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Abstract 

Planning for real-time applications involves 
decisions not only about what actions to take in what 
states to progress toward achieving goals (the 
traditional decision problem faced by AI planning 
systems), but also about how to realize those actions 
within hard real-time deadlines given the inherent 
limitations of an execution platform. Determining 
how to arrange actions in a sequence such that timely 
execution is guaranteed within constraints is a 
manifestation of the scheduling problem. A l l cases 
of the scheduling problem in any domain of non-
trivial complexity are difficult to solve (NP-Hard). 
To more efficiently solve the real-time plan 
scheduling problem, we propose and analyze an 
iterative feedback/constraint relaxation method in 
which a scheduler and planner iteratively interact to 
efficiently develop a well-utilized schedule which 
includes as many planned actions as possible. This 
method has been successfully implemented within the 
Cooperative Intelligent Real-time Control 
Architecture (CIRCA). 

1 Introduction 
Generating plans for the control of a real-time system is an 
extension of the traditional AI planning problem. Actions 
must be determined to guide the system from one state to 
the next, eventually reaching the goal state, as in standard 
planning. However, unlike traditional planning, these 
actions are time and resource dependent: they must be 
executed subject to the limitations of a particular execution 
platform within hard real-time deadlines to assure that the 
system is successful in achieving its goals. Plans need to 
fit the abilities of the execution system. 

From the real-time perspective, this "fit" means that the 
demands of plan execution be schedulable on the system. 

Scheduling is an NP-hard problem, requiring that the 
scheduler have knowledge about what the system being 
scheduled can and cannot do. Meanwhile, the planning 
process (which is also NP-hard) attempts to generate 
demands on the system that wil l accomplish goals. A 
modular, agent-oriented approach to the overall problem is 
to couple separate planning and scheduling components, 
where each applies its own expertise and together they 
allow the system to achieve its goals reliably within its 
inherently bounded range of capabilities. 

Decoupling planning from scheduling cannot be 
complete, however. Viewed as a configuration task [Stefik, 
1995], it is not the case that the selection of the component 
pieces of the plan can be done independently of trying to 
arrange them within the constraints of the execution 
system. More generally, the problem requires iteration 
between developing alternative plans and evaluating the 
schedulability of those plans, until an executable plan that 
maximally accomplishes goals is found. The obvious 
question, then, is what knowledge should be passed between 
these component agents during this iteration to guide the 
search into promising areas. 

In this paper, we detail the development of scheduler 
feedback mechanisms intended to support the iterative 
formation of real-time guaranteed control plans. Unlike 
prior work in this field [Garvey et al, 1994] we propose a 
cooperative protocol in which a scheduler makes state-space 
search modification suggestions to the planner as opposed 
to presenting multiple schedules for acceptance based on 
various criteria. Iterative scheduler/planner feedback as 
described in this paper is generally applicable to any system 
which can be mapped to a planner/scheduler agent-oriented 
model. We have implemented and tested our feedback 
mechanisms in the context of a particular system, the 
Cooperative Intelligent Real-time Control Architecture 
(CIRCA) [Musliner et al., 1995], applied to automated 
aircraft control in flight simulation [Atkins et al, 1996], a 
domain which demands strict real-time response. 

'This research was supported under NSF Grant IRI-9209031. 
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2 Iterative Real-time Planning/Scheduling 
The process of planning can be thought of in three distinct 
stages: projecting combinations of modeled features forward 
in time to find reachable states, selecting actions to 
manipulate this set of reachable states, and determining 
constraints on those actions, such as timing requirements, 
necessary to ensure desired changes to reach a goal state or 
avoid failure states. Real-time execution, on the other hand, 
deals with determining the current state of the system, 
finding an action for the system to take ( i f any), and 
executing the action within timing constraints. 

Determination of the reachable system state set involves 
expanding a combinatoric search space, however, and is 
infeasible for a real-time system to detect and react to each 
state. Instead, since there are typically far fewer actions 
than states, each expanded state can be classified by the 
particular action which should be taken in that state. The 
real-time system may then execute a single task for each 
action rather than a task for each state. 

Since these actions are typically time dependent, 
meaning that execution must be completed before a certain 
deadline to guarantee system transition into the new desired 
state, tasks must be explicitly allocated resources on the 
execution platform. In most real world domains, the set of 
tasks often requires more resources than are available, 
forcing the system to either fail or consider trade-offs. 

The process of making trade-offs must be done carefully 
to cause sufficient pruning of tasks to make scheduling 
feasible while avoiding over-extensive pruning, which 
causes under-utilized schedules and sub-optimal goal 
achievement. To minimize the risk of over or under 
pruning the task space, the knowledge of both the scheduler 
and planner must be brought to bear. We propose a method 
of iterative negotiation in which the planner first generates 
its "best" plan in terms of accomplishing goals. The 
scheduler then schedules the plan if possible, otherwise 
informing the planner that a new plan must be tried. The 
process repeats as necessary until a successful schedule is 
constructed. 

An iterative scheduler feedback protocol must specify 
what information wi l l be contained within request and 
feedback messages. This depends on the division of 
knowledge maintained between the planner and scheduler. 
The planner is an expert at determining which tasks must be 
performed subject to which constraints to solve the global 
problem at hand, while the scheduler is an expert at 
manipulating the tasks into a specific order such that 
constraints are not violated. Ideally, one would like the 
scheduler to know only how to manipulate tasks into a 
sequence which does not violate constraints, while a planner 
knows about the global problem at hand and the tasks 
required to solve the problem, but not the details of how to 
organize the tasks into a schedule. For scheduler feedback 

to work effectively, however, the two must share some 
knowledge. How much knowledge should be shared and 
how to represent this shared knowledge is not clear. It is 
undesirable and impractical for the planner to share 
everything it knows about the global problem with the 
scheduler [Garvey et al., 1994], and vice versa. 

The major question which remains, however, is the 
exact nature of the feedback provided by the scheduler such 
that the planner's search is guided rather than relying on 
extensive blind generate and test cycles. If the planner were 
allowed to consider schedulability constraints during the 
process of planning, the question of feedback would be of 
no concern since only schedulable plans would be generated. 
However, all advantages of modularity would be lost, and 
the solution obtained would likely be sub-optimal due to 
the impracticality of conducting the exhaustive search 
required to find a well-utilized schedule during planning. 

Alternatively, the planner could allow the scheduler to 
automatically explore variations of the task request, 
returning the best possible schedules for pre-defined criteria 
[Garvey et al.y 1994]. However, dropping, adding, or 
changing the timing of a task could change the whole 
topology of the reachability graph, creating the need for 
increasing and/or decreasing the importance of many other 
tasks. This would be acceptable if the planner identifies and 
indicates tasks that are nearly independent and preferable. 

Finally, the scheduler could provide feedback to the 
planner which actually guides the search of the planner. 
This feedback would suggest how much less (or more) 
should be demanded in the task request list. Since it has 
knowledge of excess available resources or particular 
conflicts which cause infeasibility of scheduling, the 
scheduler is in a good position to base such a suggestion 
upon this information. This final approach has been taken 
in our implementation within CIRCA. 

3 CIRCA Background 
CIRCA's realization of real-time AI emphasizes allowing 
the planning algorithms to be intelligent about real-time 
rather than forcing them to be intelligent in real-time 
[Musliner, 1995]. CIRCA's approach is achieved by 
separating the architecture into three distinct modules 
(Figure 1): the Planner, Scheduler, and the Real-Time 
Subsystem (RTS). The Planner includes a domain-specific 
knowledge base and a planner which generates 'Test-Action 
Pairs" or "TAPs" analogous to the tasks discussed above. 
These TAPs are constructed based on transitions, goals, and 
actions modeled in the knowledge base. 

The Planner begins with a known (set of) initial state(s) 
and searches a discrete (feature, value) paired state space via 
modeled transitions in a best-first (descending probability) 
manner. As the search progresses, each state is assigned a 
probability calculated from the probabilities of its ancestors 
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Figure 1: The CIRCA system. 

and transitions leading to the state [Atkins et al., 1996]. A 
cut-off threshold probability is used to l imit state 
expansion. Actions are chosen by the planner to preempt 
any temporal transitions to failure, and hard real-time 
"required" TAPs are developed for these actions. "If-time" 
TAPs are also constructed to pursue non-critical goals 
specified in the knowledge base. These TAPs do not require 
real-time constraints since they need not be guaranteed to 
preempt transitions to failure. 

Once the planner builds a complete list of required and 
if-time TAPs, the scheduler attempts to form a packed (no 
idle time) periodic schedule in which each required TAP is 
executed at least fast enough to meet its deadline. A 
successful schedule, which guarantees failure avoidance to 
the level of the probability cutoff threshold, is then 
transferred to the RTS, where it is executed until a new 
schedule is available. If scheduling is unsuccessful, an 
iterative process of feedback and re-planning is begun until a 
successful schedule is developed. 

3.1 The Test Action Pair (TAP) 
A TAP is implemented as a class within the scheduler with 
the following fields: test, action, worst-case-execution-time, 
separation-constraint, and utilization. The test and action 
slots contain strings which specify execution functions. 
The execution of a TAP involves first evaluating the test, 
which if satisfied, causes the paired action to be executed as 
well. The worst-case-execution-time (wcet) is the time that 
both the test and action together require to complete in the 
worst case. CIRCA builds plans and schedules based on 
worst case execution times to make real-time guarantees. 

A separation constraint, similar to a period in periodic 
scheduling literature [Liu and Layland, 1973] but subtly 
different, is calculated for each TAP which is to guarantee 
failure avoidance. Critical transitions to failure are modeled 
to occur with a minimum delay time of D seconds, therefore 
it is only necessary that a TAP designed to preempt the 
failure execute at least once every D seconds, not precisely 
every D seconds (periodic) [Musliner, 1995]. 

The utilization of a TAP measures the minimum 
fraction of CPU time the TAP requires. It is defined as the 
ratio of its worst case execution time to its maximum 
separation constraint. The scheduler uses this information to 
determine if scheduling is certainly infeasible before 
attempting any scheduling, or to determine appropriate 
feedback in the event that scheduling is unsuccessful. 

3.2 The If-Time Server 
Using techniques from [Musliner et a/., 1995], we have 
implemented the scheduling of an if-time TAP server to use 
slack resources available in a schedule. When executed, this 
server executes if-time TAPs in a prioritized fashion.2 The 
use of the server is preferrable to individually inserting if-
time TAPs into the schedule because the scheduler would 
require explicit domain-specific knowledge about the 
priorities of the less critical if-time tasks. Instead, when the 
schedule is executed on the RTS, free time gained when 
actions require less then their worst case execution times is 
distributed among if-time TAPs using whatever scheduling 
policy the if-time server employs. The wcet of the server 
accounts for this TAP selection time plus the largest wcet 
of any if-time TAP, thus the server is a guaranteed task. 

Since the server does not preempt a transition to failure, 
it does not have an a-priori separation constraint. To insert 
it into the schedule as tightly as possible, a binary-like 
search is conducted through the server's possible utilization 
space. The utilization of the server can range from zero 
through one minus the total utilization of the required 
TAPs. The initial utilization for the first search iteration is 
simply set to the average of these upper and lower bounds. 
As an additional mechanism to aid rapid convergence, the 
search itself is not quite binary: a factor equal to one minus 
the utilization of the required TAPs is used to partition the 
search intervals, whereas a binary search would use a factor 
of 0.5. In testing with 2200 random scheduling requests, 
this heuristically aided binary search converges faster than or 
as fast as binary search in 5 1 % and 27% of the cases 
respectively. 

4 Feedback Scheduler Design 
4.1 The Base Scheduler 
Schedules are built based on a separation constrained method 
of scheduling described in [Musliner, 1995]. The scheduler 
simulates the execution of a dynamic scheduler by 
maintaining a time counter and iteratively incrementing it 
as TAPs are chosen for execution. At each iteration, the 
TAP with the shortest slack time is initially chosen to be 
executed. The slack time is defined as the difference 
between the TAPs separation constraint and the current 
time minus the time when the TAP was last chosen for 

2Currently, priority is given to the least-recently executed 
if-time TAP, yielding a round-robin strategy. 
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execution: 

If any other TAP (TAP) can execute within the slack time 
of the originally chosen TAP: 

it will be selected for placement in the schedule instead. If 
the slack time of any TAP is less than zero at any point, 
the TAP's deadline is violated and scheduling fails. 

After all TAPs are present in the schedule, the scheduler 
continues its simulation until a valid periodic subsequence 
containing all TAPs can be extracted as the final schedule. 

4.2 The Schedule Manager 
A scheduler capable of providing meaningful feedback must 
have authority to manipulate and retry scheduling the 
requests it receives from the planner. Given this capability, 
the scheduler can use the difference between a satisfiable 
request and over-constrained request to provide more accurate 
feedback to the planner. 

We have augmented the original CIRCA Scheduler with 
a new rule-based system known as the Schedule Manager (or 
"Manager") which directs the processing of all Planner 
scheduling requests. Depending upon the request, the 
Manager may perform a variety of actions: schedule a 
request, modify some constraints in a request, modify 
parameters which govern behavior of the core scheduling 
algorithm, calculate appropriate feedback, and transmit a 
valid schedule or feedback. 

After each scheduling attempt on a request, the Manager 
invokes rules which determine what should be done next 
based on the result code(s) returned from the attempt, any 
error conditions, instructions received from the Planner, and 
scheduling strategies in the rules. The result codes are: 

• SCHEDULE-WITH-SERVER 
The original scheduling request from the Planner with 
the if-time server was successfully scheduled. 

• SCHEDULE-TOO-LAX 
The schedule found is under-utilized. 

• SCHED-NO-SERVER 
The required TAPs specified by the Planner were 
successfully scheduled, but the if-time server could not 
be scheduled. 

• PARTIAL-SCHED-WITH-SERVER 
Some of the required TAPs specified by the Planner 
were successfully scheduled, along with the server. 

• PARTIAL-SCHED-NO-SERVER 
This result is the same as the previous one, except no 
if-time server could be inserted into the schedule. 

• NO-SCHEDULE 
The Planner's original scheduling request could not be 
scheduled, and no relaxations were allowed. 

• NO-PARTIAL-SCHEDULE 
The Scheduler could not satisfy either the Planner's 
original request, or any subsequent legal relaxed request. 

Failure to generate a schedule which meets the original 
request from the Planner will generate an error condition 
which indicates the specific constraint violation that 
occurred, along with TAP(s) which caused the violation. 
The Manager then returns either a suggested probability 
threshold or relaxes constraints and tries scheduling again. 

A new probability threshold recommendation is made 
based on a heuristic-guided binary search (similar to that 
described earlier for if-time server scheduling) between the 
minimum, maximum, and current threshold used by the 
Planner. It is calculated using the priorities and utilizations 
of recently attempted schedules. When the Planner adopts 
an increased probability threshold, the state search space is 
pruned, causing the separation constraints of the TAPs to be 
increased and/or the removal of some TAPs from the 
scheduling request. Either of these effects trades off some 
degree of system completeness for reductions in the 
difficulty of constructing a feasible schedule. A decrease in 
the threshold has the opposite effect, causing more states to 
be expanded, smaller TAP separation constraints, and 
possibly more TAPs in a scheduling request, increasing 
system response capabilities and scheduling difficulty. 

If the rule invoked by the Manager instead suggests 
relaxing the constraints on the current scheduling request 
and trying again, one of the two methods discussed below 
will be employed. 

Trading Off the WCET of the If-Time Server 
Initially the execution time of the if-time server is defined 
as the maximum of the if-time TAP execution times. 
While this guarantees that if the server is scheduled, each if-
time TAP will have a chance to execute, it is an extremely 
restrictive choice, forcing the scheduler to either allow all 
possible if-time TAPs (when the schedule was successful) 
or none (when the schedule was not successful). 

If a conflict occurs between the server and a required 
TAP, the Manager can reduce the execution time of the 
server to the greatest if-time TAP wcet value possible 
which removes the conflict. Chances are still good that 
time will be available to execute any if-time TAPs 
precluded from the server since schedules are built using 
worst case execution times. 

Prior i ty Scheduling 
Another way of incrementally relaxing the request from the 
Planner is to selectively remove required TAPs from the 
request A schedule request with the TAP combination of 
the next highest total priority is attempted. Differences 
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between the original request and a successful partial schedule 
are used by the Scheduler to provide more accurate feedback 
to the Planner. The Manager does not require further 
instruction from the Planner during this process. 

The priority of a TAP is originally set by the Planner to 
be proportional to the average of the probabilities of the 
world states from which that TAP might be executed. 
These priorities serve as an approximate representation of 
the Planner's search space, isolating the full complexities of 
the domain from the Scheduler. 

4.3 Scheduler/Planner Messages 
The Planner transmits scheduling requests consisting of 
TAP data and instructions for making scheduling trade-offs 
to the Scheduler. The Planner can currently select among 
two different primary instructions to the Scheduler: 

• S C H E D U L E - T H E S E - T A P S 
This instruction is followed by parameters which 
govern the scheduling process and scheduling data about 
the TAPs. Data for each TAP may include worst case 
execution time, separation constraint, and priority. 

• S C H D - P R E V - T A P S - N E W - P A R A M 
This instruction is followed by the new scheduling 
trade-off directives only. 

The parameters which the Planner may specify include: 

• I F - T I M E - S E R V E R 
This parameter allows the Planner to specify whether 
insertion of an if-time server into the schedule to be 
built is required, desired but not imperative, or not 
useful. This gives the Planner the capability of trading 
off the need for an if-time server if resources and/or 
deliberation time are constrained. The Planner wi l l 
usually require its insertion, unless "quick" replanning 
is required to respond to some emergency [Atkins, 
1997]. 

• T R A D E - O F F - S E R V E R - E X E C - T I M E 
This boolean indicates whether Scheduler trading-off of 
the server worst case execution time is permitted. 

• L E V E L S - O F - P R I O R I T Y - S C H E D U L I N G 
This parameter specifies how many different priority 
levels the Scheduler may analyze before aborting. 

The Planner also sends the Scheduler three probabilities: 
the maximum and minimum probabilities of the set of 
expanded states and the current threshold probability. Note 
that the current threshold probability is always less than or 
equal to the minimum expanded state probability. These 
probabilities are used during the Manager's binary search, as 
discussed in Section 4.2. 

The Scheduler wi l l return either a new suggested 
probability threshold or a successful schedule. A new 

threshold message can occur either when the Scheduler is 
over or under constrained: the new value being either greater 
than or less than the previous threshold, respectively. 

5 Testing Scheduler Feedback 
Extensions were introduced into the previous simulated 
flight domain knowledge base [Atkins et a/., 1996] to 
model more potential dangers, forcing the planning and 
scheduling of more preemptive TAPs. The addition to the 
knowledge base consisted of modeling the possibility of 
colliding with other air traffic at any point in the flight. 
Traffic was modeled in the system through the use of three 
actions (AC): a vo id- t ra f f ic , course-correct, and 
resume-heading. These actions are designed to preempt 
temporal transitions to failure (TTF) and rely on temporal 
transitions (TT) to function correctly together (Figure 2). 

Figure 2. CIRCA traffic avoidance world model. 

This complex chain of events requires the Planner to 
request scheduling of three additional TAPs. One of the 
Planner-Scheduler iteration cycles generated during the 
operation of CIRCA is presented for analysis. The original 
scheduling request sent from the Planner to Scheduler is 
shown below. 
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if-time server separation constraint bound to 9628 after the 
binary search. A rule within the Manager specifies that if a 
partial schedule is successfully made, the Manager should 
calculate a new threshold probability suggestion for the 
Planner and return it as feedback. In this case, the 
algorithms for calculating the new threshold generated the 
value of 0.057, which was returned to the Planner. 

The Planner, using the new threshold, replanned and 
submitted a new request to the Scheduler which was similar 
to the original request but with slight timing relaxations 
and without the previously troublesome TAP 2. This 
request was satisfied by the Scheduler, and the successful 
schedule was returned. 

By comparison, before the feedback mechanism was 
added, a scheduling failure caused the Planner to blindly 
increment its probability threshold by 0.1 and replan. This 
resulted in a successful but under-utilized schedule. There 
was no method for detecting under-utilization and 
subsequently decreasing the threshold, thus this non-optimal 
schedule was accepted and the system performed below its 
capabilities, potentially failing to react in time to a fatal 
situation which had been needlessly pruned during planning. 

6 Future Research 
An open question which needs to be addressed is the 
handling of under-utilized schedules. Tests of the current 
implementation have shown that in some cases the 
suggested probability threshold is too high. When this 
occurs, too many TAPs may be excluded from subsequent 
requests. To prevent this, the Scheduler (or Planner) must 
be able to ascertain when a valid schedule is under-utilized. 

In the future, the Planner should be provided with the 
capability to reason about what it should do given Scheduler 
feedback. This reasoning wi l l likely be domain dependent, 
and could be specified in the form of production rules which 
indicate user or designer preferences. Alternatively, the 
reasoning may borrow from decision theory, computing the 
expected utility for different courses of action and choosing 
the strategy which yields the most benefit. Currently the 
Planner blindly adopts whatever probability threshold 
suggestion or schedule the Scheduler sends back, which is 
not an ideal policy given the Scheduler's roughs indirect 
knowledge of states and their probabilities. 

7 Conclusions 
We have addressed the difficult problem of interfacing an AI 
planning system to a real-time scheduler by proposing, 
developing, and implementing an iterative feedback 
mechanism. This mechanism allows a large degree of 
decoupling between the scheduler and planner, enabling the 
two modules to each perform within its realm of expertise, 
communicating with mutually meaningful information in a 
controlled protocol to solve a global problem. 

Further refinement of the CIRCA-specific methods for 
calculating probability threshold feedback and detecting 
under-utilized schedules is needed. However, our scheduler 
feedback method gives the system an increased chance of 
efficiently meeting goals under resource constraints by 
providing quantitative knowledge to the planner, 
eliminating the need for blind search. This represents a 
crucial step towards the realization of a fully self-reliant 
real-time AI architecture capable of solving difficult real 
world control problems such as completely automated 
flight. 
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