
Fast Restoration of Real-Time Communication Service from Component Failures
in Multi-hop Networks

Seungjae Han and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122, U.S.A.

(sjhan, kgshin}Qeecs.umich.edu

Abstract

For many applications it is important to provide communi-
cation services with guaranteed timeliness and fault-tolerance
at an acceptable level of overhead. In this paper, we present
a scheme for restoring real-time channels, each with guaran-
teed timeliness, from component failures in multi-hop net-
works. To ensure fast/guaranteed recovery, backup channels
are set up a priori in addition to each primary channel.
That is, a dependable real-time connection consists of a pri-
mary channel and one or more backup channels, If a pri-
mary channel fails, one of its backup channels is activated
to become a new primary channel. We describe a protocol
which provides an integrated solution to the failure-recovery
problem (i.e., channel switching, resource reallocation, . . .).
We also present a resource sharing method that significantly
reduces the overhead of backup channels. The simulation re-
sults show that good coverage (in recovering from failures)
can be achieved with about 30% degradation in network uti-
lization under a reasonable failure condition. Moreover, the
fault-tolerance level of each dependable connection can be
controlled, independently of other connections, to reflect its
criticality.

1 Introduction

Real-time communication services have become essential for
many applications like digital continuous media (audio and
motion video) and distributed real-time control. Unlike tra-
ditional datagram services in which average performance is
of prime interest, guaranteeing such “quality of servicd(QoS)
as message delay and error rate is the key requirement of
real-time communication services. In recent years, consid-
erable efforts have been made to provide the timeliness QoS
guarantee, while the importance of guaranteeing fault-tolerance
QoS has been far less recognized. The survey paper by
Rras et al, [ARA94] discusses many of existing real-time
communication schemes. However, there are growing needs
for communication services with a guaranteed level of fault-
tolerance in many real-time applications. Suppose, for ex-
ample, there is a very important video conference and net-
Permtsslon to moke digital/hard copy 01 par1 or all rms worK Tar
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCOMM ‘97 Cannes, France
0 1997 ACM 0-89791.905-X/9710009...$3.50

work failures disconnect one or more participants from the
conference for an unpredictably long period. This may lead
to a failure or delay in reaching important strategic deci-
sions, which can cause a significant economic loss. Catas-
trophic social consequences have actually been witnessed in
recent breakdovms of the US telecommunication network.

Interestingly, most real-time communication schemes for
multi-hop networks share three common properties: &OS-
contracted, connection-oriented, and reservation-based. Es-
sentially, a contract between a client and the network is
established before actual message transfer. To this end,
the client must first specify his input tragic behavior and
required &OS. Then, the network computes the resource
needs (e.g., link & CPU bandwidths, and buffer space) from
this information, selects a path, and reserves necessary re-
sources along the path. (If there are not enough resources to
meet the QoS requirement, the client’s request is rejected.)
The client’s messages are transported only via the selected
path with resources reserved, and this virtual circuit is often
called a real-time channel.

While this reservation-based approach has been success-
ful in providing ‘hard’ guarantees on timeliness &OS, it causes
a serious difiiculty in achieving fault-tolerance. Traditional
failure-handling techniques for datagram services are inad-
equate, because a real-time message can traverse only the
path on which resources are reserved a priori for it and
hence cannot be detoured around failed components on the
fly. Instead, a new channel which does not use the failed
components should be established before resuming the data
transfer. However, establishing a new channel is usually a
time-consuming process, which can result in a long service
disruption. Moreover, such an approach cannot make any
guarantee on successful failure recovery, because there may
not exist a proper detouring path. Figure 1 illustrates such
a situation.

Figure 1 (a) shows a network which contains three real-
time channels. Assume that two network nodes are con-
nected by two simplex links, each of which can accommodate
up to two channels. When node N2 fails, channels 1 and 2
need to be detoured around N2. Both channels may need to
use shortest possible paths in order to maximize the chance
of meeting their timeliness QoS requirements. As a result,
the resource needs on the link from N5 to N6 exceed its ca-
pacity, and the link can accommodate only one of them, say
channel 1, as shown in Figure 1 (b). Now, channel 2 has to
be rerouted over a longer path. If channel 2’s QoS require-
ment is too tight to fit the longer path, channel 2 cannot
be recovered from N2’s failure. An option is moving than-

77

(a) Initial network
Fekml

(b) After failure recovery (b) After failure recovery

Pigure 1: Failure recovery by blind rerouting Figure 2: Failure recovery by the proposed scheme

nel 3 to a different path in order to accommodate channel
2 at the link from N5 to N6. However, this is not, a good
idea, since moving the existing channels can cause domino
effects without guaranteeing successful rerouting of the af-
fected channels. A better solution is not to set up channel
3 over the link from N5 to N6 in the initial network.

In this paper, me propose an efficient scheme to quickly
restore real-time channels from network component failures.
To assure successful rerouting and avoid the time-consuming
channel re-establishment process, backup channels are set
up a priori in addition to each primary channel. That is,
a dependable real-time connection (or a D-connection for
short.) consists of a primary channel and one or more backup
channels.

A backup channel remains a cold-standby until it is ac-
tivated. In other words, it does not carry any data in a nor-
mal situation, so that the resources reserved for the backup
channel may be used by other traffic.’ However, backup
channels degrade the network’s capability of accommodating
real-time channels. If the application requires high-volume
message streams (e.g., motion video), the degradation will
become serious, To cope with this problem, we have de-
veloped a resource-sharing method, called backup multiplex-
ing, in which resources are shared among backup channels
in such a way that fault-tolerance is not compromised.

Figure 2 illustrates how the same failure in Figure 1 is
handled in our scheme. Note the difference between the ini-
tial channel setups. In Figure 2 (a), primary-3 is routed over
N9 instead of N6, because of the resource shortage on the
link from N5 to N6. On that link, backup.3 is multiplexed
with backup-l and backup-2. In thii example, we assumed
that channels are established in the ascending order of their
indices, using a shortest-path routing method.

The rest, of the paper is organized as follows. Section 2

‘Not only non-real-time traffic but also other real-time traffic can
utilize the resources reserved for backup channels, if the underlying
real-time channel scheme has the capability of dynamic QoS control
like the layered transmission method [MCC96].

(a) Initial network

presents our design goals. Sections 3 and 4 describe, respec-
tively, the connection-establishment and failure-handling pro.
cedures of the proposed scheme. Section 5 analyzes the
service-disruption time caused by failures. Section 6 ad-
dresses the scalability issue. Section 7 presents the simu-
lation results, demonstrating the efficiency of the proposed
scheme. Section 8 discusses related work giving a compara-
tive perspective, and the paper concludes wivith Section 9.

2 Design Goals

A real-time channel is a m&directional one-to.one virtual
circuit with the capability of timeliness-guaranteed, in-order,
but unreliable message delivery. A real-time channel ser-
vice is usually implemented wipith two protocols: Real-time
Network Manager Protocol (RNMP) and Real-time Mes-
sage Transmission Protocol (RMTP). The main function of
RNMP is channel establishment and teardown, while that
of RMTP is runtime control such as traffic shaping and mes-
sage scheduling.

When a client requests a real-time channel to be estab-
lished, he has to specify his traffic-parameters (e.g., maxi-
mum message rate) and QoS requirements (e.g., message de-
lay bound). Using this information, RNMP performs an ‘ad-
mission test,’ which checks the availability of the resources
necessary to meet the channel’s QoS requirement. RNMP
reserves resources if the admission test is positive. In RMTP,
a traffic regulator is used to smooth (oftentimes bursty)
packet arrivals, and one or multiple output queues are ser-
viced for message scheduling and transmission. RMTP is
closely related to RNMP, because the admission control of
RNMP assumes a certain message-scheduling policy for RMTP.

The main intent of this paper is to develop a protocol
which augments the existing real-time channel service wivith
the fault-tolerance capability in multi-hop networks. To pro-
vide a fault-tolerant service, we must first, define the under-
lying failure model. We assume that (infrequent) transient
packet losses are acceptable to the target applications, or are

78

dealt with by other techniques like forward error correction.
Our scheme restores the real-time channel service which is
disabled by
jailurea.

“persistent” or Xpermanent” failures, e.g., crash

The proposed protocol, named Backup Channel Protocol
(BCP), establishes %connections, reports detected failures
to the nodes which are responsible for recovery operations,
activates backup channels, resumes the disrupted real-time
channel service, and reconfigures resources to cope with fu-
ture failures (BCP does not deal with failure detection).
There arc five goals that drive the design of BCP:

Per-connection fault-tolerance control: Each V-
connection is allowed to have a different fault-tolerance
capability depending on its criticality. Unless the num-
ber and type of failures occurred exceed the fault-
tolerance capability of the connection, a successful re-
covery is guaranteed.

Fast (time-bounded) failure recovery: The service.
disruption time of a ‘i%connection caused by failures
is very short, and is bounded if certain conditions are
met.

Robust failure handling: Failures are always han-
dled properly regardless of the number of their occur-
rences, and the QoS of nonfaulty real-time channels is
not affected at all.

Small fault-tolerance overhead: The amount of
the additional resources required for fast/guaranteed
recovery is acceptably small.

Interoperability/scalability: The BCP can be placed
on top of any real-time channel protocol, so it can
be used in wide-area networks equipped with various
(heterogeneous) protocols. Also, the BCP scales well,
since it doesn’t require each node to maintain global
knowledge of network status.

3 Establishment of a ‘D-Connection

Instead of providing the same uniform level of fault-tolerance
to all connections, we allow each client to specify his fault-
tolerance QoS requirement. BCP then establishes necessary
backups to meet the QoS requirement. Described below are
the client interface and the channel-establishment procedure
of BCP.

3.1 Fault-Tolerance QoS Parameter, P,

Pp represents the reliability of a D-connection. Generally,
the reliability of a system, denoted by R(t), is defined as
the probability that the system provides the required service
from time 0 to t. In our case, the required service (i.e., fault-
tolerant real-time channel service) will be provided unless all
channels of a %connection fail (near) simultaneously.

Let’s consider how to derive R(t) of a ZXconnection. As.
suming a Poisson failure process with rate X, we derive R(t)
of each network component to be ewAt. For the convenience
of presentation, we further assume that the failure rates of
all network components are same and all failures are statisti-
cally independent. Then, R(t) of a channel can be expressed
as e’uxt, where the channel path consists of n components.

aIf a system hake and remains halted! it is said to have crashed.
It cnn or cannot be recovered by restartmg (rebooting) the system.
A link can crash by losing all messages transmitted over it.

(a) %el A

(b) Model B

Figure 3: Markov models to derive R(t)

In other words, the failure rate of the channel is n;\. Finally,
R(t) of a D-connection can be modeled with a Markov pro-
cess using the failure rates of its channels. For example,
Figure 3 (a) shows a continuous-time Markov model to de-
rive R(t) of a ZXconnection with a single backup channel,
where ,u is the channel repair (or re-establishment) rate, 441
and X2 are failure rates of the primary and backup channels,
respectively, and Xs is the failure rate of the shared part of
both channels. State 0 is the initial state and state 3 is the
absorbing state. Figure 3 (b) is a simplified model when
the primary and backup channels are of the same length,
Using the technique in [TR.I82], one can calculate R(t) of a
ZXconnection from these Markov models.3

However, representing the QoS parameter as a function
of time is unsuitable for the client interface model. Further-
more, the channel repair rate (p) is much larger than the
channel failure rate - the channel re-establishment time is
in the order of seconds or minutes, whereas MTBF is in
the order of 1000 hours. Thus, the system returns to the
initial state quickly unless the second failure occurs near-
simultaneously. Based on these observations, instead of us.
ing Markov models, we use a combinatorial model in which
each network component is assigned a probability, A, of fail-
ure during one time unit and the system (i.e., a 2)-connection)
is reset to the initial state at the start of each time unit. So,
P, is equal to the probability that at least one channel of
the Z)-connection remains healthy during one time unit. For
example, the P, of a Z)-connection with a single backup is
P(primary not fail) + P(primary fails n backup not fail).

3.2 Backup Multiplexing

The P, of a D-connection is determined mainly by the num-
ber and the routing of its backup channels. A connec-
tion with more backups will have a higher probability of
at least one of its backups surviving network failures. The
links/nodes used by a primary channel may preferably be
avoided in routing its backups, because overlapping routes
among the channels of the same D-connection will degrade
its fault-tolerance &OS.

As far as actual resource consumption is concerned, a
backup channel costs nothing, since it does not actually
transport any information until it is activated. However,

3R(t) = 1 - P(the system is in the absorbing state at time t).

79

a backup channel is not free, as it requires the same amount

of resources as its primary channel to be reserved, for im-
mediate activation upon failure of the primary. As a result,
equipping each ‘D-connection Gth a single backup routed
disjointly with its primary reduces the network capacity by
60% or more. We call the resources reserved for backups
'spare resources,’ The large amount of spare resources can
seriously degrade the attractiveness of the backupchannel
scheme.

To alleviate this problem, lve have developed a resource
sharing technique, called backup multiplexing. Its basic idea
is that, at each link, \ve reserve only a very small fraction
of spare resources4 needed for all backups going through
the link. That is, resources for backup channels are ‘over-
booked. One of the key problems in backup multiplexing
is to decide which backups Gil share the same resources. A
natural solution to this problem is to choose those backups
which are less likely to be activated simultaneously. The
probability of simultaneous activation of two backups be-
longing to two different %connections is bounded by the
probability of simultaneous failure of their respective pri-
mary channels, This probability depends on the routing
of the primary channels, and increases with the number of
components shared between the primary channels.

For each link, we calculate the probability - denoted
by S(Bit Bj) - of simultaneous activation of two backups,
.0i and Bj, whose primary channels are Mi and Mj, respec-
tively, Assuming that failures occur independently with the
same probability X, we get:

S(BifBj) = 1 - P(no failure in shared components)

eP(no simultaneous failures in the rest)

= 1 -(l,X)4MitMj) . {I_ (1 - (I_ ~)4"i)-s4J49Mj))

,(I_ (I_ ~)4"i)-B4MirMi))}

= l- {(I_ x)ti"i) + (1 _ x)4"i)

-(l-X)C("j)~~Mi)-dC(Mi~Mj))

vrherc c(Mi) and c(Mj) are the component counts in Mi and
M,, respectively, and sc(Mi, Mj) is the number of compo-
nents shared between them. Here, components include both
nodes and links. One can use different failure rates for nodes
and links by slightly modifying the equation.

Based on this probability, the set of backups to be mul-
tiplcxed together is determined for each backup on each
link, i.e., multiplexing is done hop-by-hop. B; and Bj are
multiplexed if S(Bi, Bj) is smaller than a certain thresh-
old v, called the multiplexing degree, which is specific to
each backup. The smaller v of a backup, the higher faule
tolerance will result. For instance, if v for a backup Bi is
set to X, fast recovery of the corresponding ZXconnection
from any single node/link failure is guaranteed, because B;
will not be multiplexed with any other backup whose pri-
mary overlaps with Mi. This way, per-connection control
of fault-tolerance is possible, thus allowing more important
connections to have higher fault-tolerance (e.g., tolerating
harsher failures). In this paper, each backup is required to
have the same multiplexing degree on all of its links for ease
in managing ‘p,.

Let Hal,t = {B,, BP,. ..} denote the set of backups
which are not multiplexed with Bi on link fJ. One way to
determine the spare resources at link f2 is to find the highest
resource requirement among all sets of {IIn,,t + Bi}, where

‘In this pnper, we consider only link bandwidth for simplicity, but
other resources like buffer and CPU can be treated similarly.

all backups are considered equally regardless of their multi-
plexing degrees. This method may overestimate the amount
of required spare resources at a link, when there are multi-
ple backups with different multiplexing degrees running over
the link. Suppose there are one backup lvith a very smsll v
and many backups with Iarge v on a link. Then, IIt of the
backup with a very small v will determine the amount of
spare resources at the link, which may be much larger than
actually needed. To get around this problem, we consider
only backups with no greater multiplexing degrees than that
of Bi when I&L constructed.

3.3 Calculation of ‘P, with Backup Multiplexing

When a backup channel is activated, it dra\vs necessary re-
sources from the spare resources. Since multiplexing is based
on probabilistic relations, there is a possibility, albeit rare,
that the backups which are multiplexed together need to
be activated simultaneously. Such unlikely activations can
cause the exhaustion of spare resources, so that the remain-
ing backups cannot be activated; “multiplexing failures" are
said to occur to those backups.

When we calculate the P+ of a ‘D-connection lvith backup
multiplexing, we have to consider the possibility of multi-
plexing failures. The ‘P, of a D-connection with a single
backup Bi routed disjointly with the primary channel Mi is

Pr = P(Mi IlOt fail) +

P(Mi fails) .P(Bi IlOt fail). (1 - P*,*f(Bi)},

where PmUrf(Bi) represents the probability that Bi is not
available due to a multiplexing failure. P, with more back-
ups can be derived in a similar way.

For simplicity, we derive an upper-bound of P,,,r(B;).
If any backup is multiplexed with Bi, the v value of Bi is
always greater than the probability of simultaneously acti-
vating Bi and the backup. In other words, the probability of
avoiding a multiplexing failure is at least 1 - v. Therefore,
the probability that Bi will suffer from a multiplexing failure
on link f? is not greater than 1- (1 - ~)l*~**~l, where jqB,,!l

is the number of backups multiplexed with Bi on link e (i.e.,
qB;,f = {all backups on e} - DB;J - Bi). Considering all
the links Bi runs through, we get

P mutf (Bi) < C 1 - (1 - Y)‘lyBaBc’.

all e of B;

3.4 Backup Channel Establishment

As in the case of primary channels, route selection and re-
source reservation are crucial steps of backup channel estab-
lishment. Here we use the shortest-path routing to select
backup paths. Algorithms to find multiple disjoint shortest
paths between two nodes are given in lWHA90, SIDSl].

As to spare resource reservation, there can be various
QoS-negotiation schemes between clients and BCP to deter-
mine the number of backups and the associated multiplex-
ing degrees. We describe two possible schemes. In the first
scheme, the client-specified 7, requirement is met Yoosely,n
as opposed to ‘literally.” At first, BCP selects the number
of backup channels and their multiplexiug degrees by consid-
ering the P, requirement and/or the network status. Then,
the backups are established and the resultant ‘P, of the con-
nection calculated. If backup establishment is successfully
completed, the resultant ‘P? is notified to the client. The
client may or may not be satisfied with the offered fault-
tolerance level, and may accept or reject the offer. If the

80

backups cannot be established due to insufficient resources
available, the client’s request will be rejected. (The rejected
client may opt to retry with a lower P, requirement.)

In the second scheme, the client’s P, requirement is met
as requested. In contrast to the first scheme, BCP estab
lishes backup channels incrementally until the required P,

is achieved. Assume that the channel establishment is initi-
ated by the source node.5 A backup channel is established
by using a pair of channel-establishment messages: (i) the
‘resource reservation message’ from source to destination
and (ii) the ‘resource relaxation message’ from destination
to source. In the forward pass (reservation message) to the
destination, BCP reserves spare resources for the backup
without multiplexing, while calculating the lqni,ll of each
link f? on the channel route with various v values. The reser-
vation message collects the I!J!B~,LI calculation results and
passes them to the destination node. Then, the destination
node selects the largest v which satisfies the required P,

based on the collected information. Essentially, the prob-
lem of meeting the Pr requirement is transformed to that of
deciding the multiplexing degree. Fortunately, we need to
try only a couple of different v values, because the values of
S(Bi, B,) are distributed around integer multiples of X when
X is small, i.e., S(Bi, Bj) ~~(M~).X~-C(M~).X-{C(M~)+
c(Mj)-sc(Mi,Mj)}*X = sc(M<, Mj) * X. Thus, the backup
channels on a link can be classified into a certain number
of classes according to their multiplexing degrees which are
discrete numbers, The number of classes are not greater
than the length of the longest possible path in the network.
In the backward pass (relaxation message) from destination
to source, the spare resources on the channel path are multi-
plexed according to the selected v. If the required P, cannot
be met with a single backup, additional backups are estab
lished, The multiplexing degree of the backups set up previ-
ously can be adjusted (further relaxed), if necessary. If the
required Pr is too high to satisfy, P, should be renegotiated.

For both schemes, the BCP daemon at each node has
to maintain the information about each backup running
through the node, including the path of its primary, the
multiplexing threshold, the non-multiplexable channel set,
and other information like the current channel state (which
will be diicusscd in Section 4). We will discuss the com-
plexity and scalability of the backupchannel establishment
procedure in Section 6.

4 Failure Recovery Procedure

The first step in handling a failure is its detection. Depend-
ing on the semantic of a failure, all channels on the failed
component may fail or only part of them may fail. QoS re-
quirements can also make an impact on the manifestation
of a failure, For instance, real-time channels for certain ap
plications may not be able to tolerate an error rate which is
acceptable to other channels set up for different applications.
WC have developed techniques for detecting channel failures,
evaluated their efficiency experimentally, and reported the
results in [HAN97a].

In this paper, we assume the existence of a proper failure-
detection mechanism in which failed components are de-
tected by their neighbor nodes, and focus on the procedure
after failure detection.

‘This is not B restriction. The destination can initiate the channel
estobliohment.

Figure 4: Channel state transition

4.1 Overview

If the node which detects a failure is different from the node
which is responsible for channel switching, the failure should
be reported to the latter node. There are three important
issues in failure reporting. First, who will need to receive
failure reports ? Second, which path will be used for failure
reporting? Third, what information needs to be carried in
failure reports? Our approach to these issues is as follows:
(i) failure reports are sent from the failure-detecting nodes
only to the end-nodes of failed channels, (ii) failure reports
are delivered through healthy segments of the failed chan-
nels’ paths, (ii) each failure report contains the ‘channel-id’
of the failure channel.

Our approach handles multipIe (near-) simultaneous fail-
ures very naturally and easily. A failure report will be dis-
carded by a node when the same report had already been
received/passed through. Thus, if multiple failures occur to
a channel, only one failure report will reach its end-nodes,
and all the other reports will be lost due to the failures
themselves or discarded by intermediate nodes.

When an end-node of a 2)-connection receives a failure
report on its primary channel, it selects one of its backups
and sends an ‘activation message’ along the path of the se-
lected backup. To identify the health of backups, failures
of backup channels are reported to their end-nodes in the
same way as primary channel failures. During its journey,
the activation message can come across a node which had al-
ready received a failure report of the backup being activated.
In such a case, the activation message is simply discarded,
because this new failure will be reported and another acti-
vation message will follow.

After activating a backup channel to become a new pri-
mary channel, BCP needs to reconfigure the resource reser-
vation at the intermediate nodes of the new primary chan-
nel, because some resources shared with other backups are
now dedicated to the new primary channel. If the spare re-
sources at a link are exhausted by the activation, the remain-
ing backup channels on the link cannot function as standby
channels, i.e., multiplexing failures. Multiplexing failures
are reported in the same way as component failures.

The key principle of our failure-recovery process is local-
ization, so that the traffic on non-faulty parts of the network
remains unaffected by failure recovery.

81

4.2 Failure Reporting & Backup Activation

The failure-recovery process outlined in the previous sub-
section is elaborated on with a state transition diagram in
Figure 4. At each node, a channel can be in one of four
states: non-existent state (N), healthy primary channel state
(I’), healthy backup channel state (B), and unhealthy chan-
nel state (U). The initial state is N. Upon reception of a
‘channel-establishment message,’ the state machine enters
state P or B, When a node receives a failure report (or de-
tects a failure) in state P or B, the state machine enters U
and the failure report is forwarded to the appropriate node.
Additional failure reports received in state U are ignored.
When an activation message is received in state B, the state
machine enters P. The activation messages received in state
U are ignored. The state transition for resource reconfigu-
ration (c.g,, from U to N, or from U to B) will be detailed
later,

Now, we describe and compare schemes for failure re-
porting and backup activation. Figure 5 illustrates three
schemes. The main distinction among these schemes is where
the failure reports and activation messages are generated
and destined for. In Scheme 1 (Figure 5 (a)), the down-
stream node of the failed component generates a failure
report and sends it to the destination node of the failed
channel. Then, the destination node initiates an activa-
tion message, which travels in the opposite direction of the
backup channel to be activated. By contrast, in Scheme
2 (Figure 5 (b)), the upstream node generates the failure
report, the channel source node receives the failure report,
and the activation message is sent to the channel destina-
tion node, Scheme 3 (Figure 5 (c)) is a hybrid of the first
two schemes, Both end-nodes of a failed channel receive fail-
ure reports, and backup-channel activation is done in both
ways, If an activation message reaches a node on which the
backup channel has already been activated by the activation
message from the other end-node, the activation message is
discarded by the node.

Scheme 2 and Scheme 3 have an advantage over Scheme
1 in terms of recovery delay, because data transfer through
the new primary channel can be resumed immediately after
sending the activation message,’ while in Scheme 1 the data
transfer has to wait until the activation message is received
by the source node. If a failure occurs near the destination
node, this advantage will be minimal.

Scheme 3 has an edge over Scheme 2 in two aspects.
First, all nodes of a failed channel are informed of the fail-
ure, which is useful for resource reconfiguration. Second,
the channel destination node can prepare early for channel
switching, and the activation delay will be reduced by the
bi-directional activation. If a %connection is equipped with
multiple backups, it is necessary that both end-nodes acti-
vate the same backup.’ One way to accomplish this is to
allocate serial numbers to the backups of each ‘D-connection,
and select a backup according to the serial number. In the
remainder of this paper, we assume the use of Scheme 3.

4.3 Priority-based Activation

Connection priorities can be considered in the activation of
backup channels. The idea is to activate the backups belong-

‘Albeit unlikely, if a data message arrives at intermediate nodes
of the new primary channel before the channel is activated, the data
mesaage will be discarded with no harm.

‘If the destination node activates a different backup, the backup
need to be deactivated, since data messages have already been trans-
mitted over the backup activated by the source node.

(a) Scheme 1

(b) Scheme 2

(c) Scheme 3

Figure 5: Channel-switching schemes

ing to higher priority ‘D-connections ahead of those of lower
priority D-connections, if there are not enough resources to
grant all activation requests.

This priority-based activation can be achieved by delay-
ing the activation of backups. In this method, an activa-
tion message is sent after a certain delay determined by
the multiplexing degree of the backup channel to be acti-
vated. (Recall that the importance of a backup channel is
represented by the multiplexing degree.) Thus, the activa-
tion of backups with a large multiplexing degree (i.e., lower-
priority backups) is delayed so that the backups with small
multiplexing degrees (i.e., higher-priority backups) may be
activated first. The main shortcoming of this method is
that the ‘activation wait delay’ is always imposed on lower-
priority connections. To completely avoid priority inversion,
this wait delay should be longer than the transmission delay
of the activation message over the longest channel path in
the network. In a largescale network, the recovery delay
incurred to lower-priority channels could be unacceptably
long.

Another way is to allow a higher-priority backup to pre-
empt lower-priority backups, if the lower-priority backups
have already been activated and there are not enough spare
resources for activating all of them. Preempted channels are
handled as if they mere disabled by component failures. So,
the overhead associated with a preemption is the same as
that for a failure recovery. Note that the recovery delays
of lower-priority connections would be extended only if pre-
emptions occur. An important issue of this method is the
time granularity with which lower-priority connections can
be preempted. If the preemptable interval is longer than the
time needed for ‘backup activation,’ higher-priority backups
will preempt active channels (i.e., primary channels of lower-
priority connections). To avoid oscillation, the preemptable
interval should be short, so that lower-priority connections

82

may be preempted only by the higher-priority connections
which fail (near-) simultaneously with them.

4.4 Resource Reconfiguration

After the disrupted service is resumed, the faulty channels
will be torn down and, if necessary, new backup channels
will be established. To tear down a channel, a ‘channel-
closure message’ is usually sent over the channel’s path, so
that resources for the channel may be released. However,
if failures disconnect a channel’s path or disable the chan-
nel end-nodes, the resource-release process becomes compli-
cated, To facilitate the reclaiming of the resources of failed
channels, we borrow the concept of “soft-state connections,,
in RSVP [ZHA93]. When an intermediate node of a channel
receives a failure report (or detects a failure), it sets a rejoin
timer whose expiration automatically triggers the channel
teardown at the node.s Recall that in our failure report-
ing scheme (Scheme 3)) all intermediate nodes either detect
failures or receive failure reports, regardless of the number
and location of failures. The purpose of the rejoin timer is
to give the unhealthy channels (i.e., in U state) a chance to
repair themselves. Channel repair can eliminate the need of
establishing new channels, in case the unhealthy channels
become usable again soon.

When the channel’s source receives a failure report, it
sends its destination a ‘rejoin-request message’ via the path
of the failed channel, and each healthy intermediate node
forwards this message. If the failed component becomes
healthy again before the rejoin timer expires, it will also
forward the rejoin-request message. Otherwise, the rejoin-
request message will not propagate beyond the failed com-
ponent, If a (backup) channel enters U state because of a
multiplexing failure, more spare resources have to be allo-
cated to restore the channel. If it is impossible to allocate
additional spare resources because of resource shortage, the
rejoin-request message will be dropped.

If the channel destination node receives the rejoin-request
message, the channel can be considered healthy (repaired).
The destination node then sends a ‘rejoin message, back to
the source node over the same path, and the channel state
is changed from U to B, meaning that a repaired channel
becomes a backup channeh If the rejoin timer had already
expired when the rejoin message arrives at a node (i.e., in
N state), the channel should be torn down as the resources
for the channel had already been released. To undo the
rejoin operations which have already done for the channel,
a channel-closure message is generated by that node and is
sent toward the channel destination. Figure 6 illustrates this
case. The initial value of the rejoin timer should be chosen
carefully, While it should be small for a quick teardown of
unhealthy channels, it should also be large enough to allow
their repair, including (i) the failure reporting delay, (ii) the
round-trip time of the rejoin-request message and the rejoin
message, (iii) the time for additional resource allocation.

If all channels of a ‘D-connection fail simultaneously, a
new primary channel has to be established from scratch.
When there is no route which can meet the QoS require-
ment of the D-connection, its client will be informed of the
unrecoverable failure. Similarly, if any channel end-node
fails or the network is partitioned, all attempts of channel
re-establishment will be unsuccessful and the client will be
informed of the unrecoverable failure. In any of these cases,

‘This operation is executed by BCP independently of the under-
lying RNMP.

Source
re;oil msg

I Destination

timeout
channeCdosufe Insg

Figure 6: Repair/closure of an unhealthy channel

all the resources reserved for the connection will be released,
when the rejoin timer expires.

So far, we have discussed the tear-down and repair of
failed channels. Another issue which must be addressed is
how to reconfigure spare resources after backups are acti-
vated. Because spare resources are shared among multiple
backups, the activation of some backups can degrade the
fault-tolerance capability of the remaining backups. The
required spare resources should be recalculated, and addi-
tional resources should be reserved, if necessary, to preserve
the fault-tolerance capabiity of the remaining backups. If
the required spare resources are not available, some of the
remaining backups have to be closed (and/or moved to dif-
ferent paths). Then, one has to determine which backups to
close or move. The solution to this problem should account
for the fault-tolerance QoS requirement of each connection,
since a connection is vulnerable to failures during the re-
establishment of its backups.

5 Bounded-Time Failure Recovery

Most of the resource reconfiguration operations, especially
channel re-establishment, are time-consuming. However,
unlike failure detection, failure reporting, or channel switch-
ing, resource reconfiguration is not a time-critical action, be-
cause its delay does not directly affect the service-disruption
time except for the case of loss of all channels of a %
connection.g If there is at least one backup surviving fail-
ures, we can avoid the channel re-establishment and achieve
fast recovery.

The transmission delay of control messages, such aa fail-
ure reports, is a major component of the recovery delay. The
delay of such control messages is unpredictable, if they were
transported as best-effort messages. Assigning the highest
priority to control messages is not a good solution either, as
it may atfect the &OS of regular real-time communication
services. Suppose there are malicious nodes or a large num-
ber of coincident failures. In such cases, the flood of control
messages can paralyze the whole (or part of) network. To
achieve fast and robust transmission of control messages, we
use a special-purpose real-time channel, called the real-time
control channel (RCC).

5.1 The RCC Network

An RCC is a single-hop real-time channel which connects
two BCP daemons for the transmission of time-critical con-
trol messages. When the network is initialized BCP estab-
lishes a pair of RCCs, one in each direction, on every link
of the network. RCCs will also be established, when failed
components rejoin the network. The messages transferred
over RCCs are called ‘RCC messages.’

‘But resource-reconfiyration delay can influence the recovery ca-
pability/delay in handling future failures.

83

Re&Timo Message : Header Data

_--- 1
---- .*’

RCC Messngc : SeqU usg Length Data

1

P3llurc Report: REP Channel-ID

Acllvnllon Message : ACT Channel-ID

h$OIOVkdgement: ACK SW

Figure ‘7: The RCC message format

The format of an RCC message is shown in Figure 7. Ba-
sically, an RCC message contains a combination of failure
reports, activation messages, and acknowledgments. The
control messages related to resource reconfiguration are ex-
cluded, since their delays are not time-critical. An inter-
esting component of the RCC message format is acknowl-
edgments, which are used to ensure reliable transmission of
control messages, Generally, real-time communication does
not support message retransmission, because there is not
usually enough time for retransmission before the message
deadline expires, and occasional losses of real-time (data)
messages are tolerable in many applications. However, the
loss of control messages is critical even in these applications.
Each RCC message is acknowledged hop-by-hop between
BCP daemons, and if a BCP daemon does not receive an ac-
knowledgment of the RCC message which it sent, it resends
the unacknowledged RCC message. Each RCC message con-
tains the sequence number, so that duplicated messages may
be easily detected and discarded.

While the exact specification depends on the underlying
real-time channel protocol, we model an RCC by three pa-
rameters without loss of generality: maximum message size
SRCu maximum message rate Rfizz, and maximum mes- mas ,
sage delay Dgf$‘. RCC messages are transmitted as follows.
Each RCC-message has its eligible time and is held until it
becomes cligble for transmission. Thus, the minimum in-
terval (l/n,::) is enforced between two RCC messages.
Until the next time to transmit RCC messages, the BCP
daemon at a node collects the outgoing control messages
and forms RCC messages according to the destinations of
the control messages. In the next node, the received RCC
message is fragmented and new RCC messages are formed.
The sequence of disassembly and assembly of RCC messages
continues,

The collection of RCCs on ail links forms a virtual network,l’
called the RCC network, of the same topology as the un-
derlying physical network. One can consider a (physical)
network as a composition of three logically separated net-
works - the primary-channel network, the backupchannel
network, and the RCC network.

6.2 RCC Message Delay

The delay of control messages will depend directly on the
capacity of the RCC network, i.e., if the capacity of the
RCC on each link is large enough to accommodate all control
messages on the link, the timely delivery of control messages
can be guaranteed.

There is an upper bound on the control message traffic,

“A separate network in terms of resource reservation

Figure 8: Message loss during failure recovery

for the reasons given below. The number of failure reports
on a Iink f! cannot exceed the number of primary/backup
channels on a pair of links between two nodes incident to
e. We have to consider both links, because failure reports
for a channel can travel in both forward and backward di-
rections of the channel, depending on the failure location.
Similarly, the number of activation messages on link L is
bounded by the number of backup channels on the pair of
links between the two nodes incident to .L Since both the
failure report and the activation message for the same chan-
nel cannot be transported over the same link at the same
time the control-message delay on any link is bounded by
pdc *

mar rf the following condition is met:

SRCC > max{z : maz - z=z.y,Vlinkpairs},

where z = the size of a control message and y = the number
of channels on a link pair. If the maximum control mes-
sage traffic on a certain link exceeds SC::, some control
messages may experience a longer delay than 0::: at that
link.

5.3 Failure-Recovery Delay Bound

Now, let’s consider the failure-recovery delay. We assume
that the failures are immediately detected, control messages
are delivered without loss/retransmission, and the computa-
tional delays for recovery operations are negligible compared
to the control message delays. Then, the failure-recovery de-
lay, I’, is the sum of ‘failure reporting delay’ and ‘activation
retrial delay’. The delay for the activation message is not in-
cluded in I’, because services are resumed immediately after
sending the activation message by the source node, assuming
the activation message is delivered faster than the data mes-
sage. If the control message delay on each link is bounded
by D::;“, we can derive an upper bound of I’ as follows.

The ‘failure reporting delay’ is less than (K: - l)DzEF,
where X is the number of hops of the longest-route chan-
nel of the D-connection. The ‘activation retrial delay’ needs
to be considered in case the connection has multiple back-
ups. When the activation message for a backup encounters
failures during its journey, one additional round-trip delay is
added to the recovery delay: the transfer delay of the unsuc-
cessful activation message itself and the delay for re

8
orting

the new failure. It is bounded by 2(b-l)(K-l)Dfizz where
b is the number of backups. With a single backup configu-
ration, the failure-recovery delay of a D-connection is equal
to the failure reporting delay. If the failed component is
located close to the source node, the recovery delay will be
very short. Figure 8 illustrates the message loss during fail-
ure recovery (shaded messages are lost).

84

6 Scalability

The proposed scheme scales well because it does not re-
quire each node to maintain global knowledge of the network
traffic conditions or to generate any type of messages to
broadcast. Backup multiplexing is performed hopby-hop,
and therefore, at each link, only the knowledge of primary
channels whose backups traverse the link is required. Such
information can be easily collected, if a backup channel-
establishment message carries the path information of its
primary channel. I1 Control messages are sent only over the
paths of channels affected by failures, instead of broadcast-
ing them to the entire network.

The efficiency of backup multiplexing does not degrade
as the network scales up. In fact, backup multiplexing will
become more effective in large-scale and highly-connected
networks, because such networks contain more versatile paths
between two end nodes of a connection, thus lowering the
probability that primary channels overlap with one another.

The delay for backup multiplexing does not directly af-
fect the failure recovery delay, but the computational com-
plexity of backup multiplexing is a matter of concern. Its es-
sential part is the construction of a set of non-multiplexable
backups, IIB~,L, on each link e, taking O(n) time, where n
is the number of backup channels on link .fJ. (This is be-
cause each calculation of S(B:, .Bj) requires constant time.)
To find the largest set, BCP needs to construct II&,(for
all backups on L, which requires O(n2) time. However, if
we store each IIn,+ calculated before the new establishment
request for Bj, we only need to update each IIn,,r by calcu-
lating S(Bi,Bj). H ence, the complexity can be reduced to
O(n) at the expense of memory.

7 Evaluation

The proposed scheme is evaluated by simulating an 8 x 8
torus (wrapped mesh) network and an 8 x 8 mesh network.
In these simulated networks, neighbor nodes are connected
by two simplex links, one for each direction, and all links
have an identical bandwidth. To obtain a similar total ca-
pacity for both networks, we set the link capacity of the torus
network to 200 Mbps and set that of the mesh network to
300 Mbps.

Channels of each ID-connection were routed disjointly by
a sequential shortest-path search algorithm. Thus, the pri-
mary channel was routed first over a shortest path, then
the backup was routed without using the components of the
primary channel. For simplicity, the same traffic model was
used for all channels, so each channel requires 1 Mbps of
bandwidth on each link of its path. The end-to-end de-
lay requirement of each channel is assumed to be met if the
channel path is not longer than the shortest-possible path by
more than 2 hops. A total of 4032 connections mere estab-
lished incrementally, so that there may exist a ZXconnection
between each node pair, i.e., 64.63 = 4032.

7.1 Spare Resource Overhead

We first measured the average spare bandwidth for vari-
ous backup configurations. For ease of comparison, all D-
connections are assumed to require the same number of
backups and the same multiplexing degree. Single and dou-
ble backup configurations were simulated in the torus net-
work, but only the single backup configuration can be sim-

“Assuming that a backup is established after its primary has been
routed.

-lo-
mud-
mu721 -
mue3 -.-

10
Nehvod load $

30

(a) Single backup in 8 x 8 torus

10
Nshvork load (ii

30

(b) Double backups in 8 x 8 torus

10
Nstmkload~)

30

(c) Single backup in 8 x 8 mesh

Figure 9: Average sparebandwidth reservation

ulated in the mesh network because of its topological limi-
tation. Seven different multiplexing degrees were applied in
each case.

Figure 9 shows the simulation results. The ‘network-
Ioad’ is a metric to indicate the ratio of the total bandwidth
consumed by aII primary channels to the total network band-
width capacity. The establishment of 4032 connections re-
sulted in a 33 N 34% network-Ioad in both networks.

The notation ‘mux=o’ means that two backups are mul-
tiplexed when their primary channels share less than (Y net-
work components, i.e., Y = ruX. (‘mux=O’ implies that multi-
plexing was disabled). The results of ‘mux=2’ and ‘mux=4’
were not plotted in Figure 9, because, due to the nature of
channel routing, they were very close to the cases of ‘mux=3’
and ‘mux=S’, respectively. Thus, two channel paths are not
likely to share two nodes without sharing a link between the
nodes, so the results of ‘mux=2’ and ‘mux=3’ are very close
to each other. The case of sharing two consecutive links
(i.e.,‘mux=4’ and ‘mux=5’) can be reasoned similarly.

There are several interesting observations to make from

85

-M mung degree
Spare bandwidth 30.25% 22.5% 16% 9.5%

7-
1 link failure 100% lOOY0 97.27% 74.11%
1 node failure 100% 100% 89.99% 64.72%
2 node failures 93.11% 92.98% 84.05% 58.36%

(a) Single backup in 8 x 8 torus

2 wing cgree
Spare bandwidth N/A 30.25% 21.25% 12.88%

1 link failure -iimr
1 node failure N/A 100% 100% 97.68%
2 node failures N/A 100% 99.82% 93.28%

(b) Double backups in 8 x 8 torus

Muxing degree mux=l mux=3 mux=5 mux=6
Spare bandwidth 33.11% 24.47% 19.69% 17.22%

r-
1 link failure 100% 1OOYo 97.63% 90.39%
1 node failure
2 node failures]I 89.22%] 88.83%] 81.82% I 75.32%

(c) Single backup in 8 x 8 mesh

Table 1: I&t with same multiplexing degrees

l?igure 9. First, the network capacity is reduced by more
than 50% for each backup, because a backup channel may
be routed over a longer path than the corresponding primary
channel.‘2 The second backup becomes more expensive than
the first backup. Thus, without backup multiplexing, the
use of multiple backups will lower the network utilization
to an unacceptably low level. Second, the spare bandwidth
increases proportionally to the network load regardless of
the multiplexing degree. There was no drastic change in the
amount of spare bandwidth. Third, with high multiplexing
degrees, the overhead of multiple backups becomes close to
that of a single backup. See the case of ‘mux=6’ in Figure 9
(a) and (b). Fourth, in the mesh network, the reduction
of spare bandwidth by multiplexing is not as much as in
the torus network. This is because the absence of wrapped
links in the mesh network makes the primary-channel paths
more concentrated on the centraI region of the network, thus
discouraging multiplexing among their backups.

We performed other simulations with inhomogeneous traf-
AC, such as mixed bandwidth requirements or hot-spots in
resource reservation. The results indicate that the efficiency
of backup multiplexing is relatively insensitive to network
traffic conditions, but is more sensitive to network topology
- less effective in sparsely-connected networks.

7.2 Degradation of Fault-Tolerance Due to Multiplexing

The next issue to address is the impact of backup multiplex-
ing on fault-tolerance. We assess the fault-tolerance degra-
dation caused by backup multiplexing by simulating three
failure models: single link failure, single node failure, and
double node failures. Failures were injected into the net-
work after establishing 4032 connections. Each single link

“For example, in a torus network, there are usually two shortest
diajoint paths between any two nodes that are more than one hop
apnrt. If the source and destination nodes lie on the same principal
axis and the distance between the two is not exactly one half of the
torus dimension, there exists only one shortest path.

failure disabled about 64 primary channels in the torus net-
work, and about 85 primary channels in the mesh network.
By injecting each single node failure, about 139 and 276 pri-
mary channels were disabled in the torus and mesh network,
respectively. Each double node failure caused the disconnec-
tion of about 365 and 512 primary channels, respectively.
We excluded from consideration the connections whose end
nodes fail.

To measure the fault-tolerance level achieved by each
backup configuration, we use the fast recovery rate, I&t,
as a metric. RfaJt is the ratio of fast recovery by backup
channels to the number of failed primary channels. The
(1 - Rfast) of ZXconnections, whose primary had failed, re-
quired the establishment of new channels for failure recov-
ery. The resultant Rfast values are summarized in Table 1,
where N/A indicates that the total bandwidth requirement
had exceeded the network capacity before establishing all
connections.

As expected, the use of a smaller multiplexing degree
results in higher fault-tolerance (a larger RfaJr value). Un-
der the single failure model, Rfost solely reflects the impact
of backup multiplexing failures, because no connection loses
all of its channels due to a single failure. So, ‘mux=l guar-
antees a perfect recovery coverage from all single failures,
and ‘mux=3’ does from aJl single link failures. Interest-
ingly, a similar level of fault-tolerance was achievable with
significantly less spare resources in the double backup con-
figuration. For example, let’s compare the case of single
backup with ‘mux=3’ with the case of double backups with
‘mux=6’ in the torus network. Using a much smaller spare
bandwidth, we achieved comparable Rfast, demonstrating
the usefulness of multiple backup channels with effective re-
source sharing. The comparison between double backups
with ‘mux=6 and a single backup with ‘mux=5’ more clearly
reveals the benefit of the multiple backup configuration.

Considering that the spare bandwidths in Table 1 were
measured under the 33 N 34% network-load condition, one
has to double the spare bandwidth values to estimate the
overhead in fully-loaded networks. Thus, in fully-loaded
networks (with a 66 N 68% network load), 26 - 32% and
34% spare resource overheads were induced in the torus and
mesh network, respectively, to achieve around 90% of Rfost
from single failures. This overhead level can be reduced
substantially by employing a more efficient backup routing
method. In [HAN97b], we presented a backup routing al-
gorithm which can reduce the spare bandwidth up to 40%,
compared to the shortest path routing method.

7.3 Per-Connection Fault-Tolerance Control

So far, we have assumed that all ZXconnections require the
same level of fault-tolerance. We now show how the fault-
tolerance level of each D-connection is maintained when dif-
ferent connections require different levels of fault-tolerance.
We simulated a combination of four types of connections:
l/4 of connections with ‘mux=l’, l/4 of connections with
‘mux=3’, l/4 of connections with ‘mux=5’, and the remain-
ing l/4 of connections with ‘mux=6’. The number of back-
ups was the same for all connections. Table 2 shows that
the fault-tolerance level of each class of ZXconnections can
be readily controlled, while the overhead remains around the
average of all the classes.

7.4 Comparison with Brute-Force Multiplexing

We compare the efficiency of the proposed scheme with that
of a simple multiplexing method, called brute-force multi-

86

Spare bandwidth 12.43% Spare bandwidth 30.25% 22.5% 16% 9.5%
Muxing degree mux=l mux=3 mux=5 mux=6 1 link failure 100% 98.05% 92.19% 76.31%
1 lEEf&re 106% 100% 93.48% 50.43% 1 node failure 100% 95.34% 87.98% 68.87%
1 node failure 100% 99.64% 69.92% 44.14% 2 node failures 93.11% 89.82% 82.23% 63.53%
2 node failures 93.11% 92.41% 65.88% 39.29%

(a) 8 x 8 torus
(a) Single backup in 8’ x 8 torus

i Snare bandwidth II 16.88% I c
Muxing degree mux=l mux=3 mux=5 mux=6

1 link failure 100% 100% 100% 100%
1 node failure 100% 100% 100% 100%

2

(b) Double backups in 8 x 8 torus Table 3: Rfast with brute-force multiplexing

Spare bandwidth 17.41%
Mm mux=l mux=3 mux=5 mux=6

1 link failure 100% 100% 97.29% 68%
1 node failure
2 node failures 89.46% 89.04% 78.55% 47.47%

(c) Single backup in 8 x 8 mesh

Table 2: Rfast with mixed multiplexing degrees

plexing. In the brute-force multiplexing method, the same
amount of spare resource is reserved for all links without
considering the network status.

First, we applied the brute-force multiplexing to the torus
network, with reservation of the same amount of spare re-
sources as the average amount required by our proposed
scheme. The comparison between Table 1 (a) and Table
3 (a) shows that the proposed scheme is only marginally
better than the brute-force scheme. We attribute this to
the homogeneity of the simulated network in terms of net-
work topology, channel traffic model, and the distribution
of channel end-nodes. The resource demands for backup
activations are therefore evenly distributed throughout the
network. In case of a very large multiplexing degree, the
proposed scheme’s estimation of the spare resource require-
ment may become less accurate than the brute-force scheme;
hence the brute-force scheme results in even higher RfaJt
than the proposed scheme when mux=6.

IIowver, when any sort of inhomogeneity exists, the pro-
posed scheme outperforms the brute-force scheme. The sim-
ulation results of the mesh network supports this observa-
tion (compare Table 3 (b) with Table 1 (c)). Furthermore,
if the channel end-nodes are not evenly distributed or the
required bandwidths of all channels are not identical, hot-
spots (in term of the spare resource demands) occur, and the
cfhcicncy of the brute-force scheme degrades significantly
unlike the proposed scheme. For the same reason, the pro-
posed scheme outperforms the brute-force scheme in terms
of per-connection fault-tolerance control.

8 Related Work

There have been roughly two types of approaches to achiev-
ing fault-tolerance in real-time multi-hop networks. The
first type is the forward-recovery approach as described in
[RAM92, KA094], where multiple copies of a message are
sent simultaneously via disjoint paths to mask failures. A
variation of this approach coupled with the error-correction

Spare bandwidth 33.11% 24.47% 19.69% 17.22%

1 link failure 96.18% 89.74% 83.18% 78.18%
1 node failure 96.56% 88.31% 79.49% 72.86%
2 node failures

(b)8x8mesh

coding scheme can be found in [BAN96]. This approach has
an advantage that failures are handled without service dis-
ruption, but it is too expensive for certain applications like
multimedia networking. If infrequent packet losses due to
transient failures are tolerable, the approach to detect and
recover from persistent failures is a more attractive and cost-
effective alternative. The methods proposed in [BAN93,
ZHE92, GR087, YAN88, BAK91, KAW94, AND94, MUR94]
belong to this second type of approach. The proposed scheme
also falls into this type.

The method proposed in [BAN931 requires all failures to
be broadcast to the entire network. When a source node is
notified of the failure of its channel, it tries to establish a
new channel from scratch. Since no resource is reserved in
advance for the purpose of fault-tolerance, this method has
a small overhead in the absence of faults. However, it does
not give any guarantee on failure recovery. The channel re-
establishment attempt can fail due to resource shortage at
that time. Even when there are sufficient resources, the con-
tention among simultaneous recovery attempts for different
faulty connections may require several trials to succeed, thus
delaying service resumption and increasing network traffic.

In contrast, the method of [ZHE92] provides guaranteed
failure recovery under a deterministic failure model (i.e., sin-
gle failure). In this method, additional resources are re-
served in the vicinity of each real-time channel, and the
failed components are locally detoured using the resources.
Since failures are handled without intervention of source
nodes, the recovery latency will be small. However, thii
method requires reservation of substantial amounts of ex-
tra resources, and resource usage becomes inefficient after
failure recovery, because channel path-lengths are usually
extended by local detouring. Similar approaches in telecom-
munication networks can be found in [GR087, YAN88, BAKSl].

The work reported in [KAW94, AND94, MUR94] comes
closest to our scheme. They proposed VP-restoration meth-
ods in ATM networks based on the backup channel concept.
The main difference of these from ours is that they are un-
able to control the fault-tolerance level of each connection
(i.e., VP). Another difference is that they assume that a
fixed traffic demand (i.e., VP setup requests) is given be-
forehand and not changed, while we consider the dynamic
setup and teardown of channels. Thus, at the network design
stage, all channel paths and spare resources are determined
together using a computationally very expensive algorithm,
to minimize resource overhead while guaranteeing recovery
from a certain type of deterministic failures (typically single
link failures). Addition or removal of a channel requires re-

87

calculation of all channel paths and spare resources. There-
fore, these schemes cannot be applied to an environment
where short-lived channels are set up and torn down fre-
quently. By contrast, in our scheme, we separated the spare
resource allocation problem from the channel routing prob-
lem, so that (i) channel path may be selected by any algo-
rithm and (ii) channel establishment may be done in a dis-
tributed manner without requiring global knowledge about
all channels in the network. We have also presented an inte-
grated solution to the problem of channel switching, resource
reconfiguration, and control-message transmission, which is
not specific to a particular type of network.

9 Conclusion

We have proposed a failure-recovery scheme for dependable
real-time communication services in multi-hop networks. The
main contributions of this paper are threefold. First, we de-
fined the client interface model for fault-tolerant real-time
communication. Second, we devised a mechanism to re-
duce the fault-tolerance overhead to an acceptably low level.
Third, we developed a robust protocol for fast and guar-
anteed failure recovery. We evaluated the efficiency of the
proposed scheme through simulations and showed that with
minor degradation of the network’s capability of accommo-
dating channels, a desired fault-tolerance QoS level can be
achieved.

Acknowledgments

The authors would like to thank Jennifer Rexford, Sugih
Jamin, and anonymous reviewers for useful comments on
earlier drafts of this paper. The work reported in this paper
was supported in part by the National Science Foundation
under Grant MIP-9203895, the Office of Naval Research un-
der Grant NO0014911-l-0229, and Mitsubishi Electric Re-
search Laboratory, Cambridge, MA. Any opinions, findings,
and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the
views of the funding agencies.

References

[ARA94] C. M. Aras, J. F. Kurose, D. S. Reeves, and
H. Schulzrinne, “Real-time communication in packet-
switched networks,” Proceedings of the IEEE, vol. 82,
pp. 122-139, January 1994.

[MCC96] S. McCanne, V. Jacobson, and M. Vetterli,
‘Receiver-driven layered multicast,” in Proc. ACM
SIGCOMM, pp. 117-130, August 1996.

[TRI82] K. S. Trivedi, Probability and Statistic with Relia-
bility, Queuing, and Computer Science Applications.
Prentice-Hall, 1982.

[WHA90] J. Whalen and J. Kenney, “Finding maximal
link disjoint paths in a multigraph,” in Proc. IEEE
GLOBECOM, pp. 400-404, 1990.

[SIDSl] D. Sidhu, R. Nair, and S. Abdallah, “Finding dis-
joint paths in networks,” in Proc. ACM SIGCOMM,
pp. 43-51, 1991.

[HAN97aJ S. Han and K. G. Shin, uExperimental evaluation
of failure-detection schemes in real-time communica-
tion networks,” in Proc. IEEE FTCS, 1997.

[ZHA93] L. Zhang, S. Deering, D. Estrin, S. Shenker, and
D. Zappala, “RSVP: A new Resource Reservation
Protocol,” IEEE Network, pp. 8-18, September 1993.

[HAN97b] S. Han and K. G. Shin, “Efficient spare-resource
allocation for fast restoration of real-time channels
from network component failures,” submittedfor pub-
lication, 1997.

[RAM921 P. Ram ana th an and K. G. Shin, “Delivery of time-
critical messages using a multiple copy approach,”
ACM Trans. Computer Systems, vol. 10, pp. 144-166,
May 1992.

[KA094] B. Kao, H. Garcia-Molina, and D. Barbara, uAg-
gressive transmissions of short messages over redun-
dant paths,” IEEE Trans. Parallel and Distributed
Systems, vol. 5, pp. 102-109, January 1994.

[BAN961 A. Banerjea, “Simulation study of the capacity ef-
fects of dispersity routing for fault-tolerant real-time
channels,” in Proc. ACM SIGCOMM, pp. 194-205,
August 1996.

[BAN931 A. Banerjea, C. Parris, and D. Ferrari, URecover-
ing guaranteed performance service connections from
single and multiple faults,” Tech. Rep. TR-93-066,
Computer Science Division, UC Berkeley, 1993.

[ZHE92] Q. Zheng and K. G. Shin, “Fault-tolerant real-
time communication in distributed computing sys-
tems,” in Proc. IEEE FTCS, pp. 86 - 93, 1992.

[GRO87] W. Grover, “The selfhealing network: A fast dis-
tributed restoration technique for networks using dig-
ital crossconnect machines,” in Proc. IEEE GLOBE-
COM, pp. 1090-1095, 1987.

PAN881 C. Yang and S. Hasegawa, “FITNESS: Failure
immunization technology for network service surviv-
ability,” in Proc. IEEE GLOBECOM, pp. 1549-1554,
1988.

[BAKSl] J. Baker, “Adistributed link restoration algorithm
with robust preplanning,” in Proc. IEEE GLOBE-
COM, pp. 306-311, 1991.

[xAW94] R. Kawamura, K. Sato, and I. Tokizawa, “Self-
healing ATM networks based on virtual path concept,”
IEEE Journal on Selected Areas in Communications,
vol. 12, pp. 120-127, January 1994.

[AND941 J. Anderson, B. Doshi, S. Dravida, and P. Har-
shavadhana, “Fast restoration of ATM networks,”
IEEE Journal on Selected Areas in Communications,
vol. 12, pp. 128-138, January 1994.

[MUR94] K. Murakami and H. Kim, “Near-optimal virtual
path routing for survivable ATM networks,” in Proc.
IEEE INFOCOM, pp. 208-215, 1994.

88

