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Abstract 

Most real-time computer-controlled systems are built 
in two separate steps, each in isolation: controller de- 
sign and its digital implementation. Computational 
tasks that realize the control algorithms are usually 
scheduled by treating their execution times and periods 
as unchangeable parameters. Task scheduling therefore 
depends only on the limited computing resources avail- 
able. On the other hand, controller design is primarily 
based on the continuous-time dynamics of the physi- 
cal system being controlled. The set of tasks resulting 
from this controller design may not be schedulable with 
the limited computing resources available. Even if the 
given set of tasks is schedulable, the overall control per- 
formance may not be optimal in the sense that they do  
not make a full use of the computing resource. In this 
paper, we propose an integrated approach to controller 
design and task scheduling. Specifically, task frequen- 
cies (or periods) are allowed t o  vary within a certain 
range as long as such a change doesn't aflect critical 
control functions such as maintenance of system stabil- 
i t y .  We present an algorithm that optimizes task fre- 
quencies and then schedules the resulting tasks with the 
limited computing resources available. The proposed 
approach is also applicable t o  failure recovery and re- 
configuration in real-time control systems. 

1 Introduction 

The control of physical systems has changed from 
analog to digital technology, and computer control has 
been applied to perform more complex, higher-level 

*This research was supported in part by the Office of Naval 
Research under contract N00014-92-5-1524, by the Software En- 
gineering Institute of Carnegie Mellon University, by the NSSN 
program, by the ISC program, and by the JSF program. 

functions. In applications ranging from flight control 
to micro-surgery, real-time control plays a crucial role 
in the coordination of the dynamics of these systems. 
Although the application domain of digital real-time 
control has been enlarged significantly, there still re- 
main many issues in control implementation before its 
full potential can be realized. For example, the design 
of control1e;s and the scheduling of control tasks are 
usually considered separately, and this can result in 
suboptimal system designs. In this paper we investi- 
gate the interaction between control task performance 
and task scheduling. 

Task scheduling is a fundamental issue in real-time 
control algorithm implementation. A seminal contribu- 
tion was made by Liu and Layland [2] who developed 
optimal static and dynamic priority scheduling algo- 
rithms for hard real-time task sets. They showed for 
such task sets that dynamic priority scheduling algo- 
rithms can achieve 100% schedulable utilization, while 
the optimal static priority algorithm, the rate mono- 
tonic algorithm, has a least upper bound of 69% on its 
schedulable utilization. Nevertheless, over the last two 
decades, significant progress has been made on gen- 
eralizing these algorithms and making them suitable 
for real applications. Still, nearly all of these develop- 
ments have assumed that the task set characteristics 
(e.g., computation times, periods and deadlines) are 
fixed and known. 

There have been several papers which relate task 
scheduling and system performance. For example, Ger- 
ber, Hong and Saksena [l] addressed the issue of task 
design in relation to system performance; however, 
their focus was on distributed systems and they did not 
use the performance index approach we present. Task 
scheduling and system performance have also been ad- 
dressed by Locke [3] and other authors using best-effort 
scheduling. This approach is especially designed to 
handle transient overloads, and its premise is that a 
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task will obtain a value which depends on the time at 
which it is completed. Again, this work did not fo- 
cus on any particular application area such as control 
algorithm scheduling nor were performance indices in- 
troduced. 

The control law is usually derived based on physi- 
cal system properties under the assumption that it will 
always be implementable on a digital controller com- 
puter. A digital control algorithm could be designed to  
optimize some system performance index (PI). With a 
digital implementation, a controller can be designed 
by either direct digital design which first discretizes 
the associated continuous-time system dynamics and 
then design a control algorithm for the discretized sys- 
tem, or contanuous-time design and  then dagitization 
in which the control algorithm is designed based on 
the continuous-time system dynamics and the resulting 
control law is digitized for implementation on a com- 
puter. However, neither of these design strategies takes 
into account any limitations on the available comput- 
ing resources. 

A better approach to real-time control system de- 
sign would be to optimize the global system perfor- 
mance considering both control performance and com- 
puting resources. Such an integrated approach requires 
knowledge of the relationship between control system 
performance and sampling frequencies (task periods). 
In this paper, we assume that (i) the control algorithm 
is developed with the continuous-time design and then 
digitization and (ii) the resulting algorithm is “opti- 
mal” (in the sense of a certain given objective func- 
tion). To implement such a control strategy, we would 
like the sampling frequency to be as high as possible 
in order to make a better match between the (optimal) 
continuous-time control and its digital implementation. 
Note, however, that the limitations on computing re- 
sources shared among multiple tasks imposes an up- 
per bound on the sampling frequency for each periodic 
task. These upper bounds, one for each periodic task, 
must be considered in the integrated design approach, 
while they need not in standard control designs. On the 
other hand, to correctly capture and control the system 
dynamics, the sampling frequencies are normally cho- 
sen to be 5-10 times the corresponding system’s char- 
acteristic frequencies. This requirement gives a lower 
bound on the sampling frequency from the control sys- 
tem point of view. 

By allowing the sampling frequencies to vary within 
the ranges defined by the lower and upper bounds men- 
tioned above, we can actually enhance periodic task 
schedulability. That is, one can change the periods of 
some of tasks in the given set (within these ranges) 
so that all of the periodic tasks in the set may be- 

come schedulable, if the originally-given task periods 
make the tasks unschedulable. We will adjust the 
task frequencies to optimize the overall system con- 
trol performance, subject to  two constraints: (1) the 
lower bounds on task frequencies and ( 2 )  the underly- 
ing scheduling algorithm and the limitations on avail- 
able computing resources. This approach can also be 
used to re-allocate tasks when some of the processors 
fail (but the details of this extension are not within the 
scope of this paper; we will report on them in a future 
paper). 

The paper is organized as follows. In Section 2 ,  we 
briefly review some of the basic concepts in control the- 
ory, especially the optimization of control system per- 
formance and digital control implementation. We de- 
scribe in detail the rationale for combining control de- 
sign and its digital implementation (i.e., task schedul- 
ing) in the design of real-time control systems. The 
main results of this paper are presented in Section 3, 
where we derive an algorithm for choosing the optimal 
task frequencies such that all the tasks are schedulable, 
and the system performance using the digital control 
implementation is optimized for the limited computing 
resources. The conclusions are drawn in Section 4. 

2. Control Design and Its Digital Imple- 
mentation 

Here we will briefly review some of the relevant con- 
cepts in control theory. In particular, we will first 
present an example to  demonstrate the relationship be- 
tween the control system performance index and the 
control task frequency when the control input is to be 
produced by a digital computer. Next we discuss the 
issues of optimizing the system performance and digital 
control implementation in general. 

To illustrate the effect of sampling frequency on sys- 
tem performance, we have chosen an actual real-time 
control application, a bubble control system. Such a 
system is a simplified model designed to study diving 
control in submarines. For a discussion of real-time 
control systems in real submarines, the reader may re- 
fer to [5]. The bubble control system considered here 
consists of a tank filled with water and a diver, an in- 
verted cup partially filled with air and immersed in the 
water. Depth control of the diver is achieved by ad- 
justing the air volume inside the diver. A schematic 
diagram of the system is given in Fig. 1. 

Let 2 = (21, z2,  23) = (y, y,  h - he).  The equations 
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Figure 1. A schematic diagram of the bubble 
control system 

>f motion can be written as; 

= 2 2  

X 2  = - ~ l l ~ 2 l ~ 2  -e223 (1) 
k 3  = -u(2)22 - b(x)u 

Nhere he is the air-volume height at equilibrium state, 
‘I is the control variable defined as the piston velocity 
’, c1 and c2 are positive coefficients of the water re- 
sistance and buoyancy, respectively, and U(.) and b ( x )  
ire positive definite functions obtained from the law of 
:onservation of mass. Suppose the control objective is 
,o drive the diver to move at a given speed vd. Then, 
t tracking problem can be formulated, for example to 
lave the diver follow the reference trajectory 

Yr = ~ ( 0 )  + v~dt, 

ind the optimization problem can be stated as: 

J* = min J ( u )  = [TU’ + (y - Y , . ) ~ Q ( ~  - yr)]d t  
U 1” 

subject to: Eq. (1) 
Ho 5 y 5 H - H , ,  0 5 h 5 H ,  
IuI 5 umax 

vhere Ho, H ,  and H are the water level, the height of 
;he diver, and the height of the tank, respectively, and 
xmax is the maximum piston velocity. The functional 
T(u) is called system performance index. Its physical 
neaning can be interpreted as a measure of the total 
:ost of control and tracking error generated in the time 
Ieriod [ O , t j ]  by the control U .  The optimal control 
xoblem is to find a control U achieving the minimum 
:ost and tracking error. The optimal control function U 

Figure 2. AJ*(f) for the bubble control sys- 
tem 

is denoted by U * ,  and its performance index is denoted 
by J * .  When any control U is implemented digitally, 
the system performance will depend on the sampling 
frequency, that is J is a function of the sampling fre- 
quency f, JD(u,  f). Fig. 2 shows the simulation result 
of AJ*(f) = Ji(f) - J’ with fm the lower bound of 
frequency. 

Remark 2.1 Fig. 2 demonstrates that there is a wide 
range over which the sampling frequency can vary. 
Specifically, any frequency above the lower bound fm 
will keep the system running satisfactorily. F’urther- 
more, the performance index is a convex function, and 
it is this convexity property that allows us to sched- 
ule the tasks by choosing proper frequencies for them. 
This will be elaborated on in the next section. 

As shown in above example, the system performance 
is usually measured by a P e r f o r m a n c e  I n d e x  (PI), and 
the control algorithm is often derived to optimize this 
index subject to the system dynamics and constraints. 
For example, the objective for a radar system is to 
track a target and the performance index would be 
some measure of the tracking error. For this exam- 
ple, one would like to design the control algorithm to 
minimize this performance index. For mechanical sys- 
tems, on the other hand, the performance index might 
be some measure of the total work the system pro- 
duces, and in this case we would want to maximize this 
performance index. Other examples may involve mini- 
mization of time (e.g., minimizing the system response 
time) or energy (e.g., minimizing the cost). The prob- 
lem of optimizing the performance index can be stated 
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formally as follows. 
MIN PI MAX PI 

where J ( u )  is the system performance index, [O,tf] 
is the time interval of interest, S(.) and L(.) are the 
weighting (or cost) functions depending on system 
states, time and control inputs. Eq. ( 3 )  describes the 
dynamics of the underlying system with state ~ ( t )  E 
R", control input u(t)  E R" for each t > 0, while 
Eq. (4) represents the constraints on the system tra- 
jectory and the control input with e(.) E Rp. The 
complete statement of the optimization problem can 
be summarized as: find the optimal control such that 
the performance index defined by Eq. (2) will be min- 
imized (maximized) subject to the system dynamics 
and constraints given by Eq. (3) and Eq. (4). 

The optimal control for the problem described above 
can be derived by direct digital design, or continuous- 
time design and then digitization. We adopt the lat- 
ter design approach; similar results can be obtained 
for the direct digital design. Suppose the optimization 
problem in Eq. (2)-(4) can be solved with the opti- 
mal control u*(t) resulting in PI J*  . Then, the control 
implementation determines if we can obtain the perfor- 
mance for which the controller is designed. Discretizing 
the control input u*(t) in the time domain, we obtain 
the performance index as 

+y$-(:+I)T L( 2* (t ) , U* (IET) , t )  dt 
(5) 

k=O 

where f = 1/T is the sampling frequency, t f  = nT, 
and z*(t) is determined by 

k*( t )  = f ( z * ( t ) ,  u*(kT) ,  t ) ,  

k T S t < ( E + l ) T ,  k r  0, ..., n - 1  

Eq. (5) shows that the performance index is a function 
of the sampling frequency and Fig. 3 illustrates possi- 
ble performance indices. In this paper, we will consider 
only monotone, convex or concave functions as shown 
in Fig. 3. The physical meaning of these functions is 
clear: as the sampling frequency increases, the perfor- 
mance index with discrete-time optimal control (PID- 
TOC) will tend to converge to the performance index 

Figure 3. Control system performance indices 
versus sample frequency 

with continuous-time optimal control (PICTOC). On 
the other hand, as the sampling frequency decreases, 
the difference between PIDTOC and PICTOC will in- 
crease, and eventually the system will become unstable. 
To prevent this from happening, a lower bound on the 
sampling frequency must be imposed. For convenience, 
we will consider the difference AJ*(f) = Jl;(f) - J* .  
Clearly, 

lim lAJ*I = CO, and lim lAJ*l = 0. 
f-0 f--oo 

For a set of n control tasks with given AJt(fi), i = 
1, ..., n, we will develop an algorithm to find the optimal 
choice of fl, ..., fn such that Cy=l AJ; is minimized 
subject to the availability of the computing resource. 

Remark 2.2 The algorithm developed in this paper 
is not restricted to the optimal control problem. Let 
J and J D  (f) be the performance indices generated by 
continuous-time control which may not be optimal and 
its digital implementation at sampling frequency f, re- 
spectively. Then the algorithm can be applied provided 
AJ( f )  = JD(f) - J is convex and monotonically de- 
creasing. We shall therefore use AJ( f )  in the rest of 
the paper. Again, note that AJ is a functions of both 
the sampling frequency f and the control function U. 

Since our goal is to investigate the effect on sampling 
frequency of the performance index for any given con- 
trol function U ,  we will omit U from the argument list 
of A J .  

Remark 2.3 The tasks to be scheduled may not all be 
control-related tasks. For example, some tasks might 
involve data processing and display. The periods for 
some of these tasks may not be changeable, while 
others may not have associated performance indices. 
When the system involves such tasks, we will schedule 
them as a part of the real-time task set using an apprc- 
priate real-time scheduling algorithm, but we will not 
be able to optimize their frequencies/periods. 
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In this paper, the algorithm used to choose the task 
frequencies is developed for a general class of control 
systems in which the functions A J ( f )  are monoton- 
ically decreasing and convex. Many control systems 
belong to this class; for example, the aircraft landing 
control application studied in [7] offers a second exam- 
ple. For this class of systems, we will approximate the 
function AJ(f)  to be an exponential decay function, 
i.e., 

A J ( f )  = ae-Pf 

where CY is the magnitude coefficient and P is the decay 
rate. 

3. Task Scheduling 

In this section, we address the issue of determin- 
ing the task frequencies such that all the tasks are 
schedulable and the system performance indices are op- 
timized. Specifically, for a given set of tasks, TI, ..., T,, 

with 
AJi ( f i )  = cxie-Paft, i = 1, ..., n (6) 

we choose the frequencies fi to minimize C A J i ,  to 
maintain system stability, and to satisfy the condition 

n 

i= l  
(7) 

where Ci, i = 1 ,..., n, are the task execution times. 
To maintain system stability, we need to choose the 
frequency fi at least as large as the lower bound fmi 

for each task. 

To scheduling the tasks, we consider both dynamic 
and static priority assignment schemes, e.g., Earli- 
est Deadline First (EDF) for dynamic assignment and 
Rate-Monotonic Assignment (RMA) for static assign- 
ment. We will choose a range of A such that EDF and 
RMA can be used for scheduling. 

Remark 3.1 The tasks to be scheduled could be a 
mixture of two types: some may require the periods 
to be rigidly maintained whereas others do not. If 
this is the case, we only need to modify A in Eq. (7) 
by subtracting CjEJ Cj f j  from the schedulable utiliza- 
tion with J being the collection of indices of the tasks 
whose periods are fixed. As far as the determination 
of the frequencies is concerned, we only consider the 
tasks which have variable frequencies and performance 
indices characterized by Eq. (6). 

The optimization problem we need to solve is a non- 
linear programming problem [4]. More precisely, this 

problem is: 
n n 

n 

subject to: CCifi  5 A, 0 < A 5 1 
i= l  

fi 2 fmi, i = 1, ..., n 
where wit i = 1, ..., n, are a set of weights. 

Proposition 3.1 Given the objective function in 
Eq. (8) and constraints in Eq. (9), there exists a unique 
optimal solution given by 

fi = fmi,  i = 1, . . . , p  

- Q ) ,  j = p +  1, ..., n,  
- Pt 

f .  - -(lnrj  1 (10) 

where f k s  are ordered as fmk which are arranged as 

p E [l, .., n] is the smallest integer such that 

and 

Proof: See the Appendix. 

Remark 3.2 Proposition 3.1 is based on the fact that 
most control systems can have a flexible sampling fre- 
quency, provided this frequency is chosen above the 
lower bound. This feature was defined as the control 
system deadline and discussed in detail in [SI where the 
authors studied the effect of missing control updates in 
control systems. Proposition 3.1 provides a method for 
optimally determining the sampling frequency at each 
of the given levels of CPU utilization such that task 
schedulability is guaranteed. This is illustrated in the 
following examples. 

Example 3.1 Consider an open-loop temperature 
control problem. Suppose there are five (5) room 
units whose temperatures need to be automatically 
controlled by one processor, and controlling the tem- 
perature in each unit is considered to be one task. The 
execution time Ci (ms) and given frequency fi (Hz) of 
each task are listed in Table 1. 
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with pi = l / a i  and fj = l/q, we finally obtain 

2 U ’  A J .  - -e-Ptfa with frni = 2 I n  V d r f d r  
Vdr-88 

“ 3  

For scheduling, we consider both EDF and RMA 
approaches. To use EDF, we set A = 1. For RMA, A 

Table 1. Data for temperature control scheduling 

According to the given data, the total utilization will be 
1.55 > 1, and therefore, the tasks are not all schedula- 
ble. However, by investigating the underlying physical 
systems, we may find that these tasks are schedulable 
with a set of “redesigned” frequencies. Suppose the 
temperature for each of the units is governed by the 
dynamic equation 

+i = - ~ i y i  + biui (12) 

where Yi( t )  is the temperature difference between the 
i-th unit and the ambiance with $0) = 0; ai and bi are 
constants depending on the insulation of the unit; ui is 
the rate of heat (cold air) supplied to the unit. Suppose 
we need to change the temperature in the i-th unit, 
and we require such a change to  be done in not more 
than tf time units and to consume a minimum amount 
of fuel. Let Ydi be the difference between the desired 
temperature and the ambient temperature. We also 
require that Iri(tf) -ydiI _< 6;. Then, the optimization 

_ _  
must be chosen so that the tasks can all be scheduled by 
the chosen scheduling algorithm. Suppose the physical 
parameters are given in Table 2, where fmi (Hz) is the 
lower bound on the sampling frequency of task i, and 
wi is the weight assigned to  task i. 

unit 5 0.7 30 

Table 2. Data for temperature control tasks 

EDF Scheduling: We first check whether the task set 
is schedulable when all task frequencies are set to their 
minimum values. We find that 

5 

CCif,i = 0.8575 < 1 
i=l 

problem can be formulated as which indicates that all five of the tasks are schedu- 
1 t f  lable. Following the algorithm in Proposition 3.1, we 

determine the optimal frequency for each task as fol- 
lowing. Let 

minJi U, = ZPi(yi(tf) - “/di)2 + f u;(t)dt 

where pi is a weight coefficient. Then, the continuous- 
time optimal control and the final state can be deter- 
mined as 

Then, a simple calculation shows 

Ydipi b!sinhaitf F(5)  = 0.8875 < 1, 

Therefore, we will assign 

F(4) = 0.9 < 1, F(3) = 1.04 > 1 
Yi*(tf) = aieattf + pib;sinhaitf 

Digitizing u*(t) with sampling period and choosing 
pi >> 1, we obtain the approximations: 

’$ ( t / )  = Ydi, and Jdi = -Piyd$ 2 

fi = fmi, for i = 1 , 2 , 3 ,  
i.e. f1 = 20 Hz, f2 = 12.5 Hz, f3 = 10 He, 1 - e-aJ’l 

( l + e - a , T . )  and compute f4 and fs as 

To satisfy the condition Ir;(tf) - Ydil 5 si, we need f4 = ( lnr4  - Q)/p4 = 7.97 Hz 
f5 = ( lnrs  - Q)/p5 = 7.1 Hz. 

Ydi (1 - e-atT%) < 6 i  j Ti 5 -1n- 1 Ydi + Si 
ai Ydi - 6i This choice of frequencies yields a total utilization 1 + e-a,T, - 

Furthermore, by approximating 99.97%, and the final set of tasks is schedulable. 

RMA Scheduling: Let t, (ms) be the completion time 
of the first invocation of a periodic task and D (ms) be 1 + e - - a 3 t  N 3 1 - e-aiTn x , - P a f s  - 5, 
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A =  1 A =  0.86 A=0.8575 ' 
t , p  t , I D  t , I D - .  

. unit 1 10 I 50 10 I 50 10 I 50 
unit 2 
unit 3 

25 80 25 80 25 80 
45 100 45 100 45 100 

Table 3. RMA scheduling table for temperature 
control tasks 

unit 4 
unit 5 

The data in the above table shows that not all tasks can 
be scheduled by the RMA approach if A = 1, but all 
of them can be scheduled for A = 0.86 or A = 0.8575. 
When A = 0.86 fi = fmi, i = 1, ..,4, fs = 4.0833, and 
when A = 0.8575, fi = fmi, i = 1, ..,5. 

80 125 80 166 80 166 
155 141 235 245 235 250 

J 

By comparing two scheduling approaches presented 
above, we conclude that full utilization of computing 
resource can be achieved by using EDF and this yields 
a performance index AJ = 0.00695. RMA scheduling 
algorithm, on the other hand, does not guarantee full 
CPU utilization, and the performance index is AJ = 
0.2882 at A = 0.86. 

b l  
b2 

Example 3.2 Consider the bubble control system dis- 
cussed in the last section. Suppose four such systems 
with different physical dimensions are installed on an 
underwater vehicle to control the depth and orientation 
of the vehicle, and they are controlled by one on-board 
processor. For each bubble control system bi, let Ci 
(ms) be the control task execution time in each sam- 
pling period, fmi (Hz) be the lower bound on sampling 
frequency, and wi be the weight assigned to system i. 
The following data are given for the control design and 
scheduling problem: AJi = aie-PJr,  i = 1 , ..., 4, and 

ai Pi ci fmi wi fi 
1 0.5 10 15 5 - 
1 0.7 10 10 3 - 

I b3 
b4 

I 

1 0.3 I 10 18 2 - 
1 0.1 I 10 20 1 - 

[II coordinator I - I - 1 5 1  - I - 1 1 0 1  

Table 4. Data for bubble control scheduling 

0.14 1 
O.I2 t 

g 0.1 - 
e! 
c 

; 0.08 - 
v - 

I - 

c 
0.04 - 

0.02 t 

I 

I 

I 

I 

. .  

816 ' 0 . k  017 0.A '018 ' 0 . k  ' 019 0 . b ~  I 
Total Utilization A 

Figure 4. AJ versus total utilization A 

where the frequencies, fi (Hz), i = 1, ..,4, must be 
determined, The coordinator is the control unit which 
coordinates the bubble subsystems to perform a desired 
mission, for instance, changing depth, roll or pitch an- 
gles. The frequency for this particular task is fixed, 
and it is determined by the underlying coordination 
requests. For example, to keep the roll angle 0,. within 
a certain range, say l0,l < e,., , we may want to choose 
the task period to be Otm/max(l0,.l). A simple cal- 
culation shows that the total CPU utilization of the 
overall bubble system is 63% when the minimum task 
frequencies are assigned, and the total CPU utilization 
available for the bubble systems is 95%, excluding the 
utilization of the coordinator. These imply that for 
any A E [0.63,0.95], all the tasks are schedulable with 
EDF, using the task frequencies determined by the al- 
gorithm described in Proposition 3.1. Fig. 4 shows the 
relation between AJ = E;=l Wiaie-Plft and the value 
of A.  

Again, let 

then we get 

F(4) = 0.63, 
F(2) = 0.8371, 

F(3) = 0.7908, 
F ( l )  = 0.8852 

Hence we conclude (also as indicated in the figure): 
when A E [0.8852,0.95], there is no frequency cho- 
sen to be the corresponding lower bound. When 
A E [0.8371,0.8852), there is one frequency that needs 
to assume its minimum value, fi = 15 (Hz). When 
A E [0.7908,0.8371), two frequencies are set to their 
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I Amax=0.95, A m k 0 . 6 9  1 
b4 

A=Amin, DONE 1 

A = 0.82 A = 0.89 A = 0.92 A = 0.91 
t , I D  t , ] D  t , I D  t , I D  
10 I 26 10 I 23 10 I 22 10 I 23 

+No 

b3 
b l  
b2 

1 Let A=(AmaxtAmin)/2, and compute the frequencies. 1 

20 53 20 49 20 48 20 48 
40 67 40 66 40 65 40 65 
50 100 90 95 100 93 90 94 

L 

i 
I Compute tc(i) and D(i) for each task.1 

I h7 tc(i) <=D(i) ? I 
L-----E Amin=A 

Figure 5. Flowchart for binary search for an 
optimal value of A 

minimumvalue, fi. = 15 (Hz), and f2 = 10 (Hz). When 
A is reduced further to the range (0.63,0.7908), three 
frequencies must be set to their lower bounds, namely, 
fi = 15 (Hz), fz = 10 (Hz), and f3 = 18 (Hz). Finally, 
when A = 0.63, all the frequencies must be assigned 
their minimum values. 

We now consider scheduling the tasks by the RMA 
approach. While all the tasks can be scheduled by the 
EDF algorithm, for some value of A E [0.63,0.95], this 
may not be true in case of RMA scheduling. For the 
given range of A, we would like to schedule all the tasks 
using RMA with the largest value of A, in which case 
we can get the best possible performance. To achieve 
this, we use a binary search to determine the value of 
A that will give a near-optimal solution. This search 
may not guarantee the convergence to the optimal A ,  
because the frequencies vary for different A, and RMA 
schedules tasks based on the tasks’ frequencies. The 
binary search is illustrated in Fig. 5, and the search 
results are listed in Table 5 with t ,  (ms) the task com- 
pletion time and D (ms) the task deadline. Apparently, 
the solution for RMA scheduling should be obtained by 
setting A = 0.91 and they are 

fi = 15.3 Hz, 
f3 = 20.74 He, 

f 2  = 10.68 Hz, 
f4 = 44.29 HZ 

Again, we found the performance indices A J  = 0.0157 
at A = 0.95 by the EDF scheduling algorithm and 
A J  = 0.02 at A = 0.91 by the RMA scheduling algo- 
rithm. 

Table 5. RMA scheduling table for bubble control 
systems 

Remark 3.3 Examples 3.1 and 3.2 demonstrate that 
for real-time control systems the choice of processors 
and scheduling algorithms can be important. It is clear 
that the faster the processing speed and the higher the 
schedulable utilization, the better will be the system 
performance that can be obtained. For a slow processor 
and low levels of schedulable utilization, great gains in 
the overall performance can occur from relatively small 
increases in computing speed or schedulable utilization. 
Consequently, the increases in schedulable utilization 
available from using EDF rather than RMA can sig- 
nificantly improve performance, as was the case in Ex- 
ample 3.1. However, a point of diminishing marginal 
returns will be reached. At this point, increases in pro- 
cessing speed and schedulable utilization begin to con- 
tribute relatively little to overall system performance. 
Consequently, EDF will offer only slightly better per- 
formance than RMA. This is illustrated in Example 
3.2. These observations indicate that in designing con- 
trol systems, it is very important to choose a processor 
speed for which the task set frequencies can be cho- 
sen above the point of decreasing marginal returns for 
all tasks. If this is done, then the choice of schedul- 
ing algorithms will be a relatively small (second-order) 
effect. 

4. Conclusion 

In this paper, we have considered the periodic task 
schedulability issue from a new viewpoint, the opti- 
mization of a real-time control system’s performance. 
For a set of tasks from a class of control systems whose 
performance indices with digital control implementa- 
tions are a monotonically decreasing and convex func- 
tion of each task’s frequency, an algorithm is proposed 
to determine the task frequencies such that all tasks 
are schedulable for both EDF and RMA. 

The main contribution of this paper is two-fold. 
First, the proposed algorithm enhances the processor’s 
task schedulability by allowing the task frequencies to 
change in the context of real-time control system per- 
formance. For a given set of tasks, they may not be 
schedulable with the given task periods, but they may 

20 



be schedulable if the periods are changeable and they 
are schedulable when their frequencies take values on 
their lower bounds. If this is the case, the algorithm 
guarantees that the tasks will be schedulable and the 
system performance with a digital control implemen- 
tation will be optimized subject to the limitation on 
the computing resources. Second, even for a set of 
tasks which are originally schedulable, the proposed 
algorithm can still be used to improve the overall s y s  
tem performance. This feature distinguishes our algo- 
rithm from the others where system performance was 
not considered to be a factor in scheduling the ‘tasks. 

Future work along this line will include generalizing 
the algorithm developed here to address the problem 
of task re-allocation over a network of processors and 
optimizing the overall system performance. 
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Appendix 

Proof of Proposition 3.1: Introducing Lagrangian mul- 
tipliers A, Xi, i = l, ..., n, we write the Kuhn-Tucker 

condition as 

( A, Xi 2 0 

where i = 1, ..., n. Since X i  2 0, I’i > 0, V i ,  we have 

n 

X > 0, and E C i f i  = A 
i=l 

Letting fi = fmi, i = 1, ..., n, then by schedulability 
assumption, we have 

i=l 

We now increase the frequencies starting with fn.  For 
each fi > fmi, we have X i  = 0, 

rie-bft (14) 

and X decreases as fi increases. Also, each fi has to 
start increasing from fmi when X < rie-Plfmi, other- 
wise equation 

-rie-pJa + x - xi/ci = o 
would not hold for X i  2 0. To determine which fis are 
greater than fmi  and how much they can increase, we 
need to find the smallest integer p such that 

with X = rpe-ppfmp, which is equivalent to 

as given in the proposition. After the integer p has been 
identified, we conclude that the frequencies fi, .,., fp 

must be chosen to be f m l ,  ..., fmp and the remain- 
ing frequencies are computed from Eqs. (13) and (14). 
Since the objective function in Eq. (8) is strictly con- 
vex, there is always one and only one minimum. There- 
fore, a unique set of optimal task frequencies is ob- 
tained. 
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