 128 KBytes and the number of pro-
cesses is 40.

O,a,a

Memory-Protection Methods

SCST (Short-circuit Segment Tree)
ISMSP (Intermidiate-level Skip Multi-Size Paing)

Figure 5. Comparison of the memory con-
sumption

55

Figure 5 shows the memory consumption of the
memory- protection methods. 7-level Intermediate-level
Skip Multi-Size Paging consumes the least amount of mem-
ory (3.0% of the memory), Segmentation is the second
(3.9%), 5-level Intermediate-level Skip Multi-Size Paging
is the third (4.5%), 7-level Short-circuit Segment Tree is
the fourth (5.7%), 5-level Short-circuit Segment Tree is the
fifth (6.6%), Paged Segmentation is the sixth (6.7%), and
Bitmap is the seventh (8.0%) respectively. Multi-level Pag-
ing is the worst (12-28%).

In this evaluation, the code size of each memory-
protection procedure is about 0.2-1% of the memory and
very small compared with the total table size. The code size
could become smaller and negligible in this evaluation if the
procedure is optimized and written in assembly language.

Processing overheads: In both Intermediate-level Skip
Multi-Size Paging and Short-circuit Segment Tree, only the
top-level and the bottom-level of page tables are accessed
(2-level access) in the best-case, while the worst-case over-
head is much longer than the best-case overhead because
page tables at all levels are accessed, resulting in a vari-
able processing overhead, which is undesirable in real-time
systems. In Short-circuit Segment Tree, with the lowest
and the second lowest-level Page Tables, 8-KByte areas (5-
level) and 2-KByte areas (7-level) are supported. This is the
case of 3-level access (the second best-case overhead). With
3-level access, almost all areas in processes in small em-
bedded systems can be managed. So, the average overhead
is almost same as the second best-case overhead. In case
of Intermediate-level Skip Multi-Size Paging, by managing
areas of processes with almost identical page sizes, almost
all areas can be accessed with 2-level access (the best-case
overhead). So, the average overhead becomes almost same
as the best-case overhead.

Figure 6 shows the processing overheads of the memory-
protection methods. The overheads are normalized with re-
spect to the overhead of 3-level Paging which is viewed as a
general memory management method. The overhead of Bit
Map is the smallest (0.2), Segmentation is the second (0.4),
Paged Segmentation is the third (0.7), 3-level Paging is the
fourth (l), Intermediate-level Skip Multi-Size Paging (the
best-case overhead) is the fifth (1.3), Short-circuit Segment
Tree (the second best-case overhead) is the sixth (1.4), 5-
level Paging is the seventh (1.5), and 7-level Paging is the
worst (2.0). These overheads are about tens to hundreds of
machine cycles, but they could be made smaller if the pro-
cedure is optimized and written in assembly language.

Table 1 summarizes the results of our evaluations from
which we can make the following conclusions:

0 Despite the problem Paged Segmentation and Short-
Circuit Segment Tree have regarding the memory con-
sumption and the problem Intermediate- level Skip

4

n n

Memory-Protection Methods

SCST (Short-circuit Segment Tree)
ISMSP (Intermidiate-level Slup Multi-Size Paing)

rlyulc U. ~ U l l l) r d l l 3 U I I UI Lllcf plu~cf331lly over-

heads

Multi-Size Paging and Short-circuit Segment Tree
have regarding processing overhead, these memory-
protection methods can support multiple threads and
region enlargement efficiently and improve the effi-
ciency of memory usage, and are feasible for small
embedded systems.

0 Bit Map is suitable for small memory, but it is not good
for region enlargement and IS inferior to the above
three methods.

0 Segmentation is not good for multiple-thread support
and region enlargement.

0 Multi-level Paging cannot be used because it consumes
too much memory space.

4. Logical address space and page size

<n f a r W P have e v a l i i a t d the f e n c i h i l i t v n f csweral

I l l C l l l U l y - ~ l U L G ~ L l U l l IIIGLIIUUS IUI b l l ld l l Cl1lUCUUt;U byblClIlS

assuming a 128- byte page size under a 4-MByte logical
address space. In general, the size of logical address space
influences the total table size only in paging-based manage-
ment, not in segmentation-based management. Here, we
will focus on paging-based management and describe its
effect on memory consumption for different logical address
space and page sizes.

Logical address space size:

56

Segment Multi- Paged Short- Intermidi;
-ation level Segment- Circuit te-level

Paging ation Segment Skip
Tree Multi-Siz

Logical
Address I-level
Space

4MBytes 13107;

128KBytes 4096

Small in

I memory,
large in

I : small

fiOCfSS- j 1 Small Small Moderate Small Slightly Slightly
1 1 to large large

Ovedhead large .Most Most

2-level 3-level 4-level 5-level 6-level 7-level

2560 896 608 416 368 320

512 320 224 208 208 208

est-case

regions
C a n be
accessed
in the
best- case
overhead.

I overhead
Efficient 1 Difficult Difficult Easy Easy Easy Easy
Threlds
support / I

Regibn 'Difficult lDifficult IEasy (Easy
Enldge II I menk ' I

memory

Easy.

-
Suitable
for small
embeddec
systems.

-
T ble 1. Comparison of feasibility between
memory a protection methods

The larger the logical address space, the more memory
the protection method consumes. In case of Short-circuit
Segrqent Tree and Intermediate-level Skip Multi-Size Pag-
ing s ipping the intermediate- level page tables of Multi-
level ,Paging, we can keep memory consumption small by
makiqg the page table size of the layer always skipped (e.g.,
the sqcond level page table) very large.

Bx making the logical address space much smaller, we
can reduce memory consumption to some extent. Table 2
show$ the minimum total table size per process in 1- to 7-
level paging. It also shows the table size both in 4-MByte
(22 bits) logical address space and 128- KByte (1 7 bits) log-
ical apdress space. Table 2 shows that the effect of the log-
ical address space shrinkage to decrease the total table size
is ratqer large on a small number of levels, but it becomes
smalliin case of a large number of levels. The shrinkage
of thq logical address space also limits the size of physical
memc)ry to be used.

i(

 page^ size:
In beneral, increasing page size decreases TLB miss ra-

Table 2. The total page size per process in
Multi-level Pagings

tio and the memory space occupied by page tables, and im-
proves the processing speed, but the efficiency of memory
usage gets worse because of internal fragmentation. On
the other hand, a small page size increases memory con-
sumption and TLB miss ratio, and decreases the processing
speed, but the efficiency of memory usage improves. The
page size is inversely proportional to the total size of PTEs
necessary for directly managing all of the physical memory.
For example, for page size of 128 bytes, the total PTEs con-
sume 3% of physical memory. On the other hand, for page
size of 32 bytes they consume 12%, while for page size of
1 KBytes they consume just 0.4%. The best page size de-
pends on the application-program size, memory size and the
cost/performance requirements.

Almost all of the above evaluation results should apply
to the case when the ratio of page size to logical address
space is the same as that of 128-byte page size to the 4-
MByte address space considered in this paper except for the
physical memory space occupied by PTEs.

5. Hardware implementations

Today, many microprocessors support hardware- man-
aged TLBs, while some micro-processors like MIPS
R30006 support software-managed TLBs generating a trap
to the operating system when a TLB miss occurs. In gen-
eral, the processing overhead of memory- protection proce-
dure is up to ten machine cycles in the former, while tens
to hundreds of machine cycles in the latter. But in order to
implement MMUs in microprocessors for small embedded
systems, it is desirable to support the latter because it can
simplify the hardware, keep its cost low, and also provide
the flexibility to support paging-based managements men-
tioned in this paper. Design tradeoffs for software-managed
TLBs are studied by the authors of [121.

With a MMU supporting 128-byte pages, it is possible
to implement Paged Segmentation and Short-circuit Seg-

R3000 is a registered trademark of MIPS Technologies, Inc.

57

ment Tree. For Intermediate-level Skip Multi-Size Pag-
ing, it can be implemented by calculating 128-byte physi-
cal page numbers in the memory-protection procedure sup-
ported by the operating system. The processing speed of an
application program is affected not only by the processing
overhead of the memory-protection method but also by the
frequency of TLB misses (which depends on the access lo-
cality of the program), the number of TLB entries and TLB
entry caching method. It is difficult to estimate processing
speed precisely and is beyond the scope of this paper.

Next, we study the structure of MMU which is suitable
for each memory-protection method. For segmentation-
based memory- protection methods (Paged Segmentation),
the MMU must support the function to check if an access-
ing address is within segments, making the MMU hardware
complex and costly. For Intermediate-level Skip Multi- Size
Paging, if the TLB supports all page sizes of this memory-
protection method, the frequency of TLB misses may be
rather small and this can increase the processing speed dra-
matically. For example, if I-KByte page size as well as
128-byte page size are supported, only one TLB miss occurs
while executing I-KByte code. On the other hand, if only
a 128- byte page size is supported, many TLB misses may
occur. For example, when the code is executed sequentially
from lower address to higher address, 8 TLB misses occur.
This simple example indicates the importance of supporting
all page sizes of this memory-protection method. The au-
thors of [131 observed the fact that supporting multiple page
sizes will generally improve processing speed, especially
with a fully- associative TLB. However, the MMU hard-
ware supporting multiple page sizes with a fully-associative
TLB is complex and costly, making it difficult to use for
cost-sensitive embedded systems. But this feature may be
cost-effective if the number of TLB entries in the MMU is
decreased.

6. Conclusion

In this paper, we studied memory-protection meth-
ods for small embedded systems. Paged Segmenta-
tion, Intermediate-level Skip Multi-Size Paging and Short-
Circuit Segment Tree are most suitable in terms of multiple
threads support, region enlargement, processing overhead,
and memory consumption. The feasibility of Intermediate-
level Skip Multi-Size Paging can also be improved with a
MMU which supports several page sizes.

Future work includes study of more detailed functions
of the MMU and evaluation of each memory-protection
method by measuring the improvement in the performance
of a microprocessor.

7. Acknowledgment

The authors would like to thank Khawar Zuberi for his
valuable comments and suggestions on an earlier version of
this paper.

References

[I] K. M. Zuberi and K. G. Shin, “EMERALDS: A Microker-
ne1 for Embedded Real-Time Systems”, Proceedings of IEEE
Real-Time Technology and Applications Symposium, pages
241-249, June 1996.

[2] M68040 User’s Manual, Motorola, 1993.
[3] PowerPC 602 RISC Microprocessor User’s Manual, Mo-

torola, 1995.
[4] S. Gorman, Overview of the Protected Mode Operation of

the Intel Architecture, Intel Architecture-Paper, Available via
http://www.intel.comldesignlintarch/paperslEXC_IA.PDE

[5] P. J. Denning, “Working Sets Past and Present”, IEEE Trans-
actions on Sofmare Engineering, vol. SE-6, no. 1, pages 64-
84, January 1980.

[6] P. J. Denning, “Virtual Memory”, ACM Computing Surveys,
vol. 2, no. 3, pages 153-189, September 1970.

[7] E Mueller, V. Rustagi, T. P. Baker, “MiThOS -A Real-Time
Micro-Kemel Threads Operating System”, Proceedings of the
IEEE Real-Time Systems Symposium, pages 49-53, December
1995.

[8] V. Abrossimov, M. Rozier, M. Shapiro, “Generic Virtual
Memory Management for Operating System Kemels”, Pro-
ceedings of the 12th ACM Symposium on Operating System
Principles (SOSP ’89), December 1989.

[9] LynxOS - Hard Real-Time OS Features and Capabilities,
Available via the Lynx home page at http://www.lynx.com.

[IO] P. Resenfeld, Using 80x86 Segmentation to Improve Soft-
ware Reliability, Available via the Microtec home page at
http://www.mri.com.

[I I] J. S. Shapiro, A Programmer’s
Introduction to EROS, Available via the EROS home page
at http://www.cis.upenn.eduTeros.

[I21 D. Nagle, R. Uhlig, T. Stanley, S. Sechrest, T. Mudge, R.
Brown, “Design Tradeoffs for Software-Managed TLBs”,
Proceedings of IEEE/ACM 20th Annual International Sym-
posium on Computer Architecture, pages 27-38, May 1993.
M. Talluri, S. Kong, M. D. Hill and D. A. Patterson, “Trade-

Offs in Supporting Two Page Sizes”, Sun Microsystems Lab-
oratories Technical Report, February 1993.
A. S. Tanenbaum, Modem Operating Systems, chapter 3,

Memory Management, Prentice-Hall, 1992.

58

http://www.intel.comldesignlintarch/paperslEXC_IA.PDE
http://www.lynx.com
http://www.mri.com
http://www.cis.upenn.eduTeros

