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Abstract 
In a real-time system, tasks are constrained by global 

end-to-end deadlines. In order to cater for high task 
schedulability, these deadlines must be distributed over 
component subtasks in an intelligent way. Existing meth- 
ods for automatic distribution of end-to-end deadlines are 
all based on the assumption that task assignments are en- 
tirely known beforehand. This assumption is not necessar- 
ily valid for large real-time systems. Furthemre, most 
task assignment strategies require information on dead- 
lines in order to make good assignments, thus forming 
a circular dependency between deadline distribution and 
task assignment. We present a heuristic approach that per- 
forms deadline distribution prior to task assignment. lk 
deadline distribution problem is presented in the context 
of large distributed hard real-time systems with relaxed lo- 
cality constraints, where schedulability analysis must be 
performed off-line, and only a subset of the tasks are con- 
strained by predetennined assignments to specijic proces- 
sors. Using experimental results we identify drawbacks of 
previously-proposed techniques, and then show that our 
solution provides signijicantly better pe~ormance for a 
large variety of system configurations. 

1 Introduction 
In a distributed real-time computing system, applica- 

tions are decomposed into tasks, which are then assigned 
to processors according to locality constraints that are ei- 
ther strict (the assignment of a task is known beforehand) 
or relaxed (there exist more than one assignment altema- 
tive for each task). There are some well-known solutions 
to the real-time task assignment problem, but an important 
remaining problem is deadline distribution. To guarantee 
the functionality of a real-time system, an application task 
is constrained to start its execution and complete within a 
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given time span called the end-to-end deadline. Tasks have 
usually been logically decomposed into a set of sequential 
andor parallel subtasks, often because the system design- 
ers are forced to modularize software for maintainability 
and reusability reasons or exploit parallelism for perfor- 
mance reasons. As a consequence of this decomposition, 
the end-to-end deadline must be distributed over the com- 
ponent subtasks, i.e., a local deadline needs to be assigned 
to each subtask for its scheduling. The local deadlines 
should be assigned to each of the subtasks in an intelligent 
way that allows the subtasks to be scheduled locally on 
each processor as efficiently as possible. One good strategy 
for deadline distribution is to adopt a divide-and-conquer 
approach that first divides the overall problem into smaller 
problems that are solved locally and then combined to ob- 
tain a global solution, thus reducing the complexity of the 
problem. 

Many researchers have addressed the deadline distri- 
bution problem [l, 2, 3, 4, 5,  6, 71, all under a common 
assumption that task assignments are entirely known, i.e., 
strict locality constraints. In many real-time systems, how- 
ever, only a small number of task assignments are governed 
by strict locality constraints, e.g., those tasks constrained 
by demands of resources in their physical proximity such 
as sensors and actuators. The constraints on the remain- 
ing task assignments are not strict and the assignments can 
be made using such techniques as clustering heuristics [8], 
critical path heuristics [9], list scheduling heuristics [lo], 
or branch-and-bound algorithms [ 1 11. Deadline distribu- 
tion using conventional techniques can, therefore, be per- 
formed only if the task assignment is completely known. 
Task assignment techniques, on the other hand, require in- 
formation about individual task deadlines for scheduling 
purposes. Thus, there exists a circular dependency be- 
tween the deadline distribution and task assignment prob- 
lems. Moreover, conventional deadline distribution tech- 
niques can only produce as good results as provided for by 
the initial task assignment. Given a poor task assignment 
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as input, the resulting deadline distribution may be just as 
bad. Finding the most suitable task assignment is unfortu- 
nately an NP-complete problem [ 121 and, therefore, good 
solutions to the combined deadline distribution and task 
assignment problem must be found through the use of sub- 
optimal heuristic algorithms. 

In this paper, we solve the deadline distribution problem 
using sub-optimal heuristic strategies for both deadline dis- 
tribution and task assignment. Our solution is based on the 
Basic Slicing Technique (BST) in [ 13. but deadline distribu- 
tion is performed prior to the task assignment phase. The 
deadline distribution problem is addressed in the context 
of distributed hard real-time systems with relaxed locality 
constraints. In such systems, task assignment and schedul- 
ing are usually assumed to be performed off-line in order 
to guarantee the 100% a priori schedulability of each hard 
real-time task in the system. Systems with these charac- 
teristics are mission/safety-critical where the workload is 
known beforehand, but the number of tasks is too large for 
each task assignment to be specified in advance. 

Our main contributions in this paper are: 

We show in what aspects the BST algorithm and met- 
rics are inadequate for the assumed system. This is 
achieved by means of an experimental evaluation in 
which BST is used for an application consisting of a 
randomly-generated task graph and a multiprocessor 
system of varying size. This evaluation enables us to 
identify shortcomings of the BST metrics that will re- 
veal themselves when applied to systems where par- 
allelism in the application cannot be fully exploited. 

We propose an improvement of BST, called the Adap- 
tive Slicing Technique (AST), that encompasses a set 
of new metrics that are capable of adapting them- 
selves to changes in workload and system size. We 
demonstrate how AST yields substantially better re- 
sults than BST for the given system, especially in 
minimizing the maximum task lateness. 

The rest of the paper is organized as follows: Section 2 
describes related work on deadline distribution. Section 3 
describes the assumed task model. Section 4 describes the 
deadline distribution problem and presents a basic algo- 
rithm to solve the problem. Section 5 describes the exper- 
imental setup. Section 6 presents the experimental evalu- 
ation of BST. Section 7 introduces AST and demonstrates 
its improved performance over BST. Section 8 discusses 
complementary results and possible future work. Finally, 
Section 9 summarizes the results in this paper. 

2 Relatedwork 
The technique (BST) proposed by Di Natale and 

Stankovic [ 11 assigns slices, execution windows with static 

positions in time, to subtasks using a critical path concept. 
The strategy used for finding slices is to determine a critical 
path in the task graph that maximizes the minimum laxity 
of the tasks. TWO laxity ratio metrics (previously proposed 
in [6,7]) were used for evaluating paths in the task graph: 
one assigns a subtask deadline based on its execution time, 
and the other assigns a subtask deadline based on the num- 
ber of subtasks in the critical path. The slicing technique 
is optimal in the sense that it maximizes the minimum task 
laxity in the application. However, optimality applies only 
if task assignment is completely known in advance. The 
technique was demonstrated using a non-preemptive time- 
triggered run-time model, but is not inherently constrained 
to such a run-time model. 

The technique proposed by Abdelzaher and Shin [2] 
specializes on improving a given task assignment where lo- 
cal deadlines have already been assigned. Using a branch- 
and-bound strategy, an optimal solution is found in accept- 
able time as long as the system workload is kept below 
a certain limit. The subtask execution windows have dy- 
namic positions in time rather than static as in [l], which 
caters for better exploitation of processor resources. The 
technique is optimal in the sense that it minimizes the 
maximum task lateness in the application, but only un- 
der the assumptions that task assignment is known before- 
hand, a non-preemptive time-triggered run-time model is 
employed, and real-time communication channels have ad- 
justable priorities. The usefulness of this technique has yet 
to be demonstrated for systems in which these assumptions 
do not hold. 

In [3], Gutikrrez Garcia and Gonziilez Harbour pro- 
posed a heuristic iterative approach that, given an initial 
local deadline assignment, finds an improved solution in 
reasonable time. For each iteration a new deadline as- 
signment is calculated based on a metric that measures by 
“how much” schedulability failed. Bettati and Liu [4] pre- 
sented a technique for scheduling a system of flow-shop 
tasks. Local deadlines are assigned by distributing end-to- 
end deadlines evenly over subtasks. For this method, the 
simplifying assumption is made that execution times are 
either identical for all subtasks or identical for all subtasks 
assigned to the same processor. Saksena and Hong [5] pro- 
posed a deadline distribution technique based on a critical 
scaling factor that is applied to the subtask execution times. 
The end-to-end deadline is expressed as a set of local dead- 
line assignment constraints. Given a set of local deadline 
assignments, they calculated the largest value of the scaling 
factor that still makes the subtasks schedulable. The local 
deadline assignment is then chosen to maximize the largest 
value of the scaling factor. The techniques in [3, 4, 51 all 
assume that tasks consist of purely sequential subtasks and 
that task assignment is known beforehand. 
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Kao and Garcia-Molina presented multiple strategies 
for distributing end-to-end deadlines over sequential [6] 
and sequentidparallel [7] subtasks. However, these strate- 
gies are only aimed at, and evaluated in the context of, 
soft real-time systems with complete a priori knowledge 
of task-processor assignment. 

3 Taskmodel 
A real-time application is composed of one or more 

tasks, each representing a major computation. Each task 
consists of a set of subtasks (modules) that represent 
smaller (than the task itself) entities of computation. The 
task set that realizes a given application can be represented 
by a directed acyclic task graph, in which the nodes repre- 
sent subtasks and the arcs represent precedence constraints 
between subtasks. A subtask r, is apredecessor of another 
subtask r? if rJ cannot begin its execution until r, has com- 
pleted its execution. Conversely, subtask rJ is called the 
successor of subtask r,. A subtask which has no predeces- 
sors is called an input subtask, whereas a subtask which 
has no successors is called an output subtask. 

Subtask r, is characterized by a tuple (ci, r,, d,) where 
c, is the execution time, a worst-case estimate of the com- 
putational demands of the subtask; r, is the release time, 
the earliest time at which the subtask is allowed to start its 
execution; and d,  is the relative deadline, the amount of 
time within which the subtask must complete its execution 
once it has been released. The absolute deadline D, of the 
subtask is the sum of the subtask‘s release time and relative 
deadline. A path is a sequence of subtasks in the task graph 
for which the first and the last subtasks are regarded as a 
subtask pair (r1, 7,) subject to an end-to-end deadline D 
that specifies the maximum time measured from the release 
of subtask 7-1 to the completion of subtask 7,. 

The activities associated with message transfer from 
subtask r, to subtask rJ are handled by a communication 
subtask xtJ characterized by the tuple (mzJ, r y  , d z l )  where 
maJ denotes the maximum message size, Til the message 
release time, and d, the relative deadline of the message. 
The real communication cost for sending a message de- 
pends on the communication scheduling strategy employed 
in the system and cannot be determined until the subtasks 
have been assigned to processors. 

Note that we only need to assume non-periodic tasks 
for the purposes of this paper. For an application with pe- 
riodic tasks we can always transform the original periodic 
tasks into a set of non-periodic tasks that execute within 
an interval [0, L)  , where L is the least common multiple of 
the periods of all periodic tasks involved. Thus, we allow 
precedence constraints and communication between sub- 
tasks of tasks with different periods. 

4 Deadline distribution 
4.1 Problem statement 

Given an end-to-end deadline D and a corresponding 
subtask pair (r1 , rn), the deadline distribution problem is 
to partition (distribute) D into release time r, and relative 
deadline d, for each subtask r, in the task graph in such a 
way that the constraint dl  + dz + . . . + d ,  5 D is satisfied 
for each path @ between 71 and 7,. 

A solution to the deadline distribution problem cannot 
be accepted simply because it satisfies the above condition. 
One also has to consider the practical issue of schedulabil- 
ity: the relative deadline of a subtask must be derived in 
such a way that the subtask is likely to be feasibly sched- 
uled. This can be achieved by assigning an ample slack 
(difference between relative deadline and execution time) 
to each subtask so that it can meet its absolute deadline 
even in the presence of contention with other subtasks for 
the processor. The slack for a path @ is defined as the dif- 
ference between the end-to-end deadline DO and the accu- 
mulated execution time of all subtasks in the path. 

Two important metrics that are often used in the eval- 
uation of a deadline distribution strategy is the laxity and 
the lateness of a subtask. The laxity of a subtask is the 
maximum amount of time that the execution of the subtask 
can be delayed without missing its absolute deadline. A 
subtask’s laxity is determined before the subtask is sched- 
uled and is thus an indicator on how much contention for 
the processor the subtask can withstand during schedul- 
ing. The lateness of a subtask is the difference between the 
completion time of the subtask and its absolute deadline, 
i.e., a non-positive quantity for valid schedules. A sub- 
task’s lateness is determined after the subtasks have been 
scheduled and is an indicator on the quality of the schedule. 

Here, we will assess the performance of a deadline dis- 
tribution strategy by its capability to minimize the maxi- 
mum task lateness. This performance metric refers to the 
lateness of only one subtask, and is thus an indicator on 
“how far” from infeasibility the schedule is and how much 
additional background workload the schedule can handle. 
4.2 Basic algorithm 

Our deadline distribution algorithm also uses the con- 
cept of critical path. A critical path in a task graph is the 
one that optimizes a given metric. Correct identification 
of a critical path is crucial for the quality of the deadline 
distribution and the system’s schedulability. When a criti- 
cal path has been identified, the end-to-end deadline is dis- 
tributed over the subtasks in the critical path. For a system 
with complete a priori information on task-processor as- 
signment and interprocessor communication cost, the best 
critical path can easily be found as described in [l]. When 
the assignment is not entirely fixed, however, finding the 
best critical path is no longer an easy task. The reason 
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1. 
2. while{II#Q}loop 
3. 
4. 

5. 
6.  
I. 

8. end loop; 
9. 
10. 

11. endloop; 
12. endloop; 
13. 
14. endloop; 

initialize set II with all subtasks in the task graph; 

find a critical path 9 in II that minimizes metric R; 
distribute the end-to-end deadline of @ by assigning 

release times and deadlines to the subtasks in II; 
for { each subtask T in II } loop 

for { each predecessor rP of T } loop 

is equal to the release time of T ;  

assign an end-to-end deadline to rp that 

for { each successor T, of T } loop 
assign a release time to T, that 

is equal to the absolute deadline of T ;  

remove all subtasks in 9 from II; 

Figure 1 : Basic deadline assignment algorithm. 

is that it is not yet known what pairs of subtasks will 
be afflicted with interprocessor communication overhead. 
Therefore, the deadline distribution algorithm must rely on 
the prediction of the “possibly best” critical path. Dead- 
line distribution techniques such as the one in [l] might 
not be appropriate for systems without a priori knowledge 
of task-processor assignment. Namely, if the prediction as 
to where the critical path is turns out to be incorrect, one 
may assign insufficient amounts of slack to those subtasks 
that constitute the real critical path in the final schedule. 

A basic algorithm for distributing end-to-end deadlines 
over the subtasks is given in Figure 1. The algorithm takes 
a task graph as the input and produces an annotated task 
graph containing information about subtask release times 
and relative deadlines. Both ordinary subtasks and commu- 
nication subtasks are considered in the algorithm, imply- 
ing that communication subtasks also have release times 
and deadlines assigned to them. This allows for the use of 
deadline-based communication scheduling strategies such 
as the one in [13]. The algorithm in Figure 1 is similar 
in structure to that for the Basic Slicing Technique (BST) 
in [l]. However, the algorithm in Figure 1 is able to han- 
dle systems with relaxed locality constraints because com- 
munication subtasks will be processed by the algorithm 
regardless of whether their corresponding communication 
costs are known or not. For this, the algorithm contains a 
communication cost estimation phase in Step 3. The vari- 
ous steps of the algorithm are described below in detail. 

Initialize subtask set (Step 1): We assume that all in- 
put and output tasks have already been assigned appropri- 
ate release times and end-to-end deadlines, respectively, 
according to the temporal requirements of the application. 
All subtasks in the task graph are then inserted into a sub- 

task set II that represents all subtasks not yet assigned re- 
lease times and deadlines. Recall that communication sub- 
tasks are also inserted in IT at this stage. 

Find a critical path (Step 3): The breadth-lint traver- 
sal of the task graph determines a critical path @ among 
all potential paths for the subtasks in n. Ties among paths 
with identical metric values are broken arbitrarily. Evalua- 
tion metrics R suitable for our purpose will be discussed in 
Section 6 and Section 7. As mentioned earlier, communi- 
cation subtasks are taken into account when identifying a 
critical path, regardless of whether the real communication 
cost is known or not. So, one must estimate the communi- 
cation cost when it is not known. Suitable communication 
cost estimation strategies will be discussed in Section 5. 

Distribute the end-to-end deadline (Step 4): The end- 
to-end deadline DQ of the critical path @ found in Step 3 is 
distributed over the subtasks in @. The deadline distribu- 
tion is governed by the constraint that the release time of a 
subtask must be equal to the absolute deadline of its prede- 
cessor in @. Thus, all subtasks in the path will be assigned 
slices, non-overlapping execution windows, cif the end-to- 
end deadline. Only those communication subtasks whose 
communication cost, real or estimated, is non-negligible 
will be assigned an execution window. Note that, whereas 
the execution time windows of subtasks in the same path 
cannot overlap, the execution windows of subtasks in dif- 
ferent paths may overlap and thus are subject to contention 
for available processors during scheduling. 

Attach the remaining subtasks (Step 5-Step 11): The 
subtasks in @ now constitutes a “spine” to which the re- 
maining subtasks must attach, i.e., adapt their release times 
and absolute deadlines. Therefore, the release time for 
each subtask not in @ is set to the latest absolute deadline of 
any predecessor subtask in a. Similarly, the absolute dead- 
line for each subtask not in CP is set to the earliest release 
time of any successor subtask in a. This absolute deadline 
now becomes a new end-to-end deadline in the graph. 

Remove critical-path subtasks (Step 13): The sub- 
tasks in @ are removed from II to mark that they have been 
assigned release times and deadlines. 

Repeat until no subtasks remain (Step 2): The main 
loop in the algorithm is repeated until no subtasks are left 
in II. 

5 ‘Experimental setup 
5.1 System architecture 

We have used an experimental platform based on a ho- 
mogeneous multiprocessor architecture with a shared bus 
interconnection network. The system size ranges from 2 
to 16 processors. We assumed that the shared bus is time- 
multiplexed in such a way that the communication cost be- 
tween two processors is one time unit per transmitted data 
item. Communication between two subtasks residing on 
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the same processor is done via accessing shared memory 
and its cost assumed to be negligible. We also assumed 
that communication in the network can take place concur- 
rently with processor computation. 
5.2 Workload 

In all experiments', a set of 128 task graphs were gen- 
erated using a random task graph generator. Each task 
graph contained between 40 and 60 subtasks. Subtask ex- 
ecution times were chosen at random assuming a uniform 
distribution with a mean execution time (MET) of 20 time 
units. To mimic different distributions of subtask execu- 
tion times, three scenarios were assumed in the simula- 
tions. For the first scenario, low distribution execution 
time (LDET), the subtask execution times deviated by at 
most f25% from the mean execution time. For the second 
scenario, medium distribution execution time (MDET}, the 
execution time deviation was at most f50%, and for the 
third scenario, high distribution execution time (HDET), 
the execution time deviation was at most f99%. An end- 
to-end deadline was chosen for each input-output subtask 
pair in such a way that the overall laxity ratio (OLR} be- 
tween the end-to-end deadline and the accumulated task 
graph workload corresponded to 1.5. The number of suc- 
cessors/predecessors to each subtask was chosen at random 
to be in the range of 1 to 3, and the depth of the task 
graph was chosen at random in the range of 8 to 12 lev- 
els. The number of data items in each message passed be- 
tween a pair of subtasks was chosen in such a way that the 
communication-to-computation cost ratio (CCR) between 
the average message communication cost and the average 
subtask execution time corresponded to 1.0. 
5.3 Task assignment algorithm 

The tasks were scheduled using a deadline-driven ver- 
sion of the list scheduling algorithm in [lo]. For each 
scheduling step, the list scheduler selected one subtask 
from all schedulable subtasks (those whose predecessors 
have been scheduled) using an earliest-deadline-first pol- 
icy. Then, the subtask was scheduled on the processor 
that yielded the earliest start time for the subtask assuming 
a non-preemptive time-driven run-time scheduling model. 
The chosen strategy allows us to reproduce BST results 
in [l] for systems with strict locality constraints, and thus 
provides a basis for a fair evaluation. 
5.4 Communication cost estimation strategies 

As mentionedin Section 4.2, it is not clear how interpro- 
cessor communication cost should be estimated when task 
assignments are not known beforehand. In Step 3 of the 
algorithm in Figure 1, this is resolved by using a communi- 
cation cost estimation strategy whenever a communication 

'All modeling and simulation in the experiments were perfmed 
within FEAST [ 141, a framework for evaluation of allocation and schedul- 
ing techniques for distributed hard real-time systems. 

subtask with unknown cost is encountered. In our exper- 
iments, we will evaluate two strategies for estimating the 
communication cost between communicating subtasks: the 
Communication Cost Non-Existing (CCNE) strategy which 
assumes that there will never be interprocessor communi- 
cation between subtasks, and the Communication Cost Al- 
ways Assumed (CCAA) strategy which assumes that there 
always will be interprocessor communication. 

6 The Basic Slicing Technique (BST) 
We conducted a set of experiments where we evaluate 

two deadline distribution metrics presented for the Basic 
Slicing Technique (BST) in [ 11. The purpose of the experi- 
ments is to identify drawbacks with BST when it is applied 
to a system with relaxed locality constraints, justifying the 
need of a new technique. 

Two metrics are dehed  for the BST in [ 11. The first, the 
normalized laxity ratio (NORM), is the ratio of available 
path slack to the sum of the execution times of all subtasks 
in a path a: 

With this metric, the relative deadline for subtask ~i will be 
d, = ci (1 + RNORM), i.e., slack is assigned in proportion 
to subtask execution time. The second metric, the pure 
Zanity ratio (PURE), is the ratio of available path slack to 
the number of subtasks no in a path a: 

With this metric, the relative deadline for subtask r2 is de- 
fined as di = e, + RPURE, i.e., all subtasks are assigned 
an equal share of slack. 

The plots in Figure 2 summarize the results attained 
when the generated task graphs were scheduled using the 
algorithm in Figure 1. The plots show the maximum sub- 
task lateness as a function of system size for each choice 
of communication cost estimation strategy. The task late- 
ness shown in the plots is the average of the maximum task 
lateness taken over the 128 simulation runs that were made 
for each parameter combination. Recall that more negative 
values on lateness means better performance. The plots to 
the left, middle and right in each figure correspond to the 
DET,  MDET, and HDET scenarios, respectively. 

As can be seen from Figure 2, both metrics show poor 
performance for small system sizes. This is because the 
contention between subtasks over a few available proces- 
sors forces multiple subtasks to be scheduled within over- 
lapping execution windows. As the system size increases, 
the maximum subtask lateness will decrease almost lin- 
early with increasing system size until a point at which 
lateness saturates. The task assignment algorithm can ex- 
ploit more parallelism in the task graph, thereby decreas- 
ing the length of critical paths in the graph. With shorter 
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Figure 2: Maximum task lateness for the PURE and NORM 

critical paths, there will be more overall slack to distribute 
among the subtasks. However, as soon as the graph par- 
allelism is fully exploited, nothing more can be gained by 
increasing the system size and hence flattening the curves 
for larger system sizes. 

The overall best performance is attained when the com- 
munication cost is never assumed (CCNE) because the 
maximum overall slack will be available for distribu- 
tion over the subtasks. When the subtasks are subse- 
quently scheduled, any interprocessor communication be- 
tween subtasks will only consume slack from the receiv- 
ing subtask. When the communication cost is always as- 
sumed (CCAA), on the other hand, precedence constraints 
in the graph will consume slack from the overall slack pool 
since these constraints will be modeled as communica- 
tion subtasks with an estimated non-zero communication 
cost. Each such communication subtask will thus reduce 
the amount of slack available for the subtasks in the same 
path as the communication subtask. 

The overall best metric is PURE, because it is relatively 
insensitive to the amount of variation in execution time. 
For NORM, on the other hand, performance will be dras- 
tically degraded when the variation in execution time in- 
creases because the availability of subtasks with short exe- 
cution times will also increase. Since NORM assigns less 
slack to subtasks with shorter execution times, the maxi- 
mum lateness will increase when the availability of short 
subtasks increases. 

7 The Adaptive Slicing Technique (AST) 
Based on the observations on BST, we can now lay the 

foundation for the Adaptive Slicing Technique (AST), the 
improved deadline distribution technique. We design AST 
so that it assumes no communication cost overhead and 
distributes deadlines according to an equal-share strategy, 
thus resulting in high performance with respect to PURE, 
the best BST metric demonstrated in Section 6. In this sec- 
tion, we propose two improved metrics that reduce the neg- 
ative effects of the PURE metric. We then evaluate these 

50 t PURE. CCAA -8- 
NORM, CCAA -+- 
PURE, CCNE 0 
NORM, CCNE X 

-1 -150 1 
2 4 6 8 10 12 14 16 

Number of processors 

metrics. 

metrics together with the PURE metric and show that the 
insufficiencies have to a large extent been eliminated. 

As discussed in Section 6, PURE combined with the 
CCNE strategy will perform poorly when task graph par- 
allelism cannot be fully exploited on the system, because 
subtasks will contend for the few available processors and 
slack will be consumed by interprocessor communication 
for receiving subtasks. Because PURE employs an equal- 
share slack distribution strategy, subtasks with longer exe- 
cution times will be the most vulnerable to processor con- 
tention and slack consumption. Therefore, we will in- 
troduce two concepts as an aid in remedying these prob- 
lems, namely, execution time threshold and virtual execu- 
tion time. The execution time threshold is a mechanism 
for guaranteeing only certain subtasks to be allotted ex- 
tra slacks. By using the execution time threshold to filter 
out subtasks with large enough execution times, we can 
improve the performance with respect to PURE in those 
situations where task graph parallelism cannot be fully ex- 
ploited. The purpose of a virtual execution time is to make 
a subtask appear computationally more consuming than it 
actually is. By assigning a virtual execution time to a sub- 
task larger than the real execution time, the deadline dis- 
tribution algorithm will allocate more slack to that subtask 
if its real execution time is above the given execution time 
threshold. A similar threshold strategy is briefly discussed 
in [l]. However, no attempt is made in [l] to determine 
appropriate threshold levels or to evaluate the effect of the 
threshold strategy on schedule quality. 

We now introduce the threshold laxity ratio (THRES) 
metric, which is similar to the PURE metric but with a vir- 
tual execution time c’ instead of the real execution time c. 
The virtual execution time for subtask ~i is defined as 

c‘i = { ci if c i  Cthres 

if c i  2 Cthres c i ( l  + A) 

where CthTes is the execution time threshold and A is a 
surplus factor that defines the amount of slack by which the 
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Figure 3: Maximum task lateness for different choices of surplus factor for the THRES metric. 

real execution time should be increased for those subtasks 
whose execution times exceed c thres .  

Figure 3 illustrates how the choice of surplus factor A 
affects the maximum subtask lateness in the final schedule 
assuming the values 1, 2 and 4 of A, respectively. When 
parallelism can be fully exploited, a low A-value is prefer- 
able because there will be little contention between sub- 
tasks for the available processors and as much slack as 
possible should be distributed evenly over the subtasks. In 
fact, too large a value of A can be detrimental to the perfor- 
mance as can be seen for the case of A = 4. As the number 
of processors decreases and full exploitation of task graph 
parallelism is no longer possible, it is important to assign 
extra slack to subtasks with large execution times in or- 
der to handle processor contention. Thus, a larger value of 
A is needed to cater for the assignment of extra slack to 
subtasks with large execution times. Because of the coun- 
teracting effects on the maximum task lateness that occur 
when the surplus factor is changed, a "best" value of A 
is nigh impossible to find. Therefore, a trade-off must be 
made in the choice of A so that acceptable performance is 
attained for both small and large systems. Unfortunately, 
the trade-off may have to be made with a certain workload 
assumed, a restriction that to some extent limits the appli- 
cability of the THRES metric in a general context. 

Figure 4 illustrates how the choice of execution time 
threshold affects the maximum subtask lateness in the fi- 
nal schedule when Cthres is based on the mean execution 
time (MET) of all subtasks in the graph. As can be seen 
in the plots, the performance improves as the threshold in- 
creases. However, the differences are not that significant: 
for instance, when cthres is varied 3~25% around the mean 
execution time as in Figure 4, the performance does not 
vary more than 3 ~ 5 % .  Thus, the choice of execution time 
threshold is not as critical as the choice of surplus factor. 
However, it is recommended that the threshold be kept at 
a value close to the mean execution time in order to make 
the metric useful. 

It is, as have been observed in Figure 3, very hard to 
attain a consistent high performance for THRES with a 
fixed value of the surplus factor A. We therefore propose 
an improvement of the threshold-based metric wherein the 
amount of assigned surplus is not fixed, but will adapt it- 
self to the degree of task graph parallelism that can be ex- 
ploited. The resulting metric, which we call the adaptive 
laxity ratio (ADAPT), is similar to the THRES metric but 
with a different definition of the virtual execution time: 

Ca if cz Cthres 

if cz 2 Cthres { cz(1 -k c / N p r o c )  
c', = 

where 5 is the average task graph parallelism and Npr,, is 
the number of processors in the system. The average task 
graph parallelism is defined as the total task graph work 
load divided by the length, in execution time, of the longest 
path in the graph. 

By assigning slack based on the ratio of the average task 
graph parallelism to the number of processors, we are able 
to compensate for the low performance exhibited for the 
PURE metric when task graph parallelism cannot be fully 
exploited. Because the number of processors is in the de- 
nominator of the surphus factor expression, ADAPT will 
follow the behavior of PURE as more parallelism is ex- 
ploited when the system size increases. This can be ob- 
served in Figure 5 where results for the PURE, THRES 
and ADAPT metrics are presented. For the simulations, 
we used a surplus factor A = 1 for THRES, and an exe- 
cution time threshold Cthres for THRES and mAPT that 
were 25% higher than the subtask MET. Figure 5 shows 
that, for small systems where task graph parallelism cannot 
be fully exploited, the ADAPT metric clearly outperforms 
the THRES and PURE metrics. In these cases, the in- 
crease in performance over PURE can be as high as 100%. 
As the system size increases, the performance of ADAPT 
will be comparable to that of PURE. The THRES metric 
also performs quite well for small systems, but will ex- 
hibit lower performance than PURE as the system size in- 
creases. From these observations, we can conclude that the 
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Figure 5: Maximum task lateness for the THRES and ADAPT metrics. 

adaptive ingredient of the ADAPT metric functions well 
for the assumed system. 

ADAPT is not entirely without flaws, however, as can 
be seen for the HDET scenario. When the number of 
processors exceeds 10, the lateness saturates and becomes 
slightly worse than for the PURE metric. This is because 
the existence of an execution time threshold does not per- 
mit as good slack distribution for larger systems, an effect 
that is clearly demonstrated in Figure 4. Also, the sur- 
plus factor expression still makes a small contribution to 
the virtual execution time, yielding less slack to distribute. 
Since the variation in subtask execution time is larger for 
the HDET scenario than for the other scenarios, the effect 
will be more noticeable here as there is a higher availability 
of subtasks with long execution times. 

8 Discussion 
Due to space limitation, we have omitted the results 

of some complementary experiments. The full results of 
these experiments can be found in [ 151, but we will briefly 
summarize the results here. We have evaluated AST for 
task graphs with varying degrees of parallelism and with 
both larger and smaller mean subtask execution times. Us- 
ing the same basic experimental setup as described in Sec- 
tion 5, we found that AST scales very well with these pa- 

rameters when the ADAPT metric is used. For the THRES 
metric, on the other hand, experimental results confirmed 
that a universally best value for the surplus factor is hard 
to find. The “best” value of the surplus factor is very 
application-dependent and must in the worst case be cho- 
sen specifically for each system. We have also evaluated 
AST for different interconnection topologies and values 
on the communication-to-computation cost ratio (CCR). 
Here, too, did we find that AST scales well with different 
parameter values. 

In this paper we have studied task graphs with random 
structures. However, we would also like to investigate the 
performance of AST for commonly-encountered structures 
such as in-tree, out-tree, and fork-join task graphs. In ad- 
dition, we would like to evaluate AST on a set of real- 
istic benchmarks that do not only encompass small com- 
prehensible applications like the one presented in [l], but 
also larger applications. Furthermore, we would like to 
make measurements on systems that utilize contention- 
based communication scheduling techniques for real-time 
channels [13]. It is far from obvious how the commu- 
nication cost for a real-time channel should be estimated 
in a system with relaxed locality constraints when no or 
only a few real-time channels are known beforehand. Al- 
though AST has been evaluated under a time-driven non- 
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preemptive scheduling policy, neither AST nor BST is re- 
stricted to that policy. Therefore, we would also like to ex- 
plore the quality of AST under various task assignment and 
scheduling policies. Moreover, because the results here are 
based on a homogeneous processing architecture, the ap- 
plicability of AST on a heterogeneous system is also wor- 
thy of further investigation. 

Finally, some comments on the computational complex- 
ity of AST are in order. Although the optimality that fol- 
lows with BST will have to be renounced due to the relaxed 
locality constraints in the assumed system, AST will still 
inherit the highly tractable time complexity of BST. Since 
the complexity of AST only differs from that of BST by 
a constant factor (the extra passes through the task graph 
for calculating the accumulated workload and finding the 
longest path), the overall time complexity of the AST al- 
gorithm is O(n3) for a task composed of n subtasks. 

9 Conclusions 
Distribution of end-to-end deadlines over subtasks in 

a distributed real-time system is an important, but diffi- 
cult, problem to solve. It is particularly difficult to solve 
the problem for systems with relaxed locality constraints 
where a majority of the subtasks are not pre-assigned to 
particular processors. Many solutions have been proposed 
for the problem, but only for systems with strict locality 
constraints where task assignment is entirely known be- 
forehand. In this paper, we have presented a heuristic solu- 
tion, called the Adaptive Slicing Technique (AST), to the 
deadline distribution problem for systems with relaxed lo- 
cality constraints. AST is a refinement of the Basic Slic- 
ing Technique (BST) [ 11 in the sense that it is circumvent- 
ing difficulties associated with deadline distribution over 
subtasks with an unknown initial task assignment. Using 
new metrics for minimizing the maximum task lateness, a 
set of experiments using random task graphs demonstrated 
that AST performs well in situations where BST has been 
shown to exhibit poor performance. For example, the in- 
crease in performance of AST over BST can be as high as 
100% for small system sizes when parallelism in the appli- 
cation cannot be fully exploited. At the same time, AST 
performs at least as good as BST in all other situations. 
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