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Abstract acteristics and/or the processing architecture are known and

In this paper we experimentally evaluate the perfor-can be exploited very efficiently, however, the B&B strategy
mance of a parametrized branch-and-bound (B&B) algo-can perform well even for large systems [4, 5].
rithm for scheduling real-time tasks on a multiprocessor Inthis paper, we show how the B&B strategy can be used
system. The objective of the B&B algorithm is to mini-for non-preemptive scheduling of precedence-constrained
mize the maximum task lateness in the system. We shé@gks on a multiprocessor system subject to individual task
that a last-in-first-out (LIFO) vertex selection rule clearly deadlines. In particular, we show how a B&B algorithm
outperforms the commonly used least-lower-bound (LLB¥an be applied to minimize the maximuask latenesshat
rule for the scheduling problem. We also present a nevs, the difference between a task’s completion time and its
adaptive lower-bound cost function that greatly improvegﬁead”ne. For hard real-time systems where all tasks must be
the performance of the B&B algorithm when parallelism inScheduled to meet their deadlines, the maximum task late-
the application cannot be fully exploited on the multipro-ness indicates the scalability of the scheduled system work-
cessor architecture. Finally, we evaluate a set of heurisload. To evaluate the various aspects of the B&B strategy,
tic strategies, one of which generates near-optimal resultgve adopt a parametrized notation introduced by Kohler and
with performance guarantees and another of which generSteiglitz [6].
ates approximate results without performance guarantees. Because the addressed scheduling problem is usually
) NP-complete [7], many heuristic approaches have been pro-
1 Introduction posed to solve the problem in an efficient manner. For inde-
Since its introduction in the field of artificial intelligence, pendent tasks on one processor, efficient B&B algorithms
the branch-and-bound (B&B) strategy has been succeswere proposed by Baker and Su [8], and McMahon and
fully used for finding optimal or near-optimal solutions to Florian [9]. A generalization of these algorithms was pro-
the problem of scheduling tasks on multiprocessor archiposed by Lagewegt al. [10] for the case of precedence-
tectures. Recent work includes B&B strategies for taslconstrained tasks. Optimal polynomial-time algorithms for
scheduling on distributed real-time systems [1], digital sigprecedence-constrained tasks on one processor have been
nal processing systems [2], and fault-tolerant systems [3pbroposed for the case when all release times are equal [11],
The B&B strategy is an efficient method for searching theas well as for preemptive scheduling [12]. For the multi-
solution space of a scheduling problem. The solution spagerocessor case, on the other hand, only a few B&B algo-
is often represented by a search tree where each vertex in ththms have been reported in literature, addressing the prob-
tree represents either a complete or a partial solution to tHem of optimizing the schedules for deadline-constrained
problem. With the aid of intelligent rules for selecting ver-tasks. Peng and Shin [1] proposed an algorithm to min-
tices to explore/expand and pruning (deleting) vertices thatnize the system hazardmaximum normalized task re-
do not lead to an optimal solution, the complexity of thesponse time), and Hou and Shin [4] proposed an algorithm
search can be drastically reduced as compared to that of &ammaximize theprobability of no dynamic failuréall tasks
exhaustive implicit enumerative search. However, becauseeet their deadlines in the presence of component failures).
the inherent exponential complexity of the B&B strategyThe algorithms in [1, 4] both utilize a version of the optimal
cannot be completely eliminated, its applicability is in gen-polynomial-time algorithm in [12] to minimize their perfor-
eral restricted to small systems. When the application chamance measures. Recently, Abdelzaher and Shin [5] pre-
sented an algorithm for improving an initial solution where
*This work was done while the_authorv_vas a_tthe Real-Time Comp_utingme assignment of tasks to processors is fixed and known
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from others. First, we consider all possible permutations oprocessors communicate using an interconnection network.
scheduling tasks on a set of processors subject to a given &t assume that the interconnection network is an arbitrary
of precedence constraints. This is in contrast to the methodspology that could include dedicated as well as shared
proposed in [1, 4] where the order of tasks is irrelevant ainks. The communication between two tasks residing on
long as the precedence constraints are taken into accoutite same processor is done via accessing shared memory
Whenever this latter characteristic of the scheduling operaand its cost is assumed to be negligible. The communi-
tion applies, all redundant vertices can be pruned from theation cost associated with a message between two tasks
search tree. Second, we allow related tasks to be assignedan different processors is expressed as the product of the
different processors. This allows us to efficiently exploit themessage length and the “nominal communication delay.”
inherent parallelism in the application and hence increas€he nominal delay is the worst-case communication delay
the likelihood of meeting task deadlines. This flexibility that reflects the scheduling strategy used by the underlying
in task distribution is not offered by task assignment techinterconnection network. We assume that the system is so
nigues like those in [1, 5]. Third, by using non-preemptivedesigned that communication in the network can take place
run-time scheduling and hence allowing preemptions to oceoncurrently with processor computation.
cur only at task boundaries, we can easily include the cost.2 The task system
of hardWare context SWitCheS and St|” f|nd the Optlmal SOIU' We Consider a rea'_time app”cation that Consists Of a set
tion. The presence of a non-negligible context switch over-y — {ri:1<i<n} of tasks. Each task; € T is char-
head makes it very hard to find feasible schedules if uncorngcterized by a 4-tuplée;, ¢;, di, T;). The worst-case exe-
strained preemption is allowed. cution timeg; includes various architectural overheads such
The main contributions of this paper are as follows. 35 the cost for cache memory misses, pipeline hazards and
C1. We show that a last-in-first-out (LIFO) vertex selectioncontext switches. We also assume that the cost for packetiz-
rule outperforms the least-lower-bound (LLB) rule by ing and depacketizing messages are constant and included
at least an order of magnitude for the addressed prolin the worst-case execution time of communicating tasks.
lem. This is an interesting result since it shows thatThe phasing; is the earliest time at which the first invoca-
the LLB rule, the "default” rule in many B&B strate- tion of the task will occur, measured relative to some fixed
gies, is not necessarily the best for all multiprocessobrigin of time. The relative deadling; is the time within
scheduling problems. which the task must complete its execution, once it has been
C2. We propose an efficient lower-bound function for theinvoked. The periodl; is the time interval between two
B&B algorithm under realistic assumptions on proces-consecutive invocations of.
sor contention during scheduling. An experimental Let 7} denote thek!” invocation of the taskk € Z*.
evaluation shows that our lower-bound function out-The dynamic behavior of is then characterized by the
performs other techniques by almost an order of magpair (a¥, D¥), where the absolute arrival tim& = ¢; +
nitude when task parallelism cannot be fully exploitedT;(k — 1) is the earliest time at which" is allowed to start
on the system. Because the B&B strategy is compuits execution, and the absolute deadlide = o + d; is the
tationally tractable only for systems with a relatively time by whichr} must complete its execution.
small number of processors, the quality of the pro- Precedence constraints between tasks in a task aet
posed lower-bound function is all the more important.represented by an irreflexive partial ordeover7. If task
C3. We present techniques that can significantly reduce; cannot begin its execution until task has completed
the number of searched vertices at the price of eitheitS execution, we writer; < ;. In this caser; is said
near-optimal results with performance guarantees oo be apredecessoof 7;, and, conversely;; a successor
approximate results without performance guarantee®f 7;. In addition, whenever; < 7; and the condition
In particular, we find that by scheduling tasks in a fixed—(37% : (7 < 7)) A (7 < 7;)) holds, we writer; < ;. In
depth-first order, good approximate results can be athis casey; is said to be alirect predecessaf taskr; and
tained at a very low computational cost. 7; adirect successdo ;. A task which has no predecessors
The rest of the paper is organized as follows: Section 3 called annput task and a task which has no successors
describes the assumed system and states the problem. Séccalled aroutput task
tion 3 discusses the parametrized B&B algorithm. Section 4 The activities associated with message transfer from task
describes the experimental setup. Section 5 presents the gx-t0 taskr; are handled by aommunication channel; ;
perimental evaluation. Section 6 discusses complementafjiaracterized by the tuplen; ;, ai ;, d; ;), wherem; ; de-

results, and Section 7 summarizes the results in this papeflotes the maximum message siag; the message arrival
time, andd; ; the relative deadline of the message. The real

2 System Models communication cost for sending a message depends on the
2.1 The multiprocessor system communication scheduling strategy employed in the system

The multiprocessor system consists of a setndcannotbe determined until the tasks have been assigned
P={p;:1<qg<m} of identical processors. The to processors.
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The computational and communication demands of a A goal vertexin the search tree represents a complete
task set, and intertask precedence constraints, are reps®lution where all tasks have been scheduled on the proces-
sented by a directed acyclic task grapk= (N, A). Nis  sors. An “acceptable” complete solution is also calléea
a set of nodes representing the tasks in theJse#l is a  siblesolution. Anintermediate verterepresents a partially-
set of directed arcs representing the precedence constraigtsmplete schedule. THevelof a vertex is the number of
between the tasks i, that is, ifr; < 7; then(r;, 7;) € A.  tasks that have been assigned to any processor in the current
Each node inN is annotated with a non-negative weight schedule. Theostof a vertex is the quality of the schedule
representing the computational demand of the correspondepresented by the vertex; in this paper, it is the maximum
ing task. For those arcs i that represent communication task lateness for the schedule represented by the vertex.
channels, a non-negative weight is used for representing the When no precedence constraints exist between tasks, the
message size. number of goal vertices in a search treeis" for a mul-

A time-driven non-preemptive multiprocessor scheduldiprocessor system with tasks andn processors. If prece-
for a task sefl” and a multiprocessor architectuPeis the  dence constraints exist, the number of goal vertices can be
mapping of each task; € 7 to astart times; and a pro- greatly reduced. If the maximum number of child vertices
cessorp; € P. The task is then scheduled to run withoutof a vertex isk, then the number of goal vertices in the
preemption on processpy in the time intervals;, f;], with ~ search tree is at most'm”. Because of the exponentially
its finish timebeing f; = s; + ¢;. Thetime intervala;, D;], ~ growing number of vertices in the search tree, vertices are
denoted byw;, is called theexecution windovef ;. For  normally not generated until the B&B algorithm needs to
periodic tasks, the static task parameters are assumed to saxplore them. Whenever a new vertex is generated and it
isfy d; < Tj, that is, the execution windows of two invoca- could lead to an optimal solution, it will be referred to as an
tions of the same task don't overlap in time. Furthermoreactive vertex The order in which the vertices in the search
the execution time; cannot exceed the lengtty;| of any  tree will be explored is governed by a set of rules that are
execution window. often heuristic. As will be demonstrated later, the choice of

The schedule is said to lvalid if (i) the conditionss; >  rules dictates the performance of the B&B algorithm. The
a; and f; < D; are satisfied for each task, and (ii) all power of the B&B strategy lies in alternating branching and
precedence constraints defined by the partial ordever  bounding operations on the set of active vertices. Branch-
T are met. A task set is said to easibleif there exists ing refers to the process of generating the child vertices of
a valid schedule for the task set. We say that a task set & active vertex, while bounding refers to the process of
schedulableby a scheduling algorithr8 if it produces a  evaluating the cost of new child vertices.
valid schedule for the task set. To describe our B&B algorithm, we will use the
parametrized notation introduced by Kohler and Steiglitz
2.3 Problem statement [6]. A B&B algorithm for solving a permutation problem

For the system described in the previous sections, Weuch as the multiprocessor scheduling problem can then be
want to find a schedule for a given set of tasks — a onecharacterized by a 9-tupleB, S, E, F, D, L,U, BR, RB),
to-one mapping from each task to its assigned process@fhere B is the vertex branching rule§ the vertex selec-
and start/stop times — such that the maximum task lateion rule, E the vertex elimination rulef” the characteristic
NessLyq.; = max{f; — D;:7; € T} is minimized. As a function, D the vertex domination ruld, the lower-bound
secondary performance measure we want to minimize thgost function,U/ the upper-bound solution cogBR an in-
number of vertices searched, indicating the computationalccuracy limit for the cost of a feasible solution, aR#®

complexity of the B&B algorithm. are upper bounds on the time and space resources that are
. available for solving the problem.
3 B&B Algorithm F is used for eliminating partial solutions that will not

The search for a solution to the multiprocessor schedulead to a valid complete solutiorD is used for comparing
ing problem is performed with the aid ofsgarch treghat  partial solutions and eliminating “inferior” partial solutions.
represents the solution space of the problem, that is, all po¥Vvhile F' and D have been shown to be very efficient in re-
sible permutations of task—to—processor assignments anlgicing the complexity of B&B algorithms, we have chosen
schedule orderings. Each vertex in the search tree reprgotto use them, in order to preserve our results as general as
sents one specific task—to—processor assignment and schpassible. As has been successfully demonstratedin [1, 2, 4],
ule ordering, and one or many vertices represent the optimétie effects ofF" and D are most powerful when they are
solution whenever one exists. Thmot vertexof the search designed with a specific processor scheduling strategy in
tree represents an empty schedule and each of its descendanind.
vertices (children) represents the scheduling of one specific BR is an indicator on how far the cost for a feasible so-
task on one specific processor. The children of each of thedetion is allowed to deviate from that of the optimal solu-
child vertices represents the scheduling of yet another tagion. This limit is useful when near-optimal results with per-
0N one processor. formance guarantees [13, pp. 121-151] are desired. When
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Algorithm BRANCH-AND-BOUND: is created and initialized with an empty schedule. The cost

1. initialize active sefd S with root vertex: of the root vertex is set according to the upper-bound cost

2. set best vertex, to root vertex; U. The root vertex is then inserted into the active 4ét

3. while { AS # 0 } loop and a variable,, (best vertex) is set to the root vertex.

4. selectavertex, in AS according to vertex Select a vertex to exploiStep 4): A branch vertex; is
_selection rules; selected among the active vertices according to the vertex

5. if { stop condition forS } then selection rules.

break loop;
6. generate a sé? B of child vertices to vertex
according to vertex branching rufe;
calculate the codt(v) for each vertex in DB
using the lower-bound functioh;
8. eliminate vertices ith B and AS according to
vertex elimination rule®;
9.  move all remaining vertices iDB to AS;
10.end loop,

Generate child verticeiStep 6): A sefD B of child vertices

is generated according to the vertex branching Bile
Calculate child vertex costéStep 7): A lower bound on
the cost of each vertex i B is calculated using a lower-
bound functionL. Each vertex’s set of tasks is scheduled
on their processors and the overhead introduced by tasks
not yet scheduled is estimated.

Eliminate verticegStep 8): The vertices i B andAS are

now inspected as to whether they are capable of guiding the
search to a feasible or optimal solution. The vertex elimi-
nation ruleE determines which vertices to keep and which
ones to prune.

Move remaining child verticeStep 9): Move the child ver-
tices inD B after the vertex elimination step appliedAs.
Repeat until no vertices remaiStep 3, 5 and 10): The main
loop in the algorithm is repeated until no vertices are left in
AS or until the stop condition for the vertex selection rule
is satisfied. Unless the best vertgxis the root vertex, in
which case the algorithm has failed to find a solutiop,

will be the optimal solution.

~

Figure 1: The branch-and-bound algorithm.

performance guarantees are desired, the Eggt for the
optimal solution and the codt,.. for a feasible solution
are related as given by the relatidbopt| < |Lgeel <
(1+ BR)|Lopt|- This means that when the inaccuracy limit
BR = 0%, the only feasible solution is the optimal one.
The resource boundkB can be viewed as a triple
(TIMELIMIT, MAXSZAS,MAXSZDB) where TIME-
LIMIT is the maximum allowable time to find a solution,
MAXSZAS is the maximum allowable size of the set of ac-
tive vertices, and MAXSZDB is the maximum allowable
number of child vertices of any vertex. Should the time3.2 Vertex selection ruleS
limit be exceeded, the algorithm either fails or terminates From the setdS of currently-active vertices, the vertex

age bounds be exceeded, the algorithm must dispose of ofg B&B algorithm.

or more of the active intermediate solutions, thereby run-
ning the risk of missing the optimal solution.

In [6] it is proven that (i) one cannot lose by eliminating
those newly-generated vertices that exceed an upper-bounde The Least-Lower-Bound (LLB) rule§y.g, selects the
solution cost, and that (ii) one cannot lose by using a bet-  vertexv € AS that has the least lower-bound cost
ter solution as the initial upper bound. Similar results have ~ L(v). The stop condition foSy 1 is reached when
been reported for the well-known A* algorithm [14]. the lower-bound cost of the selected vertex is equal to,
3.1 Algorithm or higher than, the current upper-bound cbgt,,).

The following three vertex selection rules are commonly
used in literature:

Figure 1 shows a pseudo-code form of the parametrized e
B&B algorithm. The algorithm takes a task graph as the in-
put and produces an annotated task graph containing infor-
mation about task start and finish times for the best sched-
ule. In this algorithm, amctive setAS is used to hold all

The First-In-First-Out (FIFO) ruleSriro, selects the
vertexv € AS that was generated first. The stop con-
dition for Sgrro is reached wherd S is empty.

e The Last-In-First-Out (LIFO) ruleSriro, Selects the

vertexv € AS that was generated last. The stop con-

the active vertices. dition for Syiro is reached wher.S is empty.

The algorithm in Figure 1 differs slightly from the one
proposed in [6] in that goal vertices are never inserted into The FIFO strategy is very inefficient for multiprocessor
the set of active vertices. Instead, a goal vertex either bescheduling because its objective is to search for a solution
comes the new best vertex if its cost is lower than the cosit the lowest possible vertex level. For a multiprocessor
of the currently best vertex, or it will be pruned. Using thisscheduling problem where all goal vertices are at the same
strategy, many unnecessary insertions into the active set dmel, the FIFO strategy will generate all intermediate ver-
avoided. The different steps of the algorithm are describetices before finding any complete solution. Since this is
below in detail. a very ineffective strategy, we will not discuss or analyze
Initialize active se{Step 1 — 2): In this step the root vertex Sgrro any further, but instead focus ¢t andSyiro.
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3.3 Vertex branching rule B Algorithm U/DBAS:

The vertex branching rule is instrumental in guiding thel 1. setd, to the goal vertex iD B with the lowest cost;
traversal of the search tree, based mainly on task preceder|c2. if { . exists andl(?.) < L(v.) } then
constraints. For each vertex in the search tree, there is|a3. removed, from DB;
set ofreadytasks; a task is said to be ready when all off 4. Setvy := 0
its predecessors have been scheduled. One important fac2: €nd if; _ _
tor to take into account at this stage is tteenmutativityof 6. prune each vertexin DB/AS for which L(v) 2 L(vu);
the underlying processor scheduling operation. A processor
scheduling operation is said to bemmutativef the order
in which tasks are scheduled on the processors doesn’t mat-_ .
ter to the final scheduling result. Whenever commutativis important to estimate the lateness for those tasks not yet
ity applies, it is possible to identify those vertices that will Scheduled. The lower boundon the maximum task late-
yield the same scheduling result regardless of the order if€ss for the task sétis defined as
which they are explored. All but.one _of thes_e vertiqes can i= max{f,» —D; :mi €T}
then be pruned before the algorithm is applied, which will
significantly reduce the complexity of the algorithm. An wheref; is the estimated finish time of task
example of a commutative processor scheduling operation We will evaluate two lower-bound cost functions. The
is the one proposed by Baket al. [12]. This operation first function, L1, is similar to the one used in [4]. Start-
has been successfully used in the B&B algorithm proposeihg with the output tasks, task’s estimated finish time;
in [1, 4]. It should be noted, however, that commutativ-is defined recursively as:
ity only applies for the B&B algorithms in [1, 4] under the
assumption that the ideal preemptive scheduling strategy in ; . J fi
[12]is used and that interprocessor communication schedul- ** | max({f;} U {max{f;,a;} + ¢; : 7j < 7:})
ing is also commutative. For a non-preemptive schedulin ] o . ]
strategy, the single-processor scheduling problem would bENe first case in this equation applies wheras been as-
NP-complete [13], thereby effectively prohibiting the use ofSigned to and scheduled on a processor; otherwise, the sec-

Figure 2: The vertex elimination rulBy ppas-

such strategies as those used in [1, 4]. ond case applies. . L
Specifically, we will evaluate the following vertex _ 1nhe second lower-bound functiodyg,, is similar to
branching rules. Lipo but also takes processor contention into account.

Starting with the output tasks, tasks estimated finish time

e The Depth-First (DF) ruleBpr, selects the task to use is defined recursively as:

for generation of a child vertex from the head of a list
sorted according to a depth-first traversal of the taslj? { fi
graph. i 7 7 e

¢ The Breadth-First-One-Task (BF1) ruBgg:, selects max({fi} U {max{fj, ai, bmin} + ¢i : 75 < 7i})
the task to use for generation of a child vertex from theHere, Z,,.;,, is the earliest time at which a new task can be
head of a list sorted according to the level of a taskscheduled on any processor.
The level of a task is calculated in the same manner a8.6 Vertex elimination rule E

in [4]. The vertex elimination rule is applied after calculating a

e The Breadth-First-All-Tasks (BFn) rulgr,, selects  lower-bound cost for all newly-generated vertices. Its main

all available tasks to use for generation of child ver-yse is in the elimination of vertices iR B and/orAS that
tices. will not lead to a feasible solution.

Both DF and BF1 are unable to guarantee an optimal so- We will evaluate one such rule, called the Upper-Bound-
lution unless processor and communication scheduling of=0st-to-DB-and-AS (U/DBAS) rulefy ppas- This rule
erations are commutative, whereas BFn guarantees to fifi@mpares the cost of every vertex B and AS with
an optimal solution if any. the cost of the current upper-bound cost of vertgxand
3.4 Upper-bound solution cost/ removes all those vertices Wi'gh equal or highe_:r costs. .A

An upper-bound solution cost is used to initialize thePseudo-code form of the algorithm for this rule is shown in

root vertex. The more accurate the upper-bound cost is, tH:égure 2.
faster the B&B algorithm will get because more vertices ca  Experimental Setup

be pruned at each step. The experimental platform used consists of a shared-
3.5 Lower-bound cost functionL bus homogeneous multiprocessor system whose size ranges

A lower-bound cost function is used for the bounding op-from 2 to 4 processors. The shared bus is time-multiplexed
eration where “pessimistic” estimates on the maximum task such a way that the communication cost between two pro-
lateness are calculated for newly-generated vertices. So,dessors is one time unit per transmitted data item.
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4.1 Workload 5 Experimental Evaluation

In the experiments a set of task graphs were generated In this section we evaluate the performance of the B&B
using a random task graph generator. Each task graph costrategy presented in Section 3. Unless specifically noted,
tains between 12 and 16 tasks. Task execution times wetke following B&B parameter choices were useBR =
chosen randomly according to a uniform distribution with0%, TIMELIMIT = 4 hours, MAXSZAS = oo, and
mean execution time of 20 time units. Task execution time3IAXSZDB = oo. The observed performance indices
are allowed to deviate by at mag®9% from the mean ex- were (i) the number of searched vertices and (ii) the max-
ecution time. An end-to-end deadline was chosen for eacimum task lateness. In Figure 3, the plots for the number
input—output task pair in the generated graph in such a wagf searched vertices and the maximum task lateness are lo-
that the overall laxity ratio of the end-to-end deadline tocated in the upper and lower part in the figure, respectively.
the accumulated task graph workload corresponds to 1.3s a reference, we have also included in all plots the results
The precedence constraints in the task graph were also raobtained for the greedy EDF algorithm in Section 4.4.
domly generated. The number of successors/predecessorsin all the plots presented, every reported value is an aver-
to each task was chosen at random to be in the range of 1 &gje of the observed performance data, taken over the set of
3, and the depth of the task graph was chosen to be betwesimulation runs, one for each parameter combination. The
8 and 12 levels. The number of data items in each messag@&mber of simulation runs were chosen in such a way that
passed between a pair of tasks was chosen in such a waw0% (95%) confidence level could be achieved for a max-
that the communication—to—computation cost ra@CR)  imum error within 10% (0.5%) of the average values re-
(of the average message communication cost to the averagerted for the number of generated active vertices (max-
task execution time) is 1.0. imum task lateness). Simulations that exceeded the time
4.2 Deadline assignment limit as defined by TIMELIMIT were removed from the

To assign arrival times and deadlines to each task igvaluation. These simulations were found to constitute less
T, we used the deadline assignment technique proposed fan 1% of all simulation runs for each reported value and
[16]. Each series of direct successors between an inputhe confidence levels presented above have been calculated
output task pair is assigneslices non-overlapping exe- Withoutincluding the removed simulations.
cution windows, of the task pair's end-to-end deadline5.1 Effect of vertex selection rule

The s!icing_ technique is suitable for distriputing en_d-tlo-.end Figure 3(a) illustrates how the performance of the B&B
deadlines in real-time systems, because it allows individual|gorithm is affected by different choices of vertex selection
tasks to be scheduled independently of each other, therebyje 5. Each plot shows the performance of the algorithm
allowing for different scheduling strategies on different pro-yhen vertex selection was made according tohes and
cessors. Spiro rule, respectively.
4.3 Task scheduling As can be seen in the upper pldiiro outperforms
We used a task scheduling strategy that assumes a nafir,g by more than an order of magnitude for all system
preemptive time-driven processor run-time model. A newsizes. This is a totally unsuspected result siSges has
task is scheduled on a processor at the earliest possibbeen predominantly used in almost all B&B scheduling
start time, while taking into account possible interprocesalgorithms for real-time scheduling. For instance, when
sor communication costs and arrival time constraints of thecheduling for minimized makespan (schedule length), a
task, but later than all tasks that have previously been schedeod lower-bound cost for an “early” vertex (at a low level
uled on the processor. This scheduling strategy exhibits i the search tree) is an indicator for a good complete so-
time complexity that is quadratic in the number of tasks inlution. This correlation between the cost of an early vertex
the system. Unfortunately, the simplicity of the schedulingand a goal vertex is not necessarily provided when schedul-
operation implies that it is not commutative. ing to minimize task lateness.
4.4 Upper-bound estimation The performance d1,1ro differs from that of the gregdy
An initial upper-bound cost/ for the B&B algo- EDF algorithm by a little more than an order of magnitude
rithm was derived by applying a polynomial-time Earliest-for & small system, and up to two orders of magnitude for
Deadline-First (EDF) algorithm. For each scheduling step2 larger system. As can be seen in the lower plot, however,
the EDF algorithm selected one task from all schedulabléh® B&B algorithm yields 5% better (more negative) task
tasks. The task with the closest absolute deadline was stateness for a small system and approximately 3% better
lected, and then scheduled on the processor that yielded thSk lateness for larger systems.
earliest start time. The set of schedulable tasks was the2 Effect of lower-bound function

updated. Figure 3(b) illustrates how the performance of the B&B
I , , . . .. _algorithm is affected by different choices of lower-bound
All modeling and simulation experiments were performed within

FEAST [15], a framework for evaluation of allocation and scheduling tech-mnCtionL- Each plot shows the performance of the algp-
niques for distributed hard real-time systems. rithm when the lower-bound cost was calculated according
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Figure 3: Performance as a function of: (a) vertex selection rule; (b) lower-bound function; (c) approximation strategy.

to Ly,go andLy,g1, respectively. ing parallelism, a depth-first traversal will schedule some
As can be seenin the upper plét,g; outperformdly gy input tasks much later than a breadth-first traversal would
by approximately half an order of magnitude for a smalldo. As input tasks are delayed, their successor tasks will be
system. As the system size increases, however, the perfatelayed, hence increasing the potential for worsening task
mance of the two functions converge, since for larger syslateness. As the system size increases, more parallelism can
tems the application parallelism can be exploited better ande exploited in the system and the task lateness of both ap-
the adaptive characteristics bf gz; become less significant. proximative vertex branching rules converge to that of the
5.3 Effect of approximation strategy op.timal. Also apparent in the plots is that the performance
Figure 3(c) illustrates how the performance of the B&B 9@in attained foBgr, with performance guarantees is at
algorithm is affected by different choices of approxima-Pest 100% as compared to an optimal version, while the
tion method. Each plot shows the performance of the almaximum task lateness is kept very close to the optimal one.
gorithm when the lower-bound cost was calculated accord- . .
ing to Lip:. Results for the approximate vertex branching® DISCUSSion
rules Bpr and Bgp; are shown, as are two versions of the  Due to space limit, we have omitted the results of some
branching ruleBgp,: one near-optimal wittBR = 10%, complementary experiments. We will briefly summarize
and one optimal witlBR = 0%. Also included in the plots these results here. We have evaluated the B&B strategy for
are the results obtained for the optimal B&B algorithm withtask graphs with varying degrees of parallelism. Using the
S = SLiFo. same basic experimental setup in Section 4, we found that
As can be seen in the upper plot, the approximate vewhen the parallelism in the task graph increases, a lower-
tex branching rules outperform near-optimal ones by a littldoound cost function that takes processor contention into ac-
more than an order of magnitude. Among the approximateount will give even better performance for the B&B algo-
vertex branching rulesBpr yields a small but significant rithm. We have also evaluated the B&B strategy for differ-
performance gain oveBgr;, but this advantage comes at ent values on the communication—-to—computation cost ratio
the price of worse (less negative) task lateness as can K€CR). Here, wedund that lower CCR gives better B&B
seen in the lower plot. It is worth noting that, for a small algorithm performance. This is because the cost estimates
system, the task lateness Bpr is worse than that for the derived by lower-bound cost functions will be more accu-
greedy EDF algorithm. This can be attributed to the fact thatate, thus making the B&B algorithm converge faster.
if the application parallelism exceeds the available process- We have also investigated the impact of an upper-bound
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solution cost on the performance of the B&B algorithm. We [4]
found that by using a greedy algorithm to derive approxi-
mate initial upper-bound costs, the performance of the B&B
algorithm was improved by more than 200% as compared to
an approach where the initial upper-bound cost was set to §5]
positive value.

Finally, we remark on the practicality of the B&B strat-
egy. In our simulations, the size of the simulated sys-
tem had to be restricted because of limitations in the hard-[6]
ware simulation milieu. All simulations were made using a
SPARCstation-4 machine with 64 Megabyte primary mem-
ory, running the SunOS 5.5 operating system. For some
simulations, such large amounts of active nodes had to bg7]
maintained in virtual memory that machine performance
was degraded significantly because of system thrashing, that
is, constant shuffling of virtual memory pages to and from
the machine’s hard disk swap area. This behavior was parig]
ticularly apparent during those simulations that employed
the LLB vertex selection rule because of its quite random
(with respect to virtual memory location) access pattern
among the active vertices. For those simulations that emqgj
ployed the LIFO vertex selection rule, system thrashing did
not occur since the access pattern for this rule matches very
well the page replacement strategy used by the SunOS oper-
ating system, that is, LRU. This, of course, is another reasof g
for choosing the LIFO rule over the LLB rule.

7 Conclusions

In this paper we have evaluated how effective the B&B[11]
strategy can be in finding optimal multiprocessor schedules
of precedence-constrained tasks. In particular, we found
that if intelligent rules for vertex selection, branching andj;2;
elimination are used in the B&B algorithm, the problem of
minimizing the maximum task lateness can be solved within
reasonable time for moderate-size systems. For larger sys-
tem sizes where machine and time limitations become a ma-
jor concern, approximate versions of the B&B algorithm arg; 3
viable alternatives to faster but less accurate greedy algo-
rithms.
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