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Optimal Task Assignment
in Homogeneous Networks

Cheol-Hoon Lee and Kang G. Shin, Fellow, IEEE

Abstract —This paper considers the problem of assigning the tasks of a distributed application to the processors of a distributed
system such that the sum of execution and communication costs is minimized. Previous work has shown this problem to be
tractable for a system of two processors or a linear array of N processors, and for distributed programs of serial parallel structures.
Here we focus on the assignment problem on a homogeneous network, which is composed of N functionally-identical processors,
each with its own memory. Some processors in the network may have unique resources, such as data files or certain peripheral
devices. Certain tasks may have to use these unique resources; they are called attached tasks. The tasks of a distributed program
should therefore be assigned so as to make use of specific resources located at certain processors in the network while minimizing
the amount of interprocessor communication. The assignment problem in such a homogeneous network is known to be NP-hard
even for N = 3, thus making it intractable for a network with a medium to large number of processors. We therefore focus on task
assignment in general array networks, such as linear arrays, meshes, hypercubes, and trees. We first develop a modeling technique
that transforms the assignment problem in an array or tree into a minimum-cut maximum-flow problem. The assignment problem is
then solved for a general array or tree network in polynomial time.

Index Terms —Array and tree networks, homogeneous networks, cutsets, maximum flows, network flow, task assignment.

——————————   ✦   ——————————

1 INTRODUCTION

N a general-purpose distributed system, the tasks of a
distributed application must be assigned to the proces-

sors in such a way that the system resources will be utilized
efficiently and certain cost will be minimized. Unfortu-
nately, this assignment problem is NP-complete for general
N-processor systems. Hence, the problem of finding a
minimum-cost assignment is computationally intractable
for all but small systems. We will therefore restrict the as-
signment problem to homogeneous arrays or trees, popular
multicomputer interconnection topologies, for which one
can derive tractable solutions. Our main result is the devel-
opment of an algorithm that solves the assignment problem
for an n-dimensional homogeneous array network of N (=
n1 � n2 � � � nn) processors or an N-processor tree network
in polynomial time.

Many researchers studied the problem of assigning tasks
of an application to the processors of a distributed system.
Stone [16] suggested an efficient optimal algorithm for the
problem of assigning tasks to two processors (two-processor
problem) by making use of the well-known network flow
algorithm in two-terminal network graphs. He showed
how the network flow model can be extended to systems
made up of three or more processors. For the three-
processor case, Stone and Bokhari [18] developed an algo-
rithm that finds an optimal assignment. This algorithm
works in most cases, but there are pathological cases for

which it fails to find an optimal assignment. Stone [17] also
developed an efficient algorithm for the two-processor
problem in which the load on one of the two processors is
varied. Bokhari [2] analyzed the problem of dynamic as-
signment for two-processor systems and transformed it into
a network flow problem under the assumption that all the
system characteristics are known for each phase of a dis-
tributed application. If the distributed application structure
is constrained in a certain way, one can find the optimal
assignment in a system of any number of processors in
polynomial time. When the structure is constrained to be a
tree, the shortest-tree algorithm developed by Bokhari [3]
yields an optimal assignment. Towsley [19] generalized
Bokhari’s results to the case of series-parallel structures.

All of the above work is well documented in [4] and im-
plicitly assumes the computing system to be fully-
connected, i.e., there exists a communication link between
any two processors. If a given distributed application is a
chain-structured parallel or pipelined program, it can be
optimally partitioned over a chain or ring of processors
subject to the constraint that each processor is assigned a
contiguous subchain of program modules [5], [15]. In this
case, the objective of assignment is to minimize the load of
a bottleneck processor rather than to minimize the total
load of the processors. This approach can also be used to
find an optimal global assignment of a set of independent
serial distributed programs over a single-host, multiple-
satellite system [5]. However, the general N-processor
problem (N > 3) in a fully-connected system is NP-complete
[3], [14], and hence, several heuristic methods [1], [13], [14]
have been proposed to solve the problem.

Recently, we proposed in [12] an optimal algorithm to
solve the problem of assigning interacting tasks to a linear
array network of an arbitrary number of processors. A linear

1045-9219/97$05.00 ©1997 IEEE

————————————————

• C.-H. Lee is with the Parallel Processing Laboratory, Department of Com-
puter Engineering, Chungnam National University, Daejon, 305-764, Korea.

• K.G. Shin is with the Real-Time Computing Laboratory, Department of Elec-
trical Engineering and Computer Science, the University of Michigan, Ann
Arbor, MI 48109-2122. E-mail: kgshin@eecs.umich.edu.

Manuscript received Oct. 13, 1994.
For information on obtaining reprints of this article, please send e-mail to:
transpds@computer.org, and reference IEEECS Log Number D95246.

I



120 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL.  8,  NO.  2,  FEBRUARY  1997

array network is composed of linearly-arranged processors,
i.e., when any two nonadjacent processors are to communi-
cate with each other, the intermediate processors between
them must participate in the communication. Thus, the
communication cost per unit information transferred be-
tween any two processors increases linearly with the dis-
tance between them. The task assignment problem in a lin-
ear array network is first transformed into a two-terminal
network flow problem, and then solved by applying the
network flow algorithm on the related two-terminal net-
work graph. This is a direct extension of Stone’s network
flow approach for the two-processor problem to the case of
a linear array of N processors.

The network considered here is homogeneous in the
sense that it is composed of multiple functionally-identical
processors, each with its own memory, joined by a certain
interconnection topology. Some processors in the network
may have unique resources such as data files or certain ex-
pensive peripheral devices, and thus, certain tasks may
have to be assigned to certain processors in order to take
advantage of their unique capabilities [7], [13]. The tasks of
a distributed application should therefore be assigned so as
to make use of specific resources of some processors in the
network while minimizing the amount of interprocessor
communication. (If there is no task requiring unique re-
sources, the problem becomes trivial, since the best solution
will be to assign all the tasks to any one processor.) While
this problem for a general homogeneous N-processor net-
work is NP-hard even for N = 3 [10], [14], there are certain
interconnection topologies for which it becomes tractable.

In this paper, we develop a modeling technique that
transforms the assignment problem into a minimum-cut
maximum-flow problem on an appropriately-defined net-
work flow graph representation. The network flow graph
can represent task communication costs in a way that is
dependent both on the interconnection topology and on
how the unique resources are distributed among the proc-
essors in the network. For an n-dimensional array network
with N (= n1 � n2 ��� � nn) processors or an N-processor
tree network, we can successfully apply the modeling tech-
nique. Thus, for both the general array network such as
linear arrays, meshes, hypercubes, n-dimensional arrays,
and trees, we can compute minimum-cost assignments in
polynomial time by using well-known, efficient network
flow graph algorithms.

The paper is organized as follows. In Section 2, we pres-
ent the system model and the assumptions used. The prob-
lem of assigning tasks to the processors in a homogeneous
network is also formally stated there. In Section 3, we pres-
ent a graph-theoretic modeling technique that transforms
the assignment problem for a general array network into a
minimum-cut maximum-flow problem based on an appro-
priately-defined network flow graph representation. We
then propose an algorithm using the modeling technique
that solves the assignment problem for the general array
network in polynomial time. Section 4 shows that the mod-
eling technique can also be applied to trees. The paper con-
cludes with Section 5.

2 PROBLEM STATEMENT

A homogeneous network is composed of N functionally-
identical processors p1, p2, �, pN, each with its own mem-
ory, joined by an interconnection network. The distance, dk,l,
between two processors pk and pl is defined as the mini-
mum number of links connecting them, e.g., the distance
between any two adjacent processors is equal to 1. When
two nonadjacent processors pk and pl (dk,l > 1) are to com-
municate with each other, the intermediate processors be-
tween them must participate in the communication.

Even in a homogeneous network, it is desirable to avoid
duplicating resources such as data files or certain expensive
peripheral devices [7], [13]. We therefore assume that some
processors have certain unique capabilities in the network.
It is also assumed that each unique capability exists in one
and only one processor in the network. Some tasks may
have to be assigned to certain fixed processors in order to
exploit their unique capabilities. Considering this fact, we
classify tasks into two categories:

1) “attached tasks” that can only be assigned to certain
processors;

2) “general tasks” that can be assigned to any processor
in the network.

The notation ti À pk is used to denote that task ti is “attached”
to processor pk. The processors may be multiprogrammed,
may concurrently execute different programs, but may not
concurrently execute the same program.

A distributed application P to be executed on such a net-
work of processors consists of M interacting tasks t1, t2, �, tM.
The execution cost of ti is assumed to be known a priori and is
denoted as Ei > 0. The execution cost, Ri,k, of ti on processor pk is
then equal to Ei if ti is a general task. If ti cannot be executed by
pk, then its execution cost Ri,k on pk is set to be infinite.

The interaction among the tasks in P is represented by a
task interaction graph (TIG), in which nodes correspond to
the tasks in P and there is an edge between two nodes if
and only if the corresponding tasks interact. For each pair
of tasks, ti and tj, in the TIG, we define Wi,j(= Wj,i) as the
communication volume, measured in number of packets,
between ti and tj during their execution. Obviously, if there
is no edge between ti and tj in TIG then Wi,j = 0. An example
TIG of seven tasks, to be executed by a 2 � 3 array network
(Fig. 1a), is shown in Fig. 1b with the execution costs shown
in Fig. 1c, where t1 À p1,1, t3 À p2,2, and t7 À p1,3.

The communication cost in executing a set of tasks is de-
fined as the sum of time units each communication link is
used during the execution. In other words, the communi-
cation cost is a measure of the link resources used by an
instance of execution expressed in time units. Suppose c(,)
is the number of time units needed to send a packet over a
path of length/distance ,, and the time a link is kept busy
for purposes other than packet transmission—such as es-
tablishing a communication path—is assumed to be negli-
gible. For packet-switched networks, it is obvious that we
have c(,) = ,c(1). This relation may be less accurate in case
of circuit switching. However, if the “call request” signal to
hunt for a free path occupies each link only for a very short
time, then this expression would be a good approximation
for circuit-switched networks [20].
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Fig. 1. A program graph on a 2 � 3 array network and the correspond-
ing execution costs.

Without loss of generality, we define c(1) as the unit of
communication cost (i.e., the link usage by one packet trav-
ersing one link). Thus, if two interacting tasks ti and tj are
assigned to two different processors pk and pl, respectively,
then the two tasks will incur the interprocessor communi-
cation cost, Wi,j ¹ dk,l. We assume that the communication
cost between two tasks assigned to the same processor is
negligible, since all interprocess communication is done by
reading from and/or writing to memory as opposed to
message passing via (multiple) communication links. (The
latter takes much longer than the former.)

We use an assignment function X : ti � pX(i) to represent
an assignment of the M tasks in TIG to the N processors in
the network. The cost of an assignment X is the sum of the
total execution and communication costs:

COST X EXEC X COMM X

R W di X i
i

M

i j X i X j
i j

a f a f a f

a f a f b g

= +

= + ◊
= <
Â Â, , ,

.
1

An assignment X is said to be feasible if every task is execu-
table under the assignment X, i.e., ti À pX(i) for all attached

tasks tis. For every feasible assignment X, the total execu-

tion cost incurred by the assignment is equal to Çi Ei and is
constant regardless of assignment. However, a different
assignment will lead to a different communication cost. A
feasible assignment for the example in Fig. 1 is shown in
Fig. 2, where the total execution and communication costs
of the assignment are 185 and 265, respectively. Note that
the distance between two processors pk k1 2,  and pl l1 2,  in Fig. 2

is |k1 − l1| + |k2 − l2|. Therefore, the task assignment problem
in homogeneous networks is the problem of finding a feasi-
ble assignment Xo with the minimum communication cost,
i.e., COMM X COMM Xo X

( ) min ( )= .

The task assignment problem in homogeneous networks
is intrinsically hard. Note that when the interconnection
topology of an N processor network is fully-connected and

every processor in the network has exactly one attached
task, the task assignment problem is equivalent to the fol-
lowing N-cut problem with specified vertices: given an un-
directed graph G, find a minimum weight N-cut which,
when deleted, partitions the graph into exactly N compo-
nents each of which contains exactly one of the given N
vertices. The N-cut problem with specified vertices is NP-
hard even for N = 3 [10], [14]. Thus, there is no known
polynomial-time algorithm to find an optimal assignment
in a general homogeneous network of N � 3 processors.
However, the modeling technique to be presented in the
next two sections has a polynomial worst-case bound on
homogeneous array or tree networks.

3 ASSIGNMENT IN ARRAY NETWORKS

In this section, we develop a modeling technique that trans-
forms the assignment problem in a homogeneous array
network of N processors into a minimum-cut maximum-
flow problem. The main idea of this technique is to con-
struct a network-flow graph for the assignment problem in
such a way that every feasible assignment is represented by
a set of cutsets each on an appropriately-defined network-
flow graph, and that the total weight of the cutsets is equal
to the total communication cost of the assignment. Thus, an
interpretation of the cutsets with the minimum total weight
determines the assignment of tasks to processors with
minimum total communication cost. In the next section, this
modeling technique is applied to tree networks by slightly
modifying the network-flow graph representation.

An n-dimensional homogeneous array is composed of N
(= n1 � n2 � � � nn) functionally-identical processors

{ , , ,p k nk k k i in1 2
1L £ £ , for all i}

with a communication link between each pair of processors
p pk k k l l ln n1 2 1 2, , , , , ,,L L  if and only if |kj − lj | = 1 for some jth co-

ordinate and ki = li for the other coordinates 1 � i(� j) � n.
The distance between any two processors pk k kn1 2, , ,L  and

pl l ln1 2, , ,L  becomes Çi |ki − li |.

3.1 The Cutset Formulation
Given the TIG = (V, E) of a distributed application submitted
to an n1 � n2 � � � nn array, we first generate a corresponding

N(= n1 � n2 � � � nn)-terminal network graph GN = (VN, EN).

Fig. 2. A feasible assignment X (COMM(X) = 265).
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The N-terminal network graph GN is obtained from the TIG by
adding N terminal nodes each of which corresponds to each
processor, i.e., V V p k nN k k k i in

= £ £U L{ , , ,1 2
1 , for all i} and

EN = E. We denote by Pi,j the set of processor nodes whose ith
coordinate is less than or equal to j, and by Pi j,  the set of the

other processor nodes, i.e., Pi j k k k ip k j
n, , , ,{ }= £ £

1 2
1L  and

Pi j k k k i ip j k n
n, , , ,{ }= < £

1 2 L . For a (2 � 3) two-dimensional

array network, for example, P1,1 = {p1,1, p1,2, p1,3}, P2,1 = {p1,1,

p2,1}, P2,2 = {p1,1, p1,2, p2,1, p2,2}. For each ith coordinate, we build

(ni − 1) two-terminal network graphs Gi,js, 1 � j < ni, from the

N-terminal network graph GN as follows.

1) Generate a node Si,j by combining all the processor
nodes in Pi,j and all the task nodes which are attached
to one of these processors, i.e.,

S t t p pi j i j a a k k k k k k i jn n, , , , , , , ,= fi ŒP PU L L1 2 1 2
 and { } .

2) Generate a node Ti,j by combining all processor nodes
in Pi j,  and all the task nodes which are attached to one

of these processors, i.e.,

T t t p pi j i j b b l l l l l l i jn n, , , , , , , , ,= fi ŒP PU L L1 2 1 2
 and { } .

Each node Si,j is called a source node and Ti,j a sink node of the
corresponding two-terminal network graph Gi,j. For exam-
ple, given a seven-task TIG to be executed on the 2 � 3 array
network in Fig. 1, Fig. 3 shows the resulting (2 � 3)-terminal
network graph G2�3 and its corresponding three two-
terminal network graphs with their cutsets defined as fol-
lows. In Fig. 3, tasks t1, t3, and t7 are attached to specific
processors, and the others are general tasks.

Fig. 3. The (2 � 3)-terminal network graph G2�3 and three two-terminal
network graphs. Tasks t1, t3, and t7 are attached to processors p1,1,
p2,2, and p1,3, respectively.

DEFINITION 1. A cutset Ci,j of the two-terminal network graph Gi,j

= (Vi,j, Ei,j) is a set of edges which when deleted, separate $
,Si j

from $
,Ti j  such that $ $

, ,S Ti j i jI = ∆ , $ $
, , ,S T Vi j i j i jU = ,

S Si j i j, ,
$Œ , and T Ti j i j, ,

$Œ . $
,Si j  is called the source set and

$
,Ti j  the sink set of the cutset. The weight of a cutset is the

total weight of the edges in the cutset.

Two cutsets Ci,j and Ck,l are said to cross each other if and

only if each of the four sets $ $
, ,S Si j k lI , $ $

, ,S Ti j k lI , $ $
, ,T Si j k lI ,

and $ $
, ,T Ti j k lI  contains at least one node.

DEFINITION 2. For each ith coordinate, let &i be a set of (ni − 1)
cutsets Ci,js each of which is on the corresponding two-
terminal network graph Gi,j, i.e., &i = {Ci,j |1 � j < ni}. Then
&i is said to be admissible if no two cutsets in &i cross each
other. The weight of &i, W(&i), is the total weight of the
cutsets in &i, i.e., W(&i) = Çj W(Ci,j).

DEFINITION 3. Let CA be the set of all cutsets Ci,js, i.e., CA = �i &i
= {Ci,j |1 � i � n, 1 � j < ni}. Then CA is said to be admissi-
ble if each &i is admissible. The weight of CA is the total
weight of the cutsets in CA, i.e., W(CA) = Çi W(&i) =
ÇiÇjW(Ci,j).

For example, a (2 � 3)-terminal network graph G2�3 and a

two-terminal network graph G2,1 are presented in Figs. 4a
and 4b, respectively, where the program graph TIG is just
approximated by the outer circle. In Fig. 4b, TS (TT) is the
set of tasks which are attached to one of the processors in
P P2 1 2 1, ,( ). Fig. 4c shows three cutsets C1,1, C2,1, and C2,2, each
of which is on the corresponding two-terminal network
graph. Note that &1, &2 in Fig. 4c are all admissible.

Fig. 4. (2 � 3)-terminal and two-terminal network graphs with cutsets.

LEMMA 1. Each admissible set CA one-to-one corresponds to a
feasible task assignment.

PROOF. First, we prove that, for any admissible set CA, the
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corresponding assignment X is feasible, and then
show that a feasible assignment produces an admissi-
ble set CA. For each ith coordinate, the ni − 1 cutsets in

&i partition the node set VN into ni disjoint subsets

since &i is admissible. Therefore, all the cutsets in CA

partition VN into at most N nonempty subsets. For
any pair of processor nodes pk k kn1 2, , ,L  and pl l ln1 2, , ,L ,

without loss of generality, we can let ki < li for some i.
Then these two processor nodes are separated by the
cutset Ci ki, . This means that every pair of nodes are

separated by the cutsets in CA. Thus, the node set VN

is partitioned into at least N subsets by the cutsets in
CA, because there are N processor nodes in VN. VN is
therefore partitioned into exactly N subsets by the
cutsets in CA, each of which contains exactly one proc-
essor node. Let Ak k kn1 2, , ,L  be the subset that contains

pk k kn1 2, , ,L . Then CA corresponds to the assignment X

where all tasks in Ak k kn1 2, , ,L  are assigned to pk k kn1 2, , ,L .

For each attached task t pi k k kn
fi

1 2, , ,L , it is not sepa-

rated from pk k kn1 2, , ,L  by any cutset since ti and

pk k kn1 2, , ,L  are combined into a single node in every

two-terminal network graph by the above procedure.
Therefore, the corresponding assignment X is feasible.
Conversely, from a feasible assignment X, we can cre-
ate the collection of cutsets. It is obvious that the set of
created cutsets is admissible since no two cutsets can
cross each other. So, each admissible set CA one-to-one
corresponds to a feasible task assignment. �

LEMMA 2. Let an admissible set CA correspond to a feasible as-
signment X. Then the weight of CA is equal to the total
communication cost of X.

PROOF. We denote by X(a)i the value of the ith coordinate of
the processor to which task ta is assigned under X.
Then, the total communication cost of the assignment
X is such that

COMM X W d

W X a X b

W X a X b

W

W C

W

a b X a X b
a b

a b i i
i

n

a b

a b i i
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j X b n
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thus proving the lemma. �

For example, the three cutsets in Fig. 4c correspond to
the feasible assignment X where every task in each subset
Ai,j is assigned to processor pi,j. The total communication
cost of the assignment X is the sum of the weights of the
cutsets, i.e., COMM(X) = W(C1,1) + W(C2,1) + W(C2,2). Lem-
mas 1 and 2 say that the task assignment problem in an n-
dimensional array network is equivalent to the problem of
finding the minimum-weight admissible set CAo on the cor-
responding N-terminal network graph. In what follows we
present the solution to this problem.

3.2 The Solution
From the correspondence of an admissible set CA to a feasible
assignment X, we can see that the value of the ith coordinate
of the processor to which each task ta is assigned (i.e., X(a)i) is
uniquely determined by the cutsets in an admissible set &i.
Consider an (n1 � n2) two-dimensional array network. (We
can easily generalize to three or more dimensions.) We can
build (n1 – 1) two-terminal network graphs on columns and
(n2 – 1) two-terminal network graphs on rows. The column
problems determine which tasks are assigned to column 1
through i and which are assigned to columns i + 1 through n1
for each cutset C1,i, 1 � i < n1. Gomory and Hu [11] showed
that minimum-weight cutsets do not have to cross each other.
Hence, if all the column cutsets are minimum-weight cutsets
on their corresponding two-terminal network graphs, we can
determine uniquely to which column each task is assigned.
By doing the same process for rows, we can determine
uniquely to which row each task is assigned. We now show
that if every cutset Ci,j in a set CA is a minimum-weight cutset
on the corresponding two-terminal network graph Gi,j, then
CA is a minimum-weight admissible set CAo and it corre-
sponds to an optimal assignment Xo. A minimum-weight
admissible set CAo is obtained by the following procedure.

procedure : ASSIGN_ARRAY

for i := 1 to n do

1) Si,0 := ¨;
2) for j := 1 to ni – 1 do

a) S S p k ji j i j k k k in, , , , ,: { }= =-1 1 2
U L ;

T p j k ni j k k k i in, , , ,: { }= + £ £
1 2

1L ;

b) for every attached task ta, say t pa k k kn
fi

1 2, , ,L , if ki = j

then Si,j := Si,j < {ta}, else if ki > j then Ti,j := Ti,j < {ta};

c) find a minimum-weight cutset Ci,j of the two-

terminal network graph Gi,j = (Vi,j, Ei,j) which

separates $
,Si j  from $

,Ti j  such that $ $
, ,S Ti j i jI = ∆ ,

$ $
, , ,S T Vi j i j i jU = , and such that S Si j i j, ,

$Õ  and

T Ti j i j, ,
$Õ ;

d) for every task ta in $
,Si j , if t Sa i jœ -

$
, 1  then Si,j := Si,j

< {ta} and X(a)i := j;
endfor

3) for every task ta in $
,Ti ni -1 , X(a)i := ni;

endfor

end.



124 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL.  8,  NO.  2,  FEBRUARY  1997

For example, given a seven-task TIG to be executed on the
2 � 3 array network in Fig. 1, the resulting (2 � 3)-terminal
network graph G2�3 and its corresponding three two-terminal
network graphs with their cutsets are presented in Fig. 3.
Note that each cutset Ci,j in Fig. 3 is a minimum-weight cutset
in Gi,j. The following lemmas and theorem enable us to use
the network-flow algorithm to find a minimum-cost assign-
ment. The proof technique is similar to the proof technique
used by Gomory and Hu [11].

LEMMA 3. Let a set CA = {Ci,j |1 � i � n, 1 � j � ni – 1} found in
the procedure ASSIGN_ARRAY correspond to a task as-
signment X. Then the assignment X is feasible; that is, CA
is admissible.

PROOF. For each ith coordinate, every task ta in $
,Si j  in Step 2.d

for the jth iteration, 1 � j < ni – 1, of the inner for loop is

contained in Si,j+1 by Step 2.a at the (j + 1)th iteration.

Thus, every task ta (Œ $
,Si j ) must be in $

,Si j+1  by the cutset

Ci,j+1 found at Step 2.c. Consequently, a set CA found in
the procedure ASSIGN_ARRAY is admissible. �

LEMMA 4. Let a set CA = {Ci,j |1 � i � n, 1 � j � ni – 1} found in
the procedure ASSIGN_ARRAY correspond to a feasible
assignment X. Then, for any feasible assignment X’, the
following inequality holds for each ith coordinate:

W W ja b
X a j

j X b n

c d
X c j

j X d n
i

i i

i

i i

, , ,
1 1£ £
< £

£ ¢ £
< ¢ £

Â Â£
a f
b f

a f
b f

   for all .

PROOF Each cutset Ci,j in CA is a minimum-weight cutset of

Gi,j and separates $
,Si j  from $

,Ti j . Every task in $
,Si j  is as-

signed to one of the processors pk’s, 1 � ki � j, and

every task in $
,Ti j  is assigned to one of the processors

pl’s, j + 1 � li � ni by the procedure ASSIGN_ARRAY.

Then the weight of the cutset Ci,j, W(Ci,j), is:

W C Wi j a b
X a j

j X b n
i

i i

, ,e j
a f
b f

=
£ £
< £

Â
1

.

We prove the inequality by induction on j.

1) The result is true if j = 1, since Ci,1 is a minimum-
weight cutset.

2) Suppose it holds for j = k – 1. Without loss of gen-
erality, assume that the task nodes are partitioned
into two subsets A and B by the minimum cutset
Ci,k-1 as shown in Fig. 5a. Let c(A, B) denote the sum
of the weights of all edges between two sets A and
B. Then, W(Ci,k-1) = c(A, B). By the procedure AS-
SIGN_ARRAY, the next cutset Ci,k cannot partition
the task nodes in A any more since every task node
in A is already included into Si,k at the kth iteration
of the inner for loop of the procedure. Let Ci,k par-
tition the task nodes into two subsets A< B2 and ¢B2
(see Fig. 5b), i.e.,

W C c A B c B B

c A B c A B c B B

i k, , ,

, , , ,

d i c h c h
c h c h c h

= ¢ + ¢

= ¢ + ¢ ¢ + ¢

2 2 2

1 2 1 2 2 2

where A A A1 1U ¢ = and B B B2 2U ¢ = . (Each of the
subsets may be empty, but this will not alter the
proof.) We prove this by contradiction. Suppose
the inequality does not hold for j = k. Then there
exists another feasible assignment X’ which parti-
tions the task nodes into two subsets A1 < B1 and

¢ ¢A B1 1U , where B B B1 1U ¢ =  (see Fig. 5c), such that

c A A c A B c B A c B B1 1 1 1 1 1 1 1, , , ,¢ + ¢ + ¢ + ¢c h c h c h c h
< ¢ + ¢ ¢ + ¢c A B c A B c B B1 2 1 2 2 2, , ,c h c h c h .       (3.1)

Every task in ¢A1  is executable on at least one of pl’s

for k + 1 � li � ni, since X’ is feasible. Thus, the cut-
set ¢ -Ci k, 1  shown in Fig. 5d is a cutset of a feasible

assignment which assigns every task in A1 to one

of pl’s for 1 � li � k – 1 and every task in ¢ ¢A B B1 1 1U U

to one of pl’s for k � li � ni. Then
W C W Ci k i k( ) ( ), ,- -£ ¢1 1  by the assumption for j = k –
1, i.e.,

c A B c A B c A B c A B1 1 1 1 1 1 1 1, , , ,c h c h c h c h+ ¢ + ¢ + ¢ ¢
£ ¢ + + ¢c A A c A B c A B1 1 1 1 1 1, , ,c h c h c h .        (3.2)

Every task in B1 is executable on at least one of pl’s

for k � li � ni, since X is feasible. Also, every task in

B1 is executable on at least one of pl’s for 1 � li � k,

since X’ is feasible. Thus, every task in B1 is execu-

table on pl, li = k. The cutset ¢Ci k,  in Fig. 5d is a pos-

sible cutset in Gi,k which assigns every task in B1 to

pk (we assumed that every task in A A1 1U ¢  has al-

ready been assigned to one of the processors pl’s,

for 1 � li � k – 1, by the cutsets Ci,1, Ci,2, �, Ci,k-1).

Then W C W Ci k i k( ) ( ), ,£ ¢  since Ci,k is a minimum-

weight cutset in Gi,k, i.e.,

c A B c A B c B B1 2 1 2 2 2, , ,¢ + ¢ ¢ + ¢c h c h c h
£ ¢ + ¢ ¢ + ¢c A B c A B c B B1 1 1 1 1 1, , ,c h c h c h .   (3.3)

By combining the above three inequalities (3.1),
(3.2), and (3.3), we obtain the following inequality:

c A B¢ <1 1 0,c h .

This contradicts the fact that the weight between
any two subsets cannot be negative. Thus, the ine-
quality holds for j = k. �

THEOREM 1. Let a set CA = {Ci,j | 1 � i � n, 1 � j � ni – 1} found in
the procedure ASSIGN_ARRAY correspond to a feasible as-
signment X. Then the assignment X is an optimal assign-
ment with the total communication cost of S Si j i jW C( ), .

PROOF By contradiction, assume that X is not an optimal
assignment. Let another feasible assignment X’ be an
optimal assignment, i.e., COMM(X’) < COMM(X).
Then there exists at least one j, 1 � j � ni – 1, for at least
one coordinate i, 1 � i � n, such that
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This is contradictory to Lemma 4, and hence, X is an
optimal assignment. The total communication cost of X
is ÇiÇjW(Ci,j) by Lemma 2. Thus, the theorem follows.�

In the above example shown in Fig. 3, the cutsets C1,1,
C2,1, and C2,2 corresponds to the optimal assignment, where
t1 is assigned to p1,1, t2 and t4 to p1,2, t5 and t7 to p1,3, t3 to p2,2,
and t6 to p2,3, as shown in Fig. 6. The total weight of the cut-
sets, ÇiÇjW(Ci,j), is 150 which is equal to the total commu-
nication cost of the assignment. Since a set CA of mini-
mum-weight cutsets Ci,js found in the procedure
ASSIGN_ARRAY corresponds to a feasible assignment
with the minimum total communication cost by Theorem 1,
the solutions to the task assignment problem for homoge-
neous array networks can be found in polynomial time.
There exist many algorithms [6], [8], [9] that find efficiently
the minimum cutset of a two-terminal network graph,
started by Ford and Fulkerson [8]. The best known algo-
rithm is proposed by Goldberg and Tarjan [9] with the time
complexity of O(EV log(V2/E)), where E and V are the
number of edges and the number of nodes of the network
graph, respectively. Each two-terminal network graph devel-
oped in the previous subsection has at most (M + 2) nodes
and M(M – 1)/2 edges, where M is the number of tasks.
Thus, we can find each of the Çi(ni – 1) minimum-weight cut-
sets in time no worse than O(M3). Therefore, the task assign-
ment problem for a homogeneous n-dimensional array net-
work can be solved in time no worse than O(Çi(ni – 1)M3) by
applying the network-flow algorithm to each of the Çi(ni – 1)
two-terminal network graphs constructed in the procedure
ASSIGN_ARRAY. The hypercube is a special case of the
array network, i.e., ni = 2 for all i. Thus, we can solve the
task assignment problem in an n-dimensional hypercube
with N = 2n processors in time no worse that O(nM3).

4 ASSIGNMENT IN TREE NETWORKS

A homogeneous tree network is composed of N functionally-

identical processors p1, p2, �, pN connected via a tree struc-
ture with N – 1 communication links. There is only one path
between any two processors pk and pl in a tree, since there is
no cycle in a tree. The distance between two processors is
then the number of links in the path connecting them.

4.1 The Cutset Formulation
For tractability, we arrange the processors in depth-first
search order. Given an undirected processor graph GT =

(VT, ET) with N nodes representing processors and N – 1
edges representing communication links between the proc-
essors in the network, we first choose an arbitrary processor
node as the root. Then, we assign a new ID number (starting
from 1) to each processor node in sequence as they are vis-
ited by the postorder traversal algorithm. For example, a
tree network of 14 processors is shown in Fig. 7a with new
IDs. From now on, we will use the new ID for each proces-
sor. The ancestors of a node pk are all the nodes along the

path from pk to the root node. The parent of a node is the

first node visited along the path to the root node. If node pk

is an ancestor (parent) of node pl, then we call pl a descen-

dent (child) of pk. Note that every node is assigned a higher

ID than its descendents. Also, for each pair of processors pk

and pk+1, pk+1 is a parent of pk or pk+1 is a leaf node. Let ,k be

the communication link between pk and its parent node.

Then each ,k separates pk with all its descendents from the

other processor nodes. We denote by Pk the set of a proces-

sor node pk and all of its descendents, and by Pk  the set of
the other nodes, i.e., P Pk k TVU = . In Fig. 7a, the communi-

cation link between p4 and p8 is l4, and P4 = {p1, p2, p3, p4}
and P4 5 6 14= { , , , }p p pL .

Given the TIG = (V, E) of a distributed application sub-
mitted to an N-processor tree, we first make a correspond-
ing N-terminal network graph GN = (VN, EN), by adding all
the processor nodes to the TIG as was done for the array
network. Then, we construct (N – 1) two-terminal network
graphs Gis, 1 � i < N, from the N-terminal network graph
GN as follows.

1) Generate a source node Si by combining all the proc-
essor nodes in Pi and all the task nodes which are at-
tached to one of these processors.

Fig. 5. Illustrative figures for Lemma 4.

Fig. 6. The optimal assignment Xo (COMM(Xo) = 150).
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2) Generate a sink node Ti by combining all the proces-
sor nodes in Pi  and all the task nodes which are at-
tached to one of these processors.

Note that the root node pN is always combined with the

sink node Ti, since pN iŒ P  for all 1 � i < N. For example, a

two-terminal network graph G7 for the example in Fig. 7a is

shown in Fig. 7b with its cutset C7.

Fig. 7. An example.

DEFINITION 4. Let CT be a set of (N – 1) cutsets Cis each of which
is on the corresponding two-terminal network graph Gi.
Then CT is said to be admissible if no two cutsets in CT
cross each other.

LEMMA 5. Each admissible set CT one-to-one corresponds to a
feasible task assignment.

PROOF. Each admissible set CT of a graph GN partitions the
nodes of GN into N subsets Aks each of which has ex-
actly one processor node pk. Then we can associate CT
with the assignment that every task in Ak is assigned
to pk, and vice versa.                                                        �

LEMMA 6. Let an admissible set CT correspond to a feasible as-
signment X. Then the weight of CT is equal to the total
communication cost of X.

PROOF. The communication cost imposed on each link ,i
under the assignment X, comm(X, li), is equal to the
weight of the corresponding cutset Ci. Then the total
communication cost is the sum of the communication

costs imposed on all the links, i.e.,

COMM X comm X l W C Wi
i

N

i
i

N

Ta f c h c h c h= = =
=

-

=

-

Â Â,
1

1

1

1

C .

This proves the lemma.                                                  �

4.2 The Solution
In what follows, we show that if every cutset Ci in an ad-
missible set CT is a minimum-weight cutset on the corre-
sponding two-terminal network graph Gi, then CT is a
minimum-weight admissible set CTo and it corresponds to
an optimal assignment Xo. The correctness follows for the
same reason as for array networks. Each cutset in the tree
determines if a task is assigned to a particular subtree or
not. Since minimum-weight cutsets do not have to cross
each other, we can determine uniquely to which processor
each task is assigned. A minimum-weight admissible set
CTo is obtained by the following procedure.

procedure : ASSIGN_TREE

1) declare that every task is not assigned;
2) for i := 1 to N – 1 do

a) Si := Pi; Ti i: = P ;

b) for every task ta, if it is attached or assigned to

one of the processors in Pi then Si := Si < {ta}, else
if it is attached or assigned to one of the proces-
sors in Pi  then Ti := Ti < {ta};

c) find a minimum-weight cutset Ci of the two-

terminal network graph Gi = (Vi, Ei) which sepa-

rates $Si  from $Ti  such that $ $S Ti iI = ∆ , $ $S T Vi i iU = ,

and such that S Si iÕ $  and T Ti iÕ $ ;

d) for every unassigned task ta in $Si , declare that it is

assigned to pi;
e) endfor

3) declare that all the unassigned tasks are assigned to
pN;
end.

LEMMA 7. Let a set CT = {Ci | 1 � i < N} found in the procedure
ASSIGN_TREE correspond to a task assignment X. Then
the assignment X is feasible; that is, CT is admissible.

PROOF: For each ith iteration, every unassigned task in $Si  is

assigned to pi at Step 2.d. Any cutset Cj, i < j, cannot

partition $Si  any more, since every assigned task is

contained in Sj or Tj at Step 2.b for the jth iteration.
Therefore, any two cutsets found by the procedure
ASSIGN_TREE do not cross each other.                       �

LEMMA 8. Let a set CT = {Ci | 1 � i < N} found in the procedure
ASSIGN_TREE correspond to a feasible assignment X.
Then, for any feasible assignment X’, the following ine-
quality holds for each communication link ,i:

comm(X, li) � comm(X′, li), for all i.

PROOF. We prove the inequality by induction on i. The proof
is similar to the proof technique used in Lemma 4.
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1) The result holds if i = 1, since Ci is a minimum-
weight cutset.

2) Suppose it holds for 1 � i � k – 1. Without loss of
generality, we can assume that the task nodes are
partitioned into three subsets X, Y, and Z, such that
each task in X or Y is assigned to one of the proces-
sors in PX or PY, respectively, by the (k – 1) mini-
mum cutsets Cjs, 1 � j � k – 1, as symbolically
shown in Fig. 8a, where

P P

P

P P P

X k k

Z l

Y T k Z

p

p l k

V

= -

= >

= - -

m r
n s

,

,

.

 and

Then, by assumption 2, the cutset CX (CY) in Fig. 8a is
a minimum cutset on the corresponding two-terminal
network graph GX (GY) where PX ¯ SX (PY ¯ SY) and
all the other processor nodes are in TX (TY). Note that
if pk is a leaf node then both of the sets PX and X be-
come empty, but this will not alter the proof. Let Ck
partition the task nodes into two subsets X < Z1 and
Z2 < Y (see Fig. 8b), i.e.,

W C comm X l

c X Z c X Y c Z Z c Z Y

k kc h c h
c h a f c h c h

=

= + + +

,

, , , , .2 1 2 1

where Z1 < Z2 = Z. Suppose the inequality does not
hold for i = k. Then there exists another feasible as-
signment X’ which partitions the task nodes into two
subsets X1 < Z11 < Z21 < Y1 and X2 < Z12 < Z22 < Y2
(see Fig. 8c), such that

comm X l W C comm X l W Ck k k¢ = ¢ < =, ,c h a f c h c h ,    (4.1)

where X1 < X2 = X, Z11 < Z12 = Z1, Z21 < Z22 = Z2, and
Y1 < Y2 = Y. Then, every task in X2, Z12, Z21, and Y1
must not be an attached task, since both X and X’ are
feasible assignments. The three cutsets ¢ ¢C CX Y, , and ¢Ck
shown in Fig. 8d are all possible cutsets on the corre-
sponding two-terminal network graphs GX, GY, and
Gk, respectively. Since each of the cutsets CX, CY, and
Ck is a minimum cutset, the following three inequali-
ties hold:

W C W CX Xc h c h£ ¢ ,          (4.2)

W C W CY Yc h c h£ ¢ ,          (4.3)

W C W Ck kc h c h£ ¢ .         (4.4)

By combining the four inequalities (4.1), (4.2), (4.3),
and (4.4), we obtain:

c(X2, Z11 < Z21 < Y1) + c(Z12 < Z22, Y1) < 0.

This is a contradiction since all weights are nonnega-
tive. Thus, the inequality holds for i = k and the ine-
quality holds for all i by the principle of induction. �

THEOREM 2. Let a set CT = {Ci | 1 � i < N} found in the procedure
ASSIGN_TREE correspond to a feasible assignment X.
Then, the assignment X is an optimal assignment with the
total communication cost of ÇiW(Ci).

PROOF. By contradiction, assume that X is not an optimal
assignment. Let another feasible assignment X’ be an
optimal assignment, i.e., COMM(X’) < COMM(X).
Then there exists at least one i, 1 � i < N, such that
comm(X’, li) < comm(X, li). This is contradictory to the
result of Lemma 8, and thus, X is an optimal assign-
ment. The total communication cost of X is ÇiW(Ci) by
Lemma 6.                                                                            �

Theorem 2 says that the optimal task assignment in a
homogeneous tree network of N processors can be found
by applying the network-flow algorithm N – 1 times each
on the corresponding two-terminal network graph. Each
two-terminal network graph (as developed in the previous
subsection) has at most M + 2 nodes and M(M – 1)/2 edges.
Therefore, the task assignment problem for an N-processor
tree network can be solved in time no worse than O(NM3)
by applying the network-flow algorithm to each of the N – 1
two-terminal network graphs. For example, consider a five-
processor tree network and a nine-task TIG as shown in
Figs. 9a and 9b, respectively, where t1, t6, t8, and t9 are at-
tached to p1, p3, p2, and p4, respectively. The optimal as-
signment for this example is presented in Fig. 10, where t1
and t3 are assigned to p1, t8 to p2, t2 and t6 to p3, t9 to p4, and
t4, t5 and t7 to p5. The total communication cost of the as-
signment is 185 which is equal to the sum of the weights of
the cutsets, i.e., COMM(Xo) = W(C1) + W(C2) + W(C3) +
W(C4) = 45 + 50 + 45 + 45 = 185.

We have assumed that the distance between each proc-
essor pi and its parent pparent(i) in a tree network is equal to 1,
i.e., di,parent(i) = 1. But this restriction can be relaxed to any
di,parent(i) > 0, since Theorem 2 and all lemmas in this section
hold even for the relaxed case. In such case, the set CT
found in the procedure ASSIGN_TREE corresponds to an
optimal assignment with the minimum total communica-
tion cost of ÇiW(Ci) ¹ di,parent(i).

5 CONCLUSION

The problem of assigning the tasks of a distributed applica-
tion to the processors of a distributed system is in general
NP-complete. The problem is shown to be tractable only for
a system of two processors [16] or a linear array of N proc-

Fig. 8. Illustrative figures for Lemma 8.



128 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL.  8,  NO.  2,  FEBRUARY  1997

essors [12], and for distributed programs in which inter-
task relationships are constrained in certain ways [3], [19].
In this paper, we investigated the assignment problem in
homogeneous networks in the presence of attached tasks.
We showed that the assignment problem in an N-processor
homogeneous network may be tractable for certain inter-
connection topologies and may not be tractable for others.

Our investigation of the problem has led to the develop-
ment of a modeling technique that is sensitive to the inter-
connection topology, and transforms the assignment problem
to a minimum-cut maximum-flow problem. We applied the
modeling technique successfully to solve the problem of as-
signing M tasks in an n-dimensional array and an N-
processor tree in time no worse than O(Çi(ni –1)M3) and
O(NM3), respectively.

Since the assignment problem for both the array and tree
networks has an efficient solution, the problem for certain
other topologies is likely to be tractable. It may be possible
to apply our graph-theoretic modeling approach to obtain
efficient solutions for other cases of the assignment prob-
lem. These are a matter of our future inquiry.
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