
On Task Schedulability in Real-Time Control Systems *

Danbing Setol, John P. Lehoczky2, Lui Shal, and Kang G. Shin3

Software Engineering Institute
Dept. of Statistics

Carnegie Mellon University
Pittsburgh, PA 15213

Real-Time Computing Laboratory
Dept. of Electrical Eng. and Computer Sci.

The University of Michigan
Ann Arbor, MI 48109

Abstract

Most real-time computer-controlled systems are built
in two separate steps, each in isolation: controller de-
sign and its digital implementation. Computational
tasks that realize the control algorithms are usually
scheduled by treating their execution times and periods
as unchangeable parameters. Task scheduling therefore
depends only on the limited computing resources avail-
able. On the other hand, controller design is primarily
based on the continuous-time dynamics of the physi-
cal system being controlled. The set of tasks resulting
from this controller design may not be schedulable with
the limited computing resources available. Even if the
given set of tasks is schedulable, the overall control per-
formance may not be optimal in the sense that they do
not make a full use of the computing resource. In this
paper, we propose an integrated approach to controller
design and task scheduling. Specifically, task frequen-
cies (or periods) are allowed t o vary within a certain
range as long as such a change doesn't aflect critical
control functions such as maintenance of system stabil-
i t y . We present an algorithm that optimizes task fre-
quencies and then schedules the resulting tasks with the
limited computing resources available. The proposed
approach is also applicable t o failure recovery and re-
configuration in real-time control systems.

1 Introduction

The control of physical systems has changed from
analog to digital technology, and computer control has
been applied to perform more complex, higher-level

*This research was supported in part by the Office of Naval
Research under contract N00014-92-5-1524, by the Software En-
gineering Institute of Carnegie Mellon University, by the NSSN
program, by the ISC program, and by the JSF program.

functions. In applications ranging from flight control
to micro-surgery, real-time control plays a crucial role
in the coordination of the dynamics of these systems.
Although the application domain of digital real-time
control has been enlarged significantly, there still re-
main many issues in control implementation before its
full potential can be realized. For example, the design
of control1e;s and the scheduling of control tasks are
usually considered separately, and this can result in
suboptimal system designs. In this paper we investi-
gate the interaction between control task performance
and task scheduling.

Task scheduling is a fundamental issue in real-time
control algorithm implementation. A seminal contribu-
tion was made by Liu and Layland [2] who developed
optimal static and dynamic priority scheduling algo-
rithms for hard real-time task sets. They showed for
such task sets that dynamic priority scheduling algo-
rithms can achieve 100% schedulable utilization, while
the optimal static priority algorithm, the rate mono-
tonic algorithm, has a least upper bound of 69% on its
schedulable utilization. Nevertheless, over the last two
decades, significant progress has been made on gen-
eralizing these algorithms and making them suitable
for real applications. Still, nearly all of these develop-
ments have assumed that the task set characteristics
(e.g., computation times, periods and deadlines) are
fixed and known.

There have been several papers which relate task
scheduling and system performance. For example, Ger-
ber, Hong and Saksena [l] addressed the issue of task
design in relation to system performance; however,
their focus was on distributed systems and they did not
use the performance index approach we present. Task
scheduling and system performance have also been ad-
dressed by Locke [3] and other authors using best-effort
scheduling. This approach is especially designed to
handle transient overloads, and its premise is that a

13
1052-8725/96 $5.00 0 1996 IEEE

task will obtain a value which depends on the time at
which it is completed. Again, this work did not fo-
cus on any particular application area such as control
algorithm scheduling nor were performance indices in-
troduced.

The control law is usually derived based on physi-
cal system properties under the assumption that it will
always be implementable on a digital controller com-
puter. A digital control algorithm could be designed to
optimize some system performance index (PI). With a
digital implementation, a controller can be designed
by either direct digital design which first discretizes
the associated continuous-time system dynamics and
then design a control algorithm for the discretized sys-
tem, or contanuous-time design and then dagitization
in which the control algorithm is designed based on
the continuous-time system dynamics and the resulting
control law is digitized for implementation on a com-
puter. However, neither of these design strategies takes
into account any limitations on the available comput-
ing resources.

A better approach to real-time control system de-
sign would be to optimize the global system perfor-
mance considering both control performance and com-
puting resources. Such an integrated approach requires
knowledge of the relationship between control system
performance and sampling frequencies (task periods).
In this paper, we assume that (i) the control algorithm
is developed with the continuous-time design and then
digitization and (ii) the resulting algorithm is “opti-
mal” (in the sense of a certain given objective func-
tion). To implement such a control strategy, we would
like the sampling frequency to be as high as possible
in order to make a better match between the (optimal)
continuous-time control and its digital implementation.
Note, however, that the limitations on computing re-
sources shared among multiple tasks imposes an up-
per bound on the sampling frequency for each periodic
task. These upper bounds, one for each periodic task,
must be considered in the integrated design approach,
while they need not in standard control designs. On the
other hand, to correctly capture and control the system
dynamics, the sampling frequencies are normally cho-
sen to be 5-10 times the corresponding system’s char-
acteristic frequencies. This requirement gives a lower
bound on the sampling frequency from the control sys-
tem point of view.

By allowing the sampling frequencies to vary within
the ranges defined by the lower and upper bounds men-
tioned above, we can actually enhance periodic task
schedulability. That is, one can change the periods of
some of tasks in the given set (within these ranges)
so that all of the periodic tasks in the set may be-

come schedulable, if the originally-given task periods
make the tasks unschedulable. We will adjust the
task frequencies to optimize the overall system con-
trol performance, subject to two constraints: (1) the
lower bounds on task frequencies and (2) the underly-
ing scheduling algorithm and the limitations on avail-
able computing resources. This approach can also be
used to re-allocate tasks when some of the processors
fail (but the details of this extension are not within the
scope of this paper; we will report on them in a future
paper).

The paper is organized as follows. In Section 2 , we
briefly review some of the basic concepts in control the-
ory, especially the optimization of control system per-
formance and digital control implementation. We de-
scribe in detail the rationale for combining control de-
sign and its digital implementation (i.e., task schedul-
ing) in the design of real-time control systems. The
main results of this paper are presented in Section 3,
where we derive an algorithm for choosing the optimal
task frequencies such that all the tasks are schedulable,
and the system performance using the digital control
implementation is optimized for the limited computing
resources. The conclusions are drawn in Section 4.

2. Control Design and Its Digital Imple-
mentation

Here we will briefly review some of the relevant con-
cepts in control theory. In particular, we will first
present an example to demonstrate the relationship be-
tween the control system performance index and the
control task frequency when the control input is to be
produced by a digital computer. Next we discuss the
issues of optimizing the system performance and digital
control implementation in general.

To illustrate the effect of sampling frequency on sys-
tem performance, we have chosen an actual real-time
control application, a bubble control system. Such a
system is a simplified model designed to study diving
control in submarines. For a discussion of real-time
control systems in real submarines, the reader may re-
fer to [5]. The bubble control system considered here
consists of a tank filled with water and a diver, an in-
verted cup partially filled with air and immersed in the
water. Depth control of the diver is achieved by ad-
justing the air volume inside the diver. A schematic
diagram of the system is given in Fig. 1.

Let 2 = (21, z2, 23) = (y, y, h - he). The equations

14

20 I

Figure 1. A schematic diagram of the bubble
control system

>f motion can be written as;

= 2 2

X 2 = - ~ l l ~ 2 l ~ 2 -e223 (1)
k 3 = -u(2)22 - b(x)u

Nhere he is the air-volume height at equilibrium state,
‘I is the control variable defined as the piston velocity
’, c1 and c2 are positive coefficients of the water re-
sistance and buoyancy, respectively, and U(.) and b (x)
ire positive definite functions obtained from the law of
:onservation of mass. Suppose the control objective is
,o drive the diver to move at a given speed vd. Then,
t tracking problem can be formulated, for example to
lave the diver follow the reference trajectory

Yr = ~ (0) + v~dt,

ind the optimization problem can be stated as:

J* = min J (u) = [TU’ + (y - Y , .) ~ Q (~ - yr)]d t
U 1”

subject to: Eq. (1)
Ho 5 y 5 H - H , , 0 5 h 5 H ,
IuI 5 umax

vhere Ho, H , and H are the water level, the height of
;he diver, and the height of the tank, respectively, and
xmax is the maximum piston velocity. The functional
T(u) is called system performance index. Its physical
neaning can be interpreted as a measure of the total
:ost of control and tracking error generated in the time
Ieriod [O , t j] by the control U . The optimal control
xoblem is to find a control U achieving the minimum
:ost and tracking error. The optimal control function U

Figure 2. AJ*(f) for the bubble control sys-
tem

is denoted by U * , and its performance index is denoted
by J * . When any control U is implemented digitally,
the system performance will depend on the sampling
frequency, that is J is a function of the sampling fre-
quency f, JD(u, f). Fig. 2 shows the simulation result
of AJ*(f) = Ji(f) - J’ with fm the lower bound of
frequency.

Remark 2.1 Fig. 2 demonstrates that there is a wide
range over which the sampling frequency can vary.
Specifically, any frequency above the lower bound fm
will keep the system running satisfactorily. F’urther-
more, the performance index is a convex function, and
it is this convexity property that allows us to sched-
ule the tasks by choosing proper frequencies for them.
This will be elaborated on in the next section.

As shown in above example, the system performance
is usually measured by a P e r f o r m a n c e I n d e x (PI), and
the control algorithm is often derived to optimize this
index subject to the system dynamics and constraints.
For example, the objective for a radar system is to
track a target and the performance index would be
some measure of the tracking error. For this exam-
ple, one would like to design the control algorithm to
minimize this performance index. For mechanical sys-
tems, on the other hand, the performance index might
be some measure of the total work the system pro-
duces, and in this case we would want to maximize this
performance index. Other examples may involve mini-
mization of time (e.g., minimizing the system response
time) or energy (e.g., minimizing the cost). The prob-
lem of optimizing the performance index can be stated

15

formally as follows.
MIN PI MAX PI

where J (u) is the system performance index, [O,tf]
is the time interval of interest, S(.) and L(.) are the
weighting (or cost) functions depending on system
states, time and control inputs. Eq. (3) describes the
dynamics of the underlying system with state ~ (t) E
R", control input u(t) E R" for each t > 0, while
Eq. (4) represents the constraints on the system tra-
jectory and the control input with e(.) E Rp. The
complete statement of the optimization problem can
be summarized as: find the optimal control such that
the performance index defined by Eq. (2) will be min-
imized (maximized) subject to the system dynamics
and constraints given by Eq. (3) and Eq. (4).

The optimal control for the problem described above
can be derived by direct digital design, or continuous-
time design and then digitization. We adopt the lat-
ter design approach; similar results can be obtained
for the direct digital design. Suppose the optimization
problem in Eq. (2)-(4) can be solved with the opti-
mal control u*(t) resulting in PI J* . Then, the control
implementation determines if we can obtain the perfor-
mance for which the controller is designed. Discretizing
the control input u*(t) in the time domain, we obtain
the performance index as

+y$-(:+I)T L(2* (t) , U* (IET) , t) dt
(5)

k=O

where f = 1/T is the sampling frequency, t f = nT,
and z*(t) is determined by

k*(t) = f (z * (t) , u*(kT) , t) ,

k T S t < (E + l) T , k r 0, ..., n - 1

Eq. (5) shows that the performance index is a function
of the sampling frequency and Fig. 3 illustrates possi-
ble performance indices. In this paper, we will consider
only monotone, convex or concave functions as shown
in Fig. 3. The physical meaning of these functions is
clear: as the sampling frequency increases, the perfor-
mance index with discrete-time optimal control (PID-
TOC) will tend to converge to the performance index

Figure 3. Control system performance indices
versus sample frequency

with continuous-time optimal control (PICTOC). On
the other hand, as the sampling frequency decreases,
the difference between PIDTOC and PICTOC will in-
crease, and eventually the system will become unstable.
To prevent this from happening, a lower bound on the
sampling frequency must be imposed. For convenience,
we will consider the difference AJ*(f) = Jl;(f) - J* .
Clearly,

lim lAJ*I = CO, and lim lAJ*l = 0.
f-0 f--oo

For a set of n control tasks with given AJt(fi), i =
1, ..., n, we will develop an algorithm to find the optimal
choice of fl, ..., fn such that Cy=l AJ; is minimized
subject to the availability of the computing resource.

Remark 2.2 The algorithm developed in this paper
is not restricted to the optimal control problem. Let
J and J D (f) be the performance indices generated by
continuous-time control which may not be optimal and
its digital implementation at sampling frequency f, re-
spectively. Then the algorithm can be applied provided
AJ(f) = JD(f) - J is convex and monotonically de-
creasing. We shall therefore use AJ(f) in the rest of
the paper. Again, note that AJ is a functions of both
the sampling frequency f and the control function U.

Since our goal is to investigate the effect on sampling
frequency of the performance index for any given con-
trol function U , we will omit U from the argument list
of A J .

Remark 2.3 The tasks to be scheduled may not all be
control-related tasks. For example, some tasks might
involve data processing and display. The periods for
some of these tasks may not be changeable, while
others may not have associated performance indices.
When the system involves such tasks, we will schedule
them as a part of the real-time task set using an apprc-
priate real-time scheduling algorithm, but we will not
be able to optimize their frequencies/periods.

16

In this paper, the algorithm used to choose the task
frequencies is developed for a general class of control
systems in which the functions A J (f) are monoton-
ically decreasing and convex. Many control systems
belong to this class; for example, the aircraft landing
control application studied in [7] offers a second exam-
ple. For this class of systems, we will approximate the
function AJ(f) to be an exponential decay function,
i.e.,

A J (f) = ae-Pf

where CY is the magnitude coefficient and P is the decay
rate.

3. Task Scheduling

In this section, we address the issue of determin-
ing the task frequencies such that all the tasks are
schedulable and the system performance indices are op-
timized. Specifically, for a given set of tasks, TI, ..., T,,

with
AJi (f i) = cxie-Paft, i = 1, ..., n (6)

we choose the frequencies fi to minimize C A J i , to
maintain system stability, and to satisfy the condition

n

i= l
(7)

where Ci, i = 1 ,..., n, are the task execution times.
To maintain system stability, we need to choose the
frequency fi at least as large as the lower bound fmi

for each task.

To scheduling the tasks, we consider both dynamic
and static priority assignment schemes, e.g., Earli-
est Deadline First (EDF) for dynamic assignment and
Rate-Monotonic Assignment (RMA) for static assign-
ment. We will choose a range of A such that EDF and
RMA can be used for scheduling.

Remark 3.1 The tasks to be scheduled could be a
mixture of two types: some may require the periods
to be rigidly maintained whereas others do not. If
this is the case, we only need to modify A in Eq. (7)
by subtracting CjEJ Cj f j from the schedulable utiliza-
tion with J being the collection of indices of the tasks
whose periods are fixed. As far as the determination
of the frequencies is concerned, we only consider the
tasks which have variable frequencies and performance
indices characterized by Eq. (6).

The optimization problem we need to solve is a non-
linear programming problem [4]. More precisely, this

problem is:
n n

n

subject to: CCifi 5 A, 0 < A 5 1
i= l

fi 2 fmi, i = 1, ..., n
where wit i = 1, ..., n, are a set of weights.

Proposition 3.1 Given the objective function in
Eq. (8) and constraints in Eq. (9), there exists a unique
optimal solution given by

fi = fmi, i = 1, . . . , p

- Q) , j = p + 1, ..., n,
- Pt

f . - -(lnrj 1 (10)

where f k s are ordered as fmk which are arranged as

p E [l, .., n] is the smallest integer such that

and

Proof: See the Appendix.

Remark 3.2 Proposition 3.1 is based on the fact that
most control systems can have a flexible sampling fre-
quency, provided this frequency is chosen above the
lower bound. This feature was defined as the control
system deadline and discussed in detail in [SI where the
authors studied the effect of missing control updates in
control systems. Proposition 3.1 provides a method for
optimally determining the sampling frequency at each
of the given levels of CPU utilization such that task
schedulability is guaranteed. This is illustrated in the
following examples.

Example 3.1 Consider an open-loop temperature
control problem. Suppose there are five (5) room
units whose temperatures need to be automatically
controlled by one processor, and controlling the tem-
perature in each unit is considered to be one task. The
execution time Ci (ms) and given frequency fi (Hz) of
each task are listed in Table 1.

17

with pi = l / a i and fj = l/q, we finally obtain

2 U ’ A J . - -e-Ptfa with frni = 2 I n V d r f d r
Vdr-88

“ 3

For scheduling, we consider both EDF and RMA
approaches. To use EDF, we set A = 1. For RMA, A

Table 1. Data for temperature control scheduling

According to the given data, the total utilization will be
1.55 > 1, and therefore, the tasks are not all schedula-
ble. However, by investigating the underlying physical
systems, we may find that these tasks are schedulable
with a set of “redesigned” frequencies. Suppose the
temperature for each of the units is governed by the
dynamic equation

+i = - ~ i y i + biui (12)

where Yi(t) is the temperature difference between the
i-th unit and the ambiance with $0) = 0; ai and bi are
constants depending on the insulation of the unit; ui is
the rate of heat (cold air) supplied to the unit. Suppose
we need to change the temperature in the i-th unit,
and we require such a change to be done in not more
than tf time units and to consume a minimum amount
of fuel. Let Ydi be the difference between the desired
temperature and the ambient temperature. We also
require that Iri(tf) -ydiI _< 6;. Then, the optimization

_ _
must be chosen so that the tasks can all be scheduled by
the chosen scheduling algorithm. Suppose the physical
parameters are given in Table 2, where fmi (Hz) is the
lower bound on the sampling frequency of task i, and
wi is the weight assigned to task i.

unit 5 0.7 30

Table 2. Data for temperature control tasks

EDF Scheduling: We first check whether the task set
is schedulable when all task frequencies are set to their
minimum values. We find that

5

CCif,i = 0.8575 < 1
i=l

problem can be formulated as which indicates that all five of the tasks are schedu-
1 t f lable. Following the algorithm in Proposition 3.1, we

determine the optimal frequency for each task as fol-
lowing. Let

minJi U, = ZPi(yi(tf) - “/di)2 + f u;(t)dt

where pi is a weight coefficient. Then, the continuous-
time optimal control and the final state can be deter-
mined as

Then, a simple calculation shows

Ydipi b!sinhaitf F(5) = 0.8875 < 1,

Therefore, we will assign

F(4) = 0.9 < 1, F(3) = 1.04 > 1
Yi*(tf) = aieattf + pib;sinhaitf

Digitizing u*(t) with sampling period and choosing
pi >> 1, we obtain the approximations:

’$ (t /) = Ydi, and Jdi = -Piyd$ 2

fi = fmi, for i = 1 , 2 , 3 ,
i.e. f1 = 20 Hz, f2 = 12.5 Hz, f3 = 10 He, 1 - e-aJ’l

(l + e - a , T .) and compute f4 and fs as

To satisfy the condition Ir;(tf) - Ydil 5 si, we need f4 = (lnr4 - Q)/p4 = 7.97 Hz
f5 = (lnrs - Q)/p5 = 7.1 Hz.

Ydi (1 - e-atT%) < 6 i j Ti 5 -1n- 1 Ydi + Si
ai Ydi - 6i This choice of frequencies yields a total utilization 1 + e-a,T, -

Furthermore, by approximating 99.97%, and the final set of tasks is schedulable.

RMA Scheduling: Let t, (ms) be the completion time
of the first invocation of a periodic task and D (ms) be 1 + e - - a 3 t N 3 1 - e-aiTn x , - P a f s - 5,

18

A = 1 A = 0.86 A=0.8575 '
t , p t , I D t , I D - .

. unit 1 10 I 50 10 I 50 10 I 50
unit 2
unit 3

25 80 25 80 25 80
45 100 45 100 45 100

Table 3. RMA scheduling table for temperature
control tasks

unit 4
unit 5

The data in the above table shows that not all tasks can
be scheduled by the RMA approach if A = 1, but all
of them can be scheduled for A = 0.86 or A = 0.8575.
When A = 0.86 fi = fmi, i = 1, ..,4, fs = 4.0833, and
when A = 0.8575, fi = fmi, i = 1, ..,5.

80 125 80 166 80 166
155 141 235 245 235 250

J

By comparing two scheduling approaches presented
above, we conclude that full utilization of computing
resource can be achieved by using EDF and this yields
a performance index AJ = 0.00695. RMA scheduling
algorithm, on the other hand, does not guarantee full
CPU utilization, and the performance index is AJ =
0.2882 at A = 0.86.

b l
b2

Example 3.2 Consider the bubble control system dis-
cussed in the last section. Suppose four such systems
with different physical dimensions are installed on an
underwater vehicle to control the depth and orientation
of the vehicle, and they are controlled by one on-board
processor. For each bubble control system bi, let Ci
(ms) be the control task execution time in each sam-
pling period, fmi (Hz) be the lower bound on sampling
frequency, and wi be the weight assigned to system i.
The following data are given for the control design and
scheduling problem: AJi = aie-PJr, i = 1 , ..., 4, and

ai Pi ci fmi wi fi
1 0.5 10 15 5 -
1 0.7 10 10 3 -

I b3
b4

I

1 0.3 I 10 18 2 -
1 0.1 I 10 20 1 -

[II coordinator I - I - 1 5 1 - I - 1 1 0 1

Table 4. Data for bubble control scheduling

0.14 1
O.I2 t

g 0.1 -
e!
c

; 0.08 -
v -

I -

c
0.04 -

0.02 t

I

I

I

I

. .

816 ' 0 . k 017 0.A '018 ' 0 . k ' 019 0 . b ~ I
Total Utilization A

Figure 4. AJ versus total utilization A

where the frequencies, fi (Hz), i = 1, ..,4, must be
determined, The coordinator is the control unit which
coordinates the bubble subsystems to perform a desired
mission, for instance, changing depth, roll or pitch an-
gles. The frequency for this particular task is fixed,
and it is determined by the underlying coordination
requests. For example, to keep the roll angle 0,. within
a certain range, say l0,l < e,., , we may want to choose
the task period to be Otm/max(l0,.l). A simple cal-
culation shows that the total CPU utilization of the
overall bubble system is 63% when the minimum task
frequencies are assigned, and the total CPU utilization
available for the bubble systems is 95%, excluding the
utilization of the coordinator. These imply that for
any A E [0.63,0.95], all the tasks are schedulable with
EDF, using the task frequencies determined by the al-
gorithm described in Proposition 3.1. Fig. 4 shows the
relation between AJ = E;=l Wiaie-Plft and the value
of A.

Again, let

then we get

F(4) = 0.63,
F(2) = 0.8371,

F(3) = 0.7908,
F (l) = 0.8852

Hence we conclude (also as indicated in the figure):
when A E [0.8852,0.95], there is no frequency cho-
sen to be the corresponding lower bound. When
A E [0.8371,0.8852), there is one frequency that needs
to assume its minimum value, fi = 15 (Hz). When
A E [0.7908,0.8371), two frequencies are set to their

19

I Amax=0.95, A m k 0 . 6 9 1
b4

A=Amin, DONE 1

A = 0.82 A = 0.89 A = 0.92 A = 0.91
t , I D t ,] D t , I D t , I D
10 I 26 10 I 23 10 I 22 10 I 23

+No

b3
b l
b2

1 Let A=(AmaxtAmin)/2, and compute the frequencies. 1

20 53 20 49 20 48 20 48
40 67 40 66 40 65 40 65
50 100 90 95 100 93 90 94

L

i
I Compute tc(i) and D(i) for each task.1

I h7 tc(i) <=D(i) ? I
L-----E Amin=A

Figure 5. Flowchart for binary search for an
optimal value of A

minimumvalue, fi. = 15 (Hz), and f2 = 10 (Hz). When
A is reduced further to the range (0.63,0.7908), three
frequencies must be set to their lower bounds, namely,
fi = 15 (Hz), fz = 10 (Hz), and f3 = 18 (Hz). Finally,
when A = 0.63, all the frequencies must be assigned
their minimum values.

We now consider scheduling the tasks by the RMA
approach. While all the tasks can be scheduled by the
EDF algorithm, for some value of A E [0.63,0.95], this
may not be true in case of RMA scheduling. For the
given range of A, we would like to schedule all the tasks
using RMA with the largest value of A, in which case
we can get the best possible performance. To achieve
this, we use a binary search to determine the value of
A that will give a near-optimal solution. This search
may not guarantee the convergence to the optimal A ,
because the frequencies vary for different A, and RMA
schedules tasks based on the tasks’ frequencies. The
binary search is illustrated in Fig. 5, and the search
results are listed in Table 5 with t , (ms) the task com-
pletion time and D (ms) the task deadline. Apparently,
the solution for RMA scheduling should be obtained by
setting A = 0.91 and they are

fi = 15.3 Hz,
f3 = 20.74 He,

f 2 = 10.68 Hz,
f4 = 44.29 HZ

Again, we found the performance indices A J = 0.0157
at A = 0.95 by the EDF scheduling algorithm and
A J = 0.02 at A = 0.91 by the RMA scheduling algo-
rithm.

Table 5. RMA scheduling table for bubble control
systems

Remark 3.3 Examples 3.1 and 3.2 demonstrate that
for real-time control systems the choice of processors
and scheduling algorithms can be important. It is clear
that the faster the processing speed and the higher the
schedulable utilization, the better will be the system
performance that can be obtained. For a slow processor
and low levels of schedulable utilization, great gains in
the overall performance can occur from relatively small
increases in computing speed or schedulable utilization.
Consequently, the increases in schedulable utilization
available from using EDF rather than RMA can sig-
nificantly improve performance, as was the case in Ex-
ample 3.1. However, a point of diminishing marginal
returns will be reached. At this point, increases in pro-
cessing speed and schedulable utilization begin to con-
tribute relatively little to overall system performance.
Consequently, EDF will offer only slightly better per-
formance than RMA. This is illustrated in Example
3.2. These observations indicate that in designing con-
trol systems, it is very important to choose a processor
speed for which the task set frequencies can be cho-
sen above the point of decreasing marginal returns for
all tasks. If this is done, then the choice of schedul-
ing algorithms will be a relatively small (second-order)
effect.

4. Conclusion

In this paper, we have considered the periodic task
schedulability issue from a new viewpoint, the opti-
mization of a real-time control system’s performance.
For a set of tasks from a class of control systems whose
performance indices with digital control implementa-
tions are a monotonically decreasing and convex func-
tion of each task’s frequency, an algorithm is proposed
to determine the task frequencies such that all tasks
are schedulable for both EDF and RMA.

The main contribution of this paper is two-fold.
First, the proposed algorithm enhances the processor’s
task schedulability by allowing the task frequencies to
change in the context of real-time control system per-
formance. For a given set of tasks, they may not be
schedulable with the given task periods, but they may

20

be schedulable if the periods are changeable and they
are schedulable when their frequencies take values on
their lower bounds. If this is the case, the algorithm
guarantees that the tasks will be schedulable and the
system performance with a digital control implemen-
tation will be optimized subject to the limitation on
the computing resources. Second, even for a set of
tasks which are originally schedulable, the proposed
algorithm can still be used to improve the overall s y s
tem performance. This feature distinguishes our algo-
rithm from the others where system performance was
not considered to be a factor in scheduling the ‘tasks.

Future work along this line will include generalizing
the algorithm developed here to address the problem
of task re-allocation over a network of processors and
optimizing the overall system performance.

References

[l] Gerber, R., Hong, S. and Saksena, M., “Guaranteeing
end-to-end timing constraints by calibrating Interme-
diate Processes,” Proceedings of the IEEE Real- Time
Systems Symposium, December, 1994.

[2] Liu, C. L. Layland, J.W., “Scheduling algorithms for
multiprogramming in a hard real-time environment,”
Journal of Association for Computing Machinery, Vol.
20, No.1, January 1973, 46-61.

[3] Locke, C. D., “Best-effort decision making for real-time
scheduling.” Ph.D. Dissertation, Computer Science De-
partment, Carnegie Mellon University, 1986.

[4] Mangasarian, 0. L., Nonlinear Programming. McGraw-
Hill Book Company, 1969.

[5] Molini, J. J., Maimon, S. K. and Watson, P. H., “Real-
Time System Scenarios,” Proceedings of the IEEE Real-
Time Systems Symposium, December, 1990.

[6] Sha, L., Rajkumar, R. and Sathaye, S. S., “Generalized
rate-monotonic scheduling theory: A framework for de-
veloping real-time systems,” Proceedings of the IEEE,

[7] Shin, K. G., Krishna, C. M. and Lee, Y.-H., “A unified
method for evaluating real-time computer controllers
and its application,’’ IEEE Transactions on Automatic
Control, Vol. 30, No. 4, April, 1985, 357-366.

[8] Shin, K. G. and H. Kim, H., “Derivation and applica-
tion of hard deadlines for real-time control systems,”
IEEE Transactionv on Systems, Manufacturing, and
Cybernetics, Vol. 22, No. 6, November/December, 1992,

Vol. 82, NO. 1, January, 1994, 68-82.

1103-1413.

Appendix

Proof of Proposition 3.1: Introducing Lagrangian mul-
tipliers A, Xi, i = l, ..., n, we write the Kuhn-Tucker

condition as

(A, Xi 2 0

where i = 1, ..., n. Since X i 2 0, I’i > 0, V i , we have

n

X > 0, and E C i f i = A
i=l

Letting fi = fmi, i = 1, ..., n, then by schedulability
assumption, we have

i=l

We now increase the frequencies starting with fn. For
each fi > fmi, we have X i = 0,

rie-bft (14)

and X decreases as fi increases. Also, each fi has to
start increasing from fmi when X < rie-Plfmi, other-
wise equation

-rie-pJa + x - xi/ci = o
would not hold for X i 2 0. To determine which fis are
greater than fmi and how much they can increase, we
need to find the smallest integer p such that

with X = rpe-ppfmp, which is equivalent to

as given in the proposition. After the integer p has been
identified, we conclude that the frequencies fi, .,., fp

must be chosen to be f m l , ..., fmp and the remain-
ing frequencies are computed from Eqs. (13) and (14).
Since the objective function in Eq. (8) is strictly con-
vex, there is always one and only one minimum. There-
fore, a unique set of optimal task frequencies is ob-
tained.

21

