
STREAMER: Hardware Support for Smoothed
Transmission of Stored Video over ATM

Sung-Whan Moon, Padmanabhan Pillai, and Kang G. Shin

Real-Time Computing Laboratory, Dept. of EECS
The University of Michigan, Ann Arbor MI 48105

{swmoon, pillai, kgshin}@eecs.umich.edu

Abstract. We propose a hardware design which provides support for smoothed
transmission of stored video from a server to a client for real-time playback. The
design, called Streamer, resides on the network interface and handles the
transmission scheduling of all streams over a single link connected to an ATM
network. Streamer minimizes the interaction needed with the server CPU, while
supporting very fine grain scheduling of cell transmissions for a large number of
streams. Throughput is also maximized by streaming data directly from the
storage medium to the network interface buffer over the I/O bus. We observe that
the scheduling mechanism can be modified to operate at 2.1 Gbps link speeds
and the Streamer as a whole can provide cell-granular, interleaved scheduling
with full utilization of 155 Mbps and 622 Mbps links.

1 Introduction

Asynchronous Transfer Mode (ATM) networks use fixed size cells and a connection-
oriented scheme to deliver information across a high-speed network. Because of their
ability to deliver high-bandwidths and per-connection QoS guarantees, ATM networks
are well-suited for real-time multimedia applications, such as delivering stored video
for continuous playback at the client. In this application, a client requests delivery of
some stored video (i.e., a video clip or an entire movie) from a remote server. The large
amount of data versus relatively small buffer capacity on a typical client, coupled with
the burstiness of compressed video, makes it difficult to deliver QoS guarantees for
uninterrupted playback. Network resource allocation based on peak rates becomes
expensive, resulting in under-utilization of resources and limited number of connec-
tions. Requiring very large client-side buffer capacity to absorb the bursts also
becomes unrealistic due to cost considerations. A solution to this problem involves
reducing the rate variability by using smoothing techniques [10][17]. Based on the
buffer capacity of the client, these algorithms determine a transmission schedule which
results in smoother transmission and decreased peak rate, without starving or over-
flowing the client buffer.

The work reported in this paper was supported in part by the National Science Foundation under
Grant MIP-9203895. Any opinions, findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect the view of the NSF.

Although these algorithms have been shown to increase network utilization [17],
they still do not provide an end-to-end solution. These algorithms assume the video
server will be able to put data into the network based on the smoothed transmission
schedule. For a single stream a server CPU scheduling approach might suffice, but for
a large number of streams utilizing close to full capacity of the link, such a server-
based approach will not deliver the results obtainable with smoothing. Several
researchers [5][6][8][9][14][15][16][18] have argued that the network I/O on current
end systems, such as servers, is the main bottleneck in providing applications with the
high-bandwidths available to them. In a video server application, Saha [16] recognizes
a substantial penalty with a server-initiated transmission due to the cost of moving data
from a storage device to the network interface via the server CPU. In this scheme, data
is copied multiple times, from storage to the kernel’s memory space inside the server’s
main memory, then to the application’s memory space and back to the kernel, and
finally to the network interface which sends the data out on the network link. Due to
the overhead of multiple copying, the actual bandwidth available to the applications is
substantially less than the link bandwidth. A common solution proposed is to reduce
the number of data copies so that data can be moved from the source to the network
interface with one copy.

In these single-copy schemes [5][6][18], the data that is to be transmitted is copied
directly from the application’s memory into the network interface’s buffer. This copy-
ing is done either by the server CPU or by the network interface. Scheduling of trans-
missions is also done by the server CPU, which notifies the network interface of a
transmission via some type of request mechanism. Unfortunately, in a video server
application, data is usually on a separate storage medium (e.g., hard disk) and not in
main memory. So, another method of copying data from the source to the network
interface is required. Saha [16] proposes a streaming approach where the source of the
data acts as an autonomous device which can send data without constant interaction
with the server CPU. Once initiated, the autonomous device will continuously send
data to the destination device. In his experimental platform, the autonomous device is
the MMT adaptor, which captures real-time video and audio and then outputs com-
pressed digitized video and audio streams. The MMT adaptor will then copy the data
into the network interface over an I/O bus. Dittiaet al. [8] propose a similar approach
where data is streamed from the source to the network interface. Their approach con-
sists of an interconnection of special chips (APIC), with each chip connecting to a sin-
gle I/O device. This interconnection replaces the traditional I/O bus, with the first
APIC connected to the network interface and main system bus. Data from an I/O
device destined for the network will simply travel down the chain of APICs till it
reaches the network interface.

In order to provide smoothed transmission of stored video, smoothing techniques
and data streaming by themselves are not enough. Smoothing techniques can only cal-
culate a smoothed transmission schedule. There is no explanation as to how to achieve
such a smooth transmission. Data streaming techniques use a single copy approach to
increase throughput available to applications and I/O devices. Although throughput is
important, link scheduling is also needed in order to conform to the smoothed trans-
mission schedule. Saha [16] proposes a scheduler based on round-robin scheduling

76

implemented using a processor. This approach has the drawback that fine grain sched-
uling is limited by how fast the processor can determine the next stream to transmit.
The APIC [8] solution is to simply limit the burst size and burst interval for each
source of data. Because data travelling down the chain of APICs is continuously buff-
ered at each APIC before reaching the network interface, such a mechanism cannot
guarantee any smoothness in the transmission.

In this paper, we propose an integrated solution for smoothed transmission of
stored video using both the smoothing schedule and data streaming. Since the I/O
device can only control the rate at which it sends data to the network interface, actual
link scheduling needs to be done on the network interface. Software scheduling on the
server involves the server telling the network interface when to send data, how much
data to send and from which stream. For a large number of streams, this approach will
potentially stall the transmission due to delay associated with context switches, inter-
rupt handling, other OS overheads, and issues dealing with CPU scheduling [11][12].
This may happen when trying to do fine grain scheduling where each stream transmits
a small number of ATM cells at a time. Also, with the software scheduled method, a
large number of messages need to be sent from the server CPU to the network inter-
face. This decreases the bandwidth available to the devices for copying data to the net-
work interface. Since the overall goal is to be able to transmit a large number of video
streams as smoothly as possible, such a server CPU scheduled approach will not work.
A hardware scheduler on the network interface, on the other hand, can off-load the
scheduling and multiplexing of stream transmissions from the server, allowing the
server to do other tasks. This also reduces traffic between the network interface and
server CPU, while allowing for fine-grain scheduling at the ATM cell level. This in
turn, allows for a large number of video streams to be transmitted onto the network,
with each stream closely following its smoothed transmission schedule, and for better
utilization of the link’s bandwidth.

In this paper we propose such a hardware design, which facilitates both the stream-
ing of stored video data from storage directly to the network interface, and the trans-
mission scheduling of these video streams based on smoothing algorithms. Our
hardware design, which we refer to as the Streamer, takes on the functionality of the
transmitter unit on a network interface. The Streamer is responsible for buffering cells
from various streams, scheduling the transmission of these cells, and retrieving these
cells from the buffer for transmission. Parts of the smoothed transmission schedule are
cached inside a buffer on the Streamer, and are used to determine which stream gets
access to the link next. We argue that caching of the transmission schedule is very rea-
sonable due to the small size of the schedule itself. The Streamer also allows unused
link bandwidth to be used for best-effort traffic.

This paper is organized as follows. Before describing the Streamer, we first
describe the smoothing algorithm assumed in our design, and the basic functionality of
network interfaces. In Section 3 the Streamer architecture and operations are
explained. Evaluation of our implementation and future work are presented in Section
4. Conclusions are presented in Section 5.

77

2 Background

Before describing our hardware design (Streamer), we will first look at smoothing
algorithms and network interface issues, which are the main components of our design.
We will first describe the smoothing algorithms presented in the literature, and then
make extensions to the schedule for the purposes of our design. Basic architecture and
functionality of a network interface are introduced, with emphasis on ATM networks.
We then describe how the Streamer fits into the network interface, and explain the
operations that are supported and not supported by our design.

2.1 Smoothing Algorithms

Although optimization criteria differs among various researchers, the main goal of
smoothing algorithms [10][17] is to reduce the rate variability of stored variable bit
rate video. Stored video consists of frames, which are just images, captured 10-30
times a second. Compression techniques, such as MPEG, take advantage of the inher-
ent redundancy to compress the video data, and reduce the total storage required. Such
compression, though, results in burstiness due to the varying frame sizes. For real-time
playback across a network, such burstiness causes problems in network resource allo-
cation and QoS guarantees when transmitting frames every 10-30 msecs. Smoothing
algorithms take advantage of the fact thata priori knowledge of the video stream is
available for stored video, and determine transmission schedules based on the buffer
capacity of the client. The resulting smoothed schedule is characterized by small rate
variations, and a fairly constant transmission rate.

The smoothed transmission schedule determines the amount of data to be sent at
each of the N frame intervals. For a 30 frames per second video stream, the interval is
33 msecs. Instead of transmitting a different amount of data at each frame interval, the
smoothing algorithm generates several constant rate schedule segments. During each
schedule segment, which lasts for several frame intervals, the same amount of data will
be transmitted at each frame interval. This amount will change slightly between differ-
ent schedule segments. Fig. 1(a) shows the format for the final schedule. Based on the
results reported in [10, 17], the number of these constant rate schedule segments (in the
100s to the 1000s) is considerably less than the total number of frames (in the
100,000s) in a video clip or movie, and decreases with an increase in the client’s

Fig. 1.Smoothed transmission schedules

1

2

M

a1 a2 - 1
a2 a3 - 1

aM N

B1

B2

BM

...

(a) Smoothed transmission schedule using frame (b) Possible format for smoothed transmission

 Schedule
Segment #

Start Interval
 Frame #

End Interval
 Frame #

Transmit
 Size

1

2

L

I1 N1

I2 N2

IL NL

C1

C2

CL

...

 Schedule
Segment #

 Chunk
 Interval

 # of
 Chunks

 Chunk
 Size

Last

0

0

1

...

intervals output by smoothing alorithm schedule using chunk intervals

78

receive buffer (typically around 1 MB). The typical amount of data transmitted at each
frame interval is in the range of 1-5 KB based on Salehiet al. [17], and 5-12 KB based
on Feng [10].

Considering that each ATM cell’s payload is 48 bytes, a 5 KB transmission
requires around 105 ATM cells, while 12 KB requires a little over 250 ATM cells.
Instead of transmitting these cells in a burst at each frame interval, we assume a sched-
ule which is modified in three ways. First, the transmission size is assumed to be in
units of ATM cells. A method for calculating such a schedule is described in [17]. Sec-
ond, time is specified in units equal to the time required to transmit one ATM cell. In
our design, we targeted a 155 Mbps ATM link. Third, frame intervals are further
divided into chunk intervals, and the cells that need to be transmitted for the frame
interval are divided up evenly and sent at each chunk interval, further smoothing out
transmission. On a 155 Mbps link, each cell takes 2.7µsecs to transmit, hence over
12000 cells can be transmitted within the typical 33 msec frame interval. So instead of
bursting, say 200 cells, for a half msec every 33 msecs, chunk intervals can be used to
burst 20 cells every 3.3 msecs. Such spread-out transmissions can be seen as more
favorable from the network’s point of view. We assume that this chunk interval sched-
ule is derived from the frame interval schedule produced by the smoothing algorithm
above, and will not result in client buffer overflow or underflow. Here we also make the
obvious assumption that if the smoothed transmission schedule is observed, then the
network will be able to provide certain guarantees for uninterrupted playback at the
client side.

Fig. 1(b) shows the chunk interval schedule that our hardware design assumes.
Chunk intervals (I1, I2, ..., IL) are specified in cell transmit time units, while the sched-
ule segment duration is specified by the number of chunk intervals (N1, N2, ..., NL).
Chunk size (C1, C2, ..., CL) is given in number of cells. For example, during the first
schedule segment, there will be N1 transmission bursts of C1 cells each, with these
bursts occurring every I1 cell transmit time units. The “Last” field flags the last sched-
ule segment, and indicates the end of the stream. Each schedule segment can be
encoded using a small number of bytes (6-8), so the entire schedule for a movie stream
can be encoded with just a few KBytes (1-8). Since each schedule segment lasts for
many frame intervals, the time between schedule segment changes will be in the range
of 5-50 secs, which is an eternity for hardware.

2.2 Network Interface Architecture and Functions

The function of the network interface is to transmit data from the host to the network,
and similarly transfer data received from the network to the host. As shown in Fig. 2,
the network interface will typically interact with the rest of the host over the host’s I/O
bus. When an application on the CPU needs to send data, the necessary software will
transfer the data to the network interface buffer. The transmit control on the interface
will then handle the necessary overhead associated with transmitting each cell. For
ATM, these tasks include segmenting the application data into cells, adding ATM cell
headers, and performing CRC generation. The physical layer then handles all the phys-
ical medium specific functions, such as cell delineation, framing, and bit timing. When

79

cells arrive at the interface, the receive control reassembles the cells into application
data units before delivering them to the application. Commercial ATM network inter-
face products [2][3][4] follow this general model.

As mentioned earlier, a single copy approach can improve throughput as seen by
the application. Various solutions fall under one of two categories. The first consists of
allowing the application to write directly into the network interface’s buffer [5]. Actual
transmission is initiated by sending a special control signal. The other approach is to
first send a message to the network interface, which then copies the data directly from
the application’s memory into its own buffer [6][18]. In either case, the CPU is actively
involved in each transmission. For a video server application, where a large amount of
data resides on a hard disk, streaming of the data is more appropriate. In this scheme,
the CPU simply initializes the hard disk to send data to the network interface. The hard
disk is assumed to have enough intelligence to know when to pause and resume data
flow based on feedback from the network interface. This streaming scheme is assumed
for our design.

Our hardware design, the Streamer, proposed in this paper fits into the transmit
control section in Fig. 2. One of the functions of the transmit controller is to determine
which of the connections ready for transmission gets access to the link and for how
long. Instead of simple FIFO link scheduling, Streamer is a hardware scheduling
mechanism which allows for smoothed transmission scheduling of video streams.
Streamer does this by maintaining scheduling information for each of the active video
streams, storing cells from the hard disks into the buffer, determining which active
stream needs to transmit and how much, and removing cells from the buffer for trans-
mission. From product information we were able to obtain, several commercial prod-
ucts also offer some type of link scheduling on the network interface. [2] mentions
independent transmit scheduling for each virtual circuit and support for MPEG-2
transport delivery. [7] mentions an ATM adapter with support for pacing of MPEG
streams for smooth transmission of data. [4] describes a rate-based traffic shaping
scheduler that provides interleaved stream scheduling. It uses a static round-based

Fig. 2.Generic host system with I/O devices and the ATM network interface.

CPU

Memory

 Storage
M

ai
n

B
us

I/O
 B

us

Network Interface

B
us

 In
te

rf
ac

e

P
hy

si
ca

l L
ay

er
 F

un
ct

io
ns

TO

FROM
NETWORK

NETWORK

Buffer

Transmit
Control

Receive
Control

Segmentation
ATM Header Generation
CRC Generation

Reassembly
CRC Check

80

schedule to divide up link bandwidth among active connections. During each round,
data for the corresponding connection is transmitted only if the traffic shaping permits
it to do so. In contrast, Streamer dynamically schedules streams, requiring no adjust-
ments for rate changes caused by the smoothed schedule, and also uses a dedicated pri-
ority queue mechanism to arbitrate among the active streams. Details of the Streamer
are given in Section 3.

3 Streamer

We have discussed the potentials of ATM networks for the transmission of real-time
video, the problems and inefficiencies of bursty video traffic in the context of guaran-
teed service reservation, and the existence of smoothing algorithms that alleviate these
problems. We have also established that scheduling the transmission of smoothed
video streams in real-time requires hardware support if link utilization is to be kept
high. Addressing all of these issues, we have designed a hardware solution to real-time
link scheduling of smoothed video streams that avoids CPU and memory bottlenecks
by streaming data directly from storage devices to the network interface. The Streamer
network interface allows for effective implementation of smoothed video multimedia
servers as it can handle many simultaneous streams. We therefore extend the work
done with smoothed video streams by providing the hardware link scheduling needed
for efficient smoothed video streaming in a multimedia server.

3.1 Operation

The Streamer operates as follows. When the server receives a request for a new video
stream, it checks for sufficient resources on the server to handle this new stream. This
admission control mechanism takes into account such factors as storage device band-
width and latency, and available buffer space on the network interface in addition to
the conventional admission control on the network. Only then is the appropriate signal-
ling performed to establish the new connection. Based on the client buffer, a smoothed
transmission schedule is calculated on-line or is retrieved from storage. The server
CPU then downloads the first few schedule segments and the cell header into the
Streamer, and allocates sufficient number of buffers in the network interface to avoid
buffer starvation.

The server CPU then signals the appropriate storage device to begin streaming data
to the network interface. We assume that the storage devices are controlled by bus-
mastering capable controllers. Once initialized by the host CPU, these controllers will
stream data to the Streamer network interface with little or no further dependence on
the host CPU. The devices are assumed to have sufficiently higher throughput than
required by the video streams, and enough caching on the controllers to avoid buffer
starvation at the network interface. We also assume that a file system optimized for
video data stores the streams linearly in the storage devices to facilitate the autono-
mous retrieval by the bus-mastering controllers and to avoid seek latencies. Further-
more, we assume that the data has been preprocessed for transmission and is
fragmented into ATM cells, taking into account overhead for error correction and ATM

81

Adaption Layer information, and is stored as a sequence of 48 byte cell payloads. This
last assumption allowed us to focus on the smoothed scheduling support without wor-
rying about the extra ATM cell processing.

Once the initialization has been completed, a control signal is sent to the Streamer
to begin transmitting the particular stream. Scheduled transmission continues without
host CPU intervention except to supply additional smoothed transmission schedule
segments and to handle any errors that may occur.

3.2 Architecture

The basic architecture of the Streamer network interface is shown in Fig. 3. The
Streamer board is not a complete network interface as it does not provide segmenta-
tion, CRC generation, or any receive functionality. Though a minimal design, it can
provide fine-grained (down to cell level) interleaved transmission of up to 255 simulta-
neous streams based on independent traffic smoothing schedules.

3.2.1 Bus Interface (Bus Demux)

The bus demultiplexor provides the bus interface for the Streamer. In addition to
decoding addresses and generating internal control signals, the bus demux also pro-
vides simple feedback to the data storage devices in order to prevent buffer overflows.
As bus-mastering drive controllers stream data to the Streamer board, the bus demux
determines if buffer space is available (based on a per-stream allocation and a table
maintained in conjunction with the buffer processor). If buffer space for the particular
stream is not currently available, it uses a device-not-ready mechanism to force the
drive controller to relinquish the bus and try again later. The bus demux can also gener-
ate interrupts when the ID processor or the buffer processor needs servicing from the
server CPU.

3.2.2 ID Processor

The ID processor (Fig. 4) is the heart of the Streamer board. This module performs

Fig. 3.Streamer.

I/O
 B

us

B
us

 In
te

rf
ac

e
(B

us
 D

em
ux

) ID
Buffer

Header Table

Best Effort Queue

P
hy

si
ca

l I
nt

er
fa

ce

Buffer Tag
Processor Output TO

FROM
NETWORK

NETWORK

Processor

Queue
 Queue

82

scheduling among the active streams and generates a sequence of buffer tags, which
are control structures that indicate a stream ID and a cell count, and are used to tell the
buffer processor what to transmit. For each stream, the ID processor stores up to 4 seg-
ments of a smoothed transmission schedule. These segments indicate traffic shaping
parameters such as burst length and burst interval to be applied to a specified number
of cells. As each segment expires, the ID processor will place a request for more
through the CPU request queue.

Scheduling is performed by keeping the departure time for the next chunk of data
for each stream in a hardware priority queue [13]. The hardware priority queue allows
single cycle insertion, and allows arbitrary interleaving of streams to produce a precise
schedule for transmission, unlike the imprecise schemes used elsewhere [4], that are
essentially round-robin schemes modified to take traffic shaping into account. Further-
more, the priority queue approach is fully dynamic, and works well with streams that
have changing data rates, unlike the round-robin variants, which require the recompu-
tation of a static schedule to reflect each data rate change. The priority queue produces
the proper ordering of transmission from the active streams, while a cell counter, act-
ing as a clock, ensures proper time intervals are maintained between subsequent trans-
missions. When the clock indicates that the stream at the top of the priority queue is
ready to transmit, the entry is removed from the queue. Based on the stream’s schedul-
ing segment data, a buffer tag is generated indicating the stream ID and the number of
cells to transmit. The number of remaining transmissions left for the particular sched-
ule segment is updated, while the departure time for the next burst of data for the
stream is computed and inserted into the priority queue. This entire operation can be
accomplished in constant time (less than 10 cycles). If it is not time to send video
stream data, delay slots can be introduced in the output by producing a special buffer
tag that indicates either a best-effort traffic cell or an idle cell should be released
instead of data from the video streams.

3.2.3 Buffer Processor

The buffer processor (Fig. 5) is essentially a combined buffer memory and manager

Priority

Clock

Datapath

CPU Request

Buffer Tag

R
eg

is
te

r

Pointer
Buffer

Schedule
Segment
BufferA

DIN

New Stream

New Schedule

R
eg

is
te

r

DIN

A

 Notification

 Segments

Controller

Queue

 Queue

 Queue

Fig. 4. ID Processor

83

with the added responsibility of sending cells to the physical layer interface. The buffer
memory is organized as a bank of 48-byte cell buffers. Buffer allocation and manage-
ment is performed through simple linked list mechanisms on a per-stream basis. A sep-
arate linked-list control memory maintains the buffer pointers for each stream as well
as the list of free buffers. For simplicity of control and timing, the different data struc-
tures (cell buffers, header table, linked-list pointers) are stored in separate, parallelly
accessible memories. Individual streams are limited to a specified allocation of buffers,
which is determined during admission control. This is enforced in conjunction with the
bus demux through a table that indicates the number of buffers that remain available to
each stream. An input shift register decouples the buffer processor operation from the
six cycle latency in transferring a cell payload over a 64-bit I/O bus. On the output end,
as buffer tags are received from the ID processor, the indicated number of cells for the
indicated stream ID are prepended with the ATM 5 byte header from a table of head-
ers, and are transferred octet-by-octet to the physical layer through a shift register and
a FIFO queue. This transfer mechanism is based on the ATM Forum Level 1 UTOPIA
specifications [1]. If an insufficient number of cells are buffered for the stream, an error
is reported in an error queue that causes an interrupt to be signaled. If the special idle
tag is received from the ID processor, the next cell in a best-effort traffic FIFO queue is
sent, or if that queue is empty, an idle cell is sent to the physical layer to ensure that
proper cell timing is maintained.

4 Evaluation and Future Work

Streamer has been implemented in Verilog HDL using both behavioral and structural
descriptions. Several Verilog simulations were performed to verify the correctness of
our design. Due to the interactive nature of the network interface with the rest of the
system, special behavioral Verilog code had to be written to emulate the functioning of
the storage devices, I/O bus, and server CPU. Due to the extreme complexity involved
in trying to do a precise simulation of these components in Verilog, we used simplified
models of their behavior, focusing instead on the interaction with our network inter-
face. These extra behavioral models allowed us to easily create test situations under
which our design could be observed.

Output shift register

Buffer
Memory

Control Logic

Output FIFO

Best Effort Queue

Input Shift Register
Linked List

Control

Error Queue

From Bus DemuxCell Data

From ID
Processor

To Physical Layer

Header
Memory

Fig. 5.Buffer Processor

 Memory

84

As expected, we observed that the hardware scheduling ran at significantly greater
speeds than the transmission link, and as a result was idle most of the time waiting for
the physical layer to catch up. This is expected since each ATM cell requires 2.7µsecs
to transmit, while scheduling of cells, based on a 33 MHz system clock, can be done
within 10 clock cycles, or around 300 nsecs. Without modification our hardware prior-
ity queue scheduler is therefore capable of scheduling 3.3 million cells per second,
corresponding to a link speed of 1.4 Gbps. As the hardware priority queue has already
been shown to work at 64 MHz [13] using static CMOS technology, and since 15-20ns
access time SRAMs are common, the scheduler can be trivially modified to operate off
of a 50 MHz clock, and work with up to 2.1 Gbps links.

In contrast, a software-based scheduler using a dedicated processor on the adapter
board will not scale as easily with increasing link speeds. If the processor were to han-
dle only the scheduling of cells, an efficient implementation of the 255 entry priority
queue would require between 200 and 300 instructions to schedule a single cell
(depending upon the instruction set of the processor: 275 on HP PA-RISC, 290 on
SPARC, 232 on RS/6000). This requires an effective throughput of 73 to 110 MIPS to
provide cell-granular scheduling on a 155 Mbps link. Higher link speeds require pro-
portionally higher instruction throughput. To put this in perspective, a 100 MHz RISC
processor, capable of sustaining one instruction per cycle on the optimized priority
queue code with 250 instructions executed per cell scheduled, would be capable of
scheduling 1 cell every 2.5µsecs. This is just within the 2.7µsec transmission time of
cells on a 155 Mbps link. So, even without taking into account other functions the
onboard processor may need to perform, this processor is already incapable of provid-
ing full link utilization for rates over 170 Mbps. In other words, for very high link
speeds a software-based scheduling at cell level granularity will require a very high
performance, expensive microprocessor implementation.

As stated above, our scheduling module can be readily adapted to 2 Gbps opera-
tion. In our current implementation, the buffer management and transmission unit,
based on the 33 MHz clock and the 8-bit wide UTOPIA[1] standard, is limited to 264
Mbps. By removing the 33 MHz and 8-bit wide limitations, faster throughput is attain-
able. Since the update of the buffer management structures can be performed in 6
cycles, and since two updates occur for each cell transmitted, the buffer management
can handle 5.5 million cells per second (over 2.3 Gbps) with a 66 MHz clock. By using
a 66 MHz, 32-bit wide interface to the physical layer, the buffer processor can support
a 2 Gbps link.

In Streamer, the scheduling is done in parallel with the transmission of previously-
scheduled cells, so the link can be kept fully utilized whenever there are cells to trans-
mit. This is assuming that both schedule segment data and video data are present in the
network interface buffers. As was mentioned in Section 2.1, each schedule segment
will typically last several seconds and this combined with the fact that we store a few
schedule segments ahead, allows large server CPU delays to be tolerated when addi-
tional scheduling segments are needed.

However, the transfer of video data across the I/O bus and into the cell buffers will
restrict throughput and link utilization. Due to the simple data transfer model, in which
the storage devices continuously try to push data to the network interface, and the fact

85

that multiple devices contend for the use of the shared bus, buffer starvation may occur
beyond some throughput level. We performed simulations that quantify this effect. We
model a Streamer network interface modified to operate at up to 2 Gbps and support
more than 256 streams, and a PCI standard server I/O bus, based on the proposed 64-
bit, 66 MHz implementation, with a peak throughput of 4.2 Gbps. We assume that bus
arbitration results in a round-robin traversal of devices contending for bus access. To
isolate the effects of the bus, we assume that each storage device has an internal cache
and serves just one stream, so retrieval latencies are hidden and more than sufficient
bandwidth is available. We also model interfering traffic on the I/O bus by granting a
fraction of the bus accesses to a dummy device. We ran this simulation repeatedly with
random sets of streams (mean stream data rate of 2 Mbps, 50% of streams between 1.8
and 2.2 Mbps) corresponding to various link utilizations, and determine the point at
which buffer starvation begins to occur. We repeat the simulations, varying the fraction
of interfering bus traffic, the number of cell buffers on the network interface for each
stream, and the link speeds. The results are summarized in Fig. 6. The storage devices
are granted bus access in round-robin fashion, and at each access, the device will send
data corresponding to 1 ATM cell, but will abort its access if the corresponding
stream’s buffers are all full or if the Streamer buffer management is busy (within 4
clock cycles of the start of a cell transmission to the physical layer). As the Streamer
does not accept data on the bus when it starts the transmission of a cell, and since the
transmission rate is greater for the high speed links, the probability that a storage
device will be forced to abort (even though buffer space is still available for the stream)
on any particular bus access increases with link speed. With a large number of streams,
there is a good chance that some devices will abort repeatedly on consecutive accesses,
resulting in buffer starvation for the associated stream. Increasing the per stream buff-
ering helps avoid starvation, as shown by the large jump in sustainable utilization when
more than one buffer per stream are used on the 622 Mbps and 2 Gbps links. However,
beyond the first few buffers per stream, there is little further increase in sustained utili-
zation. This is apparent in the nearly identical results for 10 buffers and 20 buffers per
stream on the 2 Gbps link.

Based on these observations, Streamer in both its original 155 Mbps implementa-

Fig. 6.Sustained Link Utilization

0.0 0.2 0.4 0.6 0.8 1.0
Interfering Bus Traffic

0.0

0.2

0.4

0.6

0.8

1.0

S
us

ta
in

ed
 L

in
k

U
til

iz
at

io
n

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Link Utilization - 155Mbps

1 buffer
2 buffers
3 buffers
4 buffers

0.0 0.2 0.4 0.6 0.8 1.0
Interfering Bus Traffic

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Link Utilization - 622Mbps

1 buffer
2 buffers
3 buffers
4 buffers

0.0 0.2 0.4 0.6 0.8 1.0
Interfering Bus Traffic

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Link Utilization - 2 Gbps

1 buffer
2 buffers
4 buffers
10 buffers
20 buffers

86

tion and in a 622 Mbps version does provide support for a large number of streams,
fine grain interleaved link scheduling, full link utilization, low CPU overhead, and
potentially improved network utilization resulting from the smoothed transmissions.
To maintain all of these benefits at the full potential of 2 Gbps of the hardware priority
queue scheduler, further refinements are required. We plan to study the Streamer con-
cept further, and in particular, we would like to vary the operation of the bus interface,
the major limitation in the current design. We are considering replacing the current
“data push” model of operation, in which the storage device continuously try to send
data to the network interface, with a “data pull” approach, in which data is requested
by the Streamer only when necessary. This may improve link throughput and bus utili-
zation, at the expense of increased hardware complexity. Another potential modifica-
tion is to transfer data in blocks larger than the current 48 byte cell sized units and
possibly reduce the bus overheads incurred. More significant changes may include
entirely replacing the I/O bus with some form of internal network, which may allow
for scalable use of multiple Streamer devices in the same system. We plan to develop a
detailed, flexible simulator in order to quantitatively evaluate performance, determine
optimal values for parameters such as buffer requirements, and characterize quality-of-
service provided by the various architectural changes in the Streamer design. Such
simulations will also allow us to easily vary the components of the video server and
therefore determine system requirements under different scenarios.

5 Conclusion

In order to take full advantage of the features provided by ATM networks and bring
them to the end systems, improvements need to be made within the end system. For the
video server application, we proposed and described a hardware solution which would
do just that. The main idea behind our design is to combine smoothed transmission
scheduling with data streaming support on the network interface. This results in high
sustained throughput from the server to the network, and also results in better utiliza-
tion of network resources due to smoothing of bursty data streams. By moving the
scheduling away from the server CPU and onto the network interface in the form of a
hardware priority queue based scheduler, the server is free to do other work. Commu-
nication between the server CPU and network interface is also significantly reduced,
and fine grain link scheduling becomes possible. Such fine grain scheduling at the cell
level is possible in hardware because, unlike a software scheduler, the hardware sched-
uler can operate much faster than the cell transmission rate on the network link. We
implemented our design using Verilog HDL, and based on Verilog simulations,
showed functional correctness and potential performance gains. We also evaluated any
limitations on scaling the current design to faster link speeds and indicated some
potential future improvements.

87

References

1. ATM Forum Level 1 UTOPIA Specification 2.01, 1994.
2. ATM-155+ Mbps SAR Controller Module, http://www.chips.ibm.com/products/commun/

a155.html, 1996.
3. SunATM Adapter, http://www.sun.com/products-n-solutions/hw/networking/

jtf_sunatm.html, 1996.
4. TranSwitch SARA II TXC-05551 Product Preview: Document Number TXC-05551-MB,

http://www.transwitch.com/iocd.html, 1996.
5. C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Edwards, and J. Lumley. Afterburner.

IEEE Network, pages 36–43, July 1993.
6. B. S. Davie. The architecture and implemtation of a high-speed host interface.IEEE Jour-

nal on Selected Areas in Communications, 11(2):228–239, February 1993.
7. M. Day, S. Luning, and D. Spence. White paper: IBM mediaStreamer Solutions, A Techni-

cal Overview. http://www.rs6000.ibm.com/solutions/videoservers, February 1997.
8. Z. D. Dittia, J. R. Cox, and G. M. Parulkar. Design of the APIC: A high performance ATM

host-interface chip. InProceedings of IEEE INFOCOM, pages 179–187, 1995.
9. P. Druschel, M. B. Abbott, M. Pragels, and L. L. Peterson. Network subsystem design.

IEEE Network, pages 8–17, July 1993.
10. W.-C. Feng,Video-On-Demand Services: Efficient Transportation and Decompression of

Variable Bit Rate Video, PhD thesis, The University of Michigan, 1996.
11. A. Mehra, A. Indiresan, and K. G. Shin. Resource management for real-time communica-

tion: Making theory meet practice. InProceedings of IEEE Real-Time Technology and
Applications, pages 130–138, 1996.

12. A. Mehra, A. Indiresan, and K. G. Shin. Structuring communication software for Quality-
of-Service guarantees. InProceedings of IEEE Real-Time Systems Symposium, 1996.

13. S.-W. Moon, J. Rexford, and K. G. Shin. Scalable hardware priority queue architectures for
high-speed packet switches. In Proceedings of IEEE Real-time Technology and Applica-
tions Symposium, pages 203-212, 1997.

14. G. W. Neufeld, M. R. Ito, M. Goldberg, M. J. McCutcheon, and S. Ritchie. Parallel host
interface for an ATM network.IEEE Network, pages 24–34, July 1993.

15. K. K. Ramakrishnan. Performance considerations in designing network interfaces.IEEE
Journal on Selected Areas in Communications, 11(2):203–219, February 1993.

16. D. Saha,Supporting Distributed Multimedia Applications on ATM Networks, PhD thesis,
The University of Maryland, 1995.

17. J. D. Salehi, Z.-L. Zhang, J. F. Kurose, and D. Towsley. Supporting stored video: Reducing
rate variability and end-to-end resource requirements through optimal smoothing.Perfor-
mance Evaluation Review, 24(1):222–231, May 1996.

18. C. B. S. Traw and J. M. Smith. Hardware/software organization of a high-performance
ATM host interface.IEEE Journal on Selected Areas in Communications, 11(2):240–253,
February 1993.

88

	STREAMER: Hardware Support for SmoothedTransmission of Stored Video over ATM
	1 Introduction
	2 Background
	2.1 Smoothing Algorithms
	2.2 Network Interface Architecture and Functions

	3 Streamer
	3.1 Operation
	3.2 Architecture
	3.2.1 Bus Interface (Bus Demux)
	3.2.2 ID Processor
	3.2.3 Buffer Processor

	4 Evaluation and Future Work
	5 Conclusion
	References

