
Abstract

In this paper, we present new algorithms for all-to-all per-

sonalized exchange or complete exchange in multidimen-

sional mesh-connected multiprocessors with an arbitrary

number of nodes in each dimension. For an mesh

where , the proposed algorithm has time complexities

of O(C) message start-ups and O(RC2) message transmis-

sions. The algorithms for three or higher dimensional meshes

follow a similar structure. Unlike existing message combin-

ing algorithms in which the number of nodes should be a

power-of-two square, the proposed algorithms accommodate

meshes with an arbitrary number of nodes in a dimension. In

addition, destinations remain fixed over a larger number of

steps in the proposed algorithms, thus making them amenable

to optimizations. Finally, the data structures used are simple

and hence make substantial saving of message-rearrange-

ment time.

1 Introduction

Interprocessor communication may become a main bottle-

neck to scalable parallel implementations of computationally

intensive applications. This has motivated the development of

efficient and innovative algorithms for demanding interpro-

cessor communication patterns such as collective communi-

cation pattern [7]. Among these, all-to-all personalized

exchange or complete exchange is perhaps the most demand-

ing communication patterns [1,3,4,5,8]. In complete

exchange, every processor communicates a block of distinct

data to every other processor in the system. In an N-node sys-

tem, each node , , has N blocks of data,

, with a distinct block for each other

node. After the exchange operation, each node has N

blocks, , one from each other node.

Many scientific parallel algorithms require the complete

 * The work reported in this paper was supported in part by the

National Science Foundation under Grant MIP-9203895.

exchange communication pattern, e.g., matrix transpose

operations, fast Fourier transform (FFT), and solutions to the

n-body problem.

Several studies by Bokhari and Berryman [2], Sunder et al.

[10], and Tseng et al. [13] have produced algorithms using

message combining in meshes or tori. These algo-

rithms incur an execution time of due to message

start-ups and due to message transmissions.

Recently, Suh and Yalamanchili [9] proposed algorithms

using message combining in and tori with

time complexities of due to message start-ups and

 (in 2D) or (in 3D) due to message transmis-

sions. These algorithms differ from each other primarily in

the manner in which pairwise exchange operations are sched-

uled. However, they have all been defined for meshes or tori

where the number of processors in each dimension is an inte-

ger power-of-two.

In this paper, we present new algorithms for complete

exchange for multidimensional meshes with an arbitrary

number of nodes in each dimension. The algorithms utilize

message combining to reduce the time associated with mes-

sage start-ups. The proposed algorithms are suitable for a

wide range of mesh topologies. This is particularly useful in

multi-programmed multiprocessor architectures where, in the

interest of efficiency, processor allocation algorithms attempt

to maximize processor utilization - not the shape of the allo-

cated sub-mesh. As a result, allocated sub-meshes are rarely

square and are not under the control of the application pro-

grammer [14]. Furthermore, problem sizes may dictate the

use of non-square grid in which case the set of processors

allocated to a program normally does not form a square sub-

mesh. Moreover, when the proposed algorithms are applied

to the special case of “square” 2D meshes where the number

of processors in each dimension is a power-of-two, they

improve performance over the best existing algorithm for

power-of-two square meshes [10].

R C×
R C≤

Pi 1 i N≤ ≤

B i 1,[] B i 2,[] … B i N,[], , ,

Pi

B 1 i,[] B 2 i,[] … B N i,[], , ,

2
d

2
d×=

O 2
d()

O 2
3d()

2
d

2
d× 2

d
2

d× 2
d×

O d()

O 2
3d() O 2

4d()

Complete Exchange in
General Multidimensional Mesh Networks*

Young-Joo Suh✝, Kang G. Shin✝, and Sudhakar Yalamanchili¥

✝
Real-Time Computing Laboratory

¥
Computer Systems Research Laboratory

Department of Electrical Engineering and Computer Science School of Electrical and Computer Engineering

The University of Michigan Georgia Institute of Technology

 Ann Arbor, MI 48109-2122 Atlanta, Georgia 30332-0250

E-mail: {yjsuh, kgshin}@eecs.umich.edu E-mail: sudha@ece.gatech.edu

Tel: (313) 763-0391, Fax: (313) 763-4617 Tel: (404) 894-2940, Fax: (404) 894-9959

The salient features of the proposed algorithms are (i)

unlike existing message combining algorithms, they accom-

modate meshes with an arbitrary number of nodes in a

dimension, (ii) they are simple in that destinations remain

fixed over a larger number of steps, and are thus amenable to

optimizations, e.g., caching of message buffers, locality opti-

mizations, etc., (iii) they are the first message combining

algorithms for such three or higher dimensional meshes, and

(iv) the data structures are simple, thus saving substantial

message-rearrangement time.

The following section presents performance model and

parameters. We propose the algorithm for 2D meshes in Sec-

tion 3. The algorithm is extended to three or higher dimen-

sional meshes in Section 4. Section 5 evaluates the

performance of the proposed algorithms. The results are dis-

cussed in Section 6.

2 Performance Model and Parameters

The target architecture is a mesh-connected, wormhole-

switched multiprocessor. Each message is partitioned into a

number of flits. We assume that each processor has N distinct

m-flit message blocks, the channel is one-flit wide, and each

processor has one pair of injection/consumption buffers for

the internal processor-router channel (i.e., one-port architec-

ture). All links are full-duplex channels.

A common metric used to evaluate the performance of

inter-processor communication is completion time or commu-

nication time. In general, the communication time includes

start-up time (), message transmission time per flit (), the

propagation delay (), and data rearrangement time between

communication steps/phases (). The propagation delay is

the per-hop time multiplied by the number of links traversed

by a message. It is not negligible in packet-switched net-

works, but it is negligible in current generation wormhole-

switched networks.

In this paper, a step is the basic unit of a contention-free

communication and a phase is a sequence of steps. The com-

pletion time for one communication step can be approxi-

mated by if an m-byte message block is

transmitted, without any contention, to the destination using

wormhole switching. Between successive communication

steps or phases for complete exchange, one may need to rear-

range data.

3 Algorithms for 2D Meshes

3.1 Node Groups

For an mesh, where and are even numbers and

, each node is identified by a label ,

and . Each node is included in one of four node

groups according to the following rules.

IF r and c are even, node P is included in group EE.

IF r is odd and c is even, node P is included in group OE.

IF r is even and c is odd, node P is included in group EO.

IF r and c are odd, node P is included in group OO.

The nodes in a group form an submesh. For exam-

ple, in a mesh shown in Figure 1, nine nodes with an

identical marking form a submesh. The proposed algo-

rithm consists of three phases. In phases 1 and 2, messages

are transmitted among nodes in the same group. Nodes in

each group and in the same row (or column) form a logical

ring. For example, in a mesh shown in Figures 1(b) and

(c), three nodes in each row or column form a logical ring.

After phase 2, the network is divided into contiguous

 submeshes and all of the four nodes in a submesh

are included in distinct node groups (see Figure 1(d)). In

phase 3, message transmissions are performed with nodes in

distinct groups and in the same submesh to finish the

complete exchange operation.

3.2 Communication Pattern

We now describe the communication pattern of the pro-

posed algorithm without considering the data storage struc-

ture. The detailed description for the proposed algorithm is

presented in the next subsection.

The proposed algorithm consists of three phases. The fol-

lowing operations are performed in phase 1:

Phase 1

IF ,

then P(r,c) transmits to P(r, (c+2)mod C)

IF ,

then P(r,c) transmits to P((r+2)mod R, c).

Phase 1 requires steps. Throughout the steps of

phase 1, each node transmits messages to a fixed destination

node - the next node in the logical ring to which the node

belongs. Since the size of a submesh is , there are at

most nodes in a row or column (because). Consider

a node A’s blocks to be scattered to all nodes. In step 1, node

A transmits all of its blocks except those to be transmitted by

itself in phases 2 and 3 to the next node (e.g., node B) in the

logical ring. Node B extracts blocks to be transmitted by

itself in phases 2 and 3, then transmits the remaining blocks

ts tc

t l

ρ

T ts m tc⋅+=

R C× R C

R C≤ P r c,() 0 r R 1–≤ ≤

0 c C 1–≤ ≤

R

2

C

2
----×

6 6×

3 3×

6 6×

RC

4

2 2× 2 2×

2 2×

P r c,() EE or OO∈

P r c,() EO or OE∈

C

2
---- 1–

C

2
---- 1–

R

2

C

2
----×

C

2
---- R C≤

to the next node (e.g., node C) in the logical ring in step 2.

This procedure repeats itself and in the last step of phase 1,

the last node (e.g., node L) in the logical ring receives only

the blocks to be transmitted by the node in phases 2 and 3.

Likewise, the other nodes in the logical ring and all nodes in

the other logical rings also scatter their blocks to all nodes in

their logical rings. If , then nodes in groups EO and OE

finish the operations in phase 1 in steps and become

idle during the remaining steps.

In phase 2, each node changes dimensions then performs a

cyclic shift operation along a logical ring in the new dimen-

sion. In phase 2, the following operations are performed:

Phase 2

IF ,

then P(r,c) transmits to P((r+2)mod R, c).

IF ,

then P(r,c) transmits to P(r, (c+2)mod C).

Phase 2 also requires steps and the communication pat-

tern is the same in the new dimension as that in phase 1. Each

node in a logical ring of phase 1 (e.g., each node A, B, C, ...,

L) transmits blocks along logical rings in the new dimension

in parallel. In each step, each node extracts blocks for itself

and blocks to be transmitted by itself in phase 3, then trans-

mits the remaining blocks to the next node in the logical ring.

Thus, after steps of phase 2, each node has blocks orig-

inated from nodes in the same node group, destined for itself

and to be transmitted by the node in phase 3. As in phase 1, if

 then nodes in groups EE and OO finish the operations

in phase 1 in steps and idle during the remaining

steps.

Now, the network can be divided into contiguous

 submeshes. All nodes in a submesh are included

in distinct node groups and have blocks originated from all

nodes in their respective groups. In phase 3, two steps are

required as follows:

Phase 3 Step 1

IF , then P(r,c) transmits to P(r, c+1).

IF , then P(r,c) transmits to P(r, c-1).

Phase 3 Step 2

IF , then P(r,c) transmits to P(r+1, c).

IF , then P(r,c) transmits to P(r-1, c).

After phase 3, each node has blocks originated from

all nodes in the network to complete the complete exchange

operation. The communication pattern of the proposed algo-

rithms in a mesh is captured in Figure 1.

3.3 Data Array

In this subsection, the contents of transmitted blocks and

array structure in each communication step are described in

detail.

Initially, each node has distinct blocks to distribute to

other nodes in two dimensional array B[u,v], where

 and if the node is included in

groups EE or OO, and and if the

node is included in groups EO or OE. We assume that the

array is ordered in column major, and if blocks to be trans-

mitted are not contiguous, then they should be rearranged

before the transmission. The initial data structure of a node is

dependent upon the communication pattern in phases 1 and 2.

In B[u,0], a block destined for the node that is u hops away

from the node along the direction of the logical ring in phase

1 (including nodes not in the logical ring) is located. In

B[u,v], a block destined for the node that is v hops away from

the node for which the block B[u,0] is destined along the

direction of the logical ring in phase 2 (including nodes not in

R C≠

R

2
--- 1–

C R–

2

P r c,() EE or OO∈

P r c,() EO or OE∈

C

2
---- 1–

C

2
---- 1–

R C≠

R

2
--- 1–

C R–

2

RC

4

2 2× 2 2×

P r c,() EE or OE∈

P r c,() OO or EO∈

P r c,() EE or OE∈

P r c,() OO or EO∈

RC

6 6×

Figure 1. Communication pattern in a 6x6 mesh.

0 1 2 3 4 5
0

1

2

3

4

5

(a) Four node groups (b) Phase 1

(c) Phase 2 (d) Phase 3

group EE

step 1In (d)

group OO group EO group OE

step 2

c

r

RC

0 u R 1–≤ ≤ 0 v C 1–≤ ≤

0 u C 1–≤ ≤ 0 v R 1–≤ ≤

the logical ring) is located. For example, consider the initial

data array of node P(0,0) for a mesh illustrated in Fig-

ure 1. It is included in group EE and nodes in the group are

assigned the positive column and positive row directions in

phases 1 and 2, respectively. Thus, the first row of the data

array includes blocks destined for nodes in the same row

along the positive row direction from P(0,0) in that order, and

the other cells in each column of the data array include blocks

destined for nodes in the same column along the positive col-

umn direction from each node in the first row, in that order, as

illustrated in Figure 2(a). It is exactly the same configuration

as the network itself. It may be easier to understand the initial

data structure in each node as follows: The network is recon-

figured by placing each node in the origin (0,0) and by mak-

ing its message transmission operation in phase 1 to be

performed along the row. Figure 3(b) illustrates the reconfig-

ured network by placing the node P(2,1) at the origin and

making its message transmission operation in phase 1 to be

performed along the row. Then, the initial data structure fol-

lows exactly the same configuration as that of the reconfig-

ured network as illustrated in Figure 3(c). In the figure, a

block is identified by the combination of source node ID and

destination node ID. For example, a block in node P(1,2)

which is destined for node P(3,4) is identified by block 1234.

In step i, , of phase 1, each node transmits

blocks in columns through , i.e., B[*,2i..C-1] (where

‘*’ is the wild card designation), to its destination node in

phase 1, while receiving the same number of blocks from its

source node in phase 1: In step 1, each node transmits all

blocks except blocks that can be transmitted by itself in

phases 2 and 3 (i.e., blocks in the first two columns). Among

the received blocks in step 1, each node extracts the blocks

that can be transmitted by itself in phases 2 and 3 (i.e., blocks

in the third and fourth columns), then transmits the remaining

blocks to its destination node in step 2. This procedure

repeats until the last step of phase 1. After phase 1, each node

has blocks from all nodes in the same logical ring of phase 1,

destined for nodes that the node can transmit in the remaining

phases.

In step j, , of phase 2, each node transmits

blocks in rows through , i.e., B[2j..C-1,*] to its desti-

nation node in phase 2, while receiving the same number of

blocks from its source node in phase 2: In step 1, each node

transmits all blocks except blocks that can be transmitted by

itself in phase 3 (i.e., blocks in the first two rows). Among the

6 6×

0000

0010

0020

0030

0040

0050

0401

0411

0421

0431

0441

0451

0001

0011

0021

0031

0041

0051

0400

0410

0420

0430

0440

0450

0403

0413

0423

0433

0443

0453

0402

0412

0422
0432

0442

0452

0000

0010

0020

0030

0040

0050

0003

0013

0023

0033

0043

0053

0001

0011

0021

0031

0041

0051

0002

0012

0022

0032

0042

0052

0005

0015

0025

0035

0045

0055

0004

0014

0024

0034

0044

0054

0000

0010

0020

0030

0040

0050

0401

0411

0421

0431

0441

0451

0001

0011

0021

0031

0041

0051

0400

0410

0420

0430

0440

0450

0201

0211

0221

0231

0241

0251

0200

0210

0220

0230

0240

0250

0000

0010

4000

4010

4020

4030

0401

0411

4401

4411

4421

4431

0001

0011

4001

4011

4021

4031

0400

0410

4400

4410

4420

4430

0201

0211

4201

4211

4221

4231

0200

0210

4200

4210

4220

4230

0000

0010

4000

4010

2000

2010

0401

0411

4401

4411

2401

2411

0001

0011

4001

4011

2001

2011

0400

0410

4400

4410

2400

2410

0201

0211

4201

4211

2201

2211

0200

0210

4200

4210

2200

2210

0000

4000

2000

0010

4010

2010

0001

4001

2001

0011

4011

2011

0400

4400

2400

0410

4410

2410

0200

4200

2200

0210

4210

2210

0201

4201

2201

0211

4211

2211

0401

4401

2401

0411

4411

2411

0000

4000

2000

0010

4010

2010

0100

4100

2100

0110

4110

2110

0400

4400

2400

0410

4410

2410

0200

4200

2200

0210

4210

2210

0500

4500

2500

0510

4510

2510

0300

4300

2300

0310

4310

2310

0000

4000

2000

1000

3000

5000

0100

4100

2100

1100

3100

5100

0400

4400

2400

1400

3400

5400

0200

4200

2200

1200

3200

5200

0500

4500

2500

1500

3500

5500

0300

4300

2300

1300

3300

5300

 received blocks

(a) Initial (b) After phase 1 step 1

(c) After phase 1 step 2 (d) After phase 2 step 1

(e) After phase 2 step 2 (f) After rearrangement

(g) After phase 3 step 1 (h) After phase 3 step 1

Figure 2. Logical data structure in node (0,0) for complete

exchange in a 6x6 mesh.

0

1

2

3

4

5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5
0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

P(2,1)P(3,1) P(4,1)P(5,1)P(0,1)P(1,1)

P(2,2)P(3,2) P(4,2)P(5,2)P(0,2)P(1,2)

P(2,3)P(3,3) P(4,3)P(5,3)P(0,3)P(1,3)

P(2,4)P(3,4) P(4,4)P(5,4)P(0,4)P(1,4)

P(2,5)P(3,5) P(4,5)P(5,5)P(0,5)P(1,5)

P(2,0)P(3,0) P(4,0)P(5,0)P(0,0)P(1,0)

2121

2122

2123

2124

2125

2120

2151

2152

2153

2154

2155

2150

2131

2132

2133

2134

2135

2130

2141

2142

2143

2144

2145

2140

2111

2112

2113

2114

2115

2110

2101

2102

2103

2104

2105

2100

(c) Initial data array of P(2,1)

0

1

2

3

4

5

0 1 2 3 4 5

(b) Reconfigured network by

Figure 3. Reconfigured network and initial data array of

P(2,1).

0 1 2 3 4 5
0

1

2

3

4

5

P(0,0)P(0,1) P(0,2)P(0,3)P(0,4)P(0,5)

P(1,0)P(1,1) P(1,2)P(1,3)P(1,4)P(1,5)

P(2,0)P(2,1) P(2,2)P(2,3)P(2,4)P(2,5)

P(3,0)P(3,1) P(3,2)P(3,3)P(3,4)P(3,5)

P(4,0)P(4,1) P(4,2)P(4,3)P(4,4)P(4,5)

P(5,0)P(5,1) P(5,2)P(5,3)P(5,4)P(5,5)

(a) Original network
putting P(2,1) in the origin

1 i
C

2
---- 1–≤ ≤

2i C 1–

1 j
C

2
---- 1–≤ ≤

2 j C 1–

received blocks in step 1, each node extracts the blocks that

to be transmitted by itself in phase 3 (i.e., blocks in the third

and fourth rows) then transmits the remaining blocks to its

destination node in step 2. This procedure repeats until the

last step of phase 2.

After phase 2, each node in a submesh has

blocks originated from all nodes in the same node group des-

tined for four nodes in the submesh to which the node

belongs. But blocks destined for each node in the sub-

mesh are distributed. Thus, before phase 3, the blocks are

rearranged: In the upper left quadrant, blocks destined for

itself are placed and blocks destined for the destination node

in step 1, blocks destined for the node in the diagonal in the

 submesh, and blocks destined for the destination node

in step 2 are located in other quadrants, in clock-wise order.

In step 1 of phase 3, each node transmits blocks destined

for the two nodes in the other column of the submesh,

while receiving the same number of blocks from the destina-

tion node. After step 1, each node has blocks destined for

itself and another blocks destined for the destination

node in step 2. Thus, the latter blocks are transmitted in

step 2, while receiving the same number of blocks. Now,

every node has blocks, one block from every node in the

network.

Consider an example in a mesh illustrated in Figure

1. The data array of P(0,0) in each communication step is

captured in Figure 2. Initial data array of P(0,0) is shown in

Figure 2(a). The communication pattern in phase 1 is illus-

trated in Figure 1(b). In phase 1 step 1, P(0,0) sends blocks in

columns 2 through 5 to P(0,2) while receiving the same num-

ber of blocks from P(0,4) (Figure 2(b)). In step 2 of phase 1,

blocks in the last two columns are transmitted (Figure 2(c)).

Now, phase 2 initiates. The communication pattern in phase 2

is illustrated in Figure 1(c). In step 1 of phase 2, blocks in

rows 2 through 5 are transmitted to P(2,0), while receiving

blocks from P(4,0) (Figure 2(d)). In step 2 of phase 2, blocks

in the last two rows are transmitted to P(2,0), while receiving

blocks from P(4,0). After phase 2, all blocks in a node are

those destined for nodes in the same submesh (i.e.,

P(0,0), P(0,1), P(1,0), and P(1,1)) as shown in Figure 2(e).

But blocks destined for each node in the submesh are

distributed. Thus, before phase 3, the blocks are rearranged

as shown in Figure 2(f). Now, phase 3 starts and the commu-

nication pattern in phase 3 is illustrated in Figure 1(d). The

data array after each step of phase 3 are captured in Figures

2(g) and (h).

3.4 Complexity Analysis

In this subsection, we analyze the time cost required by the

proposed algorithm in terms of start-up cost, message trans-

mission cost, and data rearrangement cost.

(a) Start-up cost: For an 2D mesh, , there are

 steps in phase 1, steps in phase 2, and 2 steps in

phase 3. Thus a total of steps are required.

(b) Message transmission cost: In step of phase 1, where

, , i.e.,

blocks (since) are transmitted. In step of phase 2,

where , blocks are transmitted. In

phase 3, there are two steps and blocks are transmitted in

each step. Thus, the total number of transmitted blocks is

.

(c) Data rearrangement cost: In the logical 2-dimensional

data array described in the previous subsection, only one data

rearrangement step is required before phase 3 (see Figure

2(f)). But, in the physical model, the array is ordered in col-

umn major, and if blocks to be transmitted are not contigu-

ous, then they should be rearranged before the transmission.

Blocks should be rearranged between two consecutive

phases. Since there are three phases, two message-rearrange-

ment steps are required. The total data rearrangement cost is

.

4 Extension to n-Dimensional Meshes

The algorithm in 2D meshes can also be extended to

n-dimensional meshes in a straightforward

manner.

For an n-dimensional mesh, there are n+1

phases. Each node is included in one of node groups

according to whether each of the coordinates is even or odd.

The nodes in a group form an n-dimensional

submesh. In each of the first n phases, messages are transmit-

ted along logical rings in each dimension. In the last phase

(phase n+1), message exchange operations are performed in

each n-dimensional submesh. To avoid channel

contentions, the dimensions in which messages are transmit-

ted are distributed in each phase.

2 2× RC

2 2×

2 2×

2 2×

RC

2

2 2×

RC

2

RC

2

RC

2

RC

6 6×

2 2×

2 2×

R C× R C≤

C

2
---- 1–

C

2
---- 1–

C

p

1 p
C

2
---- 1–≤ ≤ max R C 2 p–() C R 2 p–(),{ } R C 2 p–()

R C≤ q

1 q
C

2
---- 1–≤ ≤ R C 2q–()

RC

2

2 R C 2 p–()
p 1=

C

2
---- 1–

∑⋅ 2
RC

2

 +
RC

2

2
----------=

2 RC()mρ

a1 a2× … an××

a1 a2× … an××

2
n

a1

2
----- …×

an

2
-----×

2 2× …× 2×

In general, for n-dimensional networks, nodes in the even

numbered unit along the dimension n follow the communica-

tion patterns of (n-1)-dimensional networks in the first n-1

phases and then perform the communication along the last

dimension (i.e., dimension n) in phase n, while the other

nodes perform the communication along the dimension n in

phase 1 and then follow the communication patterns of (n-1)-

dimensional networks in the remaining n-1 phases. Finally, in

phase n+1, message exchange operations are performed in

each n-dimensional submesh and there are n

steps.

The data array in each node is very similar to that in 2D

meshes. Figure 4 illustrates the transmitted blocks in each

step until phase 3 for a 3D mesh. After phase 3,

each node in a submesh has blocks originated

from all nodes in the same node group (nodes) destined

for eight nodes in the submesh to which the node

belongs. But blocks destined for each node in the

submesh are distributed. Thus, before phase 4, the blocks are

rearranged. In each step phase 4, each node transmits

blocks.

In general, for an n-dimensional mesh,

where , there are n+1 phases. In the first n

phases, steps are required per phase and, in phase n+1,

n steps are required. Thus, the total number of steps required

for the complete exchange operation is . In step ,

, in each of the first n phases,

 i.e.,

 blocks are transmitted (since

). In each step of phase n+1,

blocks are transmitted. Thus, the total number of transmitted

blocks is as follows:

.

Between each of two successive phases, blocks are rear-

ranged to prepare for the next phase. Since there are n+1

phases, n message-rearrangement steps are required. That is,

the total data rearrangement cost is .

5 Performance Evaluation

In this section, the performance of the proposed algorithms

is evaluated and compared with that of existing algorithms. In

previous sections, we analyzed the time cost of the proposed

algorithm in terms of three dominant terms in completion

time: start-up cost, message transmission cost, and data rear-

rangement cost.

The asymptotic time complexities of the proposed algo-

rithms are summarized in Table 1. In 2D meshes, the total

number of required communication steps is the length of the

longer dimension. In general, in an n-dimen-

sional mesh, where , the time complexity of

2 2× …× 2×

Figure 4. Message blocks transmitted in each step in

a 6x6x6 mesh.

(a) step 1 (b) step 2
Phase 1

blocks transmitted

X

Y
Z

(c) step 1 (d) step 2
Phase 2

(e) step 1 (f) step 2

Phase 3

6 6× 6×

2 2× 2× a
3

a
3

8

2 2× 2×

2 2× 2×

a
3

2

Network
Start-up

Time

Message

Transmission

Time

Data

Rearrangement

Time

2D mesh

nD mesh

Table 1: Performance summary of proposed algorithms.

a1 a2× … an××

a1 a2 … an≥ ≥ ≥

a1

2
----- 1–

n

2
---a1 s

1 s
a1

2
----- 1–≤ ≤

max a1 2 s⋅–() a2a3…an() … an 2 s⋅–() a1a3…an 1–(), ,{ }

a1 2 s⋅–() a2…an()

a1 a2 … an≥ ≥ ≥ 1

2
--- a1a2…an()

n a1 2 s⋅–() a2…an()
s 1=

a1

2
----- 1–

∑ n

2
--- a1a2…an()+

n

4
--- a1

2
a2…an()=

n a1a2…an()mρ

R C× C()ts RC
2

2

 mtc

2 RC()mρ

a1 … an×× n

2
---a1

 ts

n

4
--- a1

2
a2…an()mtc

n a1a2…an()mρ

a1 a2× … an××

a1 a2 … an≥ ≥ ≥

the start-up cost is and that of message transmission

cost is . In addition, n message-rearrangement

steps are required.

The time complexities of existing algorithms for complete

exchange in a mesh using message combining [2,10]

are summarized in Table 2. The time complexities of the pro-

posed 2D algorithm applied to power-of-two square meshes

are also summarized in Table 2. As shown in the table, the

time complexities of the start-up time and message transmis-

sion time are equivalent to those proposed in [10]. But, the

proposed algorithm is advantageous with respect to the data

rearrangement time. Data rearrangement time is required

between phases to prepare for the next phase. In a

mesh, there are phases in the algorithms [2] and [10], thus

 rearrangement steps are required. However, the pro-

posed algorithm requires only two rearrangement steps since

there are three phases. Thus, overall effect is that the pro-

posed algorithm exhibits better performance. At the very

least, it appears the algorithms are comparable, and the pro-

posed algorithms possess other advantages: the size of each

dimension need not be power-of-two square, extensions to

multi-dimensional meshes.

6 Conclusions

This paper has proposed new algorithms for complete

exchange for multidimensional mesh-connected networks.

Although the algorithms targeted wormhole-switched net-

works, they can be efficiently used in virtual cut-through or

circuit-switched networks. The proposed algorithms utilize

message combining to reduce the time complexity of mes-

sage start-ups. Unlike existing message combining algo-

rithms, the proposed algorithms accommodate non-power-of-

two networks of arbitrary dimensions. It is interesting that,

when the algorithms are applied to power-of-two square

meshes, the proposed algorithms exhibit better performance

than existing algorithms, suggesting their utility in various

multiprocessing environments without performance degrada-

tion.

References

[1] S. H. Bokhari, Multiphase Complete Exchange on Para-
gon, SP2, and CS-2, IEEE Parallel & Distributed Tech-
nology, pages 45-59, Fall 1996.

[2] S. H. Bokhari and H. Berryman, Complete Exchange on
a Circuit Switched Mesh, Proceedings of Scalable High
Performance Computing Conference, pages 300-306,
1992.

[3] J. Bruck, C. T. Ho, S. Kipnis, and D. Weathersby, Effi-
cient Algorithms for All-to-All Communications in
Multi-Port Message-Passing Systems, Proceedings of
Symposium on Parallel Algorithms and Architectures,
pages 298-309, 1994.

[4] S. Hinrichs, C. Kosak, D. R. O’Hallaron, T. M. Sticker,
and R. Take, An Architecture for Optimal All-to-All Per-
sonalized Communication, Proceedings of Symposium on
Parallel Algorithms and Architectures, pages 310-319,
1994.

[5] S. L. Johnsson and C. T. Ho, Optimum Broadcasting and
Personalized Communication in Hypercubes, IEEE
Trans. on Computers, vol. 38, no. 9, pages 1249-1268,
Sep. 1989.

[6] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Intro-
duction to Parallel Computing - Design and Analysis of
Algorithms, Benjamin/Cummings Publishing Company,
chapter 3, 1994.

[7] P. K. McKinley, Y.-J. Tsai, and D. F. Robinson, A Survey
of Collective Communication in Wormhole-Routed Mas-
sively Parallel Computers, Tech. Report MSU-CPS-94-
35, Michigan State University, 1995.

[8] D. S. Scott, Efficient All-to-All Communication Patterns
in Hypercube and Mesh Topologies, Proceedings of 6th
Conference. Distributed Memory Concurrent Computers,
pages 398-403, 1991.

[9] Y. J. Suh and S. Yalamanchili, Algorithms for All-to-All
Personalized Exchange in 2D and 3D Tori, Proceedings
of 10th International Parallel Processing Symposium,
pages 815-821, April, 1996.

[10]N. S. Sundar, D. N. Jayasimha, D. K. Panda, and P.
Sadayappan, Complete Exchange in 2D Meshes, Pro-
ceedings of Scalable High Performance Computing Con-
ference, pages 406-413, 1994.

[11]R. Thakur and A. Choudhary, All-to-All Communication
on Meshes with Wormhole Routing, Proceedings of 8th
International Parallel Processing Symposium, pages 561-
565, Apr., 1994.

[12]Y.-C. Tseng and S. Gupta, All-to-All Personalized Com-
munication in a Wormhole-Routed Torus, Proceedings of
International Conference on Parallel Processing, volume
1, pages 76-79, 1995.

[13]Y.-C. Tseng, S. Gupta, and D. Panda, An Efficient
Scheme for Complete Exchange in 2D Tori, Proceedings
of International Parallel Processing Symposium, pages
532-536, 1995.

[14]Cray T3D, System Architecture Overview, 1994.

Network
Start-up

Time

Message

Transmission Time

Data

Rearrangement

Time

[2]

[10]

Proposed

Table 2: Comparison of algorithms.

O a1()

O a1

2
a2…an()

2
d

2
d×

2
d

2
d×

d

d 1–

3 2
d

1–()ts 3 2
d

1–()2
2d 2–

mtc d 1–()2
2d

mρ

2
d()ts 2

3d 1–()mtc d 1–()2
2d

mρ

2
d()ts 2

3d 1–()mtc 2()2
2d

mρ

