
Copyright 1997 IEEE. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or for creat-
ing new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

In Proc. of the Int’l Conf. on Parallel Processing, August 11–15,
1997, Bloomingdale, Illinois, pp. 158–165.

A Parametrized Branch-and-Bound Strategy for Scheduling
Precedence-Constrained Tasks on a Multiprocessor System

Jan Jonsson� Kang G. Shin

Department of Computer Engineering
Chalmers University of Technology

S-412 96 G¨oteborg, Sweden

janjo@ce.chalmers.se

Real-Time Computing Laboratory
Dept. of Elec. Engr. and Computer Science

University of Michigan, Ann Arbor, MI 48109

kgshin@eecs.umich.edu

Abstract
In this paper we experimentally evaluate the perfor-

mance of a parametrized branch-and-bound (B&B) algo-
rithm for scheduling real-time tasks on a multiprocessor
system. The objective of the B&B algorithm is to mini-
mize the maximum task lateness in the system. We show
that a last-in-first-out (LIFO) vertex selection rule clearly
outperforms the commonly used least-lower-bound (LLB)
rule for the scheduling problem. We also present a new
adaptive lower-bound cost function that greatly improves
the performance of the B&B algorithm when parallelism in
the application cannot be fully exploited on the multipro-
cessor architecture. Finally, we evaluate a set of heuris-
tic strategies, one of which generates near-optimal results
with performance guarantees and another of which gener-
ates approximate results without performance guarantees.

1 Introduction
Since its introduction in the field of artificial intelligence,

the branch-and-bound (B&B) strategy has been success-
fully used for finding optimal or near-optimal solutions to
the problem of scheduling tasks on multiprocessor archi-
tectures. Recent work includes B&B strategies for task
scheduling on distributed real-time systems [1], digital sig-
nal processing systems [2], and fault-tolerant systems [3].
The B&B strategy is an efficient method for searching the
solution space of a scheduling problem. The solution space
is often represented by a search tree where each vertex in the
tree represents either a complete or a partial solution to the
problem. With the aid of intelligent rules for selecting ver-
tices to explore/expand and pruning (deleting) vertices that
do not lead to an optimal solution, the complexity of the
search can be drastically reduced as compared to that of an
exhaustive implicit enumerative search. However, because
the inherent exponential complexity of the B&B strategy
cannot be completely eliminated, its applicability is in gen-
eral restricted to small systems. When the application char-
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acteristics and/or the processing architecture are known and
can be exploited very efficiently, however, the B&B strategy
can perform well even for large systems [4, 5].

In this paper, we show how the B&B strategy can be used
for non-preemptive scheduling of precedence-constrained
tasks on a multiprocessor system subject to individual task
deadlines. In particular, we show how a B&B algorithm
can be applied to minimize the maximumtask lateness, that
is, the difference between a task’s completion time and its
deadline. For hard real-time systems where all tasks must be
scheduled to meet their deadlines, the maximum task late-
ness indicates the scalability of the scheduled system work-
load. To evaluate the various aspects of the B&B strategy,
we adopt a parametrized notation introduced by Kohler and
Steiglitz [6].

Because the addressed scheduling problem is usually
NP-complete [7], many heuristic approaches have been pro-
posed to solve the problem in an efficient manner. For inde-
pendent tasks on one processor, efficient B&B algorithms
were proposed by Baker and Su [8], and McMahon and
Florian [9]. A generalization of these algorithms was pro-
posed by Lageweget al. [10] for the case of precedence-
constrained tasks. Optimal polynomial-time algorithms for
precedence-constrained tasks on one processor have been
proposed for the case when all release times are equal [11],
as well as for preemptive scheduling [12]. For the multi-
processor case, on the other hand, only a few B&B algo-
rithms have been reported in literature, addressing the prob-
lem of optimizing the schedules for deadline-constrained
tasks. Peng and Shin [1] proposed an algorithm to min-
imize the system hazard(maximum normalized task re-
sponse time), and Hou and Shin [4] proposed an algorithm
to maximize theprobability of no dynamic failure(all tasks
meet their deadlines in the presence of component failures).
The algorithms in [1, 4] both utilize a version of the optimal
polynomial-time algorithm in [12] to minimize their perfor-
mance measures. Recently, Abdelzaher and Shin [5] pre-
sented an algorithm for improving an initial solution where
the assignment of tasks to processors is fixed and known
beforehand.

The following features distinguish our B&B approach
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from others. First, we consider all possible permutations of
scheduling tasks on a set of processors subject to a given set
of precedence constraints. This is in contrast to the methods
proposed in [1, 4] where the order of tasks is irrelevant as
long as the precedence constraints are taken into account.
Whenever this latter characteristic of the scheduling opera-
tion applies, all redundant vertices can be pruned from the
search tree. Second, we allow related tasks to be assigned to
different processors. This allows us to efficiently exploit the
inherent parallelism in the application and hence increase
the likelihood of meeting task deadlines. This flexibility
in task distribution is not offered by task assignment tech-
niques like those in [1, 5]. Third, by using non-preemptive
run-time scheduling and hence allowing preemptions to oc-
cur only at task boundaries, we can easily include the cost
of hardware context switches and still find the optimal solu-
tion. The presence of a non-negligible context switch over-
head makes it very hard to find feasible schedules if uncon-
strained preemption is allowed.

The main contributions of this paper are as follows.
C1. We show that a last-in-first-out (LIFO) vertex selection

rule outperforms the least-lower-bound (LLB) rule by
at least an order of magnitude for the addressed prob-
lem. This is an interesting result since it shows that
the LLB rule, the ”default” rule in many B&B strate-
gies, is not necessarily the best for all multiprocessor
scheduling problems.

C2. We propose an efficient lower-bound function for the
B&B algorithm under realistic assumptions on proces-
sor contention during scheduling. An experimental
evaluation shows that our lower-bound function out-
performs other techniques by almost an order of mag-
nitude when task parallelism cannot be fully exploited
on the system. Because the B&B strategy is compu-
tationally tractable only for systems with a relatively
small number of processors, the quality of the pro-
posed lower-bound function is all the more important.

C3. We present techniques that can significantly reduce
the number of searched vertices at the price of either
near-optimal results with performance guarantees or
approximate results without performance guarantees.
In particular, we find that by scheduling tasks in a fixed
depth-first order, good approximate results can be at-
tained at a very low computational cost.

The rest of the paper is organized as follows: Section 2
describes the assumed system and states the problem. Sec-
tion 3 discusses the parametrized B&B algorithm. Section 4
describes the experimental setup. Section 5 presents the ex-
perimental evaluation. Section 6 discusses complementary
results, and Section 7 summarizes the results in this paper.

2 System Models
2.1 The multiprocessor system

The multiprocessor system consists of a set
P = fpq : 1 � q � mg of identical processors. The

processors communicate using an interconnection network.
We assume that the interconnection network is an arbitrary
topology that could include dedicated as well as shared
links. The communication between two tasks residing on
the same processor is done via accessing shared memory
and its cost is assumed to be negligible. The communi-
cation cost associated with a message between two tasks
on different processors is expressed as the product of the
message length and the “nominal communication delay.”
The nominal delay is the worst-case communication delay
that reflects the scheduling strategy used by the underlying
interconnection network. We assume that the system is so
designed that communication in the network can take place
concurrently with processor computation.
2.2 The task system

We consider a real-time application that consists of a set
T = f�i : 1 � i � ng of tasks. Each task�i 2 T is char-
acterized by a 4-tuplehci; �i; di; Tii. The worst-case exe-
cution timeci includes various architectural overheads such
as the cost for cache memory misses, pipeline hazards and
context switches. We also assume that the cost for packetiz-
ing and depacketizing messages are constant and included
in the worst-case execution time of communicating tasks.
The phasing�i is the earliest time at which the first invoca-
tion of the task will occur, measured relative to some fixed
origin of time. The relative deadlinedi is the time within
which the task must complete its execution, once it has been
invoked. The periodTi is the time interval between two
consecutive invocations of�i.

Let �ki denote thekth invocation of the task,k 2 Z
+.

The dynamic behavior of�ki is then characterized by the
pair (aki ; D

k
i ), where the absolute arrival timeaki = �i +

Ti(k � 1) is the earliest time at which�ki is allowed to start
its execution, and the absolute deadlineDk

i = aki +di is the
time by which�ki must complete its execution.

Precedence constraints between tasks in a task setT are
represented by an irreflexive partial order� overT. If task
�j cannot begin its execution until task�i has completed
its execution, we write�i � �j . In this case�i is said
to be apredecessorof �j , and, conversely,�j a successor
of �i. In addition, whenever�i � �j and the condition
:(9�k : (�i � �k) ^ (�k � �j)) holds, we write�i �� �j . In
this case,�i is said to be adirect predecessorof task�j and
�j adirect successorto�i. A task which has no predecessors
is called aninput task, and a task which has no successors
is called anoutput task.

The activities associated with message transfer from task
�i to task�j are handled by acommunication channel�i;j
characterized by the tuplehmi;j ; ai;j ; di;ji, wheremi;j de-
notes the maximum message size,ai;j the message arrival
time, anddi;j the relative deadline of the message. The real
communication cost for sending a message depends on the
communication scheduling strategy employed in the system
and cannot be determined until the tasks have been assigned
to processors.
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The computational and communication demands of a
task set, and intertask precedence constraints, are repre-
sented by a directed acyclic task graphG = (N;A). N is
a set of nodes representing the tasks in the setT. A is a
set of directed arcs representing the precedence constraints
between the tasks inT, that is, if�i �� �j then(�i; �j) 2 A.
Each node inN is annotated with a non-negative weight
representing the computational demand of the correspond-
ing task. For those arcs inA that represent communication
channels, a non-negative weight is used for representing the
message size.

A time-driven non-preemptive multiprocessor schedule
for a task setT and a multiprocessor architectureP is the
mapping of each task�i 2 T to a start timesi and a pro-
cessorpi 2 P. The task is then scheduled to run without
preemption on processorpi in the time interval[si; fi], with
its finish timebeingfi = si+ ci. The time interval[ai; Di],
denoted bywi, is called theexecution windowof �i. For
periodic tasks, the static task parameters are assumed to sat-
isfy di � Ti, that is, the execution windows of two invoca-
tions of the same task don’t overlap in time. Furthermore,
the execution timeci cannot exceed the lengthjwij of any
execution window.

The schedule is said to bevalid if (i) the conditionssi �
ai andfi � Di are satisfied for each task�i, and (ii) all
precedence constraints defined by the partial order� over
T are met. A task set is said to befeasibleif there exists
a valid schedule for the task set. We say that a task set is
schedulableby a scheduling algorithmS if it produces a
valid schedule for the task set.

2.3 Problem statement
For the system described in the previous sections, we

want to find a schedule for a given set of tasks — a one-
to-one mapping from each task to its assigned processor
and start/stop times — such that the maximum task late-
nessLmax = maxffi �Di : �i 2 Tg is minimized. As a
secondary performance measure we want to minimize the
number of vertices searched, indicating the computational
complexity of the B&B algorithm.

3 B&B Algorithm
The search for a solution to the multiprocessor schedul-

ing problem is performed with the aid of asearch treethat
represents the solution space of the problem, that is, all pos-
sible permutations of task–to–processor assignments and
schedule orderings. Each vertex in the search tree repre-
sents one specific task–to–processor assignment and sched-
ule ordering, and one or many vertices represent the optimal
solution whenever one exists. Theroot vertexof the search
tree represents an empty schedule and each of its descendant
vertices (children) represents the scheduling of one specific
task on one specific processor. The children of each of these
child vertices represents the scheduling of yet another task
on one processor.

A goal vertexin the search tree represents a complete
solution where all tasks have been scheduled on the proces-
sors. An “acceptable” complete solution is also called afea-
siblesolution. Anintermediate vertexrepresents a partially-
complete schedule. Thelevelof a vertex is the number of
tasks that have been assigned to any processor in the current
schedule. Thecostof a vertex is the quality of the schedule
represented by the vertex; in this paper, it is the maximum
task lateness for the schedule represented by the vertex.

When no precedence constraints exist between tasks, the
number of goal vertices in a search tree isn!mn for a mul-
tiprocessor system withn tasks andm processors. If prece-
dence constraints exist, the number of goal vertices can be
greatly reduced. If the maximum number of child vertices
of a vertex isk, then the number of goal vertices in the
search tree is at mostknmn. Because of the exponentially
growing number of vertices in the search tree, vertices are
normally not generated until the B&B algorithm needs to
explore them. Whenever a new vertex is generated and it
could lead to an optimal solution, it will be referred to as an
active vertex. The order in which the vertices in the search
tree will be explored is governed by a set of rules that are
often heuristic. As will be demonstrated later, the choice of
rules dictates the performance of the B&B algorithm. The
power of the B&B strategy lies in alternating branching and
bounding operations on the set of active vertices. Branch-
ing refers to the process of generating the child vertices of
an active vertex, while bounding refers to the process of
evaluating the cost of new child vertices.

To describe our B&B algorithm, we will use the
parametrized notation introduced by Kohler and Steiglitz
[6]. A B&B algorithm for solving a permutation problem
such as the multiprocessor scheduling problem can then be
characterized by a 9-tuplehB;S;E; F;D;L; U;BR;RBi,
whereB is the vertex branching rule,S the vertex selec-
tion rule,E the vertex elimination rule,F the characteristic
function,D the vertex domination rule,L the lower-bound
cost function,U the upper-bound solution cost,BR an in-
accuracy limit for the cost of a feasible solution, andRB
are upper bounds on the time and space resources that are
available for solving the problem.

F is used for eliminating partial solutions that will not
lead to a valid complete solution.D is used for comparing
partial solutions and eliminating “inferior” partial solutions.
While F andD have been shown to be very efficient in re-
ducing the complexity of B&B algorithms, we have chosen
not to use them, in order to preserve our results as general as
possible. As has been successfully demonstrated in [1, 2, 4],
the effects ofF andD are most powerful when they are
designed with a specific processor scheduling strategy in
mind.

BR is an indicator on how far the cost for a feasible so-
lution is allowed to deviate from that of the optimal solu-
tion. This limit is useful when near-optimal results with per-
formance guarantees [13, pp. 121-151] are desired. When
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Algorithm BRANCH-AND-BOUND:

1. initialize active setAS with root vertex;
2. set best vertexvu to root vertex;
3. while f AS 6= ; g loop
4. select a vertexvb in AS according to vertex

selection ruleS;
5. if f stop condition forS g then

break loop;
6. generate a setDB of child vertices to vertexvb

according to vertex branching ruleB;
7. calculate the costL(v) for each vertexv inDB

using the lower-bound functionL;
8. eliminate vertices inDB andAS according to

vertex elimination ruleE;
9. move all remaining vertices inDB toAS;
10.end loop;

Figure 1: The branch-and-bound algorithm.

performance guarantees are desired, the costLopt for the
optimal solution and the costLacc for a feasible solution
are related as given by the relationjLoptj � jLaccj �
(1+BR)jLoptj. This means that when the inaccuracy limit
BR = 0%, the only feasible solution is the optimal one.

The resource boundRB can be viewed as a triple
hTIMELIMIT;MAXSZAS;MAXSZDBi where TIME-
LIMIT is the maximum allowable time to find a solution,
MAXSZAS is the maximum allowable size of the set of ac-
tive vertices, and MAXSZDB is the maximum allowable
number of child vertices of any vertex. Should the time
limit be exceeded, the algorithm either fails or terminates
with the best solution found so far. Should any of the stor-
age bounds be exceeded, the algorithm must dispose of one
or more of the active intermediate solutions, thereby run-
ning the risk of missing the optimal solution.

In [6] it is proven that (i) one cannot lose by eliminating
those newly-generated vertices that exceed an upper-bound
solution cost, and that (ii) one cannot lose by using a bet-
ter solution as the initial upper bound. Similar results have
been reported for the well-known A* algorithm [14].
3.1 Algorithm

Figure 1 shows a pseudo-code form of the parametrized
B&B algorithm. The algorithm takes a task graph as the in-
put and produces an annotated task graph containing infor-
mation about task start and finish times for the best sched-
ule. In this algorithm, anactive setAS is used to hold all
the active vertices.

The algorithm in Figure 1 differs slightly from the one
proposed in [6] in that goal vertices are never inserted into
the set of active vertices. Instead, a goal vertex either be-
comes the new best vertex if its cost is lower than the cost
of the currently best vertex, or it will be pruned. Using this
strategy, many unnecessary insertions into the active set are
avoided. The different steps of the algorithm are described
below in detail.
Initialize active set(Step 1 – 2): In this step the root vertex

is created and initialized with an empty schedule. The cost
of the root vertex is set according to the upper-bound cost
U . The root vertex is then inserted into the active setAS

and a variablevu (best vertex) is set to the root vertex.
Select a vertex to explore(Step 4): A branch vertexvb is
selected among the active vertices according to the vertex
selection ruleS.
Generate child vertices(Step 6): A setDB of child vertices
is generated according to the vertex branching ruleB.
Calculate child vertex costs(Step 7): A lower bound on
the cost of each vertex inDB is calculated using a lower-
bound functionL. Each vertex’s set of tasks is scheduled
on their processors and the overhead introduced by tasks
not yet scheduled is estimated.
Eliminate vertices(Step 8): The vertices inDB andAS are
now inspected as to whether they are capable of guiding the
search to a feasible or optimal solution. The vertex elimi-
nation ruleE determines which vertices to keep and which
ones to prune.
Move remaining child vertices(Step 9): Move the child ver-
tices inDB after the vertex elimination step applied toAS.
Repeat until no vertices remain(Step 3, 5 and 10): The main
loop in the algorithm is repeated until no vertices are left in
AS or until the stop condition for the vertex selection rule
is satisfied. Unless the best vertexvu is the root vertex, in
which case the algorithm has failed to find a solution,vu
will be the optimal solution.

3.2 Vertex selection ruleS
From the setAS of currently-active vertices, the vertex

rule S selects the next candidate vertex to be explored by
the B&B algorithm.

The following three vertex selection rules are commonly
used in literature:

� The Least-Lower-Bound (LLB) rule,SLLB, selects the
vertex v 2 AS that has the least lower-bound cost
L(v). The stop condition forSLLB is reached when
the lower-bound cost of the selected vertex is equal to,
or higher than, the current upper-bound costL(vu).

� The First-In-First-Out (FIFO) rule,SFIFO, selects the
vertexv 2 AS that was generated first. The stop con-
dition for SFIFO is reached whenAS is empty.

� The Last-In-First-Out (LIFO) rule,SLIFO, selects the
vertexv 2 AS that was generated last. The stop con-
dition for SLIFO is reached whenAS is empty.

The FIFO strategy is very inefficient for multiprocessor
scheduling because its objective is to search for a solution
at the lowest possible vertex level. For a multiprocessor
scheduling problem where all goal vertices are at the same
level, the FIFO strategy will generate all intermediate ver-
tices before finding any complete solution. Since this is
a very ineffective strategy, we will not discuss or analyze
SFIFO any further, but instead focus onSLLB andSLIFO.
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3.3 Vertex branching ruleB
The vertex branching rule is instrumental in guiding the

traversal of the search tree, based mainly on task precedence
constraints. For each vertex in the search tree, there is a
set of ready tasks; a task is said to be ready when all of
its predecessors have been scheduled. One important fac-
tor to take into account at this stage is thecommutativityof
the underlying processor scheduling operation. A processor
scheduling operation is said to becommutativeif the order
in which tasks are scheduled on the processors doesn’t mat-
ter to the final scheduling result. Whenever commutativ-
ity applies, it is possible to identify those vertices that will
yield the same scheduling result regardless of the order in
which they are explored. All but one of these vertices can
then be pruned before the algorithm is applied, which will
significantly reduce the complexity of the algorithm. An
example of a commutative processor scheduling operation
is the one proposed by Bakeret al. [12]. This operation
has been successfully used in the B&B algorithm proposed
in [1, 4]. It should be noted, however, that commutativ-
ity only applies for the B&B algorithms in [1, 4] under the
assumption that the ideal preemptive scheduling strategy in
[12] is used and that interprocessor communication schedul-
ing is also commutative. For a non-preemptive scheduling
strategy, the single-processor scheduling problem would be
NP-complete [13], thereby effectively prohibiting the use of
such strategies as those used in [1, 4].

Specifically, we will evaluate the following vertex
branching rules.

� The Depth-First (DF) rule,BDF, selects the task to use
for generation of a child vertex from the head of a list
sorted according to a depth-first traversal of the task
graph.

� The Breadth-First-One-Task (BF1) rule,BBF1, selects
the task to use for generation of a child vertex from the
head of a list sorted according to the level of a task.
The level of a task is calculated in the same manner as
in [4].

� The Breadth-First-All-Tasks (BFn) rule,BBFn, selects
all available tasks to use for generation of child ver-
tices.

Both DF and BF1 are unable to guarantee an optimal so-
lution unless processor and communication scheduling op-
erations are commutative, whereas BFn guarantees to find
an optimal solution if any.
3.4 Upper-bound solution costU

An upper-bound solution cost is used to initialize the
root vertex. The more accurate the upper-bound cost is, the
faster the B&B algorithm will get because more vertices can
be pruned at each step.
3.5 Lower-bound cost functionL

A lower-bound cost function is used for the bounding op-
eration where “pessimistic” estimates on the maximum task
lateness are calculated for newly-generated vertices. So, it

Algorithm U/DBAS:

1. setv̂u to the goal vertex inDB with the lowest cost;
2. if f v̂u exists andL(v̂u) < L(vu) g then
3. removêvu fromDB;
4. setvu := v̂u

5. end if;
6. prune each vertexv inDB/AS for whichL(v) � L(vu);

Figure 2: The vertex elimination ruleEU=DBAS.

is important to estimate the lateness for those tasks not yet
scheduled. The lower bound̂L on the maximum task late-
ness for the task setT is defined as

L̂ = maxff̂i �Di : �i 2 Tg

wheref̂i is the estimated finish time of task�i.
We will evaluate two lower-bound cost functions. The

first function,LLB0, is similar to the one used in [4]. Start-
ing with the output tasks, task�i’s estimated finish timêfi
is defined recursively as:

f̂i :=

(
fi

max(ff̂ig [ fmaxff̂j ; aig+ ci : �j �� �ig)

The first case in this equation applies when�i has been as-
signed to and scheduled on a processor; otherwise, the sec-
ond case applies.

The second lower-bound function,LLB1, is similar to
LLB0 but also takes processor contention into account.
Starting with the output tasks, task�i’s estimated finish time
is defined recursively as:

f̂i :=

(
fi

max(ff̂ig [ fmaxff̂j ; ai; `ming+ ci : �j �� �ig)

Here,`min is the earliest time at which a new task can be
scheduled on any processor.
3.6 Vertex elimination ruleE

The vertex elimination rule is applied after calculating a
lower-bound cost for all newly-generated vertices. Its main
use is in the elimination of vertices inDB and/orAS that
will not lead to a feasible solution.

We will evaluate one such rule, called the Upper-Bound-
Cost-to-DB-and-AS (U/DBAS) rule,EU=DBAS. This rule
compares the cost of every vertex inDB andAS with
the cost of the current upper-bound cost of vertexvu and
removes all those vertices with equal or higher costs. A
pseudo-code form of the algorithm for this rule is shown in
Figure 2.

4 Experimental Setup
The experimental platform used consists of a shared-

bus homogeneous multiprocessor system whose size ranges
from 2 to 4 processors. The shared bus is time-multiplexed
in such a way that the communication cost between two pro-
cessors is one time unit per transmitted data item.
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4.1 Workload
In the experiments1, a set of task graphs were generated

using a random task graph generator. Each task graph con-
tains between 12 and 16 tasks. Task execution times were
chosen randomly according to a uniform distribution with
mean execution time of 20 time units. Task execution times
are allowed to deviate by at most�99% from the mean ex-
ecution time. An end-to-end deadline was chosen for each
input–output task pair in the generated graph in such a way
that the overall laxity ratio of the end-to-end deadline to
the accumulated task graph workload corresponds to 1.5.
The precedence constraints in the task graph were also ran-
domly generated. The number of successors/predecessors
to each task was chosen at random to be in the range of 1 to
3, and the depth of the task graph was chosen to be between
8 and 12 levels. The number of data items in each message
passed between a pair of tasks was chosen in such a way
that the communication–to–computation cost ratio (CCR)
(of the average message communication cost to the average
task execution time) is 1.0.
4.2 Deadline assignment

To assign arrival times and deadlines to each task in
T, we used the deadline assignment technique proposed in
[16]. Each series of direct successors between an input–
output task pair is assignedslices, non-overlapping exe-
cution windows, of the task pair’s end-to-end deadline.
The slicing technique is suitable for distributing end-to-end
deadlines in real-time systems, because it allows individual
tasks to be scheduled independently of each other, thereby
allowing for different scheduling strategies on different pro-
cessors.
4.3 Task scheduling

We used a task scheduling strategy that assumes a non-
preemptive time-driven processor run-time model. A new
task is scheduled on a processor at the earliest possible
start time, while taking into account possible interproces-
sor communication costs and arrival time constraints of the
task, but later than all tasks that have previously been sched-
uled on the processor. This scheduling strategy exhibits a
time complexity that is quadratic in the number of tasks in
the system. Unfortunately, the simplicity of the scheduling
operation implies that it is not commutative.
4.4 Upper-bound estimation

An initial upper-bound costU for the B&B algo-
rithm was derived by applying a polynomial-time Earliest-
Deadline-First (EDF) algorithm. For each scheduling step,
the EDF algorithm selected one task from all schedulable
tasks. The task with the closest absolute deadline was se-
lected, and then scheduled on the processor that yielded the
earliest start time. The set of schedulable tasks was then
updated.

1All modeling and simulation experiments were performed within
FEAST [15], a framework for evaluation of allocation and scheduling tech-
niques for distributed hard real-time systems.

5 Experimental Evaluation
In this section we evaluate the performance of the B&B

strategy presented in Section 3. Unless specifically noted,
the following B&B parameter choices were used:BR =
0%, TIMELIMIT = 4 hours,MAXSZAS = 1, and
MAXSZDB = 1. The observed performance indices
were (i) the number of searched vertices and (ii) the max-
imum task lateness. In Figure 3, the plots for the number
of searched vertices and the maximum task lateness are lo-
cated in the upper and lower part in the figure, respectively.
As a reference, we have also included in all plots the results
obtained for the greedy EDF algorithm in Section 4.4.

In all the plots presented, every reported value is an aver-
age of the observed performance data, taken over the set of
simulation runs, one for each parameter combination. The
number of simulation runs were chosen in such a way that
a 90% (95%) confidence level could be achieved for a max-
imum error within 10% (0.5%) of the average values re-
ported for the number of generated active vertices (max-
imum task lateness). Simulations that exceeded the time
limit as defined by TIMELIMIT were removed from the
evaluation. These simulations were found to constitute less
than 1% of all simulation runs for each reported value and
the confidence levels presented above have been calculated
without including the removed simulations.

5.1 Effect of vertex selection rule
Figure 3(a) illustrates how the performance of the B&B

algorithm is affected by different choices of vertex selection
rule S. Each plot shows the performance of the algorithm
when vertex selection was made according to theSLLB and
SLIFO rule, respectively.

As can be seen in the upper plot,SLIFO outperforms
SLLB by more than an order of magnitude for all system
sizes. This is a totally unsuspected result sinceSLLB has
been predominantly used in almost all B&B scheduling
algorithms for real-time scheduling. For instance, when
scheduling for minimized makespan (schedule length), a
good lower-bound cost for an “early” vertex (at a low level
in the search tree) is an indicator for a good complete so-
lution. This correlation between the cost of an early vertex
and a goal vertex is not necessarily provided when schedul-
ing to minimize task lateness.

The performance ofSLIFO differs from that of the greedy
EDF algorithm by a little more than an order of magnitude
for a small system, and up to two orders of magnitude for
a larger system. As can be seen in the lower plot, however,
the B&B algorithm yields 5% better (more negative) task
lateness for a small system and approximately 3% better
task lateness for larger systems.

5.2 Effect of lower-bound function
Figure 3(b) illustrates how the performance of the B&B

algorithm is affected by different choices of lower-bound
functionL. Each plot shows the performance of the algo-
rithm when the lower-bound cost was calculated according
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Figure 3: Performance as a function of: (a) vertex selection rule; (b) lower-bound function; (c) approximation strategy.

toLLB0 andLLB1, respectively.
As can be seen in the upper plot,LLB1 outperformsLLB0

by approximately half an order of magnitude for a small
system. As the system size increases, however, the perfor-
mance of the two functions converge, since for larger sys-
tems the application parallelism can be exploited better and
the adaptive characteristics ofLLB1 become less significant.
5.3 Effect of approximation strategy

Figure 3(c) illustrates how the performance of the B&B
algorithm is affected by different choices of approxima-
tion method. Each plot shows the performance of the al-
gorithm when the lower-bound cost was calculated accord-
ing toLLB1. Results for the approximate vertex branching
rulesBDF andBBF1 are shown, as are two versions of the
branching ruleBBFn: one near-optimal withBR = 10%,
and one optimal withBR = 0%. Also included in the plots
are the results obtained for the optimal B&B algorithm with
S = SLIFO.

As can be seen in the upper plot, the approximate ver-
tex branching rules outperform near-optimal ones by a little
more than an order of magnitude. Among the approximate
vertex branching rules,BDF yields a small but significant
performance gain overBBF1, but this advantage comes at
the price of worse (less negative) task lateness as can be
seen in the lower plot. It is worth noting that, for a small
system, the task lateness forBDF is worse than that for the
greedy EDF algorithm. This can be attributed to the fact that
if the application parallelism exceeds the available process-

ing parallelism, a depth-first traversal will schedule some
input tasks much later than a breadth-first traversal would
do. As input tasks are delayed, their successor tasks will be
delayed, hence increasing the potential for worsening task
lateness. As the system size increases, more parallelism can
be exploited in the system and the task lateness of both ap-
proximative vertex branching rules converge to that of the
optimal. Also apparent in the plots is that the performance
gain attained forBBFn with performance guarantees is at
best 100% as compared to an optimal version, while the
maximum task lateness is kept very close to the optimal one.

6 Discussion
Due to space limit, we have omitted the results of some

complementary experiments. We will briefly summarize
these results here. We have evaluated the B&B strategy for
task graphs with varying degrees of parallelism. Using the
same basic experimental setup in Section 4, we found that
when the parallelism in the task graph increases, a lower-
bound cost function that takes processor contention into ac-
count will give even better performance for the B&B algo-
rithm. We have also evaluated the B&B strategy for differ-
ent values on the communication–to–computation cost ratio
(CCR). Here, we found that lower CCR gives better B&B
algorithm performance. This is because the cost estimates
derived by lower-bound cost functions will be more accu-
rate, thus making the B&B algorithm converge faster.

We have also investigated the impact of an upper-bound
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solution cost on the performance of the B&B algorithm. We
found that by using a greedy algorithm to derive approxi-
mate initial upper-bound costs, the performance of the B&B
algorithm was improved by more than 200% as compared to
an approach where the initial upper-bound cost was set to a
positive value.

Finally, we remark on the practicality of the B&B strat-
egy. In our simulations, the size of the simulated sys-
tem had to be restricted because of limitations in the hard-
ware simulation milieu. All simulations were made using a
SPARCstation-4 machine with 64 Megabyte primary mem-
ory, running the SunOS 5.5 operating system. For some
simulations, such large amounts of active nodes had to be
maintained in virtual memory that machine performance
was degraded significantly because of system thrashing, that
is, constant shuffling of virtual memory pages to and from
the machine’s hard disk swap area. This behavior was par-
ticularly apparent during those simulations that employed
the LLB vertex selection rule because of its quite random
(with respect to virtual memory location) access pattern
among the active vertices. For those simulations that em-
ployed the LIFO vertex selection rule, system thrashing did
not occur since the access pattern for this rule matches very
well the page replacement strategy used by the SunOS oper-
ating system, that is, LRU. This, of course, is another reason
for choosing the LIFO rule over the LLB rule.

7 Conclusions
In this paper we have evaluated how effective the B&B

strategy can be in finding optimal multiprocessor schedules
of precedence-constrained tasks. In particular, we found
that if intelligent rules for vertex selection, branching and
elimination are used in the B&B algorithm, the problem of
minimizing the maximum task lateness can be solved within
reasonable time for moderate-size systems. For larger sys-
tem sizes where machine and time limitations become a ma-
jor concern, approximate versions of the B&B algorithm are
viable alternatives to faster but less accurate greedy algo-
rithms.
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