
Understanding TCP Dynamics in an Integrated Services Internet

0-7803-3799-9/97$10.00@ 1997 IEEE. 279

Wu-chang Fengi Dilip D. Kandlur:

tDepartment of EECS
University of Michigan
Ann Arbor, MI 63130

{ wuchang,kgshin} @eecs. umich.edu

Abstract

A large number of Internet applications are sensitive to
overload conditions in the network. While these applica-
tions have been designed to adapt somewhat to the vary-
ing conditions in the Internet, they can benefit greatly
from an increased level of predictability in network ser-
vices. We propose minor extensions to the packet queue-
ing and discard mechanisms used in routers, coupled with
simple control mechanisms at the source that enable the
network to guarantee minimal levels of throughput to dif-
ferent network sessions while sharing the residual network
capacity in a cooperative manner. The service realized
by the proposed mechanisms is an interpretation of the
controlled-load service being standardized by the IETF.
Although controlled-load service can be used in conjunc-
tion with any transport protocol, our focus in this paper
is on understanding its interaction with TCP. Specifi-
cally, we study the dynamics of TCP traffic in an in-
tegrated services network that simultaneously supports
both best-effort and controlled-load sessions. In light of
this study, we propose and experiment with several vari-
ations to TCP’S control mechanisms with the objective of
fine-tuning them for an integrated services environment.
We then investigate the overheads associated with these
enhancements and the benefits they provide. Finally, we
show how the service mechanisms proposed here can be
embedded within more elaborate packet and link schedul-
ing frameworks in a fully-evolved integrated services In-
ternet.

1 Introduction

A large class of Internet applications, referred to as tol-
erant playback applications in [l, 151, can greatly benefit
from an increased level of predictability in network ser-
vices. These applications typically buffer a portion of
the data on the client before starting the playback, and
then operate in a streaming mode to keep the buffer from
underflowing. Examples include increasingly popular ap-
plications such as Pointcast, RealAudio, and VDOnet
which stream text/image, audio, and video data over the

Debanjan Sahat Kang G. Shin1

$Network Systems Department
IRM T.J. Watson Research Center

Yorktown Heights, NY 10598
{ kan dl ur, de banjan} @watson.ibm. com

Internet. The quality of playback for each of these ap-
plications can vary from excellent to intolerable, depend-
ing on the network load. These applications can bene-
fit tremendously from a network service that guarantees
a minimum level of throughput at all times, but allows
for the possibility of higher throughput during periods of
light loads. Such a service is also useful to more tradi-
tional, elastic applications [l, 151, such as f t p and t e lne t .
Tasks such as booting a disk-less workstation over the
network, backing up remote files, and synchronizing web
proxies can be performed with more predictability and
within a bounded time by guaranteeing a minimal band-
width to the underlying sessions. This service can also
be used to set up a virtual overlay network in the Inter-
net, connecting business-critical servers and clients with
virtual links of a minimum guaranteed bandwidth.

The controlled-load service [17] currently being stan-
dardized by the Internet Engineering Task Force (IETF)
fits very well into the scenarios sketched above. It is part
of an ambitious goal of defining a service architecture that
is suitable for a diversity of applications. Our objective
in this paper has been to follow an evolutionary path to-
wards this goal. That is, to enhance network services
within the framework of the IETF-defined service archi-
tecture, but with minimal enhancements to the network
infrastructure, especially the routers.

We propose a simple extension to the queueing mech-
anisms used in today’s routers coupled with a control
mechanism at the source to guarantee a minimal level of
end-to-end throughput to different network sessions. The
residual network capacity is shared in a socially coopera-
tive fashion, in a manner similar to the one in use in the
Internet today by applications using TCP. In this scheme,
each reserved session is associated with a traffic envelope.
Traffic is policed at the source and packets conforming
to the envelope are marked. Non-conformant traffic and
best-effort traffic is injected into the network unmarked.
At the routers we use an enhanced random early detec-
tion (RED) [4] and discard mechanism. Both marked and
unmarked packets share the same FIFO queue. When the
queue length at the router exceeds a certain threshold,
packets are dropped randomly as done in RED gateways.
However, unlike standard RED gateways where all pack-

http://umich.edu

ets have the same drop probability, in the enhanced RED
(ERED) gateway, marked packets have a lower drop prob-
ability than the unmarked packets.

The service realized by the mechanism described above
is an interpretation of the controlled-load service. By def-
inition, traffic belonging to a controlled-load session and
conforming to the associated traffic envelope sees very
little loss and very little queueing delay through the net-
work. Non-conformant controlled-load traffic is treated
as best-effort traffic. By using a common queue for best-
effort and conformant controlled-load traffic, we essen-
tially relax the recommended delay targets for conformant
controlled-load traffic. This laxity not only simplifies the
implementation and reduces packet handling overheads
at the routers, but also helps maintain packet ordering.
Note that ERED ensures a low loss rate to conformant
controlled-load traffic. We argue that elastic and tolerant
playback applications can withstand a reasonable amount
of queueing delay and can fully exploit the guarantees on
throughput to improve performance.

Although controlled-load service can be used in con-
junction with any transport protocol, our focus in this
paper is on TCP. We examine TCP because: (1) an over-
whelming number of applications use TCP as the trans-
port protocol of choice, and (2) TCP has a well-developed
congestion and flow control mechanism that makes it an
interesting case study. While some of the tolerant play-
back applications may not use TCP, the mechanisms de-
scribed here can easily be applied to other transport pro-
tocols, such as RTP. Our objective in this paper is to
understand and tune the end-to-end control mechanisms
used in TCP in an integrated services Internet that sup-
ports both best-effort and controlled-load services.

Integrated services in the Internet is a relatively new
area of research. To the best of our knowledge, no pub-
lished work addresses the specific issues discussed in this
paper. In a more general sense, studies on supporting TCP
over ABR/UBR services in ATM networks [8,12] address
similar issues. However, due to significant differences be-
tween the service architectures of ATM and the Internet,
the nature and the focus of these studies are quite differ-
ent. In [8], the authors propose using a modified switch
buffer allocation policy in order to obtain peak through-
put and fairness among TCP connections over ATM. In
particular, each connection is effectively provided with
a weighted fair share of the buffers in the switch. The
switch uses per-connection accounting to determine which
connections are overloading their allocation and drops
cells accordingly. In contrast, most of the modifications
we propose are in the TcP sender. This is in line with
the Internet design philosophy of providing sophisticated
end-to-end control in end hosts, coupled with a relatively
simple control inside the network. Moreover, since these
modifications are required only for senders, they may be
deployed incrementally.

The rest of the paper is organized as follows. In Sec-
tion 2 we briefly describe the proposed service architec-

ture and the ERED mechanism. Performance of TCP in
an integrated services environment and the effects of dif-
ferent service parameters are investigated in Section 3.
In Section 4, we propose simple modifications to TCP’S
transmission and windowing mechanisms to exploit reser-
vations in the network. Section 5 examines the overhead
such modifications incur and the benefits which they pro-
vide. Section 6 is devoted to a discussion and preliminary
results from experiments on the possible integration of the
ERED mechanism into a more elaborate packet and link
scheduling architecture, such as class-based queueing. We
conclude in Section 7.

2 Network and Service Models

The RSVP and the INTSERV working groups in the IETF
are responsible for defining protocols and standards to
support integrated services in the Internet. In this section
we briefly review the relevant aspects of these standards
and show how the proposed enhancements fit into the
IETF-defined framework.

To avail itself a reservation, a connection has to specify
a traEc envelope, called Tspec. Tspec includes a long-
term average rate rm, a short-term peak rate vP, and
the maximum size of a burst b of data generated by the
application. For example, for an application generating
MPEG-encoded video, the average rate could be the long-
term data rate, the peak rate could be the link band-
width at the source, and the burst size could be the max-
imum size of a frame. Tspec also specifies the maximum
and minimum packet sizes to be used by the application.
Connections are monitored and policed at the network
entry points. This could be either at the source, or at
the boundary between the corporate or campus intranet
and the Internet. Packet classification and service dif-
ferentiation also takes place at the routers. The service
priority given to a packet is a function of the Tspec, and
in the case of some service classes, a separate service spec-
ification known as Rspec. For controlled-load service, no
Rspec is specified.

In order to police traffic at the source, we use token
buckets [13]. The token generation process follows the
Tspec advertised by the source. That is, the long-term
average rate of token generation is t,, the short-term
peak rate of token generation is t,, and the depth of the
token bucket is b. Each time a packet is injected into the
network, if sufficient tokens are available, an equivalent
number of tokens are considered consumed. If there aren’t
enough tokens present at the time of transmission, the
packet is treated as non-conformant.

In addition to policing, we also propose to mark pack-
ets at the network entry point. Conformant controlled-
load traffic is marked before being injected into the net-
work. Non-conformant controlled-load traffic and best-
effort traffic is injected into the network unmarked. Al-
though marking is not currently supported in IP networks,

Figure 1: Network Topology

there are sufficient hooks (specifically the type of service
bits) in the IP header to add this feature easily. Note that
marking is not a mandatory requirement, it just facilitates
traffic classification at the routers. In the absence of a
marking facility, IP datagrams have to be passed through
a classifier at the source, as well as at the routers, to
determine which flows they belong to and to determine
whether they are in violation of, or in conformance with,
the advertised Tspecs of the flows. In the presence of a
marking facility, classification is only required at the net-
work entry point and not at interior routers. In the rest of
the paper, we assume that a marking facility is available.

The routers perform admission control for controlled-
load connections. Admission control algorithms are not
discussed in this paper, but, for the purpose of the exper-
iments, we assume that the aggregate reservation levels
at the routers are within their capacities. In addition
to performing admission control, the routers also need
to support service differentiation between marked (con-
formant controlled-load) and unmarked (non-conformant
controlled-load and best-effort) packets. One obvious ap-
proach to providing different services to marked and un-
marked packets is to maintain separate queues for each
class and serving them according to their scheduling pri-
ority. However, we propose to use a common queue for
both compliant and non-compliant traffic and serve them
in FIFO order. A common FIFO queue not only simplifies
the scheduling functionality at the router, it also helps
maintain packet ordering in controlled-load connections.
Although maintaining packet ordering is not a require-
ment, failure to do so may have serious performance im-
pacts on transport protocols such as TCP. Our approach
to service differentiation between marked and unmarked
packets relies on a selective packet discard mechanism.
We use an enhanced version of the RED (Random Early
Detection) algorithm for this purpose. In classical RED
routers, a single FIFO queue is maintained for all pack-
ets. Packets are dropped randomly with a given proba-
bility when the queue length exceeds a certain threshold.
The drop probability itself depends on the queue length
and the time elapsed since the last packet was dropped.
Enhanced Random Early Detection (ERED) is a minor
modification to the original RED algorithm. In ERED, the
drop probabilities of marked packets are lower than that
of unmarked packets .

Studies have shown that RED gateways are better than
traditional drop-tail routers in terms of fairness to bursty
traffic [4]. It can also be parameterized to control the
queue size, and hence, the queueing delay. Note that
ERED guarantees low loss rate to conformant controlled-

load traffic. However, since it uses a common FIFO
queue, the queueing delay experienced by the conformant
controlled-load traffic and best-effort traffic are the same.
We argue that elastic and tolerant playback applications
can withstand a reasonable amount of queueing delay
and can really exploit the guarantees on throughput to
improve performance. Also, note that the ERED queue
parameters can be tuned to limit the queueing delay ex-
perienced by packets in order to meet the specification of
controlled-load service. Of course, there are ways of re-
alizing controlled-load service more accurately. We show,
however, that even with these simple enhancements, we
can adequately provide a useful service to a large class of
existing and emerging applications.

As mentioned earlier, the primary focus of this paper
is not to propose packet queueing and scheduling mech-
anisms to realize an entire suite of integrated services on
the Internet. Our objective is to study how we can offer a
particularly useful network service with minimal changes
to the routers and the end-hosts. For a systematic de-
ployment of the full portfolio of services in the Internet, a
number of sophisticated mechanisms, such as class-based
queueing 151 and weighted fair queueing [l, 2,6,7,14-161,
have been proposed. In Section 6, we discuss how the
ERED mechanism can be embedded in a more elaborate
packet queueing and scheduling architecture.

3 Understanding TCP Dynamics

This section is devoted to the study of TCP dynamics
in an integrated services environment. For the purpose of
the experiments, we modified the NS [ll] simulator. The
NS simulator has been used extensively in a number of
studies reported in the literature. While the simulator
does not use production TCP code, it implements conges-
tion and error control algorithms used in different imple-
mentations of TCP with remarkable accuracy. For most
of the experiments reported here, we use a Reno-variant
of TCP [9]. We modified the simulator by adding policing
and extending the RED queueing discipline.

For the experiments in this section, we consider a sim-
ple network topology shown in Figure 1. The capacity of
each bi-directional link is labeled and has a transmission
delay of 10ms. Connections requesting a reservation spec-
ify a peak and a mean rate of service, and the maximum
size of a burst. At the source, tokens are generated at the
service rate and are accumulated in a token bucket. The
depth of the token bucket is the same as the maximum

2s I

4.0 t
C n s o

Figure 2: Effect of reservation on end-tc-end throughput.

0.0
0.0 40.0 80.0 120.0 160.0 200.0 240.0

Time (s)

(a) Aggregate throughput

t
4.0 1
3.0 i
2 . 0 ~ 1 .o

0.01 " " " " 1
0.0 40.0 80.0 120.0 160.0 200.0 240.0

Time (s)

(b) Compliant throughput.

burst size specified by the source. Throughout this pa-
per, the token bucket size is measured in units of time. In
units of tokens, it is equivalent to token generation rate
times the bucket size in units of time. The peak rate is
set to the link speed by default. TCP segments belonging
to reserved connections are transmitted as marked data-
grams if there are sufficient tokens available in the token
bucket at the time of transmission. Otherwise, they are
sent as unmarked datagrams. TCP segments belonging to
best-effort connections are sent as unmarked datagrams.
We assume that sources are greedy, that is, they always
have data to send.

3.1 Effect of Service Rate

This experiment is designed to investigate the effect of
service rate on end-to-end throughput. For the purpose of
this study we ran three connections with reservations of
llibs, 2Mbs, and 4Mbs, and three best-effort connections
from node no to n5. We set the maxth for the ERED
queue to 80KB and the minth to 20KB. The drop prob-
ability of marked packets was set to zero. The maximum
drop probability of the of the unmarked packets for this
experiment was 0.02. Each controlled-load source used a
token bucket of depth 50ms. We also experimented with
other ERED parameters and observed similar results.

Figure 2(a) shows the throughput seen by each con-
nection. Throughput is computed by measuring the data
received at the receiver over an observation period and
dividing it by the observation interval. Figure 2(b) plots

All arriving packets are dropped when the queue size reaches

*Random packet drops continue until the queue length falls be-
this level.

low this threshold.

the compliant throughput seen by connections with reser-
vations. This is the portion of the throughput that is con-
tributed by marked packets. Ideally, it should be equal
to the reserved rate of service. From Figure 2(a), we ob-
serve that connections with higher reservations generally
see better throughput than connections with lower or no
reservations. However, from Figure 2(b) we observe that
the compliant portions of the bandwidth received by all
reserved connections are less than their respective service
rates.

The explanation for the observations from Figure 2
lies in the flow and congestion control mechanisms used
by TCP. The TCP sessions with reservations exercise
their flow and congestion control mechanisms in the same
way as best-effort connections. However, they have a
lower probability of losing a packet at the routers since
their marked packets have lower (in this case close to
zero) probability of getting dropped. Because connec-
tions with higher reservations mark their packets at a
higher rate, they have a decreased probability of having
a packet dropped. This is why connections with higher
reservations see higher throughput than connections with
lower or no reservations. However, as observed from Fig-
ure 2(b), TCP fails to fully exploit the benefits of the
reservation. Since marked packets aren't dropped by the
network and since the compliant part of the throughput
is less than the reservation levels in all cases, it is appar-
ent that not all of the tokens generated are used to mark
packets at the source. That is, there are significant token
losses due to token bucket overflow. Although the sender
is a greedy source, the TCP congestion control mechanism
throttles the source to an extent that makes it impossible
for it to fill up the reserved portion of the communication
pipe. To confirm this speculation, we plotted the packet
trace from the connection with a 4Mbs reservation.

282

200.0

150.0

h

0
0
N
U

v E 100.0
v)

a,
Y
0 a
Q

c

50.0

0.0
0.0 1 .o 2.0 3.0 4.0 5.0

Time (s)

Figure 3: Packet trace of the connection with 4Mbs reservation.

Figure 3 shows the packet trace of the connection with
4Mbs reservation over a five-second interval. The plot
shows the sequence number (modulo 200) and the con-
gestion window of the sender as well as the number of lost
tokens (given in packets modulo 200) for the connection.
A close look at the packet trace reveals a steady rate of
token loss throughout the observation period. The win-
dowing mechanism used by TCP is partly responsible for
this phenomenon.

TCP uses two windows for the purpose of flow and con-
gestion control. The receiver maintains and enforces an
advertised window (AWND) as a measure of its buffer-
ing capacity. The sender enforces a congestion window
(CWND) as a measure of the capacity of the network. The
sender is prohibited from sending more than the mini-
mum of AWND and CWND worth of unacknowledged data.
When the loss of a segment is detected, TCP reduces the
congestion window and initiates a fast recovery or a slow
start phase. For the fast recovery phase, the congestion
window is cut to half of its original size while in the slow
start phase it is set to 1. For connections with reserva-
tions, this is an overly conservative behavior since it is

3We use segments of size 1KB. The sequence number is the
sender’s packet sequence number.

insensitive to the reservation that a particular connection
may have. Thus, even when tokens are present, and the
sender is eligible to transmit a new segment, it may be
throttled by the congestion window. As shown in Fig-
ure 3, the rate of token loss increases significantly when
a packet loss is detected (as indicated by the decrease in
congestion window), and slowly decreases as the conges-
tion window opens up.

Another cause for token loss is the presence of per-
sistent gaps in the acknowledgment stream. Such gaps
are part of a phenomenon commonly referred to as ack-
compression [181. Since TCP uses acknowledgments to
trigger transmissions, any significant time gap between
the receipt of successive acknowledgments causes the to-
ken bucket to overflow and results in a loss of transmis-
sion credits. The effects of these gaps can be seen in
many places in the trace where the sequence number is
frozen. There are several ways in which these gaps can
develop. One is through the recovery process after a loss
is detected using TCP’S fast recovery and fast retransmit
mechanisms. After detecting a loss (by the receipt of a
given number of duplicate acknowledgments), TCP cuts
its congestion window in half by halting additional trans-
missions until one half of the original window’s packets
have cleared the network. Freezing the sender for this

2s3

1.0

(a) One-way traffic. (b) Two-way traffic.

- -_ -___--. - _ _ _ - _ _ * - -

_ _ - * - - _ _ _ _ - - - - _ _ L _ _ _ u m - 1.0 -__-._
- 1 l M n V .
+--r2am.
0 - - 0 4 C 4 m ‘
HK”-.

Figure 4: Compliant throughput of the connection with 4Mbs reservation.

period of time causes the token bucket to overflow, but
more importantly, puts a gap in the data stream which re-
sults in a gap in the acknowledgment stream during the
next round-trip interval. Gaps in the acknowledgments
cause the token bucket to overflow and cause gaps in the
data stream once again. Another way gaps can form is
through the normal dynamics of network traffic. Con-
gestion on the forward and/or reverse path, as well as
additional queueing delays and jitter experienced as new
connections come on-line, can also create significant gaps
in the stream.

3.2 Effect of Token Bucket Depth

One way to alleviate the problem of token loss is to use a
deeper token bucket. To investigate the impact of the to-
ken bucket depth on compliant throughput, we repeated
the experiment described in the last section across a range
of token bucket depths. Figure 4(a) shows the compliant
throughput seen by the connection with a 4Mbs reserva-
tion for token bucket sizes of 50ms, IOOms, 200ms, 400ms,
and 800ms using the same network topology and traffic.
Increasing the token bucket depth improves the compli-
ant throughput seen by a connection. However, it is only
when the token buckets are very large (400ms and 800ms
in this case) that the compliant throughput seen by a con-
nection remains at the reserved rate. Unfortunately, for a
4Mbs connection, this bucket depth corresponds to a max-
imum burst of compliant packets of up to 200KB. In order
for the network to ensure that compliant packets are not
dropped, it must have the capacity to buffer such bursts.
Without sufficient buffer spade, a significant amount of
burst losses can occur, causing the performance of the
TCP connection to deteriorate.

Another problem with simply increasing the size of the
token bucket is that it is sensitive to variance in network
traffic. Figure 4(b) shows the same experiment with iden-
tical traffic going in the reverse direction. That is, all
connections are bidirectional. In contrast to Figure 4(a),
large token buckets do not give any additional perfor-
mance improvement. The connection never receives a
compliant throughput more than half of its 4pIbs reser-
vation.

4 TCP Adaptations

In this section we propose and experiment with modifi-
cations to TCP’s control mechanisms. These refinements
can help TCP adapt better in an integrated services envi-
ronment.

4.1 Timed Transmissions

Since deeper token buckets require larger buffers in
routers, it is desirable to keep the size of the token buck-
ets small. To alleviate the effects of persistent gaps in ac-
knowledgment without increasing the token bucket depth
significantly, we experimented with two different schemes,
delayed and timed transmissions. These mechanisms bet-
ter adapt the acknowledgment-based transmit triggers
to the rate-based reservation paradigm. In the delayed
transmission mechanism a segment is held back for a ran-
dom amount of time when there aren’t enough tokens to
transmit it as a marked packet. This, in effect, adds ran-
domization to the data stream of the connection which
can potentially eliminate persistent gaps in the acknowl-
edgment stream. In addition, this scheme reduces the

284

0.0 40.0 80.0 120.0 160.0 200.0 240.0
Time (5)

0 . 0 ' " ~ ' " "
0.0 40.0 80.0 120.0 160.0 200.0 240.0

l ime (s)

(a) Total and compliant throughput. (b) Share of excess bandwidth.

Figure 5: Throughput with timer-triggered transmissions.

probability of the packets getting dropped inside the net-
work since holding back packets increases the probability
that they are sent as marked packets. While the delayed
transmissions work reasonably well when the reverse path
is lightly loaded [3], additional experiments have shown
that it is not very effective in the presence of reverse path
congestion.

The second mechanism we examine involves the use
of a periodic timer. In this scheme, we augment TCP'S
acknowledgment-triggered transmissions with a timer-
triggered transmission mechanism. This timer-based trig-
gering ensures that transmission opportunities are not
lost while the connection is waiting for an acknowledg-
ment. In the timed transmission mechanism, each re-
served connection uses at most one timer which can
have an interval which is customized. Connections can
also share a single timer depending on the overhead on
the end-host. In the timed transmission scheme, the
acknowledgment-clocked transmission algorithm is left
unmodified. However, whenever a periodic timer expires,
the connection examines the tokens in the token bucket.
If there are sufficient tokens available in the token bucket
and there is room under the advertised window of the re-
ceiver, the sender sends the packet as marked, ignoring
the value of the congestion window. The timer is then
reset to wake up another timer interval later.

The intuition behind timed transmission is very simple.
If there are enough tokens in the bucket, as per the con-
tract with the network, the sender is eligible to inject new
data in the network. Hence, we temporarily disregard the
congestion window under such circumstances. Note, that
the connection still adheres to the advertised window con-
straint to avoid overflowing the receiver's buffers. In case
of network disruption, the sending TCP freezes when the
number of unacknowledged packets reaches the advertised

window. Thus, the time-triggered sends do not continue
to occur in the presence of network failure. Having a
timer trigger transmissions alleviates the problem of lost
tokens caused by gaps in the acknowledgments. In order
to guarantee zero token loss, the timer interval should
be equal to [TokenBucketDepth - (Packetsize - l)]/To-
kenBucketFtate. This takes care of the worst case where
there are (Packetsize - 1) tokens in the bucket when a
timer interrupt occurs.

Using this timer mechanism, we reran the same ex-
periment described earlier. For the experiment, we used
token buckets of depth 50ms, and a timer granularity of
20ms. Figure 5(a) plots the total bandwidth received by
all connections and the compliant bandwidth received by
the connections with reservations. As shown in the figure,
each connection gets its reserved rate and a share of the
excess bandwidth.

While the timed transmissions allow for temporary vio-
lations of the congestion window to occur, non-compliant
packets are sent only when there is room under the con-
gestion window. Thus, this mechanism does not alter the
base windowing mechanism used by TCP. Using TCP'S
windowing mechanism can be a problem since upon the
detection of a loss, the congestion window is cut in half
or reduced to 1 regardless of a connection's reservation.
Thus, although the timed transmission mechanism allows
the connection to receive its reserved rate, TCP'S window-
ing mechanism can restrict the controlled-load connec-
tions from competing for the excess bandwidth in the
network. Figure 5(b) plots the throughput seen by a best-
effort connection and the non-compliant throughput seen
by each of the reserved connections using timed transmis-

*Non-confomant controlled-load traffic is treated as best-effort
traffic. Hence, residual network capacity should be fairly shared be-
tween best-effort traffic and non-conformant controlled-load traffic.

285

7.0 1.5

6.0

5.0 - - 1.0
n
5. 4.0
r r

3
a
* 0.5

v)

5
0 -F,

d
5 3.0 U

2.0

1 .o

0.0 ’ ’ ’ 0.0 1
0.0 40.0 80.0 120.0 160.0 200.0 240.0 0.0 40.0 80.0 120.0 160.0 200.0 240.0

Time (5) rune (s)

(a) Aggregate and compliant throughput. (b) Share of Excess Bandwidth.

Figure 6: Throughput after windowing modification.

sions. The plots show that connections with reservations
receive a smaller share of the residual capacity when com-
pared to the best-effort connection. The connections with
larger reservations are penalized to a greater extent since
halving the congestion window of a connection with 4Mbs
reservation has a more drastic impact than halving the
congestion window of a lMbs connection.

4.2 Rate Adaptive Windowing

For reserved connections, the swings in the congestion
window should always be above the window guaranteed
by the reserved rate. To account for and exploit the reser-
vation, we modified TCP’s windowing algorithm. The key
idea behind this modification is that for reserved connec-
tions, CWND consists of two parts: a reserved part equal
to the product of the reserved rate and the estimated
round-trip time, and a variable part that tries to esti-
mate the residual capacity and share it with other active
connections. Note that the reserved part of CWND is a
function of the round-trip time. While we currently use
the common TCP round-trip measurements to estimate
this, measurements using the proposed TCP timestamps
option (RTTM) [lo] can provide a more accurate estimate.

Let us assume that the size of the reservation window is
RWND. Hence, the size of the variable window is CWND-
RwND. In the modified scheme, we adjust the size of
the variable window using the traditional TCP window-
ing mechanism and simply add it to the calculated value
of RWND. Specifically, the sender, instead of reducing
CWND by half at the beginning of the fast recovery, sets
it to RWND + (CWND-RWND)@. At the beginning of a
slow start after detection of a lost segment through the
retransmission timeout, it sets CWND to R W N D + ~ instead

of 1. In both cases, SSTHRESH is set to the minimum
of RWND+(CWND - RWND)/2 and AWND instead of the
minimum of CWND/2 and AWND. Finally, because pack-
ets sent under RWND should not clock congestion win-
dow increases, we scale all window increases by (CWND-
RWND)/CWND. Note that even with these modifications
to the windowing algorithm, the sender must still adhere
to the AWND restriction. That is, ,it is prohibited from
sending more than the minimum of AWND and CWND
worth of unacknowledged data. Because of this, the size
of the receiver’s buffer must be at least the size of the
reservation window in order to sustain the reserved rate
using TCP.

We repeated the experiments described in the last sec-
tion with the windowing modifications in place. Fig-
ure 6(a) shows the aggregate and compliant throughput
seen by each reserved connection after modifications to
the windowing mechanisms. ..It also shows throughput
seen by a best-effort connection between the same source
and destination. As seen in the figure, all connections per-
form as expected. Figure 6(b) plots the amount of excess
bandwidth received by each reserved connection, as well
as the bandwidth received by the best-effort connection.
When compared to Figure 5(b), the reserved connections
obtain a fairer share of the excess bandwidth.

A common concern with any modification to TCP’S win-
dowing mechanism is that the change may be too aggres-
sive and thus, cause unnecessary congestion. The exper-
iments we have conducted so far, including the ones re-
ported in this paper, show no bias towards connections
using the modified windowing mechanism. We experi-
mented with different Aavors of the windowing algorithm.
They differ in the way RWND is computed and CWND is
clocked. We compute RWND by multiplying the reserved

286

CPU Type
Timer setting
Timer handling
Timer canceling

rate with the estimated round-trip time. Depending on
how conservative we want the windowing mechanism to
be, we can use different estimates of round-trip time. We
experimented with both best and average estimates of
round-trip times. In all the experiments we have con-
ducted, they perform equally well. However, in times
of congestion, the estimated round-trip time tends to be
large and thus, the rate-based window can also grow large
during a period of time when the network needs a respite.
Using the best observed round-trip time in this case, al-
lows the connection to be on the conservative side in cal-
culating its rate-based window.

133MHz PowerPC 33MHz POWER

7.4ps 1 4 . 0 ~ s
7 . 1 ~ s 3 0 . 1 ~ s
6 . 5 ~ s 9 . 6 ~ s

5 Fine- Grained Timers

This section explores the cost associated with deploying
fine-grained timers into TCP as well as the benefits of
using such a timer for sending data.

5.1 Timer Overheads

In our description of the timed transmission algorithm,
we have assumed the existence of connection-specific
timers. However, it is possible, and desirable, to use a
common timer shared amongst all reserved connections.
Such optimizations can be easily incorporated using tech-
niques such as the protocol timer services in the BSD-style
TCP/IP stack. One of the common criticisms against
the use of timers is the overhead associated with han-
dling timer interrupts. For that reason, TCP uses coarse-
grained (typically 200ms and 500ms) timers. However,
the state of the art in processor technology has advanced
considerably since the first design and implementation
of TCP. Processors today are much faster, and conse-
quently the overheads of handling timer interrupts are
much lower.

Table 1 shows the overheads of setting, canceling, and
handling timers in two IBM ~ s / 6 0 0 0 machines running
AIX 4.2, one equipped with a 33MHz POWER CPU and
the other with a 133 MHz Powerpc CPU. We observe that
the overheads of timer operations in modern systems (133
MHz PowerPC) are quite small. Even when older systems,
such as the 33MHz ~s/6000, are considered in this study,
the overheads are well within acceptable limits. Note that
these measurements were taken without any optimization
to the timer data structures in the AIX kernel. In AIX 4.2

timer blocks are arranged in a linear array. The overhead
of timer operations are expected to be even lower if the
timer blocks are stored as a hash table. However, at this
point such an optimization is not deemed necessary.

5.2 Buffer Requirements

While there are concrete costs associated with using fine-
grained timers, there are also significant benefits. One
benefit in using these timers, is that it reduces the size
of the token buckets used for each application. From the
calculations in Section 4, given a certain timer interval,
the token bucket depth should be at least TimerInter-
Val x TokenBucketRate+(PacketSize-1) to prevent token
loss. Because the token bucket size grows linearly with
the timer interval, using fine-grained timers allow appli-
cations to request smaller token buckets. Because each
router must be able to buffer a burst the size of the entire
token bucket for each application, the size of these buck-
ets has a direct impact on the amount of buffer space
required in network routers.

Figure 7 shows the impact that the timer-interval has
on the throughput of the 4Mbs connection using the same
multi-hop network setup. The simulations were run us-
ing both the timer and windowing modifications as de-
scribed in Section 4. As Figure 7(a) shows, as the timer
interrupt interval increases, the throughput of this con-
nection drops considerably. The reason why this drop is
so dramatic is that the lack of buffer space in the network
causes a significant amount of burst losses. Burst losses
severely limit the throughput of Reno TcP-variants since
it takes one round trip time to recover from each loss.
This causes the sending TCP to degenerate into a stop-
and-wait protocol. Figure 7(b) shows the results of the
same experiment using buffers which are twice the size
(160KB). With significantly larger buffers, the connection
is able to get its share of the bandwidth over a larger
range of timer interrupt intervals.

6 CBQandERED
The experiments in this paper have shown how to ef-

fectively provide minimal bandwidth guarantees in the
network using ERED gateways. While this service may be
useful to a large class of applications, in a fully-evolved in-
tegrated services Internet, such a mechanism must coexist
with other mechanisms for providing a range of alterna-
tive services. This will allow applications written using
such a service, to continue to work as the Internet infras-
tructure is upgraded and more sophisticated packet and
link scheduling support is put into place. In this section,
we examine the different approaches to traffic manage-
ment in the Internet and the role the ERED mechanism
can play in such an environment.

Class-based queueing (CBQ) [5] is one of the most pop-
ular mechanisms proposed for packet and link scheduling

.

281

1.0 1
0.0 40.0 80.0 120.0 160.0 200.0 240.0

Time (s)

6.0

a
5.0

- 4.0
Y)

Y 9
$ 3.0
U
m
* 2.0

1 .o

0.0
0.0 40.0 80.0 120.0 160.0 200.0 240.0

Time (5)

(a) 80KB Buffers. (b) 160KB Buffers.

Figure 7: Aggregate throughput of 4Mbs connection over various timer interrupt granularities.

in an integrated services Internet. In CBQ, datagrams be-
longing to different classes are put in different queues in
the routers. The queues are serviced in different priority
order based on the allocation given to the associated traf-
fic class. The use of per-session fair queueing mechanisms,
including the weighted fair queueing (WFQ) [1,2,6,7,14-
161, has also been considered in this context. One possi-
ble way to realize controlled-load service is to treat each
controlled-load connection as a separate session and re-
serve a rate of service commensurate with its Tspec. Any
excess traffic will then automatically receive a fair share
of the residual capacity. While per-session fair queueing
provides an effective way to implement controlled-load
service, the underlying scheduling mechanism may be ex-
pensive, especially in the overloaded and under-powered
routers in today’s Internet.

While the ERED mechanism can be thought of as a sim-
ple extension to the queueing structure in the existing
routers, it can also be embedded into more sophisticated
scheduling disciplines such as the ones described above.
For example, the ERED queue can be easily embedded as
a separate queue in a WFQ system supporting multiple
service classes or as a class queue in CBQ. Embedded
as a class in CBQ, this mechanism can be used to pro-
vide weighted bandwidth sharing between connections of
a class. By aggregating connections with varying band-
width requirements in one class, we reduce the total num-
ber of classes in a class-based queue and thus, the over-
head in the link scheduling. To examine this possibility,
we embedded the ERED queue into the CBQ implementa-
tion of the NS simulator. We then examined its perfor-
mance in the network shown in Figure 8(a). This network
consists of two agencies, A aqd B, who share a common
link (between nodes C and D) to a provider’s network.
In this setup, agency A is entitled to 20% of the link’s

bandwidth while agency B is entitled to the remaining
80% of it. Node C uses c a g with 20% of the link share
allocated to traffic from agency A, and 80% allocated to
traffic from agency B. Note that while either one of the
two agencies is idle, the other, active agency, is entitled
to use the entire link for itself. Both queues within the
CBQ system use the ERED mechanism to share bandwidth
between individual connections.

Figure 8(b) shows the throughput seen by connections
originating from A and B and traversing the link between
C and D. Connections A1 and A2 originate from agency
A and have reserved rates of 0.5Mbs and lMbs, respec-
tively. They start at times O s and 100s. Connections B1
and B2 originate from agency B and have reserved rates
of iMbs and 2Mbs. These connections start at times 200s
and ~ O O S , respectively. As the graph shows, between Os
and l o o s , connection AI gets all of the bandwidth since it
is the only active connection. Between 100s and 200s (af-
ter connection A2 starts) the link’s bandwidth is shared
between connections A1 and A2. However, since A2 has
a lMbs reservation, it gets slightly more total bandwidth
than A l . When €31 starts at 200s, it is the only active
connection from agency B. Hence, it receives the entire
80% of the link’s bandwidth (8Mbs). The two connec-
tions from agency A then share the remaining bandwidth
(2Mbs) according to their reservations. Finally, at 300s,
connection B2 starts and the 8Mbs allocated to agency B
is split between connection B1 and B2 in accordance with
their reservations, that is, B2 gets approximately i . O M b s
more than B1. What happens throughout the course of
this experiment is that when the class is allowed to be
overlimited, the ERED queue is drained at a sufficient rate
so as to support higher rates of input data. As soon as the
class becomes regulated, the queue builds up, the ERED
queue drops unmarked packets and the connections in the

Class A:

Class B:

Connection A1 (A->D) with 0.5 Mbs reserved (la)
Connection A2 (A->D) with 1.0 Mbs reserved (t=lOO)
Connection B1 (B->D) with 1.0 Mbs reserved (t=200)
Connection B2 (B-7D) with 2.0 Mbs reserved (t=3300)

(a) Network Topology.

1 I
0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0

Time (s)

(b) Throughput.

Figure 8: CBQ experiment.

class resumes sending at a lower rate.

7 Conclusions

We have examined ways of providing a large class of
overload-sensitive Internet applications with a useful ser-
vice using minimal enhancements to the network infras-
tructure. Towards this end, we have proposed a simple
extension to the packet queueing and scheduling mecha-
nism at the routers. We have shown how minor modifi-
cations to TCP senders, in conjunction with this simple
network support, allows connections with reservations to
obtain their reserved rates and share excess bandwidth in
the network.

The study reported in this paper can be extended in
many ways. We are working on implementing and experi-
menting with the mechanisms proposed here in a network
testbed. We are also considering applications of this work
in the context of other transport protocols, especially RTP
and UDP. Many multimedia applications do not require
the reliable delivery that TCP provides. While this study
focuses on TCP, implementing a similar scheme using RTP
and UDP fitted with T c P ’ s flow-control mechanism is pos-
sible.

Another key area of future work is the admission con-
trol policies for such a service. While we have not ad-
dressed this aspect here, we plan on using our observa-
tions on token bucket depths, router buffer sizes, source
burstiness, and ERED-parameterization to develop admis-
sion control policies for this service.

We also plan on examining the effect of round-trip time
on end-to-end throughput. A number of studies have
shown that relative throughput seen by best-effort con-

nections sharing a common bottleneck link has a strong
dependence on their round-trip times. Preliminary results
(not reported here) from our experiments, show that the
compliant throughput of connections with reservations
is largely independent of their round-trip times. How-
ever, the non-compliant part of the throughput and the
throughput seen by best-effort connections are sensitive
to round-trip time. A thorough investigation is underway
to explore this aspect in more detail.

On a final note, any allocation-based sharing of net-
work capacity has to be associated with a policy and/or
pricing scheme. We believe that the proposal of priori-
tizing a part of a traffic stream with marking and com-
peting with best-effort traffic for sharing the residual ca-
pacity fits in very well with pricing schemes which are
currently being considered for the Internet. Users pay-
ing for a certain level of marking see incrementally better
performance over those who do not. During times of light
loads, when the incremental costs of congestion are low,
the user can decrease his/her level of bandwidth reser-
vation and costs until an acceptable level of aggregate
throughput is observed.

References

[l] R. Braden, D. Clark, and S. Shenker. Integrated
Services in the Internet Architecture: An Overview.
RFC 1633, June 1994. ISI/MIT/PARC.

[2] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of Fair Queuing Algorithm. In Proceed-
ings of SIGCOMM, 1989.

2s9

[3] W. Feng, D. Kandlur, D. Saha, and K. Shin. TCP
Enhancements for an Integrated Services Internet.
Technical Report RC 20618, IBM Research, Novem-
ber 1996.

[4] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. ACM/IEEE
Transactions on Networking, 1(4):397-413, August
1993.

[5] S. Floyd and V. Jacobson. Link-sharing and Re-
source Management Models for Packet Networks.
IEEE/ACM Transactions on Networking, 3(4), Au-
gust 1995.

[6] S. Golestani. A Self-clocked Fair Queuing Scheme
for Broadband Applications. In Proceedings of IN-
FOCOM, June 1994.

[7] P. Goyal, H. Vin, and H. Cheng. Start-time Fair
. Queuing: A Scheduling Algorithm for Integrated

Services Packet Switching Networks. In Proceedings
of ACM SIGCOMM, pages 157-168, August 1996.

[8] R. Goyal, R. Jain, S. Kalyanaraman, and S. Fahmy.
UBR+: Improving Performance of TCP over
ATM-UBR Service. Submitted to ICC 1997:
http://www.cis.ohio-state.edu/ jain/icc97.ps1 1996.

[9] J . C. Hoe. Improving the Start-up Behavior of a
Congestion Control Scheme for TCP. In Proceedings
of ACM SIGCOMM, pages 270-280, August 1996.

[lo] V. Jacobson, R. Braden, and D. Borman. TCP Ex-
tensions for High Performance. Internet Draft draft-
ietf-tcplw-high-performance-OO.txt, February 1997.
LBL/ISI/BSDI.

[ll] S. McCanne and S. Floyd. http://www-
nrg.ee.lbl.gov/ns/. ns - LBNL Network Simulator,
1996.

[12] P. Mishra. Effect of Leaky Bucket Policing on TCP
over ATM performance. In Proceedings of ICC, 1996.

[13] E. Rathgeb. Modeling and Performance Comparison
of Policing Mechanisms for ATM Networks. IEEE
Journal on Selected Areas of Communication, 9(3),
1991.

[14] J. Rexford, A. Greenberg, and F. Bonomi.
Hardware-Efficient Fair Queueing Architecture for
High-speed Networks. In Proceedings of INFOCOM,
March 1996.

[15] S. Shenker, D. Clark, and L. Zhang. A Scheduling
Service Model and a Scheduling Architecture for an
Integrated Services Packet Network. Unpublished,
1993.

[16] M. Shreedhar and G. Varghese. Efficient Fair Queu-
ing using Deficit Round Robin. IEEE/A CM Trans-
actions on Networking, 4(3), June 1996.

[17] J . Wroclawski. Specification of controlled-load net-
work element service. Internet Draft draft-ietf-
intserv-ctrl-load-svc-Od.txt, November 1996. MIT.

[18] L. Zhang, S. Shenker, and D. Clark. Observations on
the Dynamics of a Congestion Control Algorithm:
The Effects of Two-way Traffic. In Proceedings of
ACM SIGCOMM, pages 133-148, August 1991.

290

http://www.cis.ohio-state.edu
http://www

