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Abstract 

In packet-switched networks, queueing of packets at the 
switches can result when multiple connections share the 
same physical link. To accommodate a large number of 
connections, a switch can employ link-scheduling algo- 
rithms to prioritize the transmission of the queued pack- 
ets. Due to the high-speed links and small packet sizes, 
a hardware solution is needed for the priority queue in 
order to make the link schedulers effective. But for good 
performance, the switch should also support a large 
number of priority levels ( P )  and be able to buffer a 
large number of packets (N). So a hardware priority 
queue design must be both fast and scalable (with 
respect to N and P )  in order to be implemented effec- 
tively. In this papei; we first compare four existing hard- 
ware priority queue architectures, and identify 
scalability limitations on implementing these existing 
architectures for large N and l? Based on ourjndings, 
we propose two new priority queue architectures, and 
evaluate them using simulation results from Verilog 
HDL and Epoch implementations. 

1. Introduction 

Applications with real-time traffic, such as video 
and audio, need more than just good average perfor- 
mance from the network. Such real-time communica- 
tion [ 1][ 131 requires quality-of-service (QoS) 
guarantees, such as bounded end-to-end delay, bounded 
cell-loss rates, and guaranteed bandwidth from the net- 
work. Emerging packet-switched networks employ a 
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variety of methods to provide the QoS guarantees for 
each connection. At each node of the network, an 
admission control algorithim grants a request for a new 
connection when the performance requirements can be 
met. Once established, traffic shaping and link schedul- 
ing algorithms [1][13][14] ensure that the QoS require- 
ments are satisfied for all of the connections that pass 
through the node. Traffic shapers monitor and control 
connections so that they abide by their connection traf- 
fic parameters (e.g., maximum packet rate). Link sched- 
ulers coordinate the transmission of packets between 
several connections on a ,given link. Since a link can 
only send one packet at a time, other packets trying to 
use that link must be queued. The link scheduler typi- 
cally assigns some priority number to each packet (or 
group of packets) in the queue to determine which one 
gets access to the link once it becomes available. 

The simplest link-schleduling algorithm is first-in- 
first-out (FIFO). The problem with this approach is that 
it is characterized by poor utilization of resources and 
poor performance. In particular, a FIFO scheduler can- 
not admit many new connections, especially when the 
link services connections with a wide range of traffic 
parameters and QoS requirements. Other link-schedul- 
ing algorithms achieve better performance by assigning 
a priority number to connections or individual packets. 
This priority field can represent a traffic class, a dead- 
line, a virtual finishing time, or a sequence number, 
depending on the link scheduling algorithm. Once the 
priority number is determined, a priority queue ranks 
packets based on the priority assignment. The net effect 
of the link-scheduling algorithm and the priority queue 
is to interleave the packet transmission from the various 
connections such that each connection’s QoS require- 
ments are satisfied. 

The priority queue is essential in implementing the 
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Figure 1. Simplified block diagram of a 
single shared buffer switch architecture 
with link scheduling 

link-scheduling algorithm. Due to the high-speed at 
which the networks operate, a hardware priority queue 
[lo] is needed to transmit packets at link rates. For 
example, in a 155 Mbps (2.5 Gbps) Asynchronous 
Transfer Mode (ATM) network, an ATM cell can be 
transmitted every 2.7 psecs (0.17 psecs). In a worst- 
case scenario the priority queue must determine the 
next highest priority cell (dequeue operation) every 2.7 
psecs (0.17 psecs), while being able to accept new cells 
(enqueue operation) from all incoming links within the 
same 2.7 psecs (0.17 psecs). Software solutions, which 
are logarithmic in time complexity, are typically not 
fast enough to keep up with the packet transmission rate 
due to the associated overhead (i.e., in requesting ser- 
vice from the processor, sending and retrieving data 
from the processor). On the other hand, a hardware 
solution can operate close to the operating speeds of the 
link. Also, a hardware solution can overlap enqueue 
and dequeue operations with packet transmission to 
avoid wasting link bandwidth. 

Each node in the network provides a switching 
function by forwarding incoming packets to their cor- 
rect outgoing links. For all priority queue architectures 
discussed in this paper, we consider a common switch 
model, as shown in Figure 1. The switch is character- 
ized by a shared buffer space and output queueing [5 ] ,  
with a separate priority queue servicing each output 
link. Although there are other possible memory config- 
urations [ 111, output buffering offers better perfor- 
mance than input buffering while a shared buffer 
configuration has better memory utilization. When a 
packet's output link is busy, the packet is queued and an 
entry for that packet is created. The entry is inserted 
into the priority queue corresponding to the correct out- 
put link. This entry consists of a validlinvalid bit, an 
address (log2N bits), and a priority (log2P bits). Here N 
is the total storage capacity of the shared buffer in terms 
of packets, while P is the number of priority levels sup- 
ported in the link-scheduling algorithm. The address 
can be interpreted as a page number, indicating where 
the packet resides in the shared memory. The page 
numbers are obtained from an idle address pool, which 
holds page numbers corresponding to idle spaces in the 

memory. Each arriving packet obtains a page number 
before being written into the shared memory; the page 
number is then returned to the pool after the corre- 
sponding packet has been transmitted. The priority 
queue is responsible for storing the entries and calculat- 
ing the highest-priority entry when the output link is 
ready to transmit another packet. So, regardless of inter- 
nal architecture the priority queue must provide for the 
storage of packet tags, initialization (clear contents of 
the priority queue), enqueue of new tags, and dequeue 
of the highest priority tag. 

Since a switch's buffer size (N) and the number of 
priority levels (P) needed by the link scheduler can be 
both very large, the priority queue must be easily scal- 
able to these two parameters. That is, the total entry 
capacity of the priority queue must match the total 
packet capacity of the shared buffer and it must support 
a large number of priority levels. At the same time, the 
priority queue's performance must not fall behind link 
rates as it is scaled to N and P. If this were to happen, 
then a link will remain idle even though there are pack- 
ets to be transmitted. 

We present two new priority queue architectures 
which were designed to minimize the effects of scaling 
(with respect to N and P). The first new architecture 
reduces and controls the performance loss due to 
increasing the queue capacity without adding a large 
amount of extra hardware. This was done by combining 
the salient features of two existing priority queue archi- 
tectures, the shift register and systolic array. We then 
extend this architecture to service multiple links instead 
of just one. Both of the new architectures perform well 
enough to support very high-speed links, and both pro- 
vide constant-time (in terms of number of clock cycles) 
enqueue and dequeue operations. But before describing 
our new architectures, we first describe four priority 
queue architectures - binary tree, FTFO, shift register, 
systolic array - from the current literature in Section 2. 
A brief description of each architecture and operation is 
given, followed by a discussion on limitations to their 
scalability. Section 3 proposes and evaluates the two 
new architectures. Detailed explanations of their opera- 
tions are also given. Section 4 presents the results of 
some implementations of the various priority queues for 
several switch parameters. The implementations were 
done using the Verilog hardware description language 
and the Epoch silicon compiler for several combina- 
tions of P (up to 256) and N (up to 1024). These results 
show limitations of the existing architectures when 
scaled to large N and P, and are compared to implemen- 
tations of the new architectures. Section 5 concludes 
with a summary of our contributions and a brief list of 
future directions. 
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2. Priority Queue Architectures 

This section presents four priority queue (PQ) 
architectures from the current literature. The FIFO and 
the binary tree architectures are the more intuitive 
approaches to the priority queue problem. However, 
these two architectures do not scale well with increas- 
ing N and P. The shift register and the systolic array 
architectures take a different approach and scale much 
better than the FIFO and binary tree. The following 
subsections describe each of these architectures and 
discuss the effects of scaling on architectural complex- 
ity and implementation. 

2.1 Binary Tree of Comparators 

A binary tree comparator architecture [8][9] con- 
sists of an N-entry storage block and a comparator tree 
of depth log,N, whose output is the highest-priority 
entry among those in storage. A feedback mechanism is 
used to remove the output of the tree from storage. An 
advantage of this architecture is that the comparator tree 
logic can be shared among several storage blocks, 
reducing hardware costs. A disadvantage is that FIFO 
ordering is not maintained among same priority entries. 
Such FIFO ordering is important when applications 
assume that packets at the same priority level will arrive 
in the same order in which they were sent. Increasing N 
results in more leaf nodes (i.e., comparators) being 
added to the tree and increasing the capacity of the stor- 
age block. Problems with such scaling include 
increased dequeue time, and bus loading problems with 
distributing the new entry to each storage element in the 
storage block. 

2.2 FIFO Priority 

Like the bucket sorting algorithm, the FIFO PQ 
architecture [2][3] inserts entries into one of the P 
FIFOs based on the entry’s priority. During a dequeue 
operation, a priority encoder scans the head of the 
FIFOs in decreasing priority order and removes an 
entry from the first non-empty FIFO. Increasing P 
requires adding more FIFOs, which results in added 
hardware costs and increased complexity of the priority 
encoder. Using logically linked lists [3][ 151 instead of 
physical FIFOs can reduce hardware costs. But this 
approach still suffers from the complexity problem of 
the priority encoder for large P. 

2.3 Shift Register 

The shift register PQ [3][4][12], as shown in Figure 

UlWER PRIORITY C------t HIGHER PRIORITY 

Figure 2. Shift register priority queue 

2, consists of an array of blocks that store the entries in 
sorted order. Each block stores a single entry and com- 
municates with the blocks immediately to its right and 
left. Higher-priority entries are stored to the right of 
lower-priority entries, witlh the Oh block containing the 
current highest-priority entry. On an enqueue operation, 
the new entry is broadcast to all the blocks via the 
new-entry-bus. Each block makes a local decision as to 
what action to take, with only one of the blocks latching 
the new entry. The others will either keep their current 
entry or latch the right neighbor’s entry. The net effect 
is to have the new entry force all entries with lower pri- 
ority to shift one block to the left, while the new entry 
places itself to the left of the entries with higher and 
equal priority. The lowest priority entry is discarded 
during an enqueue if the queue is full. A dequeue oper- 
ation in the shift register simply reads the Oh block’s 
entry while all other entries shift one block to the right. 

Each block consists of a holding register which 
stores the entry, a comparator which compares the pri- 
orities of the entry on the new-entry-bus and the hold- 
ing register, a multiplexor (to choose from the left, right 
or new entry) and decision logic [3][4]. Since each 
block stores one entry, the queue’s capacity can be 
increased by adding more blocks to the existing queue. 
Because each block make:; decisions based on just local 
information, increasing queue capacity does not require 
modifications to the block’s decision logic nor any cen- 
tral control logic for the queue. This makes scaling for 
large N very simple. As P increases, additional bits are 
added to the priority field in the entry’s tag. This simply 
requires modifying each block’s storage requirement 
and its comparator. 

Unfortunately, implementation problems limit the 
scalability of this architecture. As seen in Figure 2, 
before any decision can be made by each block during 
an enqueue operation, the new entry must be present at 
the inputs of all the blocks. At the VLSI level, the 
new-entry-bus must be routed to the inputs of all the 
blocks in the array. As we saw with the binary tree 
architecture, this creates a bus loading problem, which 
adds to the hardware costs (buffers), and decreases the 
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Figure 3. Systolic array priority queue 

maximum operating speed of the queue. Thus, the shift 
register architecture’s scalability with respect to N is 
limited by performance, not by architectural complex- 
ity. Performance also decreases as P increases due to 
the added delay in the comparator logic. This is because 
the comparator’s time complexity grows linearly (for a 
serial comparator) with the number of bits in the prior- 
ity field. 

2.4 Systolic Array 

The systolic array PQ [6][7] is shown in Figure 3. 
Similar to the shift register architecture, the systolic 
array architecture consists of an array of identical 
blocks, with each block holding a single entry, On an 
enqueue operation, only the Oh block compares priori- 
ties of its entry and that of the new entry. On the next 
cycle the lower-priority entry is inserted into the left 
neighbor’s block which repeats the same process of 
comparing and sending the lower-priority entry to the 
next block. So the systolic array does not become fully 
sorted until several cycles after the new insertion. 
Despite this feature, both insertion and removal still 
remain constant-time operations from the outgoing 
link’s point of view. Because each block passes the 
lower-priority entry to the next block, the Ob block 
always holds the highest-priority entry in the queue. 
Once an entry is removed from a block, it gets the entry 
from its left neighboring block, creating a right shift 
operation on the entire queue. 

Each systolic array block consists of a holding reg- 
ister, which stores the entries in sorted order, as well as 
a temporary register, that holds passing entries enroute 
to the next block to the left. The passing entry is the 
lower-priority entry in a block during an enqueue oper- 
ation. Multiplexors, a comparator, and decision logic 
also make up the rest of the block. Queue capacity is 
increased by adding more blocks to the end of the 
queue without worrying about a central controller. 
Also, there is no bus loading problem as was the case 
with the shift register PQ. Extra storage and a wider 
comparator are added within each block to handle the 
extra priority bits. Unfortunately, the one main draw- 
back is that the systolic array PQ requires twice more 

storage than the shift register architecture. Considering 
the simplicity of each block, the temporary register 
adds a considerable hardware cost to each block, com- 
pared to the shift register block. Also, the cost and 
delay of the comparator increases linearly with each 
extra bit in the priority field, which decreases the maxi- 
mum operating clock frequency. 

3. Scalable Priority Queue Architectures 

Of the four priority queue architectures discussed 
in Section 2, the shift register architecture and the sys- 
tolic array architecture have better properties in terms 
of supporting very large N and P. The FIFO architecture 
is limited to a small number of priority levels, while the 
binary tree comparator’s complexity makes it difficult 
to scale with increasing N. On the other hand, the shift 
register and systolic array are more favorable because 
they have no centralized logic, and each block can be 
replicated as many times as necessary without any mod- 
ifications. Also, a large number of priority levels can be 
easily supported by simply using more bits in the prior- 
ity encoding. Unfortunately, the shift register’s bus 
loading problem limits the maximum clock frequency, 
while the systolic array block’s double storage require- 
ment makes it considerably more hardware-intensive 
than the shift register. 

In this section we present two new priority queue 
architectures. The first combines the salient features of 
the shift register and systolic array architectures. This 
reduces the effect of the extra register and isolates the 
bus loading problem from N. In other words, the bus 
load stays constant no matter how large N grows. The 
second new priority queue architecture is an extension 
of the first new architecture with modifications allowing 
it to handle the queueing needs for several output links. 
Not only are the good scaling characteristics retained 
but also a large amount of hardware can be saved by 
sharing a single hardware priority queue among the 
multiple outgoing links in a switch. 

3.1 Modified Systolic Array Priority Queue 

The systolic array architecture scales well with N 
and its maximum operating clock frequency does not 
decrease as N increases. But, because 50% of all the 
registers are used as temporary registers, the systolic 
array uses much more hardware than the shift register. 
To reduce this overhead, we propose a modified systolic 
architecture where each block consists of a length c 
shift register. So instead of one temporary register for 
every holding register in each block, the ratio decreases 
by a factor of Ifc. 
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Figure 4. Modified systolic array priority 
queue 

Each modified systolic block holds c entries by 
replacing the single holding register with a length c 
shift register PQ, as shown in Figure 4. The interface of 
the modified systolic block is the same as that of the 
systolic block. Enqueue and dequeue requests are 
received from the right neighboring block and the 
results of those requests are sent to the right neighbor- 
ing block. The right-most block receives requests and 
sends results to the link. During a new entry insertion 
into the modified systolic block, the new entry is placed 
in one of the blocks of the shift register PQ. If there is 
an overflow of the shift register PQ, either the new entry 
or the entry in the c" shift block (whichever has lower 
priority) is placed into the temporary register and 
inserted into the left neighboring modified systolic 
block during the next cycle. Since the shift register PQ 
stores all the entries in sorted order with the highest-pri- 
ority entry in the first block, the removal request is sat- 
isfied by moving all the entries one block to the right. 
The entry in the right-most block is sent to the neigh- 
boring right modified systolic block. During the next 
cycle, a removal request is made to the neighboring left 
modified block and the resulting entry is stored in the 
shift register PQ. 

Without any further modifications, the modified 
systolic array PQ will not maintain FIFO ordering 
among entries of equal priority, as illustrated in Figure 
5. Here the number represents the priority and the sub- 
index (not part of the entry) represents the ordering 
among entries with the same priority. Insertion of a new 
entry with priority 9 pushes the 12, entry to the next 
modified systolic block and is placed behind the 12* 
entry. This problem is solved by adding a one bit field 
(newlold) to the end (least significant bit) of the priority 
field and is included as part of the priority number when 
priority comparisons are done. The new/old bit is added 

write 

Figure 5. Data movement in the modified 
systolic array PQ showing a potential 
ordering problem 

as the entry enters the prioirity queue, and is stripped off 
when the entry leaves the queue. New entries that are 
inserted into the queue have this bit set. Likewise, all 
entries that. are stored in a shift block have this bit set. 
The bit is cleared when an entry that was already in a 
shift block is pushed into the temporary register and 
sent to the neighboring left. modified systolic block. 

The modified systolic architecture improves on the 
systolic architecture by lowering the percentage of total 
registers used for temporary storage. This reduction in 
hardware is accomplished without losing any of the 
advantages of the systolic architecture - simple block 
architecture (easily scaled for increasing N by adding 
new blocks to the end of the existing queue), no perfor- 
mance loss as more blocks are added to the queue, and 
constant-time (cycles) enqueue and dequeue operations. 
Also, because the bus driving the shift register blocks is 
broken up into small lengtlh-c parts, the bus load within 
each modified systolic block is not affected by the addi- 
tional modified systolic blocks. So, once a value for c is 
determined, only one modified systolic block must be 
designed and optimized for performance and area. This 
block is then replicated as many times as necessary 
without any modifications. 

3.2 Multiple Output Link Priority Queue 

The priority queues in Section 2 and Section 3.1 
are designed to hold N entries to account for the possi- 
bility that all N packets are queued at the same output 
link. Given that a switch has a separate priority queue 
for each of its M (>1) ciutput links, the total queue 
capacity is MN entries. Since the shared buffer can only 
hold N packets, most of the blocks in the priority are 
unused at any given momimt, as shown in Figure 6(a). 
An N-entry priority queue which services M (cN) out- 
put links can potentially save a maximum of 50% in 
hardware for M=2, and ulp to 75% for M=4. Here we 
present a multiple output link priority queue architec- 
ture, which has good scalling properties and constant- 
time enqueue and dequeule operations which are inde- 
pendent of M and N. The details of the architecture are 
described in two separate subsections for easier under- 
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Figure 6, (a) Sorted entries in separate 
priority queue showing wasted resources; 
(b) Same entries in the multiple shift register 
priority queue 

standing. The basic idea is to extend the modified sys- 
tolic architecture in Section 3.1 to support entries from 
multiple links. Section 3.2.1 describes the modification 
made to the shift register, while Section 3.2.2 explains 
the added hardware and state machine to support 
enqueue and dequeue operations for multiple links. 

3.2.1 Multiple Shift Register Priority Queue 

The basic idea here is to extend the shift register 
architecture to support multiple links, which requires 
modifications to the entries and shift register block. The 
packet’s entry is augmented such that the priority field 
consists of the output link number, priority number, and 
newfold bit. The shift register stores entries such that 
those corresponding to higher output link numbers 
come after those corresponding to lower output link 
numbers, as shown in Figure 6(b). 

The blocks in the shift register architecture also 
require several modifications to support multiple output 
links. First, each block receives another control signal 
(outnum) which indicates the requested output link 
number. The value on outnum is latched along with the 
new entry during an enqueue operation, while it is used 
to determine which entry to output during a dequeue 
operation. Second, each block has a tristate buffer, 
which drives an output bus. This tristate buffer is 
needed because the highest-priority entry for a given 
output link can be in any of the blocks in the shift regis- 
ter. On a dequeue operation, a block will drive the out- 
put bus with the value in its holding register if the block 
decides it has the highest-priority entry for the 
requested output link. Figure 7 shows the block dia- 
gram of the multiple shift register queue with just the 
added control signals. 

Within each multiple shift register block, no extra 
control logic is required for the enqueue operation. But 
during the dequeue operation each block needs to 
decide if it must drive the output bus. As seen from Fig- 

- 
1 

output-bus 
highest priority entry 

Figure 7. Multiple shift register priority 
queue 

ure 6(b), the highest-priority entry of any output link is 
always to the right of all other entries with the same 
output link number. Once the output bus has been read, 
all entries to the left of the one just read move one block 
to the right. A similar operation can also remove the 
lowest-priority entry for an outgoing link. This opera- 
tion is useful when extending the modified systolic 
architecture to support multiple outgoing links, as 
explained in the next subsection. 

3.2.2 Multiple Systolic Array Priority Queue 

Due to the bus loading problem in the shift register 
architecture, the PQ described in Section 3.2.1 does not 
scale well with respect to N. Besides the new entry bus, 
shown in Figure 2, the multiple shift register architec- 
ture also has the problem of each shift register block 
driving the output bus, and the associated delay and 
hardware costs of having to drive a very large bus. 
Despite this problem, the multiple shift register can be 
used as a building block to support multiple outgoing 
links in the modified systolic architecture. By using the 
same ideas as in Section 3.1, the multiple systolic array 
architecture replaces the single holding register with the 
multiple shift register. By choosing a value for c which 
minimizes the total number of temporary registers with- 
out introducing significant bus loading problems, a sin- 
gle c-entry multiple shift register can be designed and 
used in the multiple systolic array architecture. 

As seen in Figure 8, the external interface to the 
multiple systolic array block remains the same, with the 
addition of the outnum control signals. Besides the tem- 
porary register (left-out-reg), there is also another reg- 
ister (onum-out-reg) which indicates the link number 
of the entry in the temporary register. The right out reg- 
ister (right-out-reg) stores the output from the output 
bus, while a multiplexor chooses among three sources 
to drive the new entry bus. Also, instead of the read and 
write control signals directly feeding the shift register, 
the controller uses them to generate its own internal 
read and write control signals which are then fed to the 
shift register. 

To have a constant-time dequeue operation, each 
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Figure 9. Storage of entries in the multiple 
systolic array queue (a) before and (b) after 
"atleast-1 -entry-per-outputlink" property 

systolic block uses counters to maintain a "atleast-l- 
entry-per-output-link" property, whenever possible. 
This assumes that c2M. Each block maintains a counter 
for each outgoing link. A counter is incremented (dec- 
remented) whenever an entry corresponding to its out- 
put link is inserted (removed) from the block. Without 
this property, a situation as shown in Figure 9(a) can 
occur. If there are more than c entries in the queue for 
any output link, a dequeue request can result in extra 
remove requests being sent from the one systolic block 
to the next systolic block. In the worst case, the requests 
can propagate to the last block, in which case the result 
will need to propagate all the way back up. 

After an enqueue operation, entries start to propa- 
gate through the array of systolic blocks. If an entry in 
the temporary register must be sent to the left systolic 
block, the controller makes sure that doing so does not 
violate the "atleast-1 -entry-per-output-link" property. If 
it does, another entry is chosen to be sent to the left sys- 
tolic block while the entry from the temporary register 
is reinserted into the shift register queue. Here the other 
entry that is chosen is the lowest-priority entry corre- 
sponding to an output link with more than one entry in 
the systolic block. The controller obtains this replace- 

ment entry by checking all the counters, and then issues 
a read-low command to tlhe shift register queue. Also, 
following a dequeue operation, the 0"' systolic block 
requests an entry with the same output link number 
from the 1.' systolic block which, after sending thc 
result, requests an entry with the same output link num- 
ber from the Pd systolic block, and so on. This is done 
to maintain the property for all systolic blocks. 

Despite the added complexity of the state machine 
and extra hardware needed to support multiple output 
links, the multiple systolic array is still much cheaper to 
implement than individual priority queues for each out- 
put link. Also, the time (cycles) required to service the 
dequeue and enqueue operations is constant for any 
output link, and remains unchanged regardless of how 
large N becomes. Like thle modified systolic architec- 
ture, each block is self-contained and no outside con- 
troller is required. As N increases, more blocks are 
added to the existing chain without modifications to the 
existing blocks. Also, since the priority number is 
encoded within each entry, a large number of priority 
levels can be supported without requiring a large 
amount of hardware. Thus, scaling does not involve 
modifying the architecture, implementation for large N 
is simplified since only one systolic block needs to be 
designed, and there is no loss in performance due to 
scaling. 

4. Performance and Implementation 

To compare the various priority queue architectures 
discussed thus far, each architecture was implemented 
using the Verilog hardware description language and 
the Epoch silicon compiler, an automatic layout genera- 
tor. This provides a common framework which makes 
the cost and performance comparisons more meaning- 
ful. Costs were measured in terms of amount of silicon 
area and the number of transistors used by the design, 
while performance was measured by the maximum 
clock speed and throughput (number of enqueue/ 
dequeue operations completed per second). Throughput 
can be easily calculated by using the maximum clock 
speed and number of clock cycles needed by each oper- 
ation. Maximum clock speed was calculated by doing a 
critical path analysis of thie design, and determining the 
delay through these critical paths using Epoch's timing 
analyzer. All designs were structurally specified using 
parts from Epoch's Verilog library, while state 
machines and control logic were described in behav- 
ioral Verilog. Each of the layouts was compiled by 
Epoch, which uses standard cells to generate a layout, 
using a 1.2 pm CMOS technology. Although custom 
layout would give better results, we are more interested 
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Figure 10. Implementation results for exist- 
ing priority queue architectures (P=i6). 

in comparing the scaling effects than in raw numbers. 
In other words, we want to look at the relative costs and 
performance of the various architectures as N and P 
increase. Also note that our implementations were lim- 
ited to a maximum of 1024 for N. This was due to 
insufficient workstation memory for performing the 
various simulations. Memory also limited the timing 
simulations to N=256 for most architectures. 

4.1 Existing Architectures 

Figure 10 compares the four existing priority queue 
architectures in terms of VLSI hardware costs as a 
function of N, with P fixed at 16. Here we chose a small 
value of P for two reasons. It allowed for implementa- 
tions with large N, and made the scaling effects associ- 
ated with large N more pronounced. As expected, we 
see the systolic array architecture's hardware cost is 
much larger than that of the shift register due to the 
extra register used for temporary storage. Also, despite 
having similar transistor counts, the binary tree archi- 
tecture occupies more area than the shift register archi- 
tecture. This is mainly because of the routing required 
from the storage to the priority comparator tree, and 
routing within the comparator tree. 

As expected, performance degrades with increas- 
ing N, as shown in Figure 11. Here we see the through- 
put is highest for the shift register architecture. But as N 
increases, the performance degradation is much steeper 
for the shift and binary tree architectures than that of 
the systolic and FIFO architectures. This is due to the 
bus loading problem in the shift register and binary tree 
architecture, and the increase in depth of the compara- 
tor tree in the binary tree architecture. The gradual 
decrease in performance in the systolic and FIFO archi- 
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Scaling effects on performance 

tectures can be attributed mainly to the extra bits in the 
registers and multiplexors, which add delay to the con- 
trol signals which must drive these components. 
Although Figure 11 shows the shift register architecture 
with better throughput than the systolic array architec- 
ture, for larger values of N, we can predict the through- 
put of the systolic to be higher than the shift. Due to 
insufficient workstation memory we could not obtain 
data for larger values of N other than the ones shown in 
Figure 11. But by extrapolating the curves for the shift 
and systolic in Figure 11, we can see the two curves 
should cross at a point somewhere between N=1024 
and N=2048. At this point, throughput of the systolic 
should be higher, while the performance of the shift 
architecture should continue to degrade at a much faster 
rate than that of the systolic due to the dominating 
effect of the bus loading problem. For much larger val- 
ues of N, this bus problem should make the shift regis- 
ter architecture an ineffective solution due to the 
associated hardware costs and performance loss. 

Each bit added to the priority field adds delay to the 
priority comparator, which in turn slows down the oper- 
ation of the priority queue for the shift register, systolic 
array, and binary tree architectures. Since a large num- 
ber of priority levels can be supported with relatively 
few bits, and because the delay associated with the 
extra bit is small compared to the total delay, scaling for 
large P is feasible and the resulting implementations 
can be effective. With a non-pipelined binary tree 
though, the delay is multiplied by the depth of the tree. 
In the FIFO case, the bottleneck is in the priority 
encoder, which must scan each W O  to select the next 
highest priority entry. Note also that the depth of the 
physical FWO (due to increasing N) does not affect per- 
formance, but adds to the FIFO fall-through time. So, it 
is possible that an entry might not be available immedi- 
ately after it is inserted into the queue. The logical FIFO 
architecture avoids this problem by using link lists 
instead. 
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Figure 12. Modified systolic architecture 
results compared to that of the shift and 
systolic. 

4.2 Modified Systolic Array Architecture 

The motivation for the modified systolic array 
architecture was to take advantage of the shift register 
and systolic array architecture's features and, at the 
same time, reduce the negative side effects due to scal- 
ing with respect to N. The shift register architecture suf- 
fered from the bus loading problem, while the systolic 
array architecture used a significant amount of extra 
hardware for the extra register. The solution that was 
proposed was to use a separate shift register queue 
inside each systolic array block. Each shift register 
queue stores c entries, where c is determined by hard- 
ware and performance requirements. When c=l, this is 
the same as the original systolic architecture, whereas if 
c=N, then we get the original shift register queue. So 
for small c, hardware costs and performance are close 
to those of the systolic architecture, and as c increases 
both hardware costs and performance steadily approach 
those of the shift register architecture. This point is 
shown in Figure 12. Here P=16, and two values of c are 
used. Note that, initially, the modified systolic architec- 
ture has poorer performance than that of the shift archi- 
tecture. This is partially due to the extra bit used in the 
priority field to differentiate old and new entries. But as 
N increases, the rate at which performance decreases is 
much sharper in the shift register case due to the bus 
loading problem. For larger N, performance for modi- 
fied systolic should be much higher than that of the shift 
register due to the more gradual decrease in perfor- 
mance in the modified systolic. Considering that the 

amount of hardware used in the modified systolic is 
only slightly more than that of the shift, the perfor- 
mance difference makes the modified systolic a much 
more effective solution. 

4.3 Multiple Systolic Axray Architecture 

Despite added hardware costs (due to extra regis- 
ters, added complexity of control logic, tristate buffers, 
and counters), we see that there is still a substantial 
amount of hardware saved by using the multiple queue. 
Based on implementations with a 16-entry multiple sys- 
tolic array block, we observed the following. For M=4, 
the multiple architecture occupied 32% less area and 
used 55% less transistors versus the shift, and 46% less 
area and 72% less transistors versus the systolic. For 
M=8, the multiple architecture occupied 67% less area 
and used 75% less transistors versus the shift, and 73% 
less area and 85% less transistors versus the systolic. 
Here we multiplied the costs for a single shift or sys- 
tolic queue by M to account for one queue per output 
link. Also, we observed that adding support for more 
output links in the multiple systolic block increased the 
costs only slightly. This is because most of the multiple 
link support already exists, and all that is needed are 
extra counters and minor additions in the controller. 

For c=16, N=64, and P=256, the maximum clock 
speeds for the multiple sysltolic architecture are 40 MHz 
(M=4) and 38 MHz (M=8). This drop in speed is due to 
the extra bits in the priority field used to encode the out- 
put link number. Considering each enqueue and 
dequeue operation requires 7 cycles, this translates into 
5.71 mops (millions of opmations per second) for M=4, 
and 5.43 mops for M=8, If we consider each switch as 
having M inputs and M outputs, with all input and out- 
put links getting round-robin access to the queue, the 
queue can support link speeds up to 303 Mbps for M=4, 
and 144 Mbps for M=8 (assuming 53 byte packets). At 
current ATM standards of 155 Mbps, a multiple systolic 
priority queue can be designed and implemented to sup- 
port such switches. For switches with a larger number 
of links, by grouping 4 to 8 outgoing links together, 
hardware costs can still be significantly reduced while 
being able to support very high-speed links. 

5. Conclusion 

In this paper we proposed and evaluated two new 
hardware priority queue architectures for link schedul- 
ing in high-speed switches. Based on Verilog and 
Epoch designs and simulations, we showed that the four 
existing architectures were limited by scalability (with 
respect to either N or P or both). For small N and P, all 
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four existing architectures had comparable hardware 
costs and performance. But as they were scaled to sup- 
port large N and P, each architecture’s limitations 
became more pronounced. Of the four architectures, the 
shift register architecture and the systolic array archi- 
tecture had better scalability. By combining the two 
architectures, the modified systolic architecture reduced 
the negative effects of scaling suffered by the two archi- 
tectures. In particular, hardware costs were significantly 
reduced by decreasing the number of total temporary 
storage registers; performance loss due to the bus load- 
ing problem in the shift register could be controlled and 
isolated from N by using several length-c shift register 
queues. Here c was chosen by considering hardware 
and performance requirements. The multiple systolic 
architecture added multiple link support to the modified 
systolic architecture, without sacrificing scalability. 
Although extra cycles were added to the dequeue and 
enqueue operations, both these operations could be 
done in constant time (cycles), regardless of N or M, the 
number of output links supported by the architecture. 
We also saw that scaling with respect to M was possible 
with very little added hardware. Verilog and Epoch sim- 
ulations have confirmed the salient features of the new 
architectures. 

We showed that the two new hardware priority 
queue architectures scale well to increasing N and P. 
Both offer good performance and are easy to imple- 
ment, and hence can be used in guaranteeing QoS 
requirements in high-speed networks. Such effective 
priority queue implementations allow switches to use 
more aggressive link-scheduling algorithms that can 
admit more connections with diverse traffic patterns 
and QoS requirements. A possible future investigation 
in this area can involve implementing various link 
scheduling algorithms and using the hardware priority 
queue to compare implementation complexity and per- 
formance. Also, since all the priority queue architec- 
tures have a common interface, this facilitates their use 
in other applications which require priority queueing. It 
would be interesting to look at the priority queue in 
such applications as a linear-time sorting engine, or 
even task scheduling in a uniprocessor or multiproces- 
sor environment. 
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