
Scalable Hardware Priority Queue Architectures for
High-speed Packet Switches

Sung-Whan Moon, Kang G. Shin
Real-Time Computing Laboratory

Dept. of Electrical Engineering and Computer Science

Jennifer Rexford
Network Mathematics Research

Networking and Distributed Systems
The University of Michigan-

Ann Arbor, MI 48109
{ swmoon, kgshin} @eecs.umich.edu

Abstract

In packet-switched networks, queueing of packets at the
switches can result when multiple connections share the
same physical link. To accommodate a large number of
connections, a switch can employ link-scheduling algo-
rithms to prioritize the transmission of the queued pack-
ets. Due to the high-speed links and small packet sizes,
a hardware solution is needed for the priority queue in
order to make the link schedulers effective. But for good
performance, the switch should also support a large
number of priority levels (P) and be able to buffer a
large number of packets (N). So a hardware priority
queue design must be both fast and scalable (with
respect to N and P) in order to be implemented effec-
tively. In this papei; we first compare four existing hard-
ware priority queue architectures, and identify
scalability limitations on implementing these existing
architectures for large N and l? Based on ourjndings,
we propose two new priority queue architectures, and
evaluate them using simulation results from Verilog
HDL and Epoch implementations.

1. Introduction

Applications with real-time traffic, such as video
and audio, need more than just good average perfor-
mance from the network. Such real-time communica-
tion [1][131 requires quality-of-service (QoS)
guarantees, such as bounded end-to-end delay, bounded
cell-loss rates, and guaranteed bandwidth from the net-
work. Emerging packet-switched networks employ a

The work reported in this paper was supported in part by the
National Science Foundation under Grant MIP-9203895. Any opin-
ions, findings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the view of
the NSF.

AT&T Labs Research
Murray Hill, NJ 07974
jrex @research.att.com

variety of methods to provide the QoS guarantees for
each connection. At each node of the network, an
admission control algorithim grants a request for a new
connection when the performance requirements can be
met. Once established, traffic shaping and link schedul-
ing algorithms [1][13][14] ensure that the QoS require-
ments are satisfied for all of the connections that pass
through the node. Traffic shapers monitor and control
connections so that they abide by their connection traf-
fic parameters (e.g., maximum packet rate). Link sched-
ulers coordinate the transmission of packets between
several connections on a ,given link. Since a link can
only send one packet at a time, other packets trying to
use that link must be queued. The link scheduler typi-
cally assigns some priority number to each packet (or
group of packets) in the queue to determine which one
gets access to the link once it becomes available.

The simplest link-schleduling algorithm is first-in-
first-out (FIFO). The problem with this approach is that
it is characterized by poor utilization of resources and
poor performance. In particular, a FIFO scheduler can-
not admit many new connections, especially when the
link services connections with a wide range of traffic
parameters and QoS requirements. Other link-schedul-
ing algorithms achieve better performance by assigning
a priority number to connections or individual packets.
This priority field can represent a traffic class, a dead-
line, a virtual finishing time, or a sequence number,
depending on the link scheduling algorithm. Once the
priority number is determined, a priority queue ranks
packets based on the priority assignment. The net effect
of the link-scheduling algorithm and the priority queue
is to interleave the packet transmission from the various
connections such that each connection’s QoS require-
ments are satisfied.

The priority queue is essential in implementing the

1080-1812/97 $10.00 0 1997 IEEE 203

mailto:eecs.umich.edu
mailto:research.att.com

Figure 1. Simplified block diagram of a
single shared buffer switch architecture
with link scheduling

link-scheduling algorithm. Due to the high-speed at
which the networks operate, a hardware priority queue
[lo] is needed to transmit packets at link rates. For
example, in a 155 Mbps (2.5 Gbps) Asynchronous
Transfer Mode (ATM) network, an ATM cell can be
transmitted every 2.7 psecs (0.17 psecs). In a worst-
case scenario the priority queue must determine the
next highest priority cell (dequeue operation) every 2.7
psecs (0.17 psecs), while being able to accept new cells
(enqueue operation) from all incoming links within the
same 2.7 psecs (0.17 psecs). Software solutions, which
are logarithmic in time complexity, are typically not
fast enough to keep up with the packet transmission rate
due to the associated overhead (i.e., in requesting ser-
vice from the processor, sending and retrieving data
from the processor). On the other hand, a hardware
solution can operate close to the operating speeds of the
link. Also, a hardware solution can overlap enqueue
and dequeue operations with packet transmission to
avoid wasting link bandwidth.

Each node in the network provides a switching
function by forwarding incoming packets to their cor-
rect outgoing links. For all priority queue architectures
discussed in this paper, we consider a common switch
model, as shown in Figure 1. The switch is character-
ized by a shared buffer space and output queueing [5] ,
with a separate priority queue servicing each output
link. Although there are other possible memory config-
urations [111, output buffering offers better perfor-
mance than input buffering while a shared buffer
configuration has better memory utilization. When a
packet's output link is busy, the packet is queued and an
entry for that packet is created. The entry is inserted
into the priority queue corresponding to the correct out-
put link. This entry consists of a validlinvalid bit, an
address (log2N bits), and a priority (log2P bits). Here N
is the total storage capacity of the shared buffer in terms
of packets, while P is the number of priority levels sup-
ported in the link-scheduling algorithm. The address
can be interpreted as a page number, indicating where
the packet resides in the shared memory. The page
numbers are obtained from an idle address pool, which
holds page numbers corresponding to idle spaces in the

memory. Each arriving packet obtains a page number
before being written into the shared memory; the page
number is then returned to the pool after the corre-
sponding packet has been transmitted. The priority
queue is responsible for storing the entries and calculat-
ing the highest-priority entry when the output link is
ready to transmit another packet. So, regardless of inter-
nal architecture the priority queue must provide for the
storage of packet tags, initialization (clear contents of
the priority queue), enqueue of new tags, and dequeue
of the highest priority tag.

Since a switch's buffer size (N) and the number of
priority levels (P) needed by the link scheduler can be
both very large, the priority queue must be easily scal-
able to these two parameters. That is, the total entry
capacity of the priority queue must match the total
packet capacity of the shared buffer and it must support
a large number of priority levels. At the same time, the
priority queue's performance must not fall behind link
rates as it is scaled to N and P. If this were to happen,
then a link will remain idle even though there are pack-
ets to be transmitted.

We present two new priority queue architectures
which were designed to minimize the effects of scaling
(with respect to N and P). The first new architecture
reduces and controls the performance loss due to
increasing the queue capacity without adding a large
amount of extra hardware. This was done by combining
the salient features of two existing priority queue archi-
tectures, the shift register and systolic array. We then
extend this architecture to service multiple links instead
of just one. Both of the new architectures perform well
enough to support very high-speed links, and both pro-
vide constant-time (in terms of number of clock cycles)
enqueue and dequeue operations. But before describing
our new architectures, we first describe four priority
queue architectures - binary tree, FTFO, shift register,
systolic array - from the current literature in Section 2.
A brief description of each architecture and operation is
given, followed by a discussion on limitations to their
scalability. Section 3 proposes and evaluates the two
new architectures. Detailed explanations of their opera-
tions are also given. Section 4 presents the results of
some implementations of the various priority queues for
several switch parameters. The implementations were
done using the Verilog hardware description language
and the Epoch silicon compiler for several combina-
tions of P (up to 256) and N (up to 1024). These results
show limitations of the existing architectures when
scaled to large N and P, and are compared to implemen-
tations of the new architectures. Section 5 concludes
with a summary of our contributions and a brief list of
future directions.

204

2. Priority Queue Architectures

This section presents four priority queue (PQ)
architectures from the current literature. The FIFO and
the binary tree architectures are the more intuitive
approaches to the priority queue problem. However,
these two architectures do not scale well with increas-
ing N and P. The shift register and the systolic array
architectures take a different approach and scale much
better than the FIFO and binary tree. The following
subsections describe each of these architectures and
discuss the effects of scaling on architectural complex-
ity and implementation.

2.1 Binary Tree of Comparators

A binary tree comparator architecture [8][9] con-
sists of an N-entry storage block and a comparator tree
of depth log,N, whose output is the highest-priority
entry among those in storage. A feedback mechanism is
used to remove the output of the tree from storage. An
advantage of this architecture is that the comparator tree
logic can be shared among several storage blocks,
reducing hardware costs. A disadvantage is that FIFO
ordering is not maintained among same priority entries.
Such FIFO ordering is important when applications
assume that packets at the same priority level will arrive
in the same order in which they were sent. Increasing N
results in more leaf nodes (i.e., comparators) being
added to the tree and increasing the capacity of the stor-
age block. Problems with such scaling include
increased dequeue time, and bus loading problems with
distributing the new entry to each storage element in the
storage block.

2.2 FIFO Priority

Like the bucket sorting algorithm, the FIFO PQ
architecture [2][3] inserts entries into one of the P
FIFOs based on the entry’s priority. During a dequeue
operation, a priority encoder scans the head of the
FIFOs in decreasing priority order and removes an
entry from the first non-empty FIFO. Increasing P
requires adding more FIFOs, which results in added
hardware costs and increased complexity of the priority
encoder. Using logically linked lists [3][151 instead of
physical FIFOs can reduce hardware costs. But this
approach still suffers from the complexity problem of
the priority encoder for large P.

2.3 Shift Register

The shift register PQ [3][4][12], as shown in Figure

UlWER PRIORITY C------t HIGHER PRIORITY

Figure 2. Shift register priority queue

2, consists of an array of blocks that store the entries in
sorted order. Each block stores a single entry and com-
municates with the blocks immediately to its right and
left. Higher-priority entries are stored to the right of
lower-priority entries, witlh the Oh block containing the
current highest-priority entry. On an enqueue operation,
the new entry is broadcast to all the blocks via the
new-entry-bus. Each block makes a local decision as to
what action to take, with only one of the blocks latching
the new entry. The others will either keep their current
entry or latch the right neighbor’s entry. The net effect
is to have the new entry force all entries with lower pri-
ority to shift one block to the left, while the new entry
places itself to the left of the entries with higher and
equal priority. The lowest priority entry is discarded
during an enqueue if the queue is full. A dequeue oper-
ation in the shift register simply reads the Oh block’s
entry while all other entries shift one block to the right.

Each block consists of a holding register which
stores the entry, a comparator which compares the pri-
orities of the entry on the new-entry-bus and the hold-
ing register, a multiplexor (to choose from the left, right
or new entry) and decision logic [3][4]. Since each
block stores one entry, the queue’s capacity can be
increased by adding more blocks to the existing queue.
Because each block make:; decisions based on just local
information, increasing queue capacity does not require
modifications to the block’s decision logic nor any cen-
tral control logic for the queue. This makes scaling for
large N very simple. As P increases, additional bits are
added to the priority field in the entry’s tag. This simply
requires modifying each block’s storage requirement
and its comparator.

Unfortunately, implementation problems limit the
scalability of this architecture. As seen in Figure 2,
before any decision can be made by each block during
an enqueue operation, the new entry must be present at
the inputs of all the blocks. At the VLSI level, the
new-entry-bus must be routed to the inputs of all the
blocks in the array. As we saw with the binary tree
architecture, this creates a bus loading problem, which
adds to the hardware costs (buffers), and decreases the

205

Figure 3. Systolic array priority queue

maximum operating speed of the queue. Thus, the shift
register architecture’s scalability with respect to N is
limited by performance, not by architectural complex-
ity. Performance also decreases as P increases due to
the added delay in the comparator logic. This is because
the comparator’s time complexity grows linearly (for a
serial comparator) with the number of bits in the prior-
ity field.

2.4 Systolic Array

The systolic array PQ [6][7] is shown in Figure 3.
Similar to the shift register architecture, the systolic
array architecture consists of an array of identical
blocks, with each block holding a single entry, On an
enqueue operation, only the Oh block compares priori-
ties of its entry and that of the new entry. On the next
cycle the lower-priority entry is inserted into the left
neighbor’s block which repeats the same process of
comparing and sending the lower-priority entry to the
next block. So the systolic array does not become fully
sorted until several cycles after the new insertion.
Despite this feature, both insertion and removal still
remain constant-time operations from the outgoing
link’s point of view. Because each block passes the
lower-priority entry to the next block, the Ob block
always holds the highest-priority entry in the queue.
Once an entry is removed from a block, it gets the entry
from its left neighboring block, creating a right shift
operation on the entire queue.

Each systolic array block consists of a holding reg-
ister, which stores the entries in sorted order, as well as
a temporary register, that holds passing entries enroute
to the next block to the left. The passing entry is the
lower-priority entry in a block during an enqueue oper-
ation. Multiplexors, a comparator, and decision logic
also make up the rest of the block. Queue capacity is
increased by adding more blocks to the end of the
queue without worrying about a central controller.
Also, there is no bus loading problem as was the case
with the shift register PQ. Extra storage and a wider
comparator are added within each block to handle the
extra priority bits. Unfortunately, the one main draw-
back is that the systolic array PQ requires twice more

storage than the shift register architecture. Considering
the simplicity of each block, the temporary register
adds a considerable hardware cost to each block, com-
pared to the shift register block. Also, the cost and
delay of the comparator increases linearly with each
extra bit in the priority field, which decreases the maxi-
mum operating clock frequency.

3. Scalable Priority Queue Architectures

Of the four priority queue architectures discussed
in Section 2, the shift register architecture and the sys-
tolic array architecture have better properties in terms
of supporting very large N and P. The FIFO architecture
is limited to a small number of priority levels, while the
binary tree comparator’s complexity makes it difficult
to scale with increasing N. On the other hand, the shift
register and systolic array are more favorable because
they have no centralized logic, and each block can be
replicated as many times as necessary without any mod-
ifications. Also, a large number of priority levels can be
easily supported by simply using more bits in the prior-
ity encoding. Unfortunately, the shift register’s bus
loading problem limits the maximum clock frequency,
while the systolic array block’s double storage require-
ment makes it considerably more hardware-intensive
than the shift register.

In this section we present two new priority queue
architectures. The first combines the salient features of
the shift register and systolic array architectures. This
reduces the effect of the extra register and isolates the
bus loading problem from N. In other words, the bus
load stays constant no matter how large N grows. The
second new priority queue architecture is an extension
of the first new architecture with modifications allowing
it to handle the queueing needs for several output links.
Not only are the good scaling characteristics retained
but also a large amount of hardware can be saved by
sharing a single hardware priority queue among the
multiple outgoing links in a switch.

3.1 Modified Systolic Array Priority Queue

The systolic array architecture scales well with N
and its maximum operating clock frequency does not
decrease as N increases. But, because 50% of all the
registers are used as temporary registers, the systolic
array uses much more hardware than the shift register.
To reduce this overhead, we propose a modified systolic
architecture where each block consists of a length c
shift register. So instead of one temporary register for
every holding register in each block, the ratio decreases
by a factor of Ifc.

206

highest priority Control Control Control Contro

(((Modified- Systolic Systolic Systolic Systolic
Block

*
Modified * Modified * Modified

Block -Block *Block -
/

/

I I

Figure 4. Modified systolic array priority
queue

Each modified systolic block holds c entries by
replacing the single holding register with a length c
shift register PQ, as shown in Figure 4. The interface of
the modified systolic block is the same as that of the
systolic block. Enqueue and dequeue requests are
received from the right neighboring block and the
results of those requests are sent to the right neighbor-
ing block. The right-most block receives requests and
sends results to the link. During a new entry insertion
into the modified systolic block, the new entry is placed
in one of the blocks of the shift register PQ. If there is
an overflow of the shift register PQ, either the new entry
or the entry in the c" shift block (whichever has lower
priority) is placed into the temporary register and
inserted into the left neighboring modified systolic
block during the next cycle. Since the shift register PQ
stores all the entries in sorted order with the highest-pri-
ority entry in the first block, the removal request is sat-
isfied by moving all the entries one block to the right.
The entry in the right-most block is sent to the neigh-
boring right modified systolic block. During the next
cycle, a removal request is made to the neighboring left
modified block and the resulting entry is stored in the
shift register PQ.

Without any further modifications, the modified
systolic array PQ will not maintain FIFO ordering
among entries of equal priority, as illustrated in Figure
5. Here the number represents the priority and the sub-
index (not part of the entry) represents the ordering
among entries with the same priority. Insertion of a new
entry with priority 9 pushes the 12, entry to the next
modified systolic block and is placed behind the 12*
entry. This problem is solved by adding a one bit field
(newlold) to the end (least significant bit) of the priority
field and is included as part of the priority number when
priority comparisons are done. The new/old bit is added

write

Figure 5. Data movement in the modified
systolic array PQ showing a potential
ordering problem

as the entry enters the prioirity queue, and is stripped off
when the entry leaves the queue. New entries that are
inserted into the queue have this bit set. Likewise, all
entries that. are stored in a shift block have this bit set.
The bit is cleared when an entry that was already in a
shift block is pushed into the temporary register and
sent to the neighboring left. modified systolic block.

The modified systolic architecture improves on the
systolic architecture by lowering the percentage of total
registers used for temporary storage. This reduction in
hardware is accomplished without losing any of the
advantages of the systolic architecture - simple block
architecture (easily scaled for increasing N by adding
new blocks to the end of the existing queue), no perfor-
mance loss as more blocks are added to the queue, and
constant-time (cycles) enqueue and dequeue operations.
Also, because the bus driving the shift register blocks is
broken up into small lengtlh-c parts, the bus load within
each modified systolic block is not affected by the addi-
tional modified systolic blocks. So, once a value for c is
determined, only one modified systolic block must be
designed and optimized for performance and area. This
block is then replicated as many times as necessary
without any modifications.

3.2 Multiple Output Link Priority Queue

The priority queues in Section 2 and Section 3.1
are designed to hold N entries to account for the possi-
bility that all N packets are queued at the same output
link. Given that a switch has a separate priority queue
for each of its M (>1) ciutput links, the total queue
capacity is MN entries. Since the shared buffer can only
hold N packets, most of the blocks in the priority are
unused at any given momimt, as shown in Figure 6(a).
An N-entry priority queue which services M (cN) out-
put links can potentially save a maximum of 50% in
hardware for M=2, and ulp to 75% for M=4. Here we
present a multiple output link priority queue architec-
ture, which has good scalling properties and constant-
time enqueue and dequeule operations which are inde-
pendent of M and N. The details of the architecture are
described in two separate subsections for easier under-

207

outlink 0

outlink I

(a) OUtllnk 2

1-1 outlink 3

outlink 3 outlink 2 outlink 1 outfink 0

lower priority - higher priority

Figure 6, (a) Sorted entries in separate
priority queue showing wasted resources;
(b) Same entries in the multiple shift register
priority queue

standing. The basic idea is to extend the modified sys-
tolic architecture in Section 3.1 to support entries from
multiple links. Section 3.2.1 describes the modification
made to the shift register, while Section 3.2.2 explains
the added hardware and state machine to support
enqueue and dequeue operations for multiple links.

3.2.1 Multiple Shift Register Priority Queue

The basic idea here is to extend the shift register
architecture to support multiple links, which requires
modifications to the entries and shift register block. The
packet’s entry is augmented such that the priority field
consists of the output link number, priority number, and
newfold bit. The shift register stores entries such that
those corresponding to higher output link numbers
come after those corresponding to lower output link
numbers, as shown in Figure 6(b).

The blocks in the shift register architecture also
require several modifications to support multiple output
links. First, each block receives another control signal
(outnum) which indicates the requested output link
number. The value on outnum is latched along with the
new entry during an enqueue operation, while it is used
to determine which entry to output during a dequeue
operation. Second, each block has a tristate buffer,
which drives an output bus. This tristate buffer is
needed because the highest-priority entry for a given
output link can be in any of the blocks in the shift regis-
ter. On a dequeue operation, a block will drive the out-
put bus with the value in its holding register if the block
decides it has the highest-priority entry for the
requested output link. Figure 7 shows the block dia-
gram of the multiple shift register queue with just the
added control signals.

Within each multiple shift register block, no extra
control logic is required for the enqueue operation. But
during the dequeue operation each block needs to
decide if it must drive the output bus. As seen from Fig-

-
1

output-bus
highest priority entry

Figure 7. Multiple shift register priority
queue

ure 6(b), the highest-priority entry of any output link is
always to the right of all other entries with the same
output link number. Once the output bus has been read,
all entries to the left of the one just read move one block
to the right. A similar operation can also remove the
lowest-priority entry for an outgoing link. This opera-
tion is useful when extending the modified systolic
architecture to support multiple outgoing links, as
explained in the next subsection.

3.2.2 Multiple Systolic Array Priority Queue

Due to the bus loading problem in the shift register
architecture, the PQ described in Section 3.2.1 does not
scale well with respect to N. Besides the new entry bus,
shown in Figure 2, the multiple shift register architec-
ture also has the problem of each shift register block
driving the output bus, and the associated delay and
hardware costs of having to drive a very large bus.
Despite this problem, the multiple shift register can be
used as a building block to support multiple outgoing
links in the modified systolic architecture. By using the
same ideas as in Section 3.1, the multiple systolic array
architecture replaces the single holding register with the
multiple shift register. By choosing a value for c which
minimizes the total number of temporary registers with-
out introducing significant bus loading problems, a sin-
gle c-entry multiple shift register can be designed and
used in the multiple systolic array architecture.

As seen in Figure 8, the external interface to the
multiple systolic array block remains the same, with the
addition of the outnum control signals. Besides the tem-
porary register (left-out-reg), there is also another reg-
ister (onum-out-reg) which indicates the link number
of the entry in the temporary register. The right out reg-
ister (right-out-reg) stores the output from the output
bus, while a multiplexor chooses among three sources
to drive the new entry bus. Also, instead of the read and
write control signals directly feeding the shift register,
the controller uses them to generate its own internal
read and write control signals which are then fed to the
shift register.

To have a constant-time dequeue operation, each

208

t I t i + - I t"'"""' highest priority entry

multiple 4 multiple .--C multiple + Add, prio

m a y array
block 2 - block I

- :z 0 * 'no
systolic systolic systolic

4 new entry

readwrite
1

outnum-in
/

outnum-out
-/ 1-7

output bus
outnum-out-reg

I ' I
A A A

I

left-ou

I I - -
a

+ Zad-ld

read-oul
wnteoo)it

'
write-in

Figure 8. Multiple systolic array priority
queue and block

I I
rghest pno
ew entry

Figure 9. Storage of entries in the multiple
systolic array queue (a) before and (b) after
"atleast-1 -entry-per-outputlink" property

systolic block uses counters to maintain a "atleast-l-
entry-per-output-link" property, whenever possible.
This assumes that c2M. Each block maintains a counter
for each outgoing link. A counter is incremented (dec-
remented) whenever an entry corresponding to its out-
put link is inserted (removed) from the block. Without
this property, a situation as shown in Figure 9(a) can
occur. If there are more than c entries in the queue for
any output link, a dequeue request can result in extra
remove requests being sent from the one systolic block
to the next systolic block. In the worst case, the requests
can propagate to the last block, in which case the result
will need to propagate all the way back up.

After an enqueue operation, entries start to propa-
gate through the array of systolic blocks. If an entry in
the temporary register must be sent to the left systolic
block, the controller makes sure that doing so does not
violate the "atleast-1 -entry-per-output-link" property. If
it does, another entry is chosen to be sent to the left sys-
tolic block while the entry from the temporary register
is reinserted into the shift register queue. Here the other
entry that is chosen is the lowest-priority entry corre-
sponding to an output link with more than one entry in
the systolic block. The controller obtains this replace-

ment entry by checking all the counters, and then issues
a read-low command to tlhe shift register queue. Also,
following a dequeue operation, the 0"' systolic block
requests an entry with the same output link number
from the 1.' systolic block which, after sending thc
result, requests an entry with the same output link num-
ber from the Pd systolic block, and so on. This is done
to maintain the property for all systolic blocks.

Despite the added complexity of the state machine
and extra hardware needed to support multiple output
links, the multiple systolic array is still much cheaper to
implement than individual priority queues for each out-
put link. Also, the time (cycles) required to service the
dequeue and enqueue operations is constant for any
output link, and remains unchanged regardless of how
large N becomes. Like thle modified systolic architec-
ture, each block is self-contained and no outside con-
troller is required. As N increases, more blocks are
added to the existing chain without modifications to the
existing blocks. Also, since the priority number is
encoded within each entry, a large number of priority
levels can be supported without requiring a large
amount of hardware. Thus, scaling does not involve
modifying the architecture, implementation for large N
is simplified since only one systolic block needs to be
designed, and there is no loss in performance due to
scaling.

4. Performance and Implementation

To compare the various priority queue architectures
discussed thus far, each architecture was implemented
using the Verilog hardware description language and
the Epoch silicon compiler, an automatic layout genera-
tor. This provides a common framework which makes
the cost and performance comparisons more meaning-
ful. Costs were measured in terms of amount of silicon
area and the number of transistors used by the design,
while performance was measured by the maximum
clock speed and throughput (number of enqueue/
dequeue operations completed per second). Throughput
can be easily calculated by using the maximum clock
speed and number of clock cycles needed by each oper-
ation. Maximum clock speed was calculated by doing a
critical path analysis of thie design, and determining the
delay through these critical paths using Epoch's timing
analyzer. All designs were structurally specified using
parts from Epoch's Verilog library, while state
machines and control logic were described in behav-
ioral Verilog. Each of the layouts was compiled by
Epoch, which uses standard cells to generate a layout,
using a 1.2 pm CMOS technology. Although custom
layout would give better results, we are more interested

209

Figure 10. Implementation results for exist-
ing priority queue architectures (P=i6).

in comparing the scaling effects than in raw numbers.
In other words, we want to look at the relative costs and
performance of the various architectures as N and P
increase. Also note that our implementations were lim-
ited to a maximum of 1024 for N. This was due to
insufficient workstation memory for performing the
various simulations. Memory also limited the timing
simulations to N=256 for most architectures.

4.1 Existing Architectures

Figure 10 compares the four existing priority queue
architectures in terms of VLSI hardware costs as a
function of N, with P fixed at 16. Here we chose a small
value of P for two reasons. It allowed for implementa-
tions with large N, and made the scaling effects associ-
ated with large N more pronounced. As expected, we
see the systolic array architecture's hardware cost is
much larger than that of the shift register due to the
extra register used for temporary storage. Also, despite
having similar transistor counts, the binary tree archi-
tecture occupies more area than the shift register archi-
tecture. This is mainly because of the routing required
from the storage to the priority comparator tree, and
routing within the comparator tree.

As expected, performance degrades with increas-
ing N, as shown in Figure 11. Here we see the through-
put is highest for the shift register architecture. But as N
increases, the performance degradation is much steeper
for the shift and binary tree architectures than that of
the systolic and FIFO architectures. This is due to the
bus loading problem in the shift register and binary tree
architecture, and the increase in depth of the compara-
tor tree in the binary tree architecture. The gradual
decrease in performance in the systolic and FIFO archi-

.

80. ,
-Binary Tree

-Binary Tree
(enqueue)

(dequeue)

(enqueue)

(dequeue)
(enidqueue) Shif!

(eddequeue)

Q+ FIFO

e+ FlFO

&&Systolic

Figure 11.
as N increases (P=l6)

Scaling effects on performance

tectures can be attributed mainly to the extra bits in the
registers and multiplexors, which add delay to the con-
trol signals which must drive these components.
Although Figure 11 shows the shift register architecture
with better throughput than the systolic array architec-
ture, for larger values of N, we can predict the through-
put of the systolic to be higher than the shift. Due to
insufficient workstation memory we could not obtain
data for larger values of N other than the ones shown in
Figure 11. But by extrapolating the curves for the shift
and systolic in Figure 11, we can see the two curves
should cross at a point somewhere between N=1024
and N=2048. At this point, throughput of the systolic
should be higher, while the performance of the shift
architecture should continue to degrade at a much faster
rate than that of the systolic due to the dominating
effect of the bus loading problem. For much larger val-
ues of N, this bus problem should make the shift regis-
ter architecture an ineffective solution due to the
associated hardware costs and performance loss.

Each bit added to the priority field adds delay to the
priority comparator, which in turn slows down the oper-
ation of the priority queue for the shift register, systolic
array, and binary tree architectures. Since a large num-
ber of priority levels can be supported with relatively
few bits, and because the delay associated with the
extra bit is small compared to the total delay, scaling for
large P is feasible and the resulting implementations
can be effective. With a non-pipelined binary tree
though, the delay is multiplied by the depth of the tree.
In the FIFO case, the bottleneck is in the priority
encoder, which must scan each W O to select the next
highest priority entry. Note also that the depth of the
physical FWO (due to increasing N) does not affect per-
formance, but adds to the FIFO fall-through time. So, it
is possible that an entry might not be available immedi-
ately after it is inserted into the queue. The logical FIFO
architecture avoids this problem by using link lists
instead.

210

. - -

N

-Shift
w y s t o l i c

I20 -
N 110 8 W d i f i e d C

Figure 12. Modified systolic architecture
results compared to that of the shift and
systolic.

4.2 Modified Systolic Array Architecture

The motivation for the modified systolic array
architecture was to take advantage of the shift register
and systolic array architecture's features and, at the
same time, reduce the negative side effects due to scal-
ing with respect to N. The shift register architecture suf-
fered from the bus loading problem, while the systolic
array architecture used a significant amount of extra
hardware for the extra register. The solution that was
proposed was to use a separate shift register queue
inside each systolic array block. Each shift register
queue stores c entries, where c is determined by hard-
ware and performance requirements. When c=l, this is
the same as the original systolic architecture, whereas if
c=N, then we get the original shift register queue. So
for small c, hardware costs and performance are close
to those of the systolic architecture, and as c increases
both hardware costs and performance steadily approach
those of the shift register architecture. This point is
shown in Figure 12. Here P=16, and two values of c are
used. Note that, initially, the modified systolic architec-
ture has poorer performance than that of the shift archi-
tecture. This is partially due to the extra bit used in the
priority field to differentiate old and new entries. But as
N increases, the rate at which performance decreases is
much sharper in the shift register case due to the bus
loading problem. For larger N, performance for modi-
fied systolic should be much higher than that of the shift
register due to the more gradual decrease in perfor-
mance in the modified systolic. Considering that the

amount of hardware used in the modified systolic is
only slightly more than that of the shift, the perfor-
mance difference makes the modified systolic a much
more effective solution.

4.3 Multiple Systolic Axray Architecture

Despite added hardware costs (due to extra regis-
ters, added complexity of control logic, tristate buffers,
and counters), we see that there is still a substantial
amount of hardware saved by using the multiple queue.
Based on implementations with a 16-entry multiple sys-
tolic array block, we observed the following. For M=4,
the multiple architecture occupied 32% less area and
used 55% less transistors versus the shift, and 46% less
area and 72% less transistors versus the systolic. For
M=8, the multiple architecture occupied 67% less area
and used 75% less transistors versus the shift, and 73%
less area and 85% less transistors versus the systolic.
Here we multiplied the costs for a single shift or sys-
tolic queue by M to account for one queue per output
link. Also, we observed that adding support for more
output links in the multiple systolic block increased the
costs only slightly. This is because most of the multiple
link support already exists, and all that is needed are
extra counters and minor additions in the controller.

For c=16, N=64, and P=256, the maximum clock
speeds for the multiple sysltolic architecture are 40 MHz
(M=4) and 38 MHz (M=8). This drop in speed is due to
the extra bits in the priority field used to encode the out-
put link number. Considering each enqueue and
dequeue operation requires 7 cycles, this translates into
5.71 mops (millions of opmations per second) for M=4,
and 5.43 mops for M=8, If we consider each switch as
having M inputs and M outputs, with all input and out-
put links getting round-robin access to the queue, the
queue can support link speeds up to 303 Mbps for M=4,
and 144 Mbps for M=8 (assuming 53 byte packets). At
current ATM standards of 155 Mbps, a multiple systolic
priority queue can be designed and implemented to sup-
port such switches. For switches with a larger number
of links, by grouping 4 to 8 outgoing links together,
hardware costs can still be significantly reduced while
being able to support very high-speed links.

5. Conclusion

In this paper we proposed and evaluated two new
hardware priority queue architectures for link schedul-
ing in high-speed switches. Based on Verilog and
Epoch designs and simulations, we showed that the four
existing architectures were limited by scalability (with
respect to either N or P or both). For small N and P, all

211

four existing architectures had comparable hardware
costs and performance. But as they were scaled to sup-
port large N and P, each architecture’s limitations
became more pronounced. Of the four architectures, the
shift register architecture and the systolic array archi-
tecture had better scalability. By combining the two
architectures, the modified systolic architecture reduced
the negative effects of scaling suffered by the two archi-
tectures. In particular, hardware costs were significantly
reduced by decreasing the number of total temporary
storage registers; performance loss due to the bus load-
ing problem in the shift register could be controlled and
isolated from N by using several length-c shift register
queues. Here c was chosen by considering hardware
and performance requirements. The multiple systolic
architecture added multiple link support to the modified
systolic architecture, without sacrificing scalability.
Although extra cycles were added to the dequeue and
enqueue operations, both these operations could be
done in constant time (cycles), regardless of N or M, the
number of output links supported by the architecture.
We also saw that scaling with respect to M was possible
with very little added hardware. Verilog and Epoch sim-
ulations have confirmed the salient features of the new
architectures.

We showed that the two new hardware priority
queue architectures scale well to increasing N and P.
Both offer good performance and are easy to imple-
ment, and hence can be used in guaranteeing QoS
requirements in high-speed networks. Such effective
priority queue implementations allow switches to use
more aggressive link-scheduling algorithms that can
admit more connections with diverse traffic patterns
and QoS requirements. A possible future investigation
in this area can involve implementing various link
scheduling algorithms and using the hardware priority
queue to compare implementation complexity and per-
formance. Also, since all the priority queue architec-
tures have a common interface, this facilitates their use
in other applications which require priority queueing. It
would be interesting to look at the priority queue in
such applications as a linear-time sorting engine, or
even task scheduling in a uniprocessor or multiproces-
sor environment.

References

C. M. Aras, J. E Kurose, D. S. Reeves, and Henning
Schulzrinne. Real-Time Communication in Packet-
Switched Networks. Proceedings of IEEE, 82(1): 122-
139, January 1994.
R. Brown. Calendar Queues: A Fast O(1) Priority Queue
Implementation for the Simulation Event Set Problem.

Communications of the ACM, 31(10): 1220-1227,
October 1988.
J. Chao. A Novel Architecture for Queue Management in
the ATM Network. IEEE Journal on Selected Areas in
Communications, 9(7): 11 10-1 118, September 199 1.

J. Chao, and N. Uzun. “A VLSI Sequencer Chip for
ATM Traffic Shaper and Queue Management. IEEE
Journal of Solid-state Circuits, 27(11): 1634-1643,
November 1992.

M. G. Hluchyj and M. J. Karol. Queueing in High-
Performance Packet Switching. IEEE Journal on
Selected Areas in Communications, 6(9): 1587- 1597,
December 1988.

P. Lavoie, and Y. Savaria. A Systolic Architecture for
Fast Stack Sequential Decoders. IEEE Transactions on
Communications, 42(2/3/4):324-334, February/March/
April 1994.

C. E. Leiserson. Systolic Priority Queues. Caltech
Conference on VLSI, pp. 200-214, January 1979.
D. Picker and R. Fellman. A VLSI Priority Packet Queue
with Inheritance and Overwrite. IEEE Transactions on
Very Large Scale Integration Systems, 3(2):245-252,
June 1995.

J. Rexford, J. Hall, and K. G. Shin. A Router
Architecture for Real-Time Point-to-Point Networks.
Proceedings of International Symposium on Computer
Architecture, pp. 237-246, May 1996.

[101 J. L. Rexford, A. G. Greenberg, and E G. Bonomi.
Hardware-Efficient Fair Queueing Architectures for
High-speed Networks. Proceedings of IEEE INFOCOM,
pp. 638-646, March 1996.

Broadband Integrated Services Digital Network.
Proceedings ofthe IEEE, 78(1):133-167, January 1990.

[12] K. Toda, K. Nishida, E. Takahashi, N. Michell, and Y.
Yamaguchi. Design and Implementation of a Priority
Forwarding Router Chip for Real-Time Interconnection
Networks. International Journal of Mini and
Microcomputers, 17(1):42-5 1, 1995.

Switched Networks. Pe~obrmance Evaluation of
Computer and Communication System, L. Donatiello
and R. Nelson, editors, pp. 560-586, Springer Verlag,
1993.

[ll] F. A. Tobagi. Fast Packet Switch Architectures for

[13] D. Towsley. Providing Quality of Service in Packet

[141 H. Zhang. Service Disciplines For Guaranteed
Performance Service in Packet-Switching Networks.
Proceedings ofIEEE, 83(10): 1374-1396, October 1995.

Disciplines. Journal of High Speed Networks, 3(4):389-
412, 1994.

[15] H. Zhang and D. Ferrari. Rate-Controlled Service

212

