JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 40, 173-184 (1997)
ARTICLE No. PC961244

Implementation of Decentralized Load Sharing in Networked
Workstations Using the Condor Package!

CHao-Ju Hou* AND KANG G. SHINT

*High Performance Computing Laboratory, Department of Electrical Engineering, The Ohio State University, Columbus, Ohio 43210-1272; and
tReal-Time Computing Laboratory, Department of Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, Michigan 48109-2122

In recent years a number of load sharing (LS) mechanisms
have been proposed or implemented to fully utilize system
resources. We have designed and implemented a decentralized
real-time LS mechanism based on the Condor package [1, 2].
Two important features of our design are the use of region-
change broadcasts in the information policy to provide each
workstation with timely state information at minimum commu-
nication cost, and the use of preferred lists in the location policy
to avoid task collisions. With these two features, we remove
the central manager workstation in Condor, configure its func-
tionalities into each participating workstation, transform Con-
dor into a decentralized LS mechanism, and equip Condor
with the capability to tolerate single workstation failures. Also
discussed are the experiments on the proposed LS mechanism
and the off-the-shelf Condor package and our observations of
empirical data. 01997 Academic Press

1. INTRODUCTION

The availability of inexpensive, high-performance pro-
cessors and memory chips has spurred considerable inter-
est in using a network of workstations for a wide range of
applications. However, since tasks may arrive unevenly
and randomly at these workstations and/or computation
power may vary from workstation to workstation, some
workstations may get overloaded while others are left idle
or under-loaded. Livny and Melman [3] showed that in a
network of autonomous workstations, with large probabil-
ity, at least one workstation is idle while many jobs are
being queued at other workstations. Consequently, some
jobs may suffer an extremely long response time while the
system capacity is being under-utilized. Thus, an effective
“load sharing” (LS) method is needed to enable idle/un-
der-loaded workstations to share the loads of over-
loaded ones.

As was discussed in [4, 5], a LS mechanism can be de-

! The work reported in this paper was supported in part by the ARPA
under contract DABT63-95-C-0117, the National Science Foundation
under Grant MIP-9203895, and the Office of Naval Research under
Grants N00014-94-1-0229 and N00014-91-J-1226. Any opinions, findings,
and conclusions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of the funding
agencies.

signed by developing the transfer policy which determines
when to transfer a job, the information policy which deter-
mines how workstations communicate with one another to
exchange state information [6-11], and the location policy
which determines where to transfer the job [4, 6, 8, 9,
12-15]. On the other hand, the implementation issues com-
monly considered include where to place the LS mecha-
nism (i.e., inside or outside the OS kernel), how to transfer
process state (virtual memory, open files, process control
blocks) during job transfer/migration, how to support LS
transparency, and how to reduce the effect of residual
dependency? [16]. A few LS mechanisms have been imple-
mented, such as the V-system [17], the Sprite OS [16], the
Charlotte OS [18], and the Condor software package [1, 2].
They are designed using different policies for transferring
jobs/processes, collecting workload statistics used for LS
decisions, and locating target workstations. Also, they are
implemented using different strategies to detach a migrant
process from its source environment, transfer it with its
context (the per-process data structures held in the kernel),
and attach it to a new environment on the destination
workstation.

In this paper, we design and implement, based on the
Condor software package, a decentralized LS mechanism
with each LS policy carefully redesigned. As reported in
[1, 2], Condor is a software package for executing long-
running tasks on workstations which would otherwise be
idle. The reason for choosing Condor as our “‘base system”
is because Condor is implemented entirely outside the OS
kernel and at the user level. This eliminates the need to
access/change the internals of OS. On the other hand, there
are several design drawbacks of Condor: it uses a central
manager workstation to allocate queued tasks to idle
workstations. That is, the location policy is realized by a
central manager. This centralized component makes the
LS mechanism susceptible to single workstation failures.
Another drawback is that Condor uses a periodic informa-
tion policy; that is, each workstation reports periodically
to the central manager regarding its (workload) state and
task-queue status. This makes the central manager a poten-

2 Residual dependency is defined as the need for the source workstation
to maintain data structures or provide functionality for a remote process.

173

0743-7315/97 $25.00
Copyright 00 1997 by Academic Press
All rights of reproduction in any form reserved.

174

tial bottleneck of network traffic from time to time. Deter-
mination of a reporting period also becomes crucial to the
LS performance, and has to make a trade-off between the
communication overhead of frequent reporting and the
possibility of using out-of-date state information resulting
from infrequent reporting. As a result, we decided to en-
hance performance and reliability by configuring and dis-
patching the functions of the central manager workstation
to all the participating workstations, and “‘transforming”
Condor to a decentralized LS mechanism.

Two important design issues must be considered in
achieving the above goal. First, each workstation has to
collect/maintain elaborate and timely state information on
its own at minimum communication overhead in the decen-
tralized mechanism. Second, each workstation has to deter-
mine, for each task, the best target workstation if there
are several workstations available, and more importantly,
each workstation has to reduce the possibility of multiple
workstations sending their tasks to the same idle worksta-
tion. We deal with the former issue by using region-change
broadcasts as the information policy, and the latter issue
by using the preferred lists in our location policy. Both
strategies are detailed in Section 3.

The rest of the paper is organized as follows. In Section
2, we give an overview of Condor software package and
discuss how Condor daemons collaborate to manage the
task queue and locates target idle workstations. In Section
3, we present our decentralized LS mechanism. In particu-
lar, we discuss the transfer, information, and location poli-
cies used in our LS mechanism. Then, we discuss how to
get rid of the central manager by reconfiguring Condor
component daemons. Section 4 highlights the implementa-
tion features adopted in the decentralized mechanism. In
Section 5, we present experimental measurements. This
paper concludes with Section 6.

2. OVERVIEW OF CONDOR SOFTWARE PACKAGE

In this section, we summarize the functionality of, and
the interactions among, Condor’s daemons, especially de-
scribing the task distribution process in a step-by-step man-
ner. There are two daemons, Negotiator and Collector,
running on the central manager workstation. In addition,
there are two other daemons, Schedd and Startd, running
on each participating workstation. Whenever a task is exe-
cuted, two additional processes, Shadow and Starter, shall
run on the submitting workstation and on the executing
workstation, respectively (whether or not these two
workstations are actually identical).

The Condor task relocation mechanism works as follows
(Fig. 1). A user invokes a submit program to submit a
task. The submit program takes the task description file,
constructs the corresponding data structures, and sends a
reschedule message to Schedd on the home workstation.
Schedd then asks Negotiator on the central manager work-
station to find an idle workstation for the task by sending
a reschedule message to Negotiator (S1 in Fig. 1a).

HOU AND SHIN

Upon receiving a reschedule message from any of
Schedd’s on the participating workstations, or upon peri-
odic schedule timeout, Negotiator gets from Collector a
list of machine records which contains the workload and
task queue of all participating workstations (S2 in Fig. 1a).
The list of machine records is updated by Collector by
receiving periodically, from Schedd and Startd on each
participating workstation, updated information of task
queue and workload, respectively (S3 in Fig. 1a).

After receiving the list of machine records, Negotiator
first prioritizes the participating workstations: the priority
of a workstation is incremented by the number of individ-
ual users with tasks queued on that workstation, and decre-
mented by the number of tasks which are submitted to that
workstation and are currently running (either remotely or
locally). Negotiator then contacts each workstation with
queued tasks, one at a time, starting with the workstation
with the highest priority, and inquires to relocate the
task(s) queued on the workstation. If the swap space on
the workstation being inquired is enough for Shadow pro-
cesses,’ the workstation supplies Negotiator with the infor-
mation on the required OS, architecture, and the size of
a queued task, with which Negotiator finds a server work-
station for the task. A workstation is qualified as a server
if (i) both its CPU and keyboards are idle; (ii) it satisfies
the task requirement specified; and (iii) no other task (dis-
patched by Condor) is currently running on it. The negotia-
tion process will be repeated for each queued task* until
either Negotiator finds server workstations for all queued
tasks, or no server can be located (S4 in Fig. 1a). At the
end of the negotiation process, Negotiator sends back the
updated record of machine priorities to Collector (S5 in
Fig. 1a).

For each of the servers located, the task transfer process
is coordinated among (a) Negotiator on the central man-
ager workstation, (b) Schedd and Shadow process on the
home workstation, and (c) Startd and Starter on the server
workstation as follows. Negotiator sends a permission
message followed by the name of the server workstation
to Schedd on the home workstation (S6 in Fig. 1b). Schedd
on the home workstation then spawns off a Shadow process
which connects to Startd on the located server workstation
(S7 in Fig. 1b) and will henceforth take care of remote
system calls from the server workstation.’

Startd on the server workstation, upon being notified
by Shadow on the home workstation of the task transfer
decision, reevaluates its workload situation and memory
space available. If the situation has not changed since the
last time Startd reported to the central manager, Startd
creates two communication ports, and sends the port num-
bers back to Shadow on the home workstation. Shadow

3 As will be discussed below, each executing task has an associated
Shadow process running on the home workstation.

* The tasks in a local queue are also prioritized with respect to the
user-specified priority and the order in which they are queued.

5 More on remote system calls will be elaborated in Section 4.

DECENTRALIZED LOAD SHARING UNDER CONDOR

S5

— negotiator_info
a —» machine_name, machine_prio

Negotiator

S.

Negotiate

2
—e Give_Status
< MachineList

175

Central Manager Workstation

S3
schedd_info
\ machine_context

Server Workstation

Home Workstation
Negotiator
S6
+ permission
{ server_name Central Manager Workstation

...

-—————

/ - start_job
Vd ' job_context

- proc

-——————

Server Workstation

— CkptName
— OrigName

FIG. 1.

acknowledges the receipt of the port numbers. Startd then
spawns off a Starter process (which inherits these commu-
nication ports and is responsible for executing the task),
and notifies Collector on the central manager of the work-
load change in the server workstation. Startd henceforth
keeps track of Task state of Starter, and signals Starter
to suspend, checkpoint, or vacate the executing process
whenever necessary to ensure that workstation owners
have the workstation resources at their disposal. (More on
under what condition Startd signals Starter to suspend,
checkpoint, or vacate an executing process can be found
in [1, 2].)

Interactions among Condor daemons. (a) Negotiation process. (b) Task transfer process.

The newly spawned Starter is responsible for (a) getting
the executable® and other relevant process information
from Shadow via either NFS or RPC, whichever available,
and spawning off a child process to execute the task; (b)
communicating (via remote system calls) with Shadow on
the home workstation for environments/devices-related
operations; and (c) suspending, resuming, or checkpointing
the executing process upon being requested by Startd. Both
Starter and Shadow exit when the task completes/stops ex-
ecution.

6 This also is a checkpoint file without stack information.

176

3. DESIGN OF A DISTRIBUTED MECHANISM
BASED ON CONDOR

As mentioned in Section 1, there are several design
drawbacks in Condor:

* The central manager component makes Condor sus-
ceptible to single-workstation failures;

* The information policy periodically invoked intro-
duces a potential traffic bottleneck while suffering the ef-
fect of using out-of-date state information if the report
period is not fine-tuned;

* The location policy is designed so that it is possible
for a task having arrived at an idle workstation to be trans-
ferred to other idle workstations for execution, since the
central manager takes the full responsibility of locating a
server workstation.

To remedy the above deficiencies, we eliminate the central
manager, and configure the functionality of Negotiator and
Collector into every participating workstation. Specifically,
each participating workstation collects and maintains state
information on its own. Moreover, if a workstation is not
idle upon arrival of a task, it chooses the best server work-
station among several candidate workstations, and coordi-
nates with other workstations to reduce the probability of
multiple workstations sending their tasks to the same idle
workstation and to distribute tasks as evenly as possible
in the system.

3.1. LS Policies Used

Transfer Policy. Upon submission/arrival of a task,
Schedd on the home workstation determines whether or
not the task can be executed locally. That is, the transfer
policy is invoked upon arrival of a task, and hence a task
transfer, if it ever takes place, will occur during an exec
system call and the new address space will be created
on the server workstation. This significantly reduces the
process state necessary to be transferred. A task is executed
locally on the home workstation if AvgLoad is less than
or equal to 0.3 and the Keyboardldle time (the smallest
keyboard idle time observed among all terminals) is greater
than 15 min, and no other Condor tasks are currently
running on the workstation. If the task cannot be executed
locally, a transfer decision is made and the location policy
is invoked to select a server workstation, if possible, for
the task. Also, the workstation rescans its task queue peri-
odically, treats each queued task’ as if it were newly ar-
rived, and repeats the transfer policy.

Information Policy. The state space is divided into sev-
eral regions, and a workstation broadcasts a message, in-
forming all the other workstations of the state change
whenever its state switches from one region to another. In
contrast to a periodic information policy, a region-change

7 The task which fails to locate a server workstation at the time of
its arrival.

HOU AND SHIN

broadcast occurs only when the state of a workstation
changes significantly, thus reducing the communication
overhead. Moreover, the state information kept at each
workstation is more likely to be up-to-date. The state de-
fined in our current version is the combination of three
quantities: AvgLoad, Keyboardldle, and the State (No-
Task, TaskRunning, Suspended, Vacating, or Killed) of
the workstation. For simplicity, the state space for the
current implementation is divided into two state regions:
runnable and unrunnable. The workstation is said to be in
the runnable state region if AvgLoad =< 0.3, Keyboardldle
> 15 min, and State is NoTask. Extension to multiple state
regions is straightforward.

Location Policy. Based on the topological property of
the system, each workstation orders all the other work-
stations into a preferred list:

P1. A workstation is the k-th preferred workstation of
one and only one other workstation, where k is some in-
teger.

P2. If workstation i is the k-th preferred node of work-
station j, then workstation j is also the k-th preferred node
of workstation i.

For example, Fig. 2 shows the preferred lists in a 4-cube
system. (How to generate preferred lists can be found in
[10, 19].) When a workstation is unable to execute a task,
it will contact the first “runnable workstation” found in
its preferred list, and tries to transfer the task to that work-
station. It is important to note that although the preferred
list of each workstation is generated statically, the actual
preference of the workstation in transferring a task may
change dynamically with the states of workstations in its
preferred list. (The state of a workstation in the preferred
list is updated whenever a region-change broadcast mes-
sage from the workstation is received.) If a workstation’s
most preferred workstation becomes unrunnable, this fact
will be known to the workstation via a state-region change
broadcast and its second preferred workstation will be-
come the most preferred. (This workstation will change

Order of preference 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
node 0 1 2 4 8 61012 3 5 914 13 11 7 15
node 1 0 3 6 9 71113 2 4 815 12 10 6 14
node 2 3 0 610 4 814 1 7 111216 9 5 13
node 3 2 1 711 5 915 0 6 10 13 14 8 4 12
node 4 6 6 012 214 8 7 11310 9 156 3 11
node 5 4 7 113 316 9 6 01211 8 14 2 10
node 6 7 4 214 01210 5 316 81113 1 9
node 7 6 5 316 11311 4 214 91012 0 8
node 8 91012 014 2 41113 1 6 5 3156 7
node 9 81113 1156 3 51012 0 7 4 214 6
node 10 11 814 212 0 6 915 3 4 7 113 &
node 11 10 9156 313 1 7 814 2 5 6 012 4
node 12 1314 8 410 6 015 9 5 2 1 7 11 3
node 13 12156 9 511 7 114 8 4 3 0 610 2
node 14 161210 6 8 4 21311 7 0 3 5 9 1
node 15 141311 7 9 5 31210 6 1 2 4 8 O

FIG. 2. Preferred lists in a 4-cube system.

DECENTRALIZED LOAD SHARING UNDER CONDOR

177

Region-change broadcasts

Server Workstation

Submitting Home Workstation

FIG. 3.

back to the second most preferred whenever the original
most preferred becomes runnable, which will again be in-
formed via a state-change broadcast.)

The preferred list provides each workstation with a
means of selecting a server workstation among several
runnable candidates. Moreover, using P1 and P2, we for-
mally proved in [20] that the probability of more than one
workstation simultaneously sending their tasks to the same
workstation is minimized, and transferred tasks are evenly
distributed among workstations.

3.2. Daemon Configuration

We have designed and implemented three daemons,
Collector, Schedd, and Startd, which reside constantly on
each participating workstation for the decentralized LS
mechanism (Fig. 3). Similarly as in Condor, two additional
processes, Shadow and Starter, run on the home worksta-
tion and on the server workstation, respectively, whenever
a task is executed. Note that we carefully configure the
transfer, information, and location policies only into
Schedd, Startd, and Collector, and leave Shadow and
Starter which deal with process transfer, execution, and
checkpoint unchanged for the distributed LS mechanism.
The functionality of, and the interactions among, daemons
are depicted in Fig. 4, and are described below.

3.2.1. Collector

Collector is responsible for gathering local workload
information, broadcasting a region-change message when-
ever necessary, updating the workload information of
other workstations in its preferred list upon receiving a
broadcast message, and responding to Schedd and Startd
for information inquiries.

The local task queue, the average workload (in terms
of AvgLoad, Keyboardldle, and the Task state of the
workstation), and the disk/memory space available are

Daemons in Modified Condor.

measured upon Collector timeout, or upon receiving a
workload_update message from the Startd.® The parame-
ters measured are then used to evaluate whether or not a
workstation is runnable. A workstation is evaluated to be
runnable (i.e., Busy = false) if the function

START: (AvgLoad = 0.3) && KeyboardIdle > 15 minutes

is true and Task_state of the workstation is NoTask.

A state-region change message is broadcast to Collectors
on other workstations in the preferred list whenever the
state switches from runnable to unrunnable (because of
the increase in average workload, return of the workstation
owner, or receipt of a task), or vice versa (S1 in Fig. 4).
The message contains, among other things, (I1) the host-
name, the network address, and the network address type,
(I2) the indicator variable of whether or not a task is
runnable, Busy, along with other workload-related param-
eters, AvgLoad, KeyboardIdle, Task_state, (I3) the op-
erating system, OpSys, and the architecture, Arch, of the
workstation, (I4) the swap space, VirtualMemory, avail-
able in virtual memory, and the disk space, DiskSpace,
available on the file system where foreign checkpoint files
are stored. (I5) a time-stamp. As will become clear in the
discussion of Schedd, I3 is used to verify whether or not
aworkstation’s OS and architecture satisfies the user-speci-
fied task requirements; I4 is used to verify whether or not
a workstation has enough memory/disk space for running
transferred tasks; and IS is used to indicate the degree of
a record being obsolete. Upon receiving a state-change
broadcast from one of Collectors on other workstations,
the machine record of the broadcasting workstation in the
preferred list is updated accordingly.

8 When a task starts or exits/dies, the Startd notifies Collector to update
workload situation.

178

S1
a «- state_change

< machine_record

} give_mach_record
4 machine_record

HOU AND SHIN

S1
— state_change
~+ machine_record

t give_mach_recorfl
{ machine_record

{ my_mach_régord

)
Transfer r§quest process
Server Workstation i reschedule
Home Workstation from SUBMIT
b Machine Boundary

- ports
f'l' “' !1
| Shadow ! \
AN ‘//' §7
e — proc
- Ckp e
Home Workstation —~ OrigName

FIG. 4.

There are two possible situations Schedd will ask infor-
mation from Collector (S2 in Fig. 4): (i) when Schedd
receives a new task and asks for its own machine record;
(ii) when Schedd decides to transfer the task and asks
for the machine record of the first runnable workstation
available in the preferred list. On the other hand, Startd
asks Collector for the machine record which contains
workload-related and memory/disk space-related parame-
ters (S4 in Fig. 4), when it wants to check whether a
running task should be suspended, checkpointed, re-
sumed, or vacated. (More on this will be discussed in
Section 3.2.3.)

3.2.2. Schedd

Schedd determines if the local workstation can meet the
requirement of a (local or remote) task, and, in the case
of tranferring the arrived task, initiates the location policy
to identify a candidate server workstation. The task re-
quirement includes the system configuration and the disk/
memory space needed for executing the task. Also, Schedd
invokes the location policy periodically for tasks that did

O
p .
V4 onteX
i !
; startd_ok 1
i two communication ;

Starter)

mmunicaﬁorf yo’m

Server Workstation

Interactions among daemons in the distributed mechanism. (a) Negotiation process. (b) Task transfer process.

not find their servers upon their arrival and are currently
queued on the workstation. Specifically, there are three
major events Schedd handles: the arrival of a task, the
receipt of a transfer request, and the periodic timeout.

Upon Arrival of a Task (upon receiving a reschedule
message from the submit program). Schedd gets the
local machine record from Collector (S2 in Fig. 4), evalu-
ates the parameter Busy, and checks whether or not the
task requirement is satisfied.

If the task can be executed locally, a Shadow process is
spawned off which contacts the local Startd. Startd then
creates two communication ports, sends the port numbers
back to Shadow, and spawns off a Starter. Here Starter
inherits the two communication ports and will actually fork
off a child process to execute the task. Shadow and Starter
then communicate through the communication ports, and
the task execution/checkpoint process proceeds as in Con-
dor. Note that by carefully “reconfiguring” the daemons,
we leave the “low-level” implementation mechanism (for
task transfer and checkpointing) unchanged in the distrib-
uted LS mechanism.

DECENTRALIZED LOAD SHARING UNDER CONDOR

If the task cannot be executed locally (either Busy is
true, or the task requirement is not satisfied), then Schedd
checks if there is enough swap space for a new Shadow
process. If there is not enough swap space, the task is
queued and will be attempted for execution/transfer upon
next schedule timeout. If there is sufficient swap space,
Schedd gets from Collector the machine record of the
first runnable workstation in the preferred list, and checks
whether or not the task requirement can be satisfied on
that workstation. If not, the machine record of the next
runnable workstation available in the preferred list is
fetched from Collector and checked against the task re-
quirement. The process repeats itself until either a target
server workstation is found or the preferred list is ex-
hausted. In the latter case, the task is queued for later
execution/transfer.

If a target server workstation is located, Schedd sends
a transfer request to Schedd on the target server worksta-
tion (S3 in Fig. 4). Either a transfer_ok or a transfer_
not_ok message will be received from the target server
workstation, depending on whether or not the target work-
station is indeed runnable: if a transfer_ok message is
received, a Shadow process is spawned off on the home
workstation which notifies the Startd on the target server
workstation of its responsibility to execute the task. If the
workload situation has not changed on the target server
workstation since its last region-change broadcast, a
startd_ok message, along with two communication ports,
is received. The communication and task transfer/execu-
tion operations between Shadow and Starter then proceed
as in Condor. If the workload situation has changed and
is not runnable any more, a startd_not_ok message is
received, in which case Schedd gets from Collector the
machine record of the next runnable workstation available
inits preferred list, and repeats the transfer-request process
until either a target server workstation is found or the
preferred list is exhausted. On the other hand, if a trans-
fer_not_ok message is received, Schedd gets from Collec-
tor the machine record of the next runnable workstation,
and repeats the transfer-request process as described
above.

To deal with a possible machine failure, the ioctl system
call is used to designate the sockets as non-blocking: an
I/0O request that cannot be completed is not performed,
and return is made immediately. Moreover, a timer is set
for each connection: if no response has ever come back
until the timer expires, return is also immediately made.
In either case, Schedd repeats the transfer-request process
for the next runnable workstation available in the pre-
ferred list.

Upon Receipt of a Transfer Request. Schedd gets from
Collector the local machine record and evaluates the
function Busy. In terms of the four-component task re-
quirements, Schedd only needs to check VirtualMemory,
because (1) OpSys and Arch have already been checked
by the home workstation who initiated the transfer re-

179

quest; (2) the Disk space available under the directory
where checkpoint files are saved will not change if no
task is executing on the workstation. So, it suffices to
assure the Disk space has not changed by checking if the
workstation is non-Busy; and (3) since VirtualMemory is
calculated at the time of state-region change broadcast,
the VirtualMemory information collected (via state-
change broadcasts) by the requesting workstation may
differ from the actual VirtualMemory information cur-
rently kept if either a broadcast message is lost or not
yet received by the requesting workstation before the
transfer request was made. Hence, VirtualMemory needs
to be rechecked.

If Busy is false and if there is enough VirtualMemory,
Schedd responds with a transfer_ok message. The Shadow
process on the requesting workstation will then contact
Startd on the server workstation (which honors the transfer
request) to handle the low-level mechanism of task execu-
tion/transfer and checkpoint process. Otherwise, the
Schedd replies a transfer_not_ok message.

Upon Schedule Timeout. Schedd first prioritizes the
tasks currently queued on the local workstation based on
their user-specified priority, queueing time, and whether
or not a task was ever executed. Higher priority is given
to tasks with higher user-specified priority, longer queueing
time and/or tasks which were vacated from server work-
stations because of the return of the server workstation
owner or some abnormal situation on the server worksta-
tion. Schedd then initiates the location process for each
queued task, starting from the task with the highest
priority.

3.2.3. Startd

Upon being notified by a Shadow process of the respon-
sibility to execute a task, Startd generates two communica-
tion ports, spawns off a Starter to execute the task, keeps
track of the execution status of the task, and signals the
Starter, whenever necessary, to suspend, resume, check-
point, or vacate the executing task. There are four events
Startd will handle: the receipt of a start_task message
from the Shadow on a requesting workstation, the receipt
of a SIGCHLD signal (at the exit of Starter), the periodic
startd timeout, and the receipt of a checkpoint_task mes-
sage from Shadow on the home workstation.

Upon Receipt of a start_task Message from a Requesting
Shadow. Startd gets from Collector its machine context
(S4 in Fig. 4), and re-evaluates the Busy function. If the
Busy function is false, two communicating ports are created
and returned (along with a startd ok message) to the
Shadow on the requesting home workstation. Startd then
waits for acknowledgement from Shadow to these two
ports. When this connection is made, Startd spawns off a
Starter, closes the two communication ports, changes the
Task_state of the workstation to TaskRunning, and noti-
fies Collector of its state_change (S5 in Fig. 4; in which

180

case Collector updates workload). If the Busy is true, a
startd_not ok message is returned.

Upon Receipt of a SIGCHLD Signal. Startd clears up
the checkpoint files in the directory where the checkpoint
files are stored, changes the Task_state of the workstation
to NoTask, and notifies Collector of its state_change (S5
in Fig. 4).

Upon Periodic Startd Timeout. Startd gets from Collec-
tor the parameters AvgLoad and Keyboardldle (specified
in the machine_record), and properly signals Starter based
on these workload-related parameters to assure that work-
station owners have the workstation resources at their dis-
posal.

Upon Receipt of a checkpoint_task Message from
Shadow. Startd sends a SIGUSR?2 signal to Starter, and
enters the Checkpointing state.

4. IMPLEMENTATION ISSUES

In this section, we discuss how some of the implementa-
tion issues are handled, such as where to place the LS
mechanism (inside or outside the OS kernel), how to trans-
fer the process state (virtual memory, open files, and pro-
cess control blocks) during task transfer/migration, and
how to support location transparency and reduce the ef-
fects of residual dependency.

Where to Place the LS Mechanism

We follow Condor’s principles, and implement the LS
mechanism outside the OS kernel in trusted daemon pro-
cesses. Placing the mechanism outside the kernel incurs
execution overhead and latency (e.g., in the form of kernel
calls) in passing statistics (from kernel to daemon pro-
cesses) and LS decisions (in the other direction). However,
as discussed in [18], the dominating factor in assessing
LS performance lies more in the global communication
overhead and aggregate resource management than in
(small) delays incurred by kernel calls. Moreover, placing
the mechanism outside the kernel facilitates later expan-
sion or generalization of other LS strategies to deal with
large communication latency [21], excessive task transfer
[22], and node/link failure [19, 23, 24]. One inherent limita-
tion resulted from placing the LS mechanism outside the
OS kernel is that interprocess communication and signal
facilities cannot be easily implemented, and are not sup-
ported in the current implementation. We plan to recon-
figure some of the low-level process and memory manage-
ment functions into a kernel server that resides inside the
OS kernel to handle IPC and signal facilities.

Approach to Transferring Process State

Process state typically includes virtual memory, open
files, message channels, and other kernel states contained

HOU AND SHIN

in the process control block. In Condor, the state of a
process is transferred in the form of checkpoint files. Be-
fore a process is executed for the first time, its executable
file is augmented to a checkpoint file with no stack area,
so that every checkpoint file may henceforth be handled
in the same way. Moreover, every process is periodically
checkpointed, and a new checkpoint file is created from
pieces of the previous checkpoint (which contains the text
segment) and a core image (which contains the data and
stack segments) as follows: the LS mechanism (i.e., the
Starter) causes a running task to checkpoint by sending
itself the signal SIGTSTP. When a task is linked, a special
version of “‘crt()” is included which sets up CKPT() as
the SIGTSTP signal handler. Information about all open
files which the process currently has is kept in a table by
the modified version of the open system call routine. When
CKPT() is called, it updates the table of open files by
seeking each one to the current location and recording the
file position. Next a setjmp is executed to save key register
contents (e.g., stack pointer and program counter) in a
global data area, then the process sends itself a SIGQUIT
signal which results in a core dump. Starter then combines
the original executable file, and the core file to produce a
checkpoint file.

When the checkpoint file is restarted, it starts from the
special “crt()” code, and the “crt()” code will set up
the restart() routine as a SIGUSR2 signal handler with a
special signal stack (in the data segment), then send itself
the SIGUSR2 signal. When restart() is called, it will oper-
ate in the temporary stack area and read the saved stack
in from the checkpoint file, reopen and reposition all files,
and execute a longjmp back to CKPT(). When the restart
routine returns, all the stacks have been restored, and
CKPT() returns to the routine which was active at the
time of the checkpoint signal, not “crt()”.

Location Transparency and Residual Dependency

Location transparency is one of the most important goals
in implementing load sharing. By transparency, we mean
a process’s behavior should not be affected by its transfer.
Its execution environment should appear the same, it
should have the same access to system resources such as
files, and it should produce exactly the same results as if
it had not been transferred [16, 18]. To maintain location
transparency, sometimes the home workstation has to pro-
vide data structure or functionality for a process after it is
transferred from the workstation [16]. This need for a home
workstation to continue to provide some services for a
process remotely executed is termed residual dependency.
In Condor’s implementation, location transparency is
achieved at the expense of residual dependency in the
following manner: the LS mechanism preserves the home
workstation’s execution environment for the remote pro-
cess by using “‘remote system calls” in which requests for
file/device access are trapped and forwarded to the Shadow
process on the home workstation. As was discussed in

DECENTRALIZED LOAD SHARING UNDER CONDOR

181

e 2 © o o =
¥ 8 3 8 8 8

Cumulatve distribution of response time
=}
8

0.30

Q=0 M/M/1 quene

+- = =+ Condor package
O —=- =0 Proposed LS mechanism
< ¢ M/M/6 queue

FIG. 5.

Section 3, whenever a workstation is executing a task re-
motely, it also runs a Shadow process on the home worksta-
tion. The Shadow acts as an agent for the remotely execut-
ing task in making system calls. Specifically, each task
submitted to the LS mechanism is linked with a special
version of the C library. The special version contains all
of the functions provided by the normal C library, but the
system call stubs have also been changed to accomplish
remote system calls. The remote system call stubs package
up the system call number and arguments and send them
to the Shadow via the network. The Shadow, which is
linked with the normal C library, then executes the system
call on behalf of the remotely running task in a normal way.
The Shadow then packages up the results of the system call
and sends them back to the system call stub (in the special
C library on the submitting machine) which then returns
its result to the calling procedure.

5. EXPERIMENTAL RESULTS

We evaluate our LS mechanism by comparing its perfor-
mance with the “off-the-shelf”” Condor package, and dis-
cussing experimental measurements over a period of one
week. Three sets of measurements are taken, including
task response time distribution, the extent to which the
LS mechanism distributes workload, and the frequency of
task transfer.

The performance figures presented here are obtained
from experiments conducted on 6 SUN SPARCstations
connected via a 10Mbit Ethernet local area network (along
with other workstations not used in this experiment). These
6 workstations were not used by other interactive users
during the period of experimentation. Identical copies of
single-process computational-intensive scientific computa-
tion tasks are randomly submitted to each workstation i

Time (minutes)

The response time distribution for A; = 0.1/min, w; ~ 0.125/min, and A;/u; = 0.8 Vi.

with exponentially-distributed interarrival times with rate
A; (1/seconds). The number of iteration runs is specified
in each submitted computation task, is used to ‘“‘control”
the execution time of the computation task, and is “approx-
imated” to be exponentially distributed with w; (1/runs).
A single iteration run takes approximately 48 s. We instru-
mented the LS mechanism to keep track of local/remote
process execution. First, the period between the time when
a task was submitted and the time when the corresponding
process exited was recorded. Second, when a process
exited, the Total_Tasks counter was incremented, and the
total time during which the process executed was added
to the Total CPUtime counter; if the exited process has
been transferred from elsewhere, the Remote_Tasks
counter was incremented, and its time was added to
the Remote CPUtime counter as well. The ratio of
Remote Tasks to Total Tasks gives the task transfer-
out ratio,” and the ratio of Remote CPUtime to
Total _CPUtime gives the percentage of remote execution
on a workstation.

Figure 5 gives the response time distribution with A; =
0.1/min and w; = 0.1/runs = 0.125/min. Also shown in
Fig. 5 are the two baseline curves corresponding to the
M/M/1 queue (no LS) and the M/M/6 queue (perfect LS).
The response time distribution under the LS mechanism
approach unity much faster than that corresponding to no
LS, justifying that the LS mechanism is effective to handle
temporarily uneven task arrivals in distributed systems.
Moreover, the proposed LS mechanism performs better
than the Condor package as the system load increases (i.e.,
=N/ = 0.57).

9Tt is actually the task transfer-in ratio, but this ratio probabilistically
equals the task transfer-out ratio in homogeneous systems over the
long run.

182

HOU AND SHIN

TABLE I
Total CPU Time, Remote CPU Time, and Percentage of Remote Execution with Respect to
Two Different Load Distributions

Load distribution: A = 0.5, where A = 0.0125, 0.0375, 0.0625, 0.0625, 0.0875, 0.1125/min for workstations
1-6, respectively, and u = 0.125/min

Total CPU time

Remote CPU time Percentage remote

Workstation Prop. LS Condor Prop. LS Condor Prop. LS Condor
1 5,032 4,614 4,029 3,812 80.77% 82.61%

2 5,013 4916 2,991 3,156 59.67% 64.20%

3 5,024 5,075 1,270 1,571 25.28% 30.95%

4 5,043 5,161 1,183 1,629 23.46% 31.56%

5 5,073 5,246 514 1,087 10.13% 20.72%

6 5,189 5,321 45 689 0.87% 12.95%
Total 30,374 30,333 10,032 10,944 33.03% 39.37%

Load distribution: A = 0.3, where A = 0.0125, 0.0125, 0.0125, 0.0375, 0.0375, 0.1125/min for workstations
1-6, respectively, and u = 0.125/min

Total CPU time

Remote CPU time Percentage remote

Workstation Prop. LS Condor Prop. LS Condor Prop. LS Condor
1 3,073 2,743 2,019 1,762 65.70% 64.24%

2 3,015 2,610 2,027 1,598 67.23% 61.22%

3 2,987 2,845 2,110 1,681 70.64% 59.09%

4 3,037 3,276 798 1,487 26.27% 45.39%

5 3,098 3,238 1,060 1,402 34.23% 43.40%

6 3,143 3,532 17 659 0.03% 18.65%
Total 18,358 18,244 8,031 8,589 43.76% 47.08%

Note. Total and remote CPU times are in minutes.

Table I gives numerical results on Total CPUtime, Re-
mote_CPUtime, and percentage of remote execution for
uneven load distributions over a one-week period. As given
in Table I, remote processes accounted for 33.03%
(43.76%) of all processing done in the case of A = 0.5u
(A = 0.3u) for the proposed LS mechanism, while they
accounted for 39.37% (47.08%) in the case of A = 0.5u
(A = 0.3u) for the Condor package. We suspect the higher
percentage of remote execution for the Condor package
under light loads (e.g., in the case of A = 0.3u) results
from the fact that a task arrived at an idle workstation
may be transferred to other idle workstations for execution
for the Condor package. In addition, Total CPUtime’s
are approximately the same over all workstations (al-
though the local arrival rates A;’s differ) for the proposed
LS mechanism, while they vary in the Condor package.
This demonstrates the advantage of using the preferred
lists to evenly distribute loads in the system.

Figure 6 gives the transfer-out ratio with respect to
A;’s with u; fixed at 0.1/runs for homogeneous load distri-
bution. More than 20% of the tasks are executed remotely
for A = 0.0625/min even under homogeneous load distri-
bution. That is, more than 20% of the tasks benefit from
the LS facility. The transfer-out ratio for the Condor
package is higher than that for the proposed LS mecha-
nism, which may serve as another evidence of the possibil-

ity of Condor’s transferring a task out of an idle work-
station.

6. CONCLUSION

We presented the design and implementation of a decen-
tralized LS mechanism based on the Condor software pack-
age. We removed the central manager in Condor, and
incorporated the functionality of the central manager into
every participating workstation. Each participating work-
station collects state information on its own via region-
change broadcasts, and makes LS decisions based on the
state information collected. The probability of multiple
machines sending their tasks to the same idle machine is
minimized by using the concept of preferred list in the
location policy. With such a functionality reconfiguration,
Condor is more resilient to single-workstation failures.

Special care has been taken to fuse our decentralized
LS policies into the existing Condor software so as to
require as little modification as possible. The remote sys-
tem call and process checkpoint facilities in Condor are
adopted to provide location transparency, to preserve the
home workstation’s execution environment, and to trans-
fer the state of a process.

The current implementation based on Condor does not
support applications that use IPCs, signals, and timers.

DECENTRALIZED LOAD SHARING UNDER CONDOR

183

Task transfer-out ratio

0.50 f f f f f

| I | | l

~—+ ©O:=::=~0 Proposed LS mech
+ + Condor package

0.00
0.0250 00375 0.0500 0.0625 0.0750

0.0875

0.1000 0.1125 0.1250

Task arrival rate at each workstation (1/mins)

FIG. 6. Transfer-out ratio with respect to different p;’s under homogeneous load distribution, where p; = A;/u; and w; ~ 0.125/min, for all i.

We plan to reconfigure some of the low-level process and
memory management functions into a kernel server that
resides inside the OS kernel to handle IPC and signal
facilities. We also plan to incorporate features we proposed
in [19, 21-24] into the LS mechanism, and equip the LS
mechanism with the abilities to deal with large communica-
tion latencies, excessive task transfers and task collisions,
and component failures.

ACKNOWLEDGMENTS

The authors thank the developers of the Condor software package for
making their sources available via anonymous ftp from ‘“shorty.cs.
wisc.edu.”

REFERENCES

1. M. Litzkow, M. Livny, and M. Mutka, Condor—A hunter of idle
workstations. Proc. of 8th Int’l Conf. on Distributed Computing Sys-
tems. June 1988.

2. M. Litzkow and M. Livny. Experience with the Condor distributed
batch systems. Proc. of IEEE Workshop on Experimental Distributed
Systems. Oct. 1990.

3. M. Livny and M. Melman. Load balancing in homogeneous broad-
cast distributed systems. Proc. ACM Comput. Network Performance
Symp. 1982, pp. 47-55.

4. D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load sharing
in homogeneous distributed systems. IEEE Trans. on Software Engi-
neering. Vol. SE-12, no. 5, 1986, pp. 662-675.

5. N. G. Shivaratri, P. Krueger, and M. Singhal. Load distributing for
locally distributed systems. /EEE Computer. Vol. 25, no. 12, 1992,
pp- 33-44.

6. C.-Y. H. Hsu and J. W.-S. Liu. Dynamic load balancing algorithms
in homogeneous distributed systems. /[EEE Proc. 6th International
Conf. on Distributed Computing Systems. 1986, pp. 216-223.

7. J. A. Stankovic, K. Ramamritham, and S. Chang. Evaluation of a
flexible task scheduling algorithm for distributed hard real-systems.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

IEEE Trans. on Computers. Vol. C-34, no. 12, Dec. 1985, pp. 1130—
1141.

. J.F. Kurose and R. Chipalkatti. Load sharing in soft real-time distrib-

uted computer systems. [EEE Trans. on Computers. Vol. C-36, no.
8, Aug. 1987, pp 993-999.

. K. Ramamritham, J. A. Stankovic, and W. Zhao. Distributed schedul-

ing of tasks with deadlines and resource requirements. /[EEE Trans.
on Computers. Vol. C-38, no. 8, Aug. 1989, pp. 1110-1123.

K. G. Shin and Y.-C. Chang. Load sharing in distributed real-time
systems with state change broadcasts. I[EEE Trans. on Computers.
Vol. C-38, no. 8, Aug. 1989, pp. 1124-1142.

R. Mirchandaney, D. Towsley, and J. A. Stankovic. Adaptive load
sharing in heterogeneous systems. I[EEE Proc. 9th International Conf.
on Distributed Computing Systems. 1989, pp. 298-306.

T.P. Yum and H.-C. Lin. Adaptive load balancing for parallel queues
with traffic constraints. IEEE Trans. on Communications. Vol.
COM-32, no. 12, Dec. 1984, pp. 1339-1342.

Y. T. Wang and R. J. T. Morris. Load sharing in distributed systems.
IEEE Trans. on Computers. Vol. C-34, no. 3, Mar. 1985, pp. 204-217.

T. C. K. Chou and J. A. Abraham. Distributed control of computer
systems. IEEE Trans. on Computers. Vol. C-35, no. 6, June 1986.

A. Weinrib and S. Shenker. Greed is not enough: Adaptive load
sharing in large heterogeneous systems. /[EEE INFOCOM’88-The
Conference on Computer Communications Proceedings. 1988, pp.
986-994.

F. Douglis and J. Ousterhout. Transparent process migration: Design
alternatives and the Sprite implementation. Software Practice Exper.
21, 8 (Aug. 1991), 757-785.

M. Theimer, K. Lantz, and D. Cheriton. Preemptable remote execu-
tion facilities for the V-system. Proc. of 10th Symp. on Operating
System Principles. Dec. 1985.

Y. Artsy and R. Finkel. Designing a process migration facility: The
Charlotte experience. [EEE Comput. 22, 9 (Sept. 1989), 47-56.

K. G. Shin and C.-J. Hou. Evaluation of load sharing in HARTS
with consideration of its communication activities. I[EEE Trans. on
Parallel and Distributed Systems, Vol.7,No. 7, pp. 724-740, July, 1996.
K. G. Shin and C.-J. Hou. Analytic models of adaptive load sharing
schemes in distributed real-time systems. /EEE Trans. Parallel Dis-
trib. Syst. 4,7 (July 1993), 740-761.

184

21. K. G. Shin and C.-J. Hou. Design and evaluation of effective load
sharing in distributed real-time systems. I[EEE Trans. Parallel Distrib.
Syst. 5, 7 (July 1994), 704-719.

22. C.-J. Hou and K. G. Shin. Load sharing with consideration of future
task arrivals in heterogeneous distributed real-time systems. /EEE
Trans. Comput. 43, 7 (July 1994), 1076-1090.

23. C.-J. Hou and K. G. Shin. Incorporation of optimal timeouts into
distributed real-time load sharing. /EEE Trans. Comput. 43, (May
1993), 528-547.

24. Y.-C. Chang and K. G. Shin. Load sharing in hypercube multicomput-
ers in the presence of node failure. Proceedings of the 21st Interna-
tional Symposium on Fault-Tolerant Computing. 1991, pp. 188-195.

CHAO-JU HOU received the B.S.E. in electrical engineering in 1987
from National Taiwan University, the M.S.E. in electrical engineering
and computer science (EECS), the M.S.E. in industrial and operations
engineering, and the Ph.D. degree in EECS, all from the University of
Michigan, Ann Arbor, in 1989, 1991, and 1993, respectively. From August
1993 to July 1996, she was an assistant professor in the Department of
Electrical and Computer Engineering at the University of Wisconsin—
Madison. Since August 1996, she has been with the Department of Electri-
cal Engineering at the Ohio State University—Columbus, where she is
currently an assistant professor. She is a recipient of the NSF CAREER
award, Wisconsin/Hilldale, Undergraduate/Faculty Research Fellow-
ships, and Women in Science Initiative Awards in Wisconsin. Her research
interests are in the areas of distributed and fault-tolerant computing,
design and implementation of middlware services that provide QoS con-
trol and monitoring in high-speed networks, and performance modeling/
evaluation. She has served on the program committees of several IEEE
conferences, and is a member of the IEEE Computer Society, ACM
Sigmetrics, and the Society of Woman Engineers.

KANG G. SHIN is a professor and the Director of the Real-Time
Computing Laboratory, Department of Electrical Engineering and Com-
puter Science, the University of Michigan, Ann Arbor, Michigan. He

HOU AND SHIN

received the B.S. in electronics engineering from Seoul National Univer-
sity in 1970 and both the M.S. and Ph.D in electrical engineering from
Cornell University in 1976 and 1978, respectively. From 1978 to 1982 he
was on the faculty of Rensselaer Polytechnic Institute. He has held visiting
positions at the U.S. Airforce Flight Dynamics Laboratory, AT&T Bell
Laboratories, the Computer Science Division within the Department of
Electrical Engineering and Computer Science at UC Berkeley and the
International Computer Science Institute, the IBM T. J. Watson Research
Center, and the Software Engineering Institute at Carnegie Mellon Uni-
versity. He also chaired the Computer Science and Engineering Division,
EECS Department, the University of Michigan for three years beginning
January 1991. He has authored/coauthored over 350 technical papers
and numerous book chapters in distributed real-time computing and
control, fault-tolerant computing, computer architecture, robotics and
automation, and intelligent manufacturing. In 1985, he founded the Real-
Time Computing Laboratory, where he and his colleagues are currently
building a 19-node hexagonal mesh multicomputer, called HARTS, and
middleware services for distributed real-time fault-tolerant applications.
In 1987, he received the Outstanding IEEE Transactions on Automatic
Control Paper Award for a paper on robot trajectory planning. In 1989,
he also received the Research Excellence Award from The University of
Michigan. He is currently writing (jointly with C. M. Krishna) a textbook,
“Real-Time Systems,” which is scheduled to be published by McGraw
Hill in 1996. He has also been applying basic research results in real-
time computing to multimedia systems, intelligent transportation systems,
and manufacturing applications. He was the Program Chair of the 1986
IEEE Real-Time Systems Symposium (RTSS), the General Chair of the
1987 RTSS, the Guest Editor of the 1987 August special issue of IEEE
Transactions on Computers on Real-Time Systems, and a Program Co-
Chair for the 1992 International Conference on Parallel Processing, and
has served on numerous technical program committees. He chaired the
IEEE Technical Committee on Real-Time Systems during 1991-1993,
and has been a distinguished visitor of the Computer Society of the IEEE,
an editor of IEEE Transactions on Parallel and Distributed Computing,
and an area editor of International Journal of Time-Critical Computing
Systems.

