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Destination-Driven Routing for Low-Cost Multicast
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Abstract—We present a destination-driven algorithm that op-
timizes for applications, such as group video or teleconferencing,
that require multicast trees with low total cost. The destination-
driven algorithm uses a greedy strategy based on shortest-path
trees and minimal spanning trees but biases routesthrough des-
tinations. The performance of the algorithm is analyzed through
extensive simulation and compared with several Steiner tree
heuristics and the popular shortest-path tree (SPT) method. The
algorithm is found to produce trees with significantly lower
overall cost than the SPT while maintaining reasonable per-
destination performance. Its performance also compares well
with other known Steiner heuristics. Moreover, the algorithm
does not suffer from high complexity common to most Steiner
tree heuristics and builds a route by querying only incident links
for cost information.

Index Terms—Communication system routing, computer net-
works, trees (graphs).

I. INTRODUCTION

T HE recent emergence of multimedia and collaborative
computing in distributed environments provides an incen-

tive to system designers to include communication support for
these applications. A prevalent pattern in such environments is
multicast (one-to-many or many-to-many) communication. In
this mode, a single source node (or group of source nodes)
sends identical messages simultaneously to multiple desti-
nation nodes in a point-to-point network. Single-destination,
or unicast, and broadcast messaging to the entire network
are both special cases of multicast. Multimedia applications
are envisioned to benefit most from multicast communication
capabilities. Some frequently cited examples include video
or teleconferencing, distributed databases, distributed games,
mass mailings, and video-on-demand services [1]–[3]. In a
video-on-demand application, for instance, a single server
provides a one-to-many transmission for customers who join
the same movie at approximately the same time. A video
conference, on the other hand, is likely to be a many-to-
many transmission with multiple parties wishing to transmit
and receive.

A fundamental issue in multicast communication is how
to determine an efficient message route (multicast routing).
Tree construction is a commonly used approach in solving
the multicast routing problem. Popularity of the tree-based
approach arises from the ability to potentially share many
links in transmitting the message to the destination set. Also,
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multicast trees minimize data replication; messages need only
be replicated at forking nodes. This differs from multicast
achieved through multiple unicasts where every unicast re-
quires a copy of the message. Using multiple unicasts may
result in many copies of the same message traversing the same
network links.

Generally, multicast trees fall into two categories, namely
shortest-path trees (SPT’s) and group shared trees [4]. SPT’s
for a single multicast may consist of many distinct trees, one
for each source. That is, the shortest path to each member
of the multicast is different depending on who is originating
messages. Hence, SPT’s are often referred to as source-specific
SPT’s. This type of tree is currently used in the distance-vector
multicast routing protocol (DVMRP) for Internet multicast
traffic on the virtual multicast backbone (MBone) network
[5]–[7]. Another example of multicast SPT’s is the multicast
extensions for open shortest path first OSPF (MOSPF) which
uses distributed link state and Dijkstra’s algorithm [8] to
calculate shortest paths [9]. The primary advantage of SPT’s
is, of course, the minimal delay to each destination. This
feature makes SPT’s desirable for interactive applications such
as video conferencing which are characterized by very high
data rates a need for timely delivery. SPT’s drawback is that
MOSPF and DVMRP require broadcasting of membership
information and data packets, respectively. As an internetwork
grows in size, the broadcast behavior of these routing meth-
ods can result in poor scalability. On the other hand, some
multicast applications may have very dense groups for which
the broadcast may not represent a substantial penalty [10]. An
intuitive definition of a dense multicast group may be one
where the number of internetwork LAN’s that have group
members is a high proportion of the total number of LAN’s
in the Internet.

To combat the scalability problems, a relatively new shared
tree method, classified as the center-based tree, has been
proposed. A center-based tree has one (or more) central router
node with branches that emanate outward to destinations. The
tree is shared per group rather than per (source, group) pair,
and its formation is initiated by receivers once the central
node is known. Examples of center-based trees are the core-
based tree (CBT) [11] and the shared-tree mode of the protocol
independent multicast (PIM)1 architecture [10]. The drawback
of center-based and other shared trees is that the same tree is
used for all members of the multicast. This means that multiple
sources in the group will be transmitting over the same set
of links, leading to high traffic concentrations on those links.

1PIM is notable in that it supports shared center-based trees for low data
rate sources or sparse multicast groups and also provides a mechanism to
switch over to a SPT mode when low delay is important or the multicast
group is densely distributed.
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Traffic concentration may not be an issue, however, for groups
which are sparsely distributed or applications with low data
rates. The advantage of center-based trees is that they do
not exhibit the broadcast behavior of SPT’s and thus do not
tax routers uninterested in the multicast with data or group
information.

The goals addressed by various multicast tree types fall into
two general categories [12], [13]. The first is to minimize the
delay toeachdestination, which is effectively what the SPT
achieves. Another optimization goal is to minimize the overall
cost of the multicast tree.2

Low delay trees (SPT’s) are important in providing good
service to destinations which represent individual customers
who have paid for some multicast service. Optimizing for cost
of the entire multicast, however, requires a more global view.
A company using a multicast video conferencing service, for
example, may wish instead to minimize the overall cost of the
transmission rather than the delay (or cost) to each individual
site. Moreover, from a network management point of view it
may be more important to keep the total cost of a multicast
session as low as possible rather than minimizing cost to
each individual destination. These two conflicting goals have
been studied together in other graph theoretic and networking
research [12], [14].

The tree cost itself may be a measure of a number of
possible parameters. Our approach avoids explicitly tying cost
to a particular network parameter. Cost may be inversely
proportional to link capacity or proportional to distance. Link
cost may also reflect the actual or anticipated congestion or
error rate. It could also measure buffer space or channel
bandwidth requirements. Still other networks may use an
estimate of packet transmission delay as the link cost [3] or
assume that cost reflects both delay and installation cost, for
example [14]. Recent work has split cost and delay, in some
cases trying to provide low cost while meeting some delay
constraint to each destination [13], [15]. In these cases, cost is
most often associated with bandwidth consumption although
the relationship between delay and cost is rarely explained
in the context of simulation-based studies. The focus of the
comparisons here is more general.

Trees that try to reduce overall cost generally achieve their
objective through sharing of links and minimal forking. SPT’s,
on the other hand, pay no heed to the amount of forking; their
primary goal is to find the least costly path to each individual
destination, even if every path is disjoint.

Cost of the tree is generally represented as the sum over the
costs of each link in the multicast tree. The problem of finding
the least total cost multicast tree is the Steiner tree problem in
networks, and is formulated as follows [16].

GIVEN: An undirected network and a
nonempty set of destinations , where and are the
set of vertices and edges of the network, respectively, and

is a cost function associated with each edge in.
FIND: A subnetwork of such that:

• there is a path between every pair of nodes in ;

2The introduction of CBT’s suggests a third possible optimization goal,
namely to reduce broadcast behavior and router state memory requirements.

• the total cost, , is minimized over all
possible trees.

The vertices included in the final solution that are not
members of are called Steiner nodes. Finding a Steiner tree
is known to be NP-complete in the most general case [17].

Steiner tree heuristics, though providing near-optimal re-
sults, are sometimes dismissed as too difficult to implement in
practical protocols or too computationally intensive [4], [7]. In
fact, most of the proposed heuristics for the Steiner tree require
global network information and can be quite complex relative
to SPT schemes [15], [18], [19]. Fortunately, there are several
versions of Steiner tree heuristics that may be executed in
a distributed fashion or using information only from nearby
nodes [12], [20], [21], though these are not without their
limitations [22].

In this paper we present a Steiner heuristic that is compa-
rable in complexity to SPT’s and suitable for similar dense-
mode multicast groups. It uses a greedy strategy combining
Dijkstra’s shortest path and Prim’s minimal spanning tree [23]
algorithms. It reduces tree cost by biasing toward paths that
passthrough destination nodes. We show through simulation
that the heuristic offers competitive performance with some
other known Steiner tree heuristics but at a much lower
computational cost.

We explore the ability of the algorithm to minimize an
overall tree metric (cost) as opposed to a destination-specific
metric (as done in SPT’s). We find that it demonstrates signif-
icant improvement over the popular SPT’s in terms of overall
cost while at the same time providing reasonable relative
performance in average per-destination cost and maximum
cost to each destination (for which SPT is optimized).

In the next section we present an expanded description of
the algorithm. Sections III and IV present simulation results
comparing our algorithm with other Steiner heuristics and
SPT’s, respectively. In Section V, we summarize our results
and briefly describe the future directions of this research.

II. DESTINATION-DRIVEN MULTICAST ROUTING

Our multicast routing algorithm arises from the observation
that Prim’s spanning tree algorithm to optimally broadcast to
all nodes in a graph and Dijkstra’s shortest path algorithm
for unicast both use essentially the same greedy strategy. We
modify these to distinguish between destination and nondesti-
nation nodes [24]. This distinguishing information is used to
give “preference” to destination nodes.

A. Algorithm Overview

The shortest path algorithm chooses routes by measuring
cost to each destination in terms of individual accumulated
cost. That is, SPT chooses links from the source to each
individual destination so that they add the smallest amount
to the current accumulated cost for the destination. In our
approach, however, we reset cost to zero at destination nodes
so that they appear as new “sources.” This causes the cost to a
node to appear small when measured from a destination. The
reason for this is that any nodes reached from a destination
node incur only an incremental additional cost since we must
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Fig. 1. DDMC routing algorithm.

absorb the cost for reaching the destination anyway. In this
way, paths are biased toward those that run through destination
nodes. As a result we refer to the algorithm asdestination-
driven multicast(DDMC).

For our purposes, the communication network is modeled
as usual, using an undirected graph where is a
set of host or router nodes andis the set of communication
links. We assume that the cost is nonnegative for each
link . Given a source and a set of destinations

such that , a multicast route is a rooted subtree
of the graph whose root is , which contains all nodes from

, and whose leaves consist of nodes from. Note that need
not be the only sender; since this algorithm produces a shared
multicast tree, any member of will transmit using this
same tree. Consequently, the tree has the same benefits and
drawbacks common to shared trees as discussed in Section I.

To distinguish nodes as being in the destination set, we
define an indicator function, as follows.

Definition: Given a set , the indicator function
of is defined as if ,

and 1 if .

B. Algorithm Operation

The algorithm executes in a manner very similar to Prim’s
minimum spanning tree algorithm [23]. We follow the basic
framework for tree construction shown in [25] and proceed in
three basic steps as shown below. A more detailed description
of the algorithm may be found in [24]. Pseudocode for DDMC
is given in Fig. 1.

1) Initialization involves setting parent pointers indetermi-
nate and cost estimates for each node to infinity, except
the source which receives cost estimate zero. In addition,
we create a priority queue,, and fill it with all of the
nodes. The queue is keyed on cost estimates where the
lowest cost has the highest priority.

2) Next we repeatedlyselect the highest priority vertex
from , add it to the tree, and

3) relax all of its outgoing edges. Relaxation uses the
incident link cost, the current cost estimate of the
neighboring node and the indicator function, to reset the
cost and parent pointers, if necessary.

The indicator function is used in line 11 so that the incre-
mental distance is zeroed if is a destination. That is, from a
destination, the only cost incurred is the additional link cost,
not the cost accumulated along the path from the source. This
causes each destination node to behave like a new “source.” As
future work, it seems reasonable to use the indicator function
as a tunable bias, depending on the goals of a particular
multicast application. Currently, the indicator zeros the cost
estimate for a destination node; it may be useful to provide
finer control over revisions to destination cost estimates to
change the characteristics of the tree.

The condition in line 12, and the fact that we consider each
node only once, ensure that cycles in the tree are avoided by
preventing resetting of parent pointers for nodes whose routes
have already been determined. In keeping with its goal of
simplicity, DDMC executes only one pass through the network
using the greedy strategy, rather than iteratively trying to
reduce the cost of the tree as in some other approaches [13].
Note that we construct a spanning tree rooted atfor the
graph . A multicast routing tree from to is obtained by
trimming this tree so that all leaves are destination nodes.

The correctness3 of the algorithm follows almost directly
from Prim’s algorithm. The primary difference is the dis-
tinction given to destination nodes which causes the distance
estimate of a node, , to reflect whether or not its parent is
a destination (line 11). Thus the order in which edges are
added to the tree will be different than in Prim’s algorithm.
The asymptotic running time of the algorithm is ,
where and . This assumes that the priority
queue is implemented as a binary heap and that the test
for membership in (line 12) can be made in constant time.
Some improvement is possible if Fibonacci heaps are used for
the priority queue [25].

Fig. 2 shows an example of the type of tree constructed by
the DDMC algorithm along with the solution formed by SPT.
The square designates the source node while destinations are
double circles. Note that the DDMC paths all pass through
destination node 2 en route to the other destinations. The SPT
route, however, finds a shorter path by forking from the source.
As a result the overall tree cost of the DDMC route is lower
although the average per-destination cost and the maximum
cost are identical in this case.

C. Extensions for Distributed DDMC

Efficient construction of a multicast tree requires a dis-
tributed version of the DDMC algorithm. Related work in
distributed minimum spanning trees and distributed multicast
path setup may be used to address this issue. The classic
spanning tree algorithm of Gallageret al. [26], for exam-
ple, proceeds as fragments of the spanning tree (initially
single nodes) join together asynchronously via their least
cost outgoing links to form larger fragments. Nodes within
each fragment determine their local minimum outgoing edge
independently and report the result to a fragment leader who
initiates combination with another fragment.

3By correctness, we mean that the algorithm terminates with a tree
connecting all nodes inD [ s.
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Fig. 2. Example multicast trees constructed by DDMC and SPT. Edge weights represent link costs. Links used in the final multicast tree are shown in boldface.

More recently, Bauer and Varma described a similar proce-
dure for distributed versions of two well-known Steiner tree
heuristics [21]. The distributed version of the shortest path
Steiner heuristic (SPH) proceeds very similarly to the way
DDMC would proceed. A single source fragment expands
into the multicast tree except that in the case of DDMC, the
fragment is grown by adding a single node over the least
cost link (similar to Gallager’s) but biased by destination
nodes. The destination information may be multicast to the
new fragment nodes similar to the discovery phase described
in [21] in which the fragment nodes update their notions of
cheapest outgoing links. Unlike distributed SPH, however, a
distributed version of DDMC would not have to decide what
the closest fragment is based on shortest paths to all other
destinations. The “greedy” nature of the algorithm results in
a need to query only incident links to pick the way in which
the fragment should be expanded.

III. DDMC AS A STEINER TREE HEURISTIC

Though we are interested in the ability of DDMC to meet
the conflicting goals of lowering overall cost while considering
per-destination costs, it is also important to consider its perfor-
mance as a Steiner tree heuristic. Recall that heuristics for the
Steiner tree have the primary goal of minimizing overall tree
cost only. In this section we present a simulation-based study
comparing DDMC’s performance to three other heuristics that
vary in performance and computational complexity.

A. Heuristics for the Steiner Tree

Given the absence of a polynomial time algorithm for
the general Steiner minimum tree problem, investigation of
efficient, quality heuristics remains an active research area. The
problem has been addressed both in a multicast communication
context [12], [27], and as a purely graph theoretic problem
[16], [19]. Most of the well-known heuristics fall into the
class known as path-distance heuristics since they approach the
problem by iteratively enlarging partial solutions using shortest
paths. The three primary path-distance approaches are the

shortest-path heuristic (SPH) [28], average distance heuristic
(ADH) [29], and distance network heuristic (DNH)4 [18]. In
our study we consider only ADH and SPH, however, since
previous studies have shown that they generally outperform
DNH (although their dominance is not strict) [16], [29]. We
also include, for more practical reasons, comparison with
the simple pruned minimum spanning tree heuristic (MST)
[28]. MST executes a minimum spanning tree algorithm (e.g.,
Prim [23]) and then prunes nondestination nodes with degree
1, resulting in complexity 5 [16]. While MST
performs relatively poorly on average, it has the advantage
of having low computational complexity and requires cost
information only from neighboring nodes as it proceeds.
DDMC shares these same advantages.

The general operation of ADH proceeds by joining together
two subtrees at a time through a central node via shortest paths.
Finding a central node amounts to finding a node with the
minimum average distance to the set of current subtrees. The
algorithm begins with subtrees consisting of a single
destination each (plus the source) and ends with a solution
consisting of a single tree. Computation is dominated by the
calculation of shortest paths between all nodes in the network
leading to its worst-case time complexity .

The SPH heuristic begins with an arbitrary node in the mul-
ticast destination set, for example the source, and repeatedly
adds the remaining members to the tree via shortest paths in
order of closest first. Most of the computation time in SPH is
spent calculating shortest paths from each multicast member
to all other nodes. Thus its time complexity is .
Note that SPT is not equivalent to the SPH heuristic. SPT
is an algorithm for finding a tree of lowest cost paths to
all individual destinations in the network. SPH, on the other
hand, uses shortest paths to approximate a Steiner minimal
tree connecting a subset of nodes in the network with low
total tree cost.

4DNH is often referred to as the KMB algorithm after (one set of) its
developers.

5This assumes that Fibonacci heaps, as mentioned in Section II-B, are not
used.
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TABLE I
COMPUTATIONAL COMPLEXITY FOR STEINER HEURISTICS

Both ADH and SPH require shortest path calculations
through the entire network, which in turn requires global link
cost information. Time complexity for each of the algorithms
considered is summarized in Table I. Recall that in general

and .
The use of limited link cost information does not come

without a price, however. Due to its low complexity and use
of limited knowledge MST, for example, has the drawback
that its theoretical worst-case performance is up to
times worse than the optimal solution. In contrast, ADH and
SPH produce trees within a factor of two times optimal in the
worst case [16]. Moreover, it was shown in [22] that greedy
heuristics, such as MST and DDMC which use only local
information, can be no better than times worse than
optimal in the worst case. We do not present a derivation of
the worst-case error ratio of DDMC here but we suspect that
it is similar to (although likely better than) MST. Although
we are studying this problem in a networking context, we are
more interested in DDMC’s performance in practice, where
the worst-case rarely occurs. We show below that it compares
well on average with the other heuristics.

B. Simulation Setup

The studies were done using a modular, extensible sim-
ulator, STsimprogrammed in C and run on Sun Sparc 20
workstations.STsim’s interface, developed using Tcl and the
Tk toolkit, is shown in Fig. 3. It allows rapid generation of
an experiment set with a variety of network parameters, data
collection options, and multicast routing algorithms.

We ran a set of 1000 randomly generated experiment
instances for each data point and report the average over all
runs. A predetermined set of random seeds assured that all
algorithms received identical networks, destination sets, and
multicast group sizes as input. Networks are generated in the
usual way, by considering all pairs of nodes and randomly
deciding whether a link exists between them. A parameter
was also introduced to control the average node degree when
generating networks (where unspecified we used a default
average node degree of three). Integer costs within a small
given range were assigned randomly to each link based on
a uniform distribution. For the experiments discussed here,
destinations were distributed uniformly through the network.
The simulations consisted of three basic phases: network and
destination set generation, algorithm execution, and multicast
tree analysis.

C. Simulation Results

We find that DDMC performs surprisingly well against
other, more complex, Steiner heuristics. We measured the
ability of each algorithm to minimize the total tree cost as
destination set size increases and as network size increases.
Observing performance while changing group size provides

Fig. 3. STsim user interface for generating routing experiments.

Fig. 4. Total tree cost as group size increases in a 64-node network with a
small link cost range.

a notion for how well the algorithms perform relatively for
both sparse and dense multicast groups. We found that in-
creasing network size exhibits trends similar to those when
increasing destination set size. Fig. 4 summarizes the results
for simulations in a fixed size (64-node) network.

In the interest of exploring performance in more heteroge-
neous networks, where link costs may vary widely, we also ran
simulations on more variable networks. In Fig. 5, the link costs
ranged over two orders of magnitude. We show the maximum
size of the 95% confidence interval for each of the algorithms
in Table II. The interval is narrow and within the same range
for each of the algorithms considered.
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Fig. 5. Total tree cost as group size increases in a 64-node network with
widely variable link costs.

TABLE II
CONFIDENCE INTERVAL SIZES FOR MEAN

TREE COST WITH 95% CONFIDENCE LEVEL

As shown in Fig. 4, ADH consistently has the lowest cost
of the algorithms studied. Not surprisingly, it also is the most
complex of the heuristics. Note, however, that both SPH and
DDMC perform only slightly worse. While DDMC gives
up a slight performance margin, it is characterized by very
low complexity and does not rely on global shortest path
calculations. MST, as expected, fares worse than the other
algorithms. Note that when the multicast group is very dense,
however, it performs well since MST computes a minimum
broadcast tree spanning all nodes. Trends are similar for the
wide link cost range (1–100) shown in Fig. 5; the difference
in performance between DDMC and other algorithms remains
approximately equal to the smaller link costs case. MST,
however, does perform slightly better in the more variable
networks.

Finally, we investigate the variability of the solutions pro-
vided by DDMC relative to the other heuristics. Fig. 6 shows
the relative coefficients of variation6 for the results presented
in Fig. 5. Although the variability of the solutions found by
DDMC is higher than ADH or SPH, the difference is not large.
In general, the variability displayed by all the algorithms is
quite low.

IV. COMPARISON WITH SHORTEST PATH TREES

In this section we compare the DDMC algorithm against
SPT’s across several performance metrics. The results of our
simulation-based study show that DDMC constructs low-cost
trees that in general use fewer links than SPT’s. In addition,

6Coefficient of variation is defined as the ratio of standard deviation to the
mean.

Fig. 6. Coefficient of variation for total tree cost as group size increases in
a 64-node network.

performance is reasonably close to SPT’s in local metrics such
as average per-destination cost and maximum destination cost.

The following graphs show how the performance of DDMC
compares to SPT as the multicast group size changes and as
average node degree in the network increases. As mentioned
earlier, changing group size gives an indication of how well
algorithm performance scales as groups grow denser. We also
study the effect of increasing node degree to gain some insight
into how the algorithms perform when more routing options
are available.

Fig. 7 shows the overall tree cost and average cost to each
destination as the group size grows in a fixed size (64-node)
network. The total tree cost is simply the sum of all edge
costs in the multicast tree. Average cost per destination is
calculated as the sum of the costs to each individual destination
divided by the total number of destinations. It is apparent
from the graph that DDMC’s overall tree cost is much less
than that of SPT. In addition, DDMC’s tree cost grows at a
significantly lower rate than SPT’s, indicating that tree cost
scales much better with DDMC. Also, DDMC grows only
slightly faster than SPT in terms of cost to each destination and
while DDMC does not match SPT performance, the difference
is much smaller than with total tree cost.

In Fig. 8, we show the coefficients of variation for total tree
cost and average cost per destination. As expected, DDMC’s
variability is higher than SPT for cost per destination but
smaller for total tree cost. When link costs vary over a smaller
range, the variability is only slightly less for each of the curves.

Another metric of interest is the maximum of all per-
destination costs; that is, the maximum cost suffered by any
single destination in the multicast tree. It may be important for
some environments or applications to know which destination
is incurring the highest cost. We show the relative performance
of DDMC to SPT by plotting the cost ratios for maximum cost
and average destination cost as group size grows in Fig. 9. As
expected, the relative maximum destination cost of DDMC is
higher than SPT’s. The relative average destination cost is also
higher, as mentioned above, but the relative difference does
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Fig. 7. Total tree cost and average cost per destination as group size increases
in a 64-node network.

Fig. 8. Coefficient of variation for total tree cost and average cost per
destination as group size increases.

not grow as quickly as with maximum cost. This is because
DDMC is geared toward combining paths through destinations
to maintain an overall low cost. This may occasionally require
some tree paths to follow a somewhat more circuitous route to
a destination than the absolute shortest route. If the tolerable
cost to a destination is greater than the maximum achieved by
DDMC, however, then DDMC will provide a very low-cost
tree that still meets per-destination cost constraints.

The effect of increasing node degree is shown in Fig. 10.
The node degree might reflect the complexity and cost of
network switches and it is interesting to examine how SPT
and DDMC perform with a range of node degree constraints.
In these experiments we use a random number of destinations
for each of the simulation runs and present the average cost
at each data point. The total tree cost is quite high for both
algorithms when the node degree is low since there are far
fewer alternative links available for forming the multicast tree.

Fig. 9. Ratio of maximum cost and average cost per destination for DDMC
to SPT as group size increases in a 64-node network.

Fig. 10. Total tree cost and average cost per destination as average node
degree increases in a 64-node network.

As the number of alternatives grows, it becomes easier for
both algorithms to find cheaper routes and the cost decreases.
Again, DDMC’s total tree cost is significantly lower than
SPT’s. This is due to the fact that given more link options, SPT
will fork more frequently as it identifies cheap individual paths.
SPT does outperform DDMC in average cost per destination
but, as with increasing set size, only slightly. Moreover, as
the node degree increases, the difference between the two
algorithms in terms of average destination cost grows smaller.

As a final comparison, Fig. 11 shows the trend in number
of links used to construct the multicast tree as the group
size grows. Here, as expected, the DDMC algorithm fares
better than SPT’s because it is less likely to take disjoint
paths to destinations, thus conserving link resources. This has
the effect of decreasing network congestion as well as cost.
The difference is not significant for very large group sizes,
however, because DDMC uses virtually the same paths as
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Fig. 11. Link usage as multicast group size grows.

SPT’s since the destination density is high. DDMC diverges
from the shortest-path only where there is an intervening
destination that receives path “preference.” When the group is
very dense, most shortest paths will pass through destination
nodes anyway, thus making the difference in link usage small.

V. CONCLUSION

In this paper we presented an efficient algorithm for mul-
ticast routing that biases toward routes through destination
nodes. The underlying philosophy is that cost for reaching
a destination must be absorbed. Thus it makes sense to
use paths through destinations since cost is only incremental
after reaching a destination node. This DDMC algorithm is
optimized for low overall tree cost to benefit applications such
as corporate video conferencing where a primary concern is
to keep costs down over the entire transmission.

Currently, the most widely used multicast tree type is the
shortest-path tree due to its low per-destination cost or delay.
We have shown through simulation that DDMC significantly
outperforms SPT’s in terms of controlling overall tree cost. At
the same time, DDMC does not suffer much in per-destination
metrics. For applications in which low tree cost is important,
DDMC excels. In addition, since DDMC’s greedy strategy is
based on minimal spanning tree and shortest path algorithms,
it is not as complex as many Steiner tree heuristics. Despite
this, simulation studies show that on average its performance
is comparable with more complex heuristics. Moreover, the
algorithm requires each node to query only its incident links
for cost information, thus avoiding the drawback of requiring
global cost information.

We are planning additional simulations to gauge DDMC’s
scalability. Since DDMC is geared toward controlling overall
network resources, it would be interesting to investigate the
effect of multiple trees in a network, for example. Another
particular feature is the incorporation of dual metric handling,
for example, cost and delay. Our study treated cost as a
general parameter; it is not yet clear how cost should be
represented and in what way it may be related to delay in

simulation studies. Also, we have not addressed the issue of
dynamic groups where members may join and leave. It is
possible, however, to use either the naive approach [30] adding
shortest paths to new nodes or the recently proposed ARIES
algorithm [31] which selectively repairs parts of the tree after
a given number of membership changes. Finally, further work
is necessary to analytically derive the worst-case error ratio of
the solutions provided by DDMC to the optimal solution.

Additional goals include the development of an actual
protocol using DDMC. We gave a sketch of how DDMC
may be used in a distributed fashion following the approaches
described in [21] and [26] of expanding tree fragments and
having nodes independently calculate their least costly out-
going links. More work is needed to provide a notion of
message complexity and convergence time for such a scheme.
It may be more beneficial, however, to incorporate DDMC
into a protocol architecture such as PIM as an alternative for
applications which require low overall tree costs.

It is clear from the wide variety of anticipated multicast
applications that no single tree type can satisfy requirements
of all of them. DDMC is a practical, low-complexity algorithm
for applications that require reasonable per-destination cost
and low overall cost.
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