
756 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997

On Slot Allocation for Time-Constrained
Messages in Dual-Bus Networks
Ching-Chih Han, Member, IEEE, Chao-Ju Hou, Member, IEEE,

and Kang G. Shin, Fellow, IEEE

Abstract —Several access schemes have been suggested for dual-bus network topology, e.g., DQDB [32], Fasnet [37], CRMA [41],
and Simple [36]. It is therefore important to provide various services in this type of networks. This paper addresses the issue of
guaranteeing the timely delivery of isochronous (real-time) messages with hard deadlines in slotted dual-bus networks. We propose
a slot allocation scheme which can allocate bandwidth for a set of isochronous message streams and provide deterministic deadline
guarantees.

The proposed slot allocation scheme is guaranteed to find a feasible slot allocation in the sense that all messages can be transmitted
in a timely manner as long as the total message density is less than or equal to a certain threshold, where the total message density is
defined as the summation of the ratio of maximum message size to message deadline over all streams. We also discuss the
implementation details of this scheme, and compare our scheme with another bandwidth allocation scheme proposed in [45].

Index Terms —MAC protocol, dual-bus networks, pinwheel problem, real-time communications, slot allocation.

—————————— ✦ ——————————

1 INTRODUCTION

HERE has been an increasing need of timely and de-
pendable communication services either for such em-

bedded real-time applications as air-traffic control, auto-
mated factories, and industrial process controls, or for in-
teractive distributed services such as multimedia confer-
encing and video/audio virtual realities. The former
(embedded real-time) services are usually realized by exe-
cuting a number of cooperating/communicating tasks on
multiple processors before their deadlines imposed by the
corresponding mission/function. One example is a monitor
task that collects remote sensor data and displays the data
at a control station. Failure to meet the deadlines of these
tasks may lead to catastrophic consequences. The latter
(interactive distributed) services need a certain amount of
bandwidth to deliver video/audio frames in time consis-
tent with human perception. Performance objectives used
in conventional networks—such as maximizing the
throughput or minimizing the response time—are not the
most important concern to both types of applications. In-
stead, guaranteed and predictable performance must be
ensured, and appropriate network architectures and proto-
cols are required to provide users with a convenient means
of guaranteeing message-transmission delay bounds.

The problem of guaranteeing the timely delivery of iso-
chronous messages with hard deadlines has been studied by
numerous researchers. The efforts have been directed mainly

toward designing medium access control (MAC) protocols for
local/metropolitan area networks (L/MANs). For example, the
IEEE 802.4 token bus [4] (adopted for the Manufacturing Auto-
mation Protocol [18]), the IEEE 802.5 token ring [5], and FDDI [6]
(developed by ANSI for high bandwidth fiber optic networks)
adopt the timed-token MAC protocol for providing bounded
medium access times. Both Agrawal et al. [1], [2], [3], [14] and
Han et al. [26], [27] attempted to solve the synchronous bandwidth
allocation problem for FDDI networks to meet the protocol con-
straint while transmitting all synchronous messages before their
deadlines. In this paper, we focus on the problem of providing
deterministic deadline guarantees to message streams with
timing constraints in slotted dual-bus networks.

The dual-bus network considered in this paper consists
of two high-speed unidirectional slotted buses running in
opposite directions (Fig. 1). Every station is connected to
both buses by active or passive taps which enable transmis-
sion on each bus. The two buses transport messages in op-
posite directions, so there exists a transmission path from
every station to every other station. Data transmission on
both buses is slotted. The slot generator at the head of each
bus is responsible for generating empty slots and transport
them “downstream” and for preassigning sufficient empty
slots to isochronous message streams to ensure their timely
delivery. (Although Fig. 1 shows slot generators as separate
functional units, the slot generation function can be em-
bedded in the stations at the two ends of the network.) Each
slot contains an Access Control Field (ACF) and a payload.
There are three fields in ACF that are of particular interest:

1) the busy bit, which indicates whether or not the slot is
empty,

2) the real-time bit (or the pre-arbitration bit), which indi-
cates whether or not the slot has been pre-assigned by
the slot generator to some isochronous message
stream, and

0018-9340/97/$10.00 © 1997 IEEE

————————————————

• C.-C. Han and C.-J. Hou are with the Department of Electrical Engineer-
ing, The Ohio State University, Columbus, OH 43210-1272,

 E-mail: {cchan, jhou}@ee.eng.ohio-state.edu.
• K.G. Shin is with the Real-Time Computing Laboratory, Department of

Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109-2122.

 E-mail: kgshin@eecs.umich.edu.

Manuscript received 6 Feb. 1996; revised 4 Feb. 1997.
For information on obtaining reprints of this article, please send e-mail to:
transcom@computer.org, and reference IEEECS Log Number 104119.0.

T

HAN ET AL.: ON SLOT ALLOCATION FOR TIME-CONSTRAINED MESSAGES IN DUAL-BUS NETWORKS 757

3) the virtual circuit identifier (VCI), which indicates to
which isochronous stream the slot is assigned if the
real-time bit is set.

Access to the slots is managed by using these three fields.
We assume that messages to be transmitted on the buses
are divided into one or more fixed-length packets/cells,
and packet/cell size matches the payload size of a slot, i.e.,
each message cell needs one slot time for its transmission.

The slotted dual-bus network configuration described
above is general enough to accommodate several MAC
schemes suggested for this topology, e.g., DQDB [32],
Fasnet [37], CRMA [41], and Simple [36], to name a few.
Under the slotted dual-bus network configuration, we first
characterize each isochronous message stream Mi with two
parameters: relative message deadline Di and maximum
(total) message size Ci (measured in packets) that can arrive
within any time interval of length Di. Second, we formally
define the slot allocation problem in slotted dual-bus net-
works, and devise a slot allocation scheme as a solution to
the problem. Our solution approach is to devise an on-line
scheduler that preallocate slots to a set of isochronous mes-
sage streams {Mi = (Ci, Di) | 1 £ i £ n} in such a way that in
any time interval of length Di, there are at least Ci slots allo-
cated to Mi for all i. Based on the scheduler, we then pro-
pose a slot allocation scheme that can be readily used by the
slot generator to generate slot allocation schedules. The
proposed slot allocation scheme is guaranteed to find a fea-
sible slot allocation schedule to satisfy the above criterion
and ensures that all isochronous messages can be transmitted
before their deadlines as long as the total message density is
less than or equal to a certain threshold, where the total mes-
sage density is defined as the summation of the ratio of
maximum message size to message deadline over all iso-
chronous streams, i.e., ÂCi/Di. Finally, we elaborate on how
to implement the proposed scheme as a SlotManager
daemon or a SlotManager chip that resides in the slot
generator.

Numerous researchers have studied the slotted dual-bus
networks in terms of the design of MAC schemes for non-
real-time traffic [36], [37], [41], the fairness issues [8], [21],
[22], [44], and the queuing performance [9], [10], [34]. By
contrast, only a few of them have focused on slot allocation
for real-time communication [11], [39], [40], [43], [45], [46],
[47]. (Most of them are in the domain of DQDB networks
perhaps except for [46], [47].) Potter et al. [43] proposed a

request control scheme to guarantee bandwidth for queue-
arbitrated access. In combination with a traffic shaping
mechanism, Martini et al. [39], [40] proposed a guaranteed
bandwidth (GBW) protocol to arbitrate the queue-
arbitrated slots for the connection-oriented services. Both
schemes proposed in [39], [40], [43] do not provide any per-
formance guarantee for real-time traffic. Sha et al. [46], [47]
proposed a global priority scheme to guarantee message
deadlines and prevent priority inversion. The major draw-
back of the scheme is that it requires a large number of pri-
ority levels which may not be supported in realistic net-
works. Chan et al. [11] proposed a reservation-arbitrated
access scheme exclusively for isochronous voice transport,
and achieved statistical multiplexing in isochronous serv-
ices by allowing voice packets to be occasionally dropped.
As a result, their scheme may not be well-suited for em-
bedded real-time systems with hard deadline constraints.

The scheme proposed by Saha et al. in [45] comes closest
to ours. However, their scheme differs from ours in formu-
lating and solving the problem. They adopt the peak-rate
message model [7], in which each message stream Mi is
characterized by three parameters: minimum message in-
ter-arrival time Pi, maximum message size Ci, and relative
message deadline Di (Di £ Pi). We will show in Section 2
that their message model is a special case of ours (i.e., more
restricted than ours). They first devised a bandwidth allo-
cation scheme based on cyclic reservation and derived the
schedulability condition under two assumptions:

1) message streams are all periodic with periods Pi = Di
for all i, and

2) message arrivals are aligned with the starts of alloca-
tion cycles, and the length L of the allocation cycle
evenly divides Pi for all i.

They then relaxed these assumptions and modified their
scheme to handle the general case. The resulting modified
scheme may not be able to schedule message-stream sets
with some Dk < L in the worst case (see Section 5.1 for more
details). In contrast, we formulate the problem in a very
general setting, i.e., we formulate the slot allocation prob-
lem in such a way that any slot allocation scheme that
solves this problem should be able to provide deterministic
deadline guarantees for arbitrary isochronous message
streams. By “arbitrary,” we mean that the message arrivals
in an isochronous stream are not required to be periodic or

Fig. 1. The dual-bus network configuration.

758 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997

separated by a minimum interarrival time, and the (first)
message arrivals in different streams are not required to be
in phase (i.e., aligned with one another) or aligned with any
time instant. Moreover, the proposed scheme has an easy-
to-test schedulability condition, i.e., as long as the total

message density S C
D

i

i
 is less than or equal to a certain

threshold, the proposed scheme can always find a feasible
slot allocation schedule.

The rest of the paper is organized as follows. In Section 2,
we describe the MAC specification for real-time traffic used
in the dual-bus network considered in this paper, discuss
the message model used to characterize isochronous
streams, and define the total message density of a set of
isochronous streams. In Section 3, we formally define the
slot allocation problem, and discuss how to solve the prob-
lem by generalizing the results of the pinwheel problem [12],
[13], [28], [29]. In Section 4, we propose an on-line slot allo-
cator which takes a set of message streams as the input and
generates the corresponding slot allocation schedule in O(n)
time per slot allocated, and a slot allocation scheme of
polynomial time complexity. We also discuss the imple-
mentation details of the proposed scheme there. In Section 5,
we compare our scheme with that proposed in [45] and
give a few remarks on possible extension to this work. We
conclude the paper with Section 6.

2 MAC PROTOCOL AND MESSAGE MODEL

2.1 Access Control for Real-Time Traffic
Many MAC protocols have been developed for non-real-time
traffic to ensure lack of starvation and some degree of fairness.
For example, Simple [36], Fasnet [37], and CRMA [41] control
the access to the bus by use of cycles, and by imposing a limit
on the number of slots that can be used by each station in a
cycle. DQDB [32] implements a distributed global queue by
using two counters, countdown counter and request counter.
What is lacking is a MAC protocol for real-time traffic. The
intent of this paper is to lay a formal basis of such a protocol
by devising a slot allocation scheme for real-time traffic.

Before elaborating on the detailed derivation of the pro-
posed slot allocation scheme, we first give the specification
for isochronous services based loosely on the IEEE 802.6
standard [32], [33]. The dual-bus network uses a prearbitra-
tion (PA) scheme for isochronous (real-time) traffic. Each
isochronous message stream is given a unique VCI. The slot
generator at the head of the bus is responsible for reserv-
ing/marking sufficient empty slots for isochronous mes-
sage streams by setting

1) the real-time bits in the slots and
2) the VCI fields in the slots to the VCIs of appropriate

isochronous message streams.

The stations with an isochronous stream then watch for
prearbitrated (PA) slots with the appropriate VCIs and
transmit their isochronous messages using those slots. If an
empty slot is not pre-assigned for isochronous message
streams1 or if the VCI field in an empty preassigned slot

1. Unassigned empty slots are arbitrated among stations using the MAC
schemes for non-real-time traffic.

does not match the VCI of any of the isochronous message
streams emanating from a station, the station simply trans-
ports the PA slot downstream. The slot generator must en-
sure that the slots for each isochronous message stream are
properly preassigned so as to guarantee the timely delivery
of the messages in each isochronous stream.

2.2 Message Model
Before delving into the issue of allocating network band-
width for messages with delivery deadlines, one must
specify the traffic characteristics and timing requirements
of these messages. Let M = {M1, M2, º, Mn} be a set of n
isochronous message streams (each with a unique VCI) in
the dual-bus network. Note that for each station, there may
be zero, one, or more isochronous message streams ema-
nating from it. We use a message model similar to the (r, T)-
smooth traffic model [19], [20] in which each message stream
Mi is described by a two-tuple (Ci, Di):

• Ci is the maximum number of packets/cells in Mi that
can arrive in any time interval of length Di (or, sim-
ply, the maximum message size of Mi), and

• Di is the relative transmission deadline (or simply, the
deadline) for the messages in Mi, i.e., if a message of
Mi arrives at time t, then it must be transmitted by
time t + Di.

This model is, in fact, a generalization of two commonly-
used real-time traffic models: the peak-rate model [7], and
the linear bounded model [15], [16]. In the peak-rate model,
each stream Mi is characterized by a triplet (Ci, Di, Pi),
where

• Pi is the minimum interarrival period for Mi, i.e., if the
jth message of Mi arrives at time t, then the (j + 1)th
message in the stream will arrive at a time no earlier
than t + Pi for all j ≥ 1 (if messages in Mi arrive peri-
odically, then Pi is the period),

• Ci is the maximum message size measured in cells in
Mi, i.e., Ci is the number of slots needed to transmit a
maximum-size message in Mi, and

• Di (£ Pi) is the transmission deadline for the messages
in Mi.

In the (C, D)-smooth message model we used, the inter-
arrival time of two successive messages in Mi is not re-
quired to be larger than or equal to Di (i.e., more than one
message may arrive in a time interval of length £ Di). How-
ever, the total message size measured in cells in Mi that ar-
rive in any time interval of length Di should not exceed Ci.
In the peak-rate model, during any time interval of length
Pi, at most one message of size less than or equal to Ci will
arrive. Di £ Pi implies that the total message size of the mes-
sages in Mi that arrive in any time interval of length Di is
bounded by Ci. The peak-rate model is simply a special case
of the (C, D)-smooth message model because the peak-rate
model is more restricted than the (C, D)-smooth model in
the sense that any message stream that satisfies the charac-
teristic (Ci, Di, Pi) of the peak-rate model also satisfies the
characteristic (Ci, Di) of the (C, D)-smooth model.

In the linear bounded model, each message stream Mi is
characterized by a two-tuple (ri, bi), where ri is the maxi-
mum message arrival rate, and bi is the maximum burst

HAN ET AL.: ON SLOT ALLOCATION FOR TIME-CONSTRAINED MESSAGES IN DUAL-BUS NETWORKS 759

size. A real-time traffic is said to follow the linear bounded
model if the number of cells arrived in any time interval of
length t is bounded by the linear function ri ◊ t + bi. The
linear bounded model can be implemented by the leaky
bucket [51] or token bucket [42] mechanism with a token gen-
eration rate ri and a bucket size bi. It is easy to see that by
letting Ci = ri ◊ Di + bi, the linear bounded model becomes a
special case of the (C, D)-smooth model because the linear
bounded model is more restricted than the (C, D)-smooth
model in the sense that any message stream that satisfies
the characteristic (ri, bi) of the linear bounded model also
satisfies the characteristic (Ci, Di) = (ri ◊ Di + bi, Di) of the
(C, D)-smooth model.

Our slot allocation scheme is designed based on the
above (C, D)-smooth model, and, hence, can also be used
for message streams that conform to the peak-rate model or
the linear bounded model. However, it is worth mentioning
that the peak-rate model describes the “worst” case sce-
nario of the (C, D)-smooth model in the sense that it is the
most “difficult” situation for the slot allocation scheme to
meet the deadline constraints of the messages in Mi. Note
that if each message in Mi arrives Di = Pi units of time after
the previous message and with a message size Ci, then all
the Ci cells of each message in Mi must be transmitted
within Di time units after its arrival, and hence, the slot al-
location scheme must ensure that there are enough slots
(i.e., at least Ci slots) assigned to Mi during any time inter-
val of length Di.

Since data transmission on the dual buses is slotted, and
message arrivals may not be aligned with slot boundaries,
we need to express Di in number of slots, and consider the

fact that messages may arrive in the middle of a slot. Let Ls

denote the length of a slot, and ¢Di denote the effective
deadline expressed in slot times. ¢Di can be expressed as

¢ = -D D Li i s 1. (2.1)

The floor function and the “-1” term in (2.1) come from the
fact that Di may not evenly divide Ls and message arrivals
may not be aligned with slot boundaries. For notational
convenience, we assume in the following discussion that Di
is the effective deadline expressed in number of slots. Note
that as mentioned earlier, message cell size matches the
payload size of a slot, so we may think of Ci as measured in
slots.

With the (C, D) smooth message model, the notion of
timing guarantee can be stated as: the slot generator must
ensure that empty PA slots are properly assigned to each
isochronous stream Mi so that each message in Mi is trans-
mitted within a time period £ Di after its arrival as long as
the maximum (total) message size in any time interval of
length Di is £ Ci. In other words, the slot generator must
assign at least Ci slots to Mi between the arrival time and
the deadline of any message of Mi, and because each mes-
sage in Mi may arrive at any time, it also implies that the
slot generator must assign at least Ci slots to Mi during any
time interval of length Di. We assume the presence of a
suitable policing mechanism that marks cells which violate
the traffic characteristics declared. No service is guaranteed
to cells marked by the policing mechanism.

2.3 Message Density of Isochronous Traffic
We define the message density of an isochronous stream Mi
as r(Mi) = Ci/Di, and the total message density of a set of
isochronous streams M = {M1, M2, º, Mn} as

r rMa f c h= =
= =
Â ÂM

C
Di

i

n
i

ii

n

1 1

. (2.2)

Researchers in the field of real-time computing usually
define the schedulability criterion for guaranteeing a set of
periodic tasks using some priority-driven preemptive
scheduling approach by giving the worst-case achievable
processor utilization [3], [38]. The message density defined
above is similar to the processor utilization defined in real-
time scheduling. In the following discussion, we propose a
slot allocation scheme for isochronous traffic in a dual-bus
network. Moreover, we give the worst-case achievable total
message density r* for the scheme. That is, the slot alloca-
tion scheme is guaranteed to find a feasible slot allocation
schedule (in the sense that all messages in M can be trans-
mitted in time) for any set M of isochronous streams as long
as r(M) £ r*. Note, however, that r(M) > r* does not neces-
sarily imply that M cannot be feasibly scheduled by the
proposed slot allocation scheme (more on this will be dis-
cussed later).

3 THE SLOT ALLOCATION PROBLEM

As discussed in Section 2.2, each isochronous message must
be transmitted within a time period £ Di after its arrival.
Hence, we formally define the slot allocation problem as
follows.

PROBLEM 1 (Slot Allocation Problem). Given a set of isochro-
nous message streams M = {Mi = (Ci, Di) | 1 £ i £ n}, al-
locate the slots in such a way that each stream Mi is
guaranteed to transmit each of its messages before the
message deadline Di. That is, if a message of Mi ar-
rives at time t, enough slots must be allocated for Mi
during time interval [t, t + Di] for the timely transmis-
sion of the message.

According to the message model, the maximum size of a
message in Mi is Ci. Therefore, if a message of Mi with size
Ci arrives at time t, then the slot allocation scheme must
allocate at least Ci slots for Mi during time interval [t, t + Di].
Note that the exact time when a message in Mi arrives is not
known a priori and message arrivals in different streams do
not necessarily align with one another. Hence, one way for
a slot allocation scheme to meet the above timeliness crite-
rion is to assign at least Ci slots to Mi for any time interval of
length Di.

Consider, for example, Fig. 2, where four possible slot
allocation patterns for a stream Mi with Ci = 2 and Di = 6 are
shown. The slot allocation patterns in Fig. 2a do not satisfy
the criterion that for any time interval of length Di, at least
Ci slots are allocated to Mi, and a message of Mi that arrives at
time t, for 1 £ t £ 5, cannot meet its delivery deadline t + Di. In
Fig. 2b, the slots are so allocated that the above criterion is
fulfilled, and hence, all messages can meet their delivery
deadlines regardless of their arrival times.

760 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997

Fig. 2. Four possible slot allocation patterns for message stream Mi =
(Ci, Di) = (2, 6).

A straightforward result on the total message density is
stated below.

LEMMA 1. If the total message density of a set of streams M is
larger than 1 (i.e., r(M) > 1), then no feasible slot alloca-
tion schedule exists for M.

PROOF. The lemma follows simply by observing that each
stream Mi (1 £ i £ n) must be granted slots at least

Ci/Di of the time. Clearly, this cannot be done for all

streams if r()M = >
=Â C

Di

n
i

i1
1 . �

In Section 4, we propose a scheme to solve the slot allo-
cation problem defined above. The theoretical base of the
proposed slot allocation scheme is grounded on some of the
results of the pinwheel problem stated below.

PROBLEM 2 (The Pinwheel Problem) [12], [13], [28], [29].
Given a multiset of n positive integers A = {a1, a2, º,
an}, find an infinite sequence (schedule) over the sym-
bols {1, 2, º, n} such that there is at least one symbol
“i” within any subsequence of ai consecutive symbols
(slots).

For example, given a multiset A = {2, 4, 5}, one solution se-
quence is (1, 2, 1, 3, 1, 2, 1, 3, º) where the subsequence
(1, 2, 1, 3) repeats forever. In this solution sequence, we can
find one “1” in every a1 = 2 consecutive symbols, one “2” in
every a2 = 4 consecutive symbols, and (at least) one “3” in
every a3 = 5 consecutive symbols.

There are two important results of the pinwheel problem
upon which we will build our slot allocation algorithm:

1) If a pinwheel instance A with total density £ 1 consists
solely of multiples (i.e., ai | aj for all i < j, where ai | aj

denotes ai divides aj, and r() /A = £
=Â 1 1

1
aii

n
), then

A is schedulable;
2) If a pinwheel instance A consists of only two distinct

numbers (i.e., instances of the form {b, b, º, b, c, c, º, c})
with total density £ 1, then A is schedulable.

THEOREM 1 [29]. Given a pinwheel instance A = {a1, a2, º, an},
if ai | aj for all i < j, and r(A) £ 1, then A is schedulable.

THEOREM 2 [28]. Given a pinwheel instance A = {b, b, º, b, c, c,
º, c} with p bs and q cs, if r(A) = p/b + q/c £ 1, then A
is schedulable.

Based on these two results, Chan and Chin [12], [13] de-
vised several schedulers, e.g., Sa, Sx, Sby, and Sxy, to
schedule larger classes of pinwheel instances. The basic
idea behind Schedulers Sa and Sx is the single-integer reduc-
tion technique, which aims to transform an arbitrary in-
stance A to another instance ¢ = ¢ ¢ ¢A { , , , }a a an1 2 K that con-
sists solely of multiples and ¢ £a ai i for all i. From Lemma 1
and Theorem 1, we know that A’ can be feasibly scheduled
if and only if r(A¢) £ 1. Since ¢ £a ai i (i.e., A’ is more re-
stricted than A), if we find a schedule for A’, then the
schedule also satisfies the original constraints for A.

Without loss of generality, we can assume that a1 £ a2 £
� £ an and that the smallest number in A is a, i.e., a = a1, in
the following discussion. Scheduler Sa finds an ¢ai for each

ai such that

¢ = ◊ £ < ◊ = ¢+a a a a ai
j

i
j

i2 2 21 .

for some integer j ≥ 0, i.e., ¢ = ◊a ai
a ai2 log() (note that all

logarithms in this paper are to the base 2). This operation is
called specializing A with respect to {a}. Since the instance

¢ = ¢ ¢ ¢A { , , , }a a an1 2 K consists solely of multiples, as long as

r(A¢) £ 1, by Theorem 1, A’ is schedulable. Sa then uses an
algorithm, SpecialSingle, proposed in [13] to find a feasible
schedule for A’. Since ¢ £a ai i for all i, the schedule found
for A’ is also a feasible schedule for A.

Scheduler Sx is based on the same technique as Schedule
Sa except that A is specialized with respect to {x}, where x is
an integer and a1/2 < x £ a1. Starting from x = a1, Sx special-
izes A with respect to {x} until x ≥ a1/2 + 1 and chooses an x
that minimizes r(A¢), or until it finds an x which makes r(A¢)
£ 1 (or until it finds that no such integer exists). Therefore, Sx
is more powerful than Sa in the sense that every pinwheel
instance that can be scheduled by Sa can also be scheduled
by Sx. For example, in Sa, A = {4, 7, 8, 13, 24, 28} with a total
density of 0.672� (< 2/3) is specialized with respect to {4} to
get A¢ = {4, 4, 8, 8, 16, 16} with a total density of 7/8. In com-
parison, in Sx, A is specialized with respect to {3} to get A¢ =
{3, 6, 6, 12, 24, 24} with a total density of 5/6 (< 7/8).

Schedulers Sby and Sxy are based on the double-integer
reduction technique, and make use of Theorem 2 (as well as
Theorem 1). In general, the double-integer reduction tech-
nique specializes a pinwheel instance A with respect to two
positive integers {b, c}, where b £ c < 2b and b £ a = a1. That

is, it finds an ¢ai for each ai Œ A such that

¢ = ◊ ◊ £ < ◊
◊ ◊ £ < ◊

R
S|
T| +a
b b a c
c c a bi

j j
i

j

j j
i

j
2 2 2
2 2 2 1

if
if ,

for some integer j ≥ 0, i.e., ¢ = ◊ ◊a b ci
a b a ci imax{ , }log() log()2 2 .

Schedulers Sby and Sxy differ from each other only in how to
select the two integers b and c for the specialization operation.

HAN ET AL.: ON SLOT ALLOCATION FOR TIME-CONSTRAINED MESSAGES IN DUAL-BUS NETWORKS 761

After the specialization operation is performed, the Sched-
ulers then use an algorithm SpecialDouble described in
[13] to schedule the specialized pinwheel instance A’. A
detailed account of all these schedulers/algorithms can be
found in [12], [13], [28].

Note that since ¢ £a ai i for all i, we have r(A¢) ≥ r(A). The

density threshold r* of A is then derived in such a way that
as long as the total density of A is less than or equal to r*
then r(A¢) £ 1 (i.e., A’ is schedulable). In other words, one
can schedule all pinwheel instances with densities £ r*.It
has been shown in [12], [13] that the density thresholds for
Schedulers Sa, Sx, Sby, and Sxy are 0.5, 0.65, 0.6964, and
0.7, respectively. Note, however, that if a pinwheel instance
A has a total density larger than r*, it does not necessarily
imply that the instance is not schedulable. Instance A can
be feasibly scheduled as long as the total density of the
transformed set A’ is less than or equal to 1.

In the slot allocation problem, if we require that the slot
allocation scheme must be able to generate an infinite slot
allocation sequence such that at least Ci slots are allocated

to Mi in any time interval of length Di, it follows that the
slot allocation problem is a generalization of the pinwheel
problem (note that in the pinwheel problem, Ci = 1 for all i).
Therefore, one plausible approach to the slot allocation
problem is to view it as the pinwheel problem by consid-
ering Mi = (Ci, Di) as Ci copies of Di in the corresponding
pinwheel instance. For example, an instance M = {(2, 5), (3, 7)}
of the slot allocation problem can be transformed into the
pinwheel problem with the instance A = {5, 5, 7, 7, 7}. Any
occurrence of symbol “1” or “2” in the pinwheel schedule is
treated as a slot allocated to M1 and any occurrence of sym-
bol “3,” “4,” or “5” in the pinwheel schedule is treated as a
slot allocated to M2 in the slot allocation problem. It is easy
to see that if the pinwheel schedule is feasible for the pin-
wheel instance A, then the corresponding slot allocation
schedule is also feasible for the instance M of the slot allo-
cation problem. However, this approach is not feasible in
practice, since the method of transforming a stream Mi into

Ci copies of Di in the corresponding pinwheel instance

makes the input size expand from n to Cii

n

=Â 1
 (which is a

pseudopolynomial expansion). Thus, the schedulers used to
solve the pinwheel problem cannot be directly applied to
the slot allocation problem defined here.

Moreover, although both the scheduling algorithms
SpecialSingle and SpecialDouble designed for the pin-
wheel problem are effective (i.e., both are parallel fast on-
line schedulers and need O(n) hardware [13], [29]), it is not
clear whether or not they can be modified to solve the slot
allocation problem in which the maximum message size Ci,
1 £ i £ n, can be any positive integer and arbitrarily large,
instead of 1 as in the pinwheel problem. In Section 4, we
focus on the single-integer reduction technique and pro-
pose a new, simple on-line slot allocation scheme to handle
a set of isochronous streams with arbitrary maximum mes-
sage sizes, Cis, with O(n) time per slot allocated and O(1)

hardware. Note, however, that the double-integer reduction
technique can also be applied to the proposed slot alloca-
tion scheme to further improve the performance.

4 THE SLOT ALLOCATION SCHEME

In this section, we first describe an on-line slot allocator
which takes a set of message streams M = {Mi = (Ci, Di) | 1 £
i £ n} with Di | Dj for all i < j, and r(M) £ 1 as the input, and
generates the corresponding slot allocation schedule in O(n)
time per slot allocated. We also formally prove the correct-
ness of the on-line slot allocator. Then, we present the slot
allocation scheme which resides in the slot generator and
incorporates the on-line slot allocator to allocate slots for a set
of general message streams (i.e., Di | Dj for all i < j may not
necessarily hold). Finally, we discuss the issues of imple-
menting the slot allocation scheme in a dual-bus network.

4.1 On-Line Slot Allocator
The on-line allocator SlotAllocator (Fig. 3) uses the rate-
monotonic (RM) [38] (or, precisely, the deadline-monotonic
(DM)) rule to assign message priorities so that the streams
with tighter deadline constraints get higher priorities. Specifi-
cally, SlotAllocator treats each message stream Mi = (Ci, Di) as
a periodic task with execution time Ci and period (= dead-
line) Di. At any time slot, SlotAllocator always assigns the
slot to the stream with the highest priority among the active
streams, where an active stream is one whose slot require-
ments are unfulfilled at the current period interval. Note that
in SlotAllocator, the for loop from line 5 to line 13 imple-
ments the RM/DM priority assignment rule. The “if”
statement (line 6) and the Boolean variable assigned are used
to locate the highest-priority stream (i.e., the smallest index i)
that has unfulfilled slot requirement (i.e., ci > 0) with re-
spect to the current di. The SlotManager (line 1) (to be fur-
ther discussed later) is the driver to the slot allocator. If
there is no message stream with unfulfilled slot require-
ment (i.e., ci = 0 for all i) with respect to the current di,
SlotAllocator will inform SlotManager that a regular traffic
(non-real-time) slot should be issued (line 14 of SlotAllocator).
Note that the index 0 in line 14 denotes that the slot should
be marked as a regular traffic slot.

Let fij denote the (j ◊ Ci)th slot assigned to message stream
Mi, for 1 £ i £ n and j ≥ 1. In the following theorem, we
prove that SlotAllocator indeed produces a feasible slot
allocation for a set of message steams whose deadline con-
straint multiset consists solely of multiples and whose total
message density is less than or equal to one.

THEOREM 3. For a set of isochronous message streams M = {Mi =
(Ci, Di) | 1 £ i £ n}, if Di | Dj for all i < j, and r(M) £ 1,
then SlotAllocator (which is based on the RM/DM prior-
ity assignment) will allocate Ci slots to Mi in any time in-
terval of length Di, for all i.

PROOF. It suffices for us to show that

1) the first Ci slots assigned to Mi are those slots in
interval [1, Di], i.e., fi1 £ Di, for all i,

2) if slot t is assigned to Mi, then slot (t + q ◊ Di) is also
assigned to Mi for any integer q such that t + q ◊ Di
≥ 1, and

762 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997

3) in any time interval of length Di, there are Ci slots
assigned to Mi, for all i.

We prove conditions 1 and 2 by induction on mes-
sage stream id i. Since M1 has the tightest deadline D1
(and, hence, the highest priority), the C1 consecutive
slots from slot 1 to slot C1 will be assigned to M1 (i.e.,
the C1 slots do not interleave with slots assigned to
other message streams). Hence, f11 = C1 £ D1 (otherwise,
if C1 > D1, r(M) £ 1 does not hold) and condition 1 is
satisfied for i = 1. From the SlotAllocator process, it is
easy to see that the next C1 consecutive slots assigned
to M1 are slot D1 + 1 through slot D1 + C1. Moreover,
the jth set of C1 consecutive slots assigned to M1 are
slots (j - 1) ◊ D1 + 1 through slot (j - 1) ◊ D1 + C1. (Note
that M1 has the highest priority.) Therefore, condition 2
is satisfied for i = 1.

Now, suppose conditions 1 and 2 hold for all i < k.
Since

i) Di | Dk, for all 1 £ i < k,
ii) fi1 £ Di, for all 1 £ i < k, by the induction hypothesis

of condition 1, and
iii) if slot t is assigned to Mi, so is slot (t + q ◊ Di) for all

1 £ i < k and q ≥ 0 by induction hypothesis of con-
dition 2,

we know that the number of slots assigned to Mi, for 1

£ i £ k, from slot 1 to slot Dk is exactly Ci
D
D

k

i
◊ . If con-

dition 1 is not true for Mk, we have C Di
D
Di

k
k

k

i
◊ >

=Â 1
,

or C
Di

k
k

i=Â >
1

1, a contradiction to the assumption that

r(M) £ 1.
Next, since fk1 £ Dk, from the SlotAllocator process,

it is easy to see that the next slot to be assigned to Mk
is slot Dk + 1 or later. Since Di | Dk for 1 £ i < k, by in-
duction hypothesis of condition 2, the allocation pat-
tern for the slots assigned to M1, M2, º, Mk-1 in slot in-
terval [1, Dk] repeats in slot interval [(j - 1) ◊ Dk + 1, j ◊ Dk],
for all j > 1. Moreover, the allocation pattern for the
slots assigned to Mk in slot interval [1, Dk] satisfies the
deadline constraint of Mk, and will thus repeat in slot
interval [(j - 1) ◊ Dk + 1, j ◊ Dk], for all j > 1. Note that
the message streams, Mk+1, Mk+2, º, Mn, with looser
deadlines (and hence, lower priorities) have no effect
on the allocation pattern of the higher-priority streams
M1, M2, º, Mk. Hence, condition 2 is true for i = k.

From conditions 1 and 2, in each slot interval [(j - 1)
◊ Di + 1, j ◊ Di], there are (exactly) Ci slots assigned to
Mi, for 1 £ i £ n and j ≥ 1. Now, to prove condition 3,
we need to consider a time interval of length Di with
slots t1 and t2 as the first and the last slots, respec-
tively, where 1 £ t1 £ j ◊ Di £ t2 £ (j + 1) ◊ Di, for some
j ≥ 1, and t2 - (t1 - 1) = Di. Since the slot allocation
pattern in slot interval [t1, j ◊ Di] repeats in slot inter-
val [t1 + Di, (j + 1) ◊ Di] = [t2 + 1, (j + 1) ◊ Di], and since,
by conditions 1 and 2, the slot allocation pattern in
slot interval [j ◊ Di + 1, (j + 1) ◊ Di] satisfies the dead-
line constraint (i.e., the number of slots in [j ◊ Di + 1,
(j + 1) ◊ Di] allocated to Mi is Ci), it is obvious to see
that the slot allocation pattern in time interval [t1, t2]
also satisfies the deadline constraint of Mi, i.e., there
are Ci slots assigned to Mi in time interval [t1, t2]. �

4.2 Slot Allocation Scheme
We now describe the slot allocation scheme which incorpo-
rates SlotAllocator to allocate slots to a set of arbitrary
streams: SlotManager (Fig. 4) is a driver to the slot allocator
process SlotAllocator, and VCIServer is responsible for
mapping a message stream id to its corresponding VCI
number.

To allocate slots for a set of general message streams M,
SlotManager performs the following steps.

Step 1. Upon system initialization, gather/maintain the
required information regarding the connection requests

SlotAllocator

/* di: slack time of the current message of Mi. */
/* ci: remaining slot requirement w.r.t. current di. */
/* send(P, message): send a message to process P and wait for its
reception by P. */
/* receive(P, message): wait for and receive a message from
process P. */
/* M = {Mi = (Ci, Di) | 1 £ i £ n} is a set of isochronous message
streams with Di | Dj for all i < j, and r(M) £ 1. */

1. receive(SlotManager, M);
2. for i ¨ 1 to n do {ci ¨ Ci, di ¨ Di;}
3. do {/* note that D1 £ D2 £ º £ Dn */
4. assigned ¨ false;
5. for i ¨ 1 to n do {
6. if (not assigned and ci > 0) {
7. send(SlotManager, i); /* assign the current slot to

message stream Mi */
8. assigned ¨ true;
9. ci ¨ ci - 1;
10. } /* if */
11. di ¨ di - 1;
12. if (di == 0) {ci ¨ Ci; di ¨ Di;}
13. } /* for */
14. if (not assigned) send(SlotManager, 0); /* the current slot

will be left as a regular traffic slot */
15.} forever

Fig. 3. The SlotAllocator process.

SlotManager

/* Assume M = {Mi = (Ci,Di) | 1 £ i £ n}, where D1 £ D2 £ � £ Dn. */

/* Upon system initialization */
1. collect and update M;
2. specialize the deadline constraint multiset D of M to get D’ (M’);
3. if (r(M¢) > 1) reject M and exit;
4. else {
5. send(SlotAllocator, M’);
6. do {
7. receive(SlotAllocator, i);
8. if (i π 0)
9. inquire the VCIServer for stream Mis VCI and fill

the VCI field of the current slot with stream Mis VCI;
10. else
11. tag the current slot as a regular traffic slot;
12. wait for the “time slot” to fully elapse;
13. }forever
14.}

Fig. 4. The SlotManager process.

HAN ET AL.: ON SLOT ALLOCATION FOR TIME-CONSTRAINED MESSAGES IN DUAL-BUS NETWORKS 763

from the isochronous message streams, especially (Ci, Di),
for each stream Mi and the source and destination sta-
tion ids of Mi.

Step 2. Specialize D = {D1, D2, º, Dn} using the chosen spe-
cialization operation to get the specialized message stream
set M’ with the specialized deadline constraint multiset

¢ = ¢ ¢ ¢D { , , , }D D Dn1 2 K . For example, if the specialization
operation used is the same as that used in Scheduler Sx,
then we find a ¢Di for each Di that satisfies

¢ = ◊ £ < ◊ = ¢+D x D x Di
j

i
j

i2 2 21 ,

for some integer j ≥ 0, where x is an integer Œ (D1/2, D1]

that results in the minimum r(M¢). (Note that ¢ ¢D Di j| , for

all i < j.)
Step 3. Check if the total message density of the specialized

stream set ¢ = ¢ = ¢ £ £M { (,)| }M C D i ni i i 1 is less than or

equal to 1, i.e., if r()¢ = ¢ £
=ÂM C Di ii

n

1
1. If not, reject M

and stop. Otherwise, proceed to the next step.
Step 4. Use the on-line allocator, SlotAllocator, to obtain

the message stream id i. If i > 0, assign the slot to Mi by

filling the slot’s VCI field with Mi’s VCI. If i = 0, mark the
slot as a regular traffic slot. Note that SlotAllocator will
generate an infinite sequence of message stream ids for M’
such that there are Ci copies of message stream Mi’s id

within any subsequence of ¢Di (£ Di) message stream ids.
Step 5. Wait for the time slot to fully elapse, and repeat Step 4

for the next slot.

EXAMPLE. Consider a set of isochronous message streams,
M = {(1, 4), (1, 7), (2, 13), (1, 23), (3, 28)}. Specializing
the deadline constraint multiset D = {4, 7, 13, 23, 28}
with respect to {3} yields D’ = {3, 6, 12, 12, 24}. Since

¢ ¢D Di j| , for all i < j, and

r ¢ = ¢ = + + + + = <
=
ÂMa f C Di i
i 1

5

1 3 1 6 2 12 1 12 3 24 21 24 1,

by Theorem 3, SlotAllocator can generate a feasible
schedule for M’. By applying SlotAllocator, we ob-
tain the slot allocation schedule shown in Fig. 5 in
which the sequence repeats every ¢ =D5 24 slots. Note
that because of the RM/DM scheduling property, a
slot is always assigned to a message stream with the

tightest deadline among all active streams (which
have unfulfilled slot requirements with respect to
their current deadlines). As one can readily see, there
are at least Ci slots assigned to Mi in any time interval

of length ¢Di (£ Di) for all i.

4.3 Implementation of the Slot Allocation Scheme
The slot allocation scheme can be implemented either as a
SlotManager daemon (Fig. 4) or as a SlotManager chip
(Fig. 6) that resides in the slot generator. (Note that the
hardware chip performs exactly the same functions as the
SlotManager daemon.) The advantage of hardware imple-
mentation is speed. It needs only O(1) time, instead of O(n),
to find the index of the highest-priority active message
stream and allocate a slot. However, the maximum number
of connections (message streams), n, that can coexist in the
dual-bus network is limited by the number of modules2 in
SlotAllocator used to find the highest-priority active
stream.

In order to set up, maintain, and disconnect connections for
message streams, SlotManager, SlotAllocator, and VCIServer
co-reside in the slot generator station of each bus. SlotMan-
ager considers each time-constrained connection between a
source-destination pair as an isochronous message stream, and
gathers/maintains all required information regarding the ac-
tive connections, especially (Ci, Di) and the source and desti-
nation stations’ ids3 for each message stream Mi.

At system initialization, SlotManager gathers the con-
nection information, invokes SlotAllocator to generate the
(virtually) infinite sequence of message stream ids with
which SlotManager allocates slots (by setting the PA bits
and filling the slots with appropriate VCIs). In order to set
up a new connection, the source station sends a call setup
request to SlotManager, specifying Mnew = (Cnew, Dnew). Upon
receiving the request, SlotManager specializes the aug-
mented deadline constraint multiset D < {Dnew} and checks if
the total message density after specialization is less than or
equal to one. If not, the request for establishing the connec-
tion is rejected. Otherwise, SlotManager notifies VCIServer
of the new connection which in turn assigns a new VCI num-
ber for the connection. SlotManager notifies SlotAllocator
and the source and destination stations of the acceptance of

2. That is, the building block zoomed out in Fig. 6.
3. The source and destination station ids are collected for the purpose of

slot reuse. We will briefly discuss slot reuse in Section 5.2.

Fig. 5. The slot allocation schedule for the set of message streams M = {(1, 4), (1, 7), (2, 13), (1, 23), (3, 28)}.

764 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997

the new connection. SlotAllocator then reestablishes the
corresponding new schedule. An existing connection can be
cleared (disconnected) either by the source or by the desti-
nation station. The call clear request is sent to SlotManager
which responds simply by notifying SlotAllocator to delete
the corresponding message stream and tag the slots origi-
nally assigned to the message stream as regular traffic slots.
The interested reader is referred to [30] for a detailed ac-
count of how to dynamically establish or terminate a real-
time message connection.

5 COMPARISON WITH RELATED WORK AND
REMARKS

5.1 Comparison with Related Work
As mentioned in Section 1, the slot allocation scheme pro-
posed by Saha et al. in [45] comes closest to ours but differs
in formulating and solving the problem. This difference has
yielded a significant consequence explained below.

They adopted the commonly-used peak-rate message
model which is, as discussed in Section 2.2, a special case of
the message model we used in this paper.

They first devised a slot allocation scheme based on cy-
clic reservation and derived the schedulability condition
under two assumptions:

1) message streams are all periodic with periods Pi = Di,
for all i, and

2) message arrivals are aligned with the beginnings of
allocation cycles, and the length L of the allocation cy-
cle evenly divides Pi for all i.

They derived the schedulability condition as “if

R
C

P L
Li

i

n
i

ii

n

= =
Â Â= £

1 1 c h ,

then the set of message streams is schedulable, where

Ri
C

P L
i

i
=
D

 is the average slot requirement of Mi per alloca-

tion cycle.” (Note that L is the length of the allocation cy-
cle and Pi/L is the number of allocation cycles in a time

period Pi.) Then, in order to handle the fact that messages
may arrive in the middle of an allocation cycle and thus
may not utilize the allocation cycle, they modified Ri as

¢ = - = -R C P L L LC P Li i i i i(()) () . In order to relax the as-

sumption that Pi = Di, they subsequently modified ¢Ri as
¢¢ = - = -R C D L L LC D Li i i i i(()) () . The schedulability con-

dition then becomes

¢¢ =
-

£
= =
Â ÂR

LC

D L
Li

i

n
i

ii

n

1 1 c h .

Now, if there exists some Dk such that Dk < L, then in most
cases the schedulability condition does not hold, which im-
plies that their scheme cannot guarantee to find a feasible slot
allocation schedule for such a message stream set. Moreover,
it is also difficult to choose an appropriate L value if GCD(D1,

D2, º, Dn) is small. Actually, the schedulability condition

could lead to an erroneous result if L is larger than Di,

for some i (in which case LC
D L

i

i()- < 0. One such example is

M = {(Ci, Di, Pi) | i = 1, 2} = {(3, 4, 5), (3, 5, 5)} and L = 6. Their

Fig. 6. The proposed slot allocation scheme block diagram.

HAN ET AL.: ON SLOT ALLOCATION FOR TIME-CONSTRAINED MESSAGES IN DUAL-BUS NETWORKS 765

schedulability condition yields 6 3
4 6

6 3
5 6 27 6◊

-
◊
-+ = - <() () ; how-

ever, the message stream set is not schedulable (see Lemma 1
in Section 3). In contrast, our scheme can definitely find a
feasible allocation schedule as long as the total message

density, C Di ii

n

=Â 1
, is less than or equal to a certain den-

sity threshold (e.g., 0.65 if the specialization operation used
is the same as that used in Scheduler Sx). Actually, our
scheme can find a feasible allocation schedule for a message
stream set as long as the total density of the message stream
set after specialization is less than or equal to one.

Another shortcoming of their slot allocation scheme is
that their scheme requires that the message arrival times
are known to the slot manager a priori, which is only true
for strictly periodic streams. Therefore, their scheme cannot
be used to guarantee message deadlines for streams that
conform to the (C, D)-smooth message model, but are not
periodic. (Note, however, that they also proposed a more
complicated implementation which can handle both peri-
odic and sporadic streams and uses the queue arbitration
function defined in the DQDB standard. The use of queue
arbitration function is out of the scope of this paper.)

5.2 Remarks
In this section, we compare the slot allocation problem with
the distance-constrained scheduling problem described in
[23], [25]. We claim that the solution schedule to the slot
allocation problem generated by SlotManager can also be
used as a schedule for the discrete-time version of the dis-
tance-constrained task system (DCTS) [23], [25]. In the DCTS
model, two consecutive executions of the same task must be
well-spaced and “close” to each other. Specifically, given a
distance-constrained task set T = {T1, T2, º, Tn}, where each
task Ti has an execution time Ci and a (temporal) distance
constraint Di, if fij denotes the finish time of the jth execu-
tion/invocation of task Ti, then the distance constraint Di
for Ti requires that fi1 £ Di and fi,j+1 - fij £ Di, for all j ≥ 1. (In
contrast, in the traditional real-time task model [38], every
task must be executed once during a certain fixed period.
The execution of a task in one period is independent of the
execution of the same task in any other period.)

Now consider a distance-constrained task set T in which
both Ci and Di are integers, for all i. From the proof of Theo-
rem 3, it is easy to see that a feasible schedule produced by
the proposed slot allocation scheme, SlotManager, is also a
feasible schedule for the task set T. For example, the slot
allocation schedule in Fig. 5 is a feasible schedule for a dis-
tance-constrained task set T = {(Ci, Di) | 1 £ i £ 5} = {(1, 4),
(1, 7), (2, 13), (1, 23), (3, 28)} (it is easy to check that fi1 £ Di
and fi,j+1 - fij £ Di, for 1 £ i £ 5 and j ≥ 1).

6 CONCLUSION

We have proposed a slot allocation scheme for allocating
bandwidth and guaranteeing the timely delivery of the
messages in isochronous (real-time) streams in a slotted
dual-bus network. The dual-bus network configuration is
general enough to accommodate several MAC protocols
suggested for this topology, e.g., DQDB [32], Fasnet [37],
CRMA [41], and Simple [36]. The (C, D)-smooth message

model used in this paper is more general, and includes the
peak-rate model and the linear-bounded model as special
cases. The proposed slot allocation scheme uses an on-line slot
allocation algorithm of polynomial-time complexity (whose
correctness is rigorously proved). The resulting scheme is
guaranteed to find a feasible slot allocation schedule for a set
of message streams as long as the total message density of the
set is less than or equal to a certain density threshold. For ex-
ample, currently, the best density threshold is 0.7 for the dou-
ble-integer reduction specialization operation.

The message density threshold actually serves as a met-
ric for evaluating the predictability and stability of an allo-
cation scheme. By predictability and stability, we mean that
given any set of isochronous message streams, as long as its
total message density is less than or equal to the derived
threshold, a feasible slot allocation schedule is guaranteed
to be found by the proposed slot allocation scheme. Moreo-
ver, a message stream can be freely added to, or deleted
from, the given message set as long as the total message
density is held below the threshold. This complements the
work done by Liu and Layland [38] in deriving the proces-
sor utilization bounds for scheduling computation tasks in
a single CPU environment.

We have also addressed the implementation issues of the
proposed slot allocation scheme. We configure all the func-
tionalities into three modules: SlotManager, SlotAllocator,
and VCIServer, all of which can be implemented as soft-
ware daemons, or on a VLSI chip. Both implementations
are simple and practical.

The performance (in terms of the number of message
streams that can be scheduled) of the proposed slot allocation
scheme can be improved by using the concept of slot reuse
[17], [31], [35], [48], [49], [50]. That is, the cell that has passed
on to its destination can be taken out of the slot in order to
release the slot for reuse by downstream stations. For example,
given that the sources and the destinations of two message
streams (connections) Mi and Mj are stations Ni

s and Nj
s , and

Ni
d and Nj

d , respectively, if N N N Ni
s

i
d

j
s

j
d< £ < , these two

connections are actually spatially nonintersecting, and, hence,
can use the same virtual connection, i.e., use all the prearbi-
trated slots assigned to the same VCI. We have studied the
problem of grouping spatially nonintersecting message
streams into stream subsets. All the message streams in a
stream subset use all the prearbitrated slots with the same
VCIs for message transmission. The interested reader is re-
ferred to [24] for a detailed account.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees
for their valuable comments on an early draft of this paper.
The work reported in this paper was supported in part by
the U.S. Office of Naval Research under Grants N00014-92-
J-1080 and N00014-94-1-0229, and by the U.S. National Sci-
ence Foundation under Grant MIP-9203895. Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

766 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 7, JULY 1997

REFERENCES

[1] G. Agrawal, B. Chen, and W. Zhao, “Local Synchronous Capacity
Allocation Schemes for Guaranteeing Message Deadlines with the
Timed-Token Protocol,” Proc. INFOCOM, pp. 186-193, Los
Alamitos, Calif., Apr. 1993.

[2] G. Agrawal, B. Chen, W. Zhao, and S. Davari, “Guaranteeing
Synchronous Message Deadlines with the Timed Token Proto-
col,” Proc. IEEE Int’l Conf. Distributed Computing Systems, pp. 468-
475, June 1992.

[3] G. Agrawal, B. Chen, W. Zhao, and S. Davari, “Guaranteeing
Synchronous Messages Deadlines with the Timed Token Medium
Access Control Protocol,” IEEE Trans. Computers, vol. 43, no. 3,
pp. 327-350, Mar. 1994.

[4] “Token Passing Bus Access Method and Physical Layer Specifica-
tions,” ANSI/IEEE Standard 802.4-1985, 1985.

[5] “Token Ring Access Method and Physical Layer Specifications,”
ANSI/IEEE Standard 802.5-1985, 1985.

[6] “Fiber Distributed Data Interface (FDDI)—Token Ring Media
Access Control (MAC),” Am. Nat’l Standard, ANSI X3.139-1987,
1987.

[7] C.M. Aras, J.F. Kurose, D.S. Reeves, and H. Schulzrinne, “Real-
Time Communication in Packet-Switched Networks,” Proc. IEEE,
vol. 82, no. 1, pp. 122-139, Jan. 1994.

[8] H.R. van As, J.W. Wong, and P. Zafiropulo, “Fairness, Priority,
and Predictability of the DQDB MAC Protocol Under Heavy
Load,” Proc. Int’l Zurich Seminar, pp. 410-417, Mar. 1990.

[9] C.C. Biskikian, “Waiting Time Analysis in a Single Buffer
DQDB (802.6) Network,” IEEE J. Selected Areas in Comm., vol. 8,
no. 8, pp. 1,565-1,573, Oct. 1990.

[10] W.E. Burr, S. Wakid, X. Qian, and D. Vaman, “A Comparison of
FDDI Asynchronous Mode and DQDB Queue Arbitrated Mode Data
Transmission for Metropolitan Area Network Application,” IEEE
Trans. Comm., vol. 42, nos. 2/3/4, pp. 1,758-1,768, Feb./Mar./Apr.
1994.

[11] C. Chan and V.C.M. Leung, “Reservation-Arbitrated Access for
Isochronous Voice Transport Over Dual-Bus Metropolitan Area
Network,” Proc. ICC ’95, Seattle, June 1995.

[12] M.Y. Chan and F. Chin, “General Schedulers for the Pinwheel
Problem Based on Double-Integer Reduction,” IEEE Trans. Com-
puters, vol. 41, no. 6, pp. 755-768, June 1992.

[13] M.Y. Chan and F. Chin, “Schedulers for Larger Classes of Pin-
wheel Instances,” Algorithmica, vol. 9, pp. 425-462, 1993.

[14] B. Chen, G. Agrawal, and W. Zhao, “Optimal Synchronous Capac-
ity Allocation for Hard Real-Time Communications with the Timed
Token Protocol,” Proc. 13th Real-Time Systems Symp., pp. 198-207,
Phoenix, Ariz., Dec. 1992.

[15] R.L. Cruz, “A Calculus for Network Delay, Part I: Network Ele-
ments in Isolation,” IEEE Trans. Information Theory, vol. 37, no. 1,
pp. 114-131, Jan. 1991.

[16] R.L. Cruz, “A Calculus for Network Delay, Part II: Network Analy-
sis,” IEEE Trans. Information Theory, vol. 37, no. 1, pp. 132-141, Jan.
1991.

[17] M.W. Garrett and S.-Q. Li, “A Study of Slot Reuse in Dual Bus
Multiple Access Networks,” Proc. INFOCOM, pp. 617-629, 1990.

[18] “Manufacturing Automation Protocol,” General Motors Corp.,
version 3.0, implementation release, May 1987.

[19] S.J. Golestani, “Congestion-Free Communication in High-Speed
Packet Networks,” IEEE Trans. Comm., vol. 39, no. 12, pp. 1,802-
1,812, Dec. 1991.

[20] S.J. Golestani, “A Framing Strategy for Congestion Management,”
IEEE J. Selected Areas in Comm., vol. 9, no. 7, pp. 1,065-1,077, Sept.
1991.

[21] E.L. Hahne, A.K. Choudhury, and N.F. Maxemchuk, “Improving
the Fairness of Distributed-Queue-Dual-Bus Networks,” Proc.
IEEE INFOCOM ’90, pp. 175-184, June 1990.

[22] E.L. Hahne and N.F. Maxemchuk, “Fair Access of Multi-Priority
Traffic to Distributed-Queu-Dual-Bus Networks,” Proc. IEEE IN-
FOCOM ’91, pp. 889-900, Apr. 1991.

[23] C.-C. Han, “Scheduling Real-Time Computations with Temporal
Distance and Separation Constraints and with Extended Dead-
lines,” PhD thesis, Technical Report UIUCDCS-R-92-1748, Dept.
of Computer Science, Univ. of Illinois at Urbana-Champaign,
1992.

[24] C.-C. Han, C.-J. Hu, and K.G. Shin, “On Slot Reuse for Isochro-
nous Services in DQDB Networks,” Proc. IEEE 16th Real-Time Sys-
tems Symp., pp. 222-231, Dec. 1995.

[25] C.-C. Han and K.-J. Lin, “Scheduling Distance-Constrained Real-
Time Tasks,” Proc. IEEE Real-Time Systems Symp., pp. 300-308,
Dec. 1992.

[26] C.-C. Han and K.G. Shin, “A Polynomial-Time Optimal Synchro-
nous Bandwidth Allocation Scheme for the Timed-Token MAC
Protocol,” Proc. IEEE INFOCOM ’95, Boston, Apr. 1995.

[27] C.-C. Han, K.G. Shin, and C.-J. Hou, “Synchronous Bandwidth
Allocation for Real-Time Communications with the Timed-Token
MAC Protocol,” submitted to J. ACM.

[28] R. Holte, L. Rosier, I. Tulchinsky, and D. Varvel, “Pinwheel
Scheduling with Two Distinct Numbers,” Theoretical Computer Sci-
ence, vol. 100, no. 1, pp. 105-135, June 1992.

[29] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel, “The
Pinwheel: A Real-Time Scheduling Problem,” Proc. IEEE 22nd
Hawaii Int’l Conf. Systems Science, pp. 693-702, Jan. 1989.

[30] C.-J. Hou and K.S. Tsoi, “Dynamic Real-Time Channel Setup and
Tear-Down in DQDB Networks,” Proc. IEEE 16th Real-Time Sys-
tems Symp, pp. 232-241, Dec. 1995.

[31] N.-F. Huang, H.-I. Liu, and G.-K. Ma, “On the Reuse of Isochro-
nous Channels in DQDB Metropolitan Area Networks,” Proc. Int’l
Conf. Comm., pp. 956-959, 1994.

[32] “IEEE Standards for Local and Metropolitan Area Networks:
Distributed Queue Dual Bus (DQDB) Subnetwork of a Metro-
politan Area Network (MAN),” IEEE 802.6, July 1991.

[33] “IEEE Standard for LANs and MANs: Supplements to DQDB
Access Method and Physical Layer Convergence Procedure
(PCLP) for DS-1 Based Systems and Isochronous Service on a
DQDB Subnetwork of a MAN,” 1994.

[34] W. Jing and M. Paterakis, “Message Delay Analysis of the DQDB
Subnetwork Based on an Approximate Node Model,” IEEE Trans.
Comm., vol. 42, nos. 2/3/4, pp. 1,120-1,130, Feb./Mar./Apr. 1994.

[35] A.E. Kamal, “Efficient Multi-Segment Message Transmission with
Slot Reuse on DQDB,” Proc. INFOCOM ’91, pp. 869-878, Apr.
1991.

[36] J. Limb, “A Simple Multiple Access Protocol for Metropolitan
Area Networks,” Proc. SIGCOMM, pp. 67-79, Philadelphia, Sept.
1990.

[37] J.O. Limb and C. Flores, “Description of Fasnet—A Unidirectional
Local Area Communications Network,” Bell Systems Technical J.,
vol. 61, pp. 1,413-1,440, Sept. 1982.

[38] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
progamming in a Hard-Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, 1973.

[39] P. Martini and G. Wershmann, “Real-Time Communication in
DQDB: A Comparison of Different Strategies,” Proc. 17th Conf. Lo-
cal Computer Networks, 1992.

[40] P. Martini, “Connection Oriented Data Service in DQDB,” Com-
puter Networks ISDN Systems, vol. 26, pp. 679-694, 1994.

[41] M.M. Nassehi, “CRMA: An Access Scheme for High-Speed LAN’s
and MAN’s,” Proc. SUPERCOMM/ICC, pp. 1,697-1,702, Atlanta,
Apr. 1990.

[42] C. Partridge, Gigabit Networking. Reading, Mass.: Addison-
Wesley, 1994.

[43] P. Potter and M. Zukerman, “Cyclic Request Control for Provi-
sion of Guaranteed Bandwidth within DQDB Framework,” Proc.
Int’l Switching Symp., 1990.

[44] N.S.V. Rao, K. Maly, and S. Dharanikota, “Average Waiting Time
Profiles of Uniform DQDB Model,” Proc. IEEE INFOCOM ’94, vol. 1,
pp. 1,326-1,333, June 1994.

[45] D. Saha, M.C. Saksena, S. Mukherjee, and S.K. Tripathi, “On
Guaranteed Delivery of Time-Critical Messages in DQDB,” Proc.
IEEE INFOCOM ’94, vol. 1, pp. 272-279, June 1994.

[46] L. Sha, S. Sathaye, and J.K. Strosnider, “Scheduling Real-Time
Communication on Dual-Link Networks,” Proc. IEEE Real-Time
Systems Symp., pp. 188-197, Dec. 1992.

[47] L. Sha, S.S. Sathaye, and J.K. Strosnider, “Analysis of Dual-Link
Networks for Real-Time Applications,” IEEE Trans. Computers,
vol. 46, no. 1, pp. 1-13, Jan. 1997.

[48] O. Sharon and A. Segall, “A Simple Scheme for Slot Reuse with-
out Latency for a Dual Bus Configuration,” IEEE/ACM Trans.
Networking, vol. 1, no. 1, pp. 96-104, Feb. 1993.

[49] O. Sharon and A. Segall, “On the Efficiency of Slot Reuse in the
Dual Bus Configuration,” IEEE/ACM Trans. Networking, vol. 2, no. 1,
pp. 89-100, Feb. 1994.

[50] O. Sharon and A. Segall, “Schemes for Slot Reuse in CRMA,”
IEEE/ACM Trans. Networking, vol. 2, no. 3, pp. 270-278, June 1994.

HAN ET AL.: ON SLOT ALLOCATION FOR TIME-CONSTRAINED MESSAGES IN DUAL-BUS NETWORKS 767

[51] J.S. Turner, “New Directions in Communications (Or Which Way
to the Information Age),” IEEE Comm. Magazine, vol. 24, no. 10,
pp. 8-15, Oct. 1986.

Ching-Chih (Jason) Han received the BS de-
gree in electrical engineering from National Tai-
wan University, Taiwan, Republic of China, in
1984, the MS degree in computer science from
Purdue University, West Lafayette, Indiana, in
1988, and the PhD degree in computer science
from the University of Illinois at Urbana-
Champaign in 1992.

From August 1992 to January 1994, he was
an associate professor in the Department of
Applied Mathematics at National Sun Yat-sen

University, Kaohsiung, Taiwan. From February 1994 to July 1996, he
was a visiting associate research scientist in the Real-Time Computing
Laboratory at the University of Michigan, Ann Arbor. Since August
1996, he has been with the Department of Electrical Engineering at
The Ohio State University, where he is currently an assistant professor.
His current research interests include computer/communication net-
works, high-speed networking, real-time computing/scheduling, wire-
less communications, multimedia applications, and parallel and distrib-
uted systems.

Chao–Ju Hou received the BSE degree in elec-
trical engineering in 1987 from National Taiwan
University, the MSE degree in electrical engi-
neering and computer science (EECS), the MSE
degree in industrial and operations engineering,
and the PhD degree in EECS, all from The Uni-
versity of Michigan, Ann Arbor, in 1989, 1991,
and 1993, respectively. From August 1993 to
July 1996, she was an assistant professor in the
Department of Electrical and Computer Engi-
neering at the University of Wisconsin-Madison.

Since August 1996, she has been with the Department of Electrical
Engineering at The Ohio State University-Columbus, where she is
currently an assistant professor.

She is a recipient of the U.S. National Science Foundation CAREER
award, Wisconsin/Hilldale Undergraduate/Faculty Research Fellowships,
and Women in Science Initiative Awards in Wisconsin. Her research
interests are in the areas of distributed and fault-tolerant computing, de-
sign and implementation of middleware services that provide QoS control
and monitoring in high-speed networks, and performance model-
ing/evaluation. She has served on the program committees of several
IEEE conferences, and is a member of the IEEE, IEEE Computer Soci-
ety, ACM Sigmetrics, and Society of Woman Engineers.

Kang G. Shin received the BS degree in elec-
tronics engineering from Seoul National Univer-
sity, Seoul, Korea, in 1970, and both the MS and
PhD degrees in electrical engineering from
Cornell University, Ithaca, New York, in 1976
and 1978, respectively. He is a professor and
director of the Real-Time Computing Laboratory,
Department of Electrical Engineering and Com-
puter Science, the University of Michigan, Ann
Arbor, Michigan.

He has authored/coauthored more than 360
technical papers (about 150 of these in archival journals) and numer-
ous book chapters in the areas of distributed real-time computing and
control, fault-tolerant computing, computer architecture, robotics and
automation, and intelligent manufacturing. He has written (jointly with
C. M. Krishna) a textbook, Real-Time Systems, published by McGraw-
Hill in 1996. In 1987, he received the Outstanding IEEE Transactions
on Automatic Control Paper Award for a paper on robot trajectory
planning. In 1989, he also received the Research Excellence Award
from the University of Michigan. In 1985, he founded the Real-Time
Computing Laboratory, where he and his colleagues are investigating
various issues related to real-time and fault-tolerant computing.

He has also been applying the basic research results of real-time
computing to multimedia systems, intelligent transportation systems,
and manufacturing applications ranging from the control of robots and
machine tools to the development of open architectures for manufac-
turing equipment and processes. (The latter is being pursued as a key
thrust area of the newly established U.S. National Science Foundation
Engineering Research Center on Reconfigurable Machining Systems.)

From 1978 to 1982, he was on the faculty of Rensselaer Polytech-
nic Institute, Troy, New York. He has held visiting positions at the U.S.
Air Force Flight Dynamics Laboratory, AT&T Bell Laboratories, Com-
puter Science Division within the Department of Electrical Engineering
and Computer Science at the University of California at Berkeley, and
International Computer Science Institute, Berkeley, California, IBM T.J.
Watson Research Center, and the Software Engineering Institute at
Carnegie Mellon University. He also chaired the Computer Science
and Engineering Division, EECS Department, the University of Michi-
gan, for three years beginning in January 1991.

He is an IEEE fellow, was the program chairman of the 1986 IEEE
Real-Time Systems Symposium (RTSS), the general chairman of the
1987 RTSS, the guest editor of the 1987 August special issue of IEEE
Transactions on Computers on Real-Time Systems, a program cochair
for the 1992 International Conference on Parallel Processing, and
served on numerous technical program committees. He also chaired
the IEEE Technical Committee on Real-Time Systems during 1991-
1993, was a distinguished visitor of the Computer Society of the IEEE,
an editor of IEEE Trans. on Parallel and Distributed Computing, and an
area editor of the International Journal of Time-Critical Computing
Systems.

