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Abstruct- A new problem for task assignment and 
scheduling on a network of processors is formulated and 
solved for open real-time control systems. In order to 
ensure smooth operation and good performance of open 
real-time control systems, one must analyze the problem 
of task assignment and scheduling during the conceptual 
system design stage. For this type of applications, we 
propose use of a new performance index called the con- 
trol latency, a weighted sum of feedback, command, and 
monitoring latencies. Given a set of tasks for a specific 
control application, the execution time of each task, and 
intra/inter-processor communication latencies, we have 
developed an optimal task assignment and scheduling al- 
gorithm by minimizing this performance index. Since 
this problem is NP-hard, we have employed a branch- 
and-bound (B&B) algorithm to efficiently search for an 
optimal task assignment while maintaining task schedu- 
lability. A prototypical example of open-architecture con- 
trol for CNC machines is presented to  illustrate the good 
performance of the proposed algorit$hm. 
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I .  INTRODUCTION 

Time-critical industrial applications are usually run on 
a digital computer system composed of multiple proces- 
sors joined by a certain interconnection network. Control, 
data logging, and monitoring functions are performed by 
these processors. These processors are also connected to  
management and production scheduling computers. The 
rapidly increasing power of modern microprocessors and 
networks at  affordable prices has enabled us to  implement 
large-scale, complex control functions on a network of pro- 
cessors, with a suitable hardware/software architecture 
design. 

The idea of open architecture control is to  build a con- 
trol system with standard modular components, includ- 
ing off-the-shelf modular hardware such as buses (VME, 
PCI), boards (CPU, digital/analog input/output boards), 
networks (Ethernet, Fieldbus) , and stand-alone systems 
(workstations, PC's). Also, modularized software can be 
utilized with well-defined 1/0 and other functions, which 

The work reported in this paper was done as part of Thrust Area 
2 of the NSF Engineering Research Center on Recofinurable Ma- 

Kang G. Shin 
Real-Time Computing Laboratory 

Department of Elec. Eng. Comp. Sci. 
The University of Michigan 

Ann Arbor, Michigan 48109-2122 
kgshin@eecs.umich. edu 

provide predictable behaviors. Open architecture con- 
trollers should also have well-defined module interfaces so 
that modules can be developed independently by different 
vendors then integrated by a third party. As defined by 
the IEEE 1003.0 Technical Committee of Open Systems, 
an open system provides capabilities that enable properly- 
implemented applications to run on a variety of platforms 
from multiple vendors, interoperate with other systems 
applications, and present the user with a consistent style 
of interaction [5]. By effectively combining these modular 
HW and SW components, a flexible and powerful con- 
trol system can be built with minimum effort, and can be 
modified or upgraded with ease. 

Ac- 
cording to system requirements, sampling rates can be 
assigned to various tasks. Hence, different control and 
monitoring tasks for real-time open-architecture control 
systems require different sampling rates, and should be 
assigned to different processors, so that the set of tasks 
assigned to each processor may be completed within a 
prespecified time limits called the control system dead-  
lines [4]. These tasks should be able to  run periodically 
and in a timely manner (i.e., the set of tasks is schedula- 
ble). Also, a communication channel is required between 
each pair of communicating tasks, in order to exchange the 
required data between them. The execution of tasks on 
each processor should be sequenced properly in order to 
send/receive data them in a timely manner. Considering 
these facts, tasks should be distributed to  processors with- 
out overloading any of them (task assignment), and the 
tasks assigned to each processor should be scheduled prop- 
erly (task scheduling). The overall system should provide 
good performance - a smooth flow of overall jobs includ- 
ing communication and control (a suitable performance 
index will be defined). 

The issues of task assignment and scheduling for 
multiple-processor systems are significantly harder to  
solve than the uniprocessor case, as it requires to deter- 
mine when and where to  execute a given task [lo]. The 
task assignment problem in distributed systems that min- 
imizes the sum of task processing and interprocessor com- 
munication costs can be solved by graph-theoretic, inte- 
ger programming, or heuristic approaches [2]. Real-time 
constraints are difficult to impose when a graph-theoretic 
approach is used. Integer programming methods allow for 
constraints on task completion time, but do not account 
for task precedence constraints. 

Control actions are usually taken periodically. 

chining Systems. Since this problem is generally NP-hard, we need to 
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develop enumerative optimization or heuristic approxima- 
tion. One can use the popular branch-and-bound (B&B) 
method [7] solve the problem. For example, Peng e f  al.[8] 
solved a combined task assignment and scheduling prob- 
lem for communicating periodic tasks executing on a het- 
erogeneous distributed system. The maximum normalized 
task response time, called the s y s t e m  hazard ,  is minimized 
by utilizing a B&B algorithm. However, it is not easy to 
use this method for modular real-time control systems 
with various sampling time requirements and minimiz- 
ing the overall performance index, the control latency. A 
method for optimal combined task and message schedul- 
ing in distributed real-time systems was proposed in [l], 
where communicating tasks with precedence constraints 
for each processor are scheduled off-line, without consid- 
ering task assignment. 

The main goal of this paper is to formulate and 
solve a new task assignment and scheduling problem for 
multiprocessor-based open real-time control systems. We 
propose a new performance index called the control la- 
t e n c y ,  which is a weighted sum of feedback, command, 
and monitoring latencies. Given a set of tasks for a control 
application, execution time of each task, and intra/inter- 
processor communication time, we develop an optimal 
task assignment and scheduling algorithm by minimizing 
the performance index. Since this problem is NP-hard, we 
use a B&B algorithm to efficiently search for an optimal 
task assignment while maintaining task schedulability. A 
typical example for open-architecture control for a CNC 
machine is presented, illustrating the good performance 
of the proposed algorithm. 

The rest of this paper is organized as follows. Section 
2 describes the real-time open-architecture control prob- 
lem. Logical and physical architectures are described, 
and a new performance index proposed there. Section 
3 presents the main algorithm for task assignment and 
scheduling. In order to demonstrate the utility and power 
of the proposed algorithm, we present an illustrative ex- 
ample of open-architecture control of a CNC system in 
Section 4. The paper concludes with Section 5. 

11. REAL-TIME OPEN-ARCHITECTURE CONTROL 

A .  Real - t ime  contro l  s y s t e m  

The overall control function is decomposed spatially 
into several functional blocks with suitable communica- 
tion channels between them. The multiprocessor con- 
troller acquires data from various sensors, processes the 
data, and delivers the processed data to actuators and/or 
display devices. Various control loops are needed to per- 
form the required functions. Also, one or more graphic 
user interfaces may be added as a top-level man-machine 
interface, which is usually implemented on popular work- 
stations or PCs. Several chasses can be networked, each 
containing multiple processor cards connected via a back- 
plane bus (such as VME or PCI bus) suitable for the un- 
derlying applications. A set of OEM single-board com- 
puters for the specific bus can comprise processing nodes. 

The backplane bus, Ethernet board, or Fieldbus board 
can be used as communication channels. 

There are several features which distinguish our task 
assignment and scheduling problem from others as follows. 

F1. 

F2. 

F3. 

F4. 

Control loops are executed periodically at specified 
sampling rates. 

Each control loop may contain several tasks. For ex- 
ample, an adaptive control loop can be decomposed 
into a system identification task to  estimate process 
variables, an adaptation task to determine control 
parameters, and a communication task sending pa- 
rameters to a specific controller. 

Each task can be decomposed into modules, which 
may require different sampling rates and different 
communication channels. Each module is associated 
with a different communication channel. 

There are precedence relations among the tasks and 
modules. The computation module for the control 
algorithm should be preceded by sensing, and actua- 
tion should be preceded by the control computation, 
etc. 

The task system can be modeled with a task graph 
(TG), in which computation and communication modules, 
communication delays, and the precedence constraints 
among the modules can be clearly described. 

B. P e r f o r m a n c e  i n d e x  

The sensing-+control--tactuation sequence should be 
executed within each sampling period in a feedback con- 
trol system. A problem with the rate-monotonic schedul- 
ing is the difficulty in guaranteeing the execution sequence 
of tasks of the same period [la]. The order of task execu- 
tion may result in actuation-control-isensing; the sensed 
data at a certain instant will affect the actuation about 
two sampling periods later, introducing an unnecessary 
delay to  the closed-loop system and thus degrading the 
performance or even causing system instability. Hence, 
the delay from sensing to actuation must be minimized; 
this led us to  use the control latency as a new performance 
index. 

An objective function can be defined in various ways. 
Here we consider three types of latencies. 

Feedback latency L f  : The time required for activating 
a sensor, computing the control command, then driv- 
ing the actuator. The data sensed at t imet ,  following 
its use for control computation, affects the process at 
time t + L f .  L j  appears as a pure tame delay in 
the closed-loop system. Its length and time variation 
have detrimental effects on system performance and 
stability. L f  and its variation should therefore be 
kept as small as possible. 

Command latency Lo: The time required from receipt 
of a command from the operator or host computer to 
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the corresponding actuation. For a simple feedback- 
control system, this represents the total time required 
to  get a reference command and a feedback input, 
compute the control signal, then actuate the con- 
trolled process. In a wider sense, it is the time re- 
quired for receiving the task command from the op- 
erator, executing the corresponding tasks, and finally 
actuating the target process under control. 

Monitoring latency L,: The time required to pre- 
process a sensed data and report the result to the 
host computer. This latency may not affect the con- 
trol performance, but monitoring, human operator 
decision & command, and command latencies may 
constitute a wider sense of control latency consider- 
ing a human as well as a machine in the control loop, 
i.e., human-command loop latency. 

We can define an overall performance index of the con- 
trol latency L as a weighted sum of feedback, command, 
and monitoring latencies: 

where w f i  are the weighting factors for feedback latencies 
i = 1, . . . , nf  , where index i is used to denote each of mul- 
tiple feedback loops. w, and w, are the weighting factors 
for the command and monitoring latencies, respectively. 
The weights can be determined by considering the relative 
importance of each latency. Usually, the control latencies 
are most important, and then command and monitoring 
latencies are next. 

C. The Problem of Task Allocation and Scheduling 

Tasks must be distributed to processors without over- 
loading them (task assignment), and the tasks assigned 
to each processor should be scheduled to minimize the 
control latency (task scheduling). 

The set of tasks assigned to each processor should be 
completed in time. One can use such scheduling poli- 
cies as the Earliest-Deadline-First (EDF) or Rate Mono- 
tonic (RM) algorithm. The EDF algorithm requires to 
check the deadlines of all tasks very frequently, but the 
RM policy induces little OS overhead at the expense of 
lower schedulable utilization. We have chosen the RM pol- 
icy due to its implementation simplicity and low runtime 
overhead, in spite of its lower schedulable utilization. 
Task assignment and scheduling problem: Given a 
set of np processors, a set of nt tasks Ti, i = 1, . . . , nl,  
each task Ti consisting of m; modules Tij with period Pij 
and execution time C$ for local communication or C& 
for remote communication, find a task assignment and 
schedule while minimizing the control latency L.  

111. TASK ASSIGNMENT AND SCHEDULING ALGORITHM 

The tasks described by the T G  are assigned to proces- 
sors by using a B&B algorithm. The algorithm employs a 

polynomial-time bounding heuristic at  non-terminal ver- 
tices by figuring the subsequent task scheduling in its es- 
timation of assignment cost. 

The B&B algorithm maintains a set of active vertices, 
which are the vertices searched and considered to  con- 
tain an optimal solution. Initially, this set contains only 
the root vertex. The algorithm proceeds by alternating 
branching and bounding operations. Branching refers to 
expanding the minimum-cost vertex in the active set by 
generating its children, while bounding refers to  the pro- 
cess of evaluating the cost of new vertices in the active 
set. The algorithm also evaluates the control latency and 
schedulability at each vertex. Whenever the schedulabil- 
ity condition is violated at  a vertex, the vertex is dis- 
carded. Whenever a smaller control latency is found, all 
vertices with higher latencies are removed from the active 
set. The algorithm terminates when the active set con- 
tains only one element representing a complete solution. 
It is proven in [7] that there always exists a terminal vertex 
surviving the above process, which is the optimal solution 
to the original problem. Fig. 1 shows a pseudo-code form 
of the B&B algorithm used in this paper. 

Let active set = { Root }. 
Let cost(Root) = 0. 
Let best terminal vertex v* = nil .  
Let best terminal cost L’ = inf. 

Repeat 
Find a vertex v with minimum cost. 
if v is a terminal vertex then (Bound) 

if cost(v) < best cost then 
L = cost(v) 
U* = v 
Delete all vertices x with cost(x) >= L* from 
active set, except for vertex v*. 

else (Branch) 
Generate all children of v. 
for each child c do compute cost(c). 
Replace v by its children in active set. 
Check schedulability of its children. 

until active set = { U* 1 . 

Fig. 1. The branch-and-bound algorithm. 

At a certain vertex in level j of the tree, a set of tasks 
E ,  i = 1, . . . , J’ have already been assigned to  processors. 
In the branching process at  this vertex, task qtl is as- 
signed to one of np processors, which has np children to 
branch to. Branch k corresponds to  the case when task 
Tj+l is newly assigned to processor k. 

For each vertex, schedulability is checked for every pro- 
cessor as follows. When task T; is assigned to  this proces- 
sor, for each module Tij, if the task containing the com- 
munication partner’s module has not yet been assigned 
or assigned to the same processor, increase utilization by 
Cij/Pij. Otherwise, increase utilization by C:j/Pij. If the 
utilization exceeds unity for any processor, the assigned 
task set is definitely not schedulable on that processor. 
The vertex is discarded if any of the processor utilization 
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exceeds unity. 
The performance index, control latency, is com- 

puted for each vertex as follows. For each feed- 
back/command/monitoring latency, select a processor 
which contains the first task contributing to the latency 
under consideration. If the next task in the sequence has 
not yet been assigned or assigned to  the same processor, 
the (local) computation time C!. is added to the latency. 
Otherwise, the remote computation time Clj and the com- 
munication delay d are added to  the latency. A weighted 
sum of all latencies are computed to give the control la- 
tency. 

When the terminal vertex is reached (a vertex repre- 
senting the case when all tasks have been assigned), all 
the vertices having larger costs than the terminal vertex 
are discarded (bounded). 

The above algorithm utilizes efficient bounding by cal- 
culating the achievable minimum cost for each intermedi- 
ate vertex; it is usually shown to have a polynomial-time 
bounding. 

'? 

IV. AN ILLUSTRATIVE EXAMPLE 

A .  An Open Architecture Controller for Computer Nu- 
merical Control 

We demonstrate the good performance of the pro- 
posed algorithm using the University of Michigan Open- 
Architecture Controller (UMOAC) testbed. It is de- 
signed to control a CNC milling machine as shown in 
Fig. 2. Its current physical configuration uses a PC (or 
a workstation) as the host computer for program devel- 
opment and operator interface. Control tasks are exe- 
cuted on VMEbus-based processor boards (currently, XY- 
COM XVME-675/19 VMEbus PC/AT processor mod- 
ules), with commercial RTOS (QNX v4.22). Sensors and 
actuators on the milling machine are accessed through 
VMEbus-based 1/0 interface boards. This testbed ar- 
chitecture allows for easy adoption of new hardware and 
software components as they become available, and sup- 
ports good hardware/software open-ness [9]. QNX uses 
a priority-based, preemptive kernel scheduler, with the 
real-time clock resolution adjusted to 50 ps [12]. 

We developed a prototype modular real-time milling 
machine controller on the UMOAC testbed as shown in 
Fig. 3 where rectangles represent tasks. There is a three- 
axis controller with a linear or circular interpolator on the 
X and Y axis, and with a one-axis interpolator on the Z 
axis. Also, attached is a spindle drive which is a constant- 
speed drive, but can be controlled to have variable speeds 
if required. 

B. Task Graph 

Specifically, we consider a real-time controller without 
the host computer as shown in Fig. 3, for the evaluation of 
task assignment and scheduling. The GUI and interpreter 
tasks are assumed to  be executed by the host computer. 

~ 
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Ethernet 
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Milling Machine 

Fig. 2. The open architecture control system. 

Fig. 3. Task configuration. 

The host computer usually uses standard graphic pack- 
ages for user interface, and we have little control on task 
scheduling on the host system. 

Tasks of the real-time controller are constructed as 
shown in Fig. 4. The task coordinator gets command in- 
put from the host interface, which originates from the op- 
erator. It performs a coordination function, decomposes 
the command into a sequence of steps to be performed, 
sends each step command to the interpolator, and sends 
the reference force to the force controller. The interpo- 
lator performs linear or circular interpolation to generate 
reference positions for X, Y, and Z axes, which are then 
sent to the axis controllers. The axis controller gets the 
reference position from the interpolator and feedback from 
the machine about its position (and velocity), generates 
the control action, and sends it to the servo amplifier, 
hence forming the lowest-level feedback loop under com- 
puter  control. The servo control of all axis uses the PID 
or fuzzy logic control law [3]. 

The servo amplifier is usually constructed with ana- 
log circuits and realized in the continuous-time domain. 
However, the controller is implemented in hardware and 
cannot be controlled by the controller software. Hence, 
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Fig. 4. Task graph for the real-time controller. 

it is excluded from our consideration of task assignment 
and scheduling. 

The force control is employed at a process-control level, 
to control process variables in order to maintain high pro- 
duction rates and good part quality. The sensor task reads 
the force sensor at a very fast rate (once every 0.1 ms), 
processes the signal to  compute the average or the max- 
imum of 100 sampled data, and sends the resultant pro- 
cessed force to the force controller. 

In order to store the process data and present infor- 
mation to the operator, a graphic user interface is usually 
implemented on the host computer, and the real-time con- 
troller is required to collect and send the process data. 
The send task performs this function, by collecting pro- 
cess data from the axis controllers and the force controller, 
and sends data to the host computer. 

Cross-coupling control can be added to minimize the 
contour error [6] to  build a real-time contour error model 
based on feedback information, then feed back correction 
signals to the axis controller. 

At the highest level in the control hierarchy, we can 
adopt supervisory control such as chatter detection, tool 
monitoring, machine monitoring, etc. [ll]. 

The task assignment and scheduling problem is solved 
using the algorithm presented in this paper with the fol- 
lowing Input data: number of processors np = 2; number 
of tasks nt = 5; weighting factors wf = 1, wo = 0.5 and 
w, = 0;  and communication delay d = 1 ms. 

For the real-time controller, each task consists of mod- 
ules as shown in Fig. 4. In each module, numbers of the 
form P/C‘/Cr denote period, local execution time, and 
remote execution time, respectively. 

An optimal assignment is found after expanding 19 ver- 

tices out of a total 27 - 1 = 127 vertices in the B&B tree. 
As expected, task 4 is assigned to processor 2 (91% uti- 
lization), and all other tasks are assigned to  processor 1 
(78.9% utilization). 

V.  CONCLUDING REMARKS 

Task assignment and scheduling is one of the most im- 
portant issues in designing distributed real-time systems. 
Unfortunately, this problem is generally known to be NP- 
hard even in the absence of precedence constraints. In 
this paper, we proposed a new performance index, con- 
trol latency, which is a natural cost for real-time dis- 
tributed control systems. We solved the task assignment 
and scheduling problem by using a B&B algorithm with 
the new performance index. The algorithm presented in 
this paper is shown to reduce the computational cost sig- 
nificantly. This fact has been confirmed via an illustrative 
example. The resultant task assignment and scheduling 
ensures smooth operation within each processor’s capabil- 
ity, while minimizing the control latency, hence providing 
best control performance. 
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