
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 9, SEPTEMBER 1997 599

Comment on
“A Pre-Run-Time Scheduling Algorithm

for Hard Real-Time Systems”

Tarek F. Abdelzaher and Kang G. Shin, Fellow, IEEE

Abstract —In Shepard and Gagne [1], a branch-and-bound implicit
enumeration algorithm is described whose purpose is to generate a
feasible schedule, if any, for each processor on a multiprocessing node
running hard real-time processes. The optimization criterion is to
minimize process lateness defined as the difference between the process
completion time and deadline. We show in this correspondence that this
algorithm does not always succeed in finding a feasible solution, and
describe the reason why the algorithm might fail.

Index Terms —Pre-run-time scheduling, hard real-time systems,
branch and bound scheduling algorithm, multiprocessors, precedence
constraints.

———————— ✦ ————————

1 INTRODUCTION

SHEPARD AND GAGNE [1] describe a pre-run-time branch-and-
bound implicit enumeration algorithm, which attempts to find a
feasible schedule for a set of hard real-time processes subject to
precedence and exclusion constraints. Processes are assumed to be
statically assigned to processors on a multiprocessing node.

Compared to ad hoc hand-crafted scheduling methods, the ap-
plication of this pre-run-time scheduling algorithm to hard real-
time systems should reduce the resources required for run-time
scheduling and context switching. Unless the application violates
its load specification, pre-run-time scheduling also provides a
means to verify and guarantee the observance of timing con-
straints throughout the life cycle of the system. In addition, the
scheduling model used in [1] provides a systematic and tractable
approach to modifying application software. Namely, when the
software is modified, the applicable scheduling model parameters
may be altered, and a new set of run-time schedules can be gener-
ated. This approach eliminates the need for fine tuning the code
via repeated stochastic simulations and may reduce the cost of
software maintenance. An important contribution of [1] is apply-
ing their algorithm to a model of a real system, namely the F-18
Mission Computer Operational Flight Program [2]. Due to the
importance of automated pre-run-time scheduling to the design
and maintenance of hard real-time systems, we would like to clar-
ify in this correspondence the fact that the algorithm in [1] is not
guaranteed to find a feasible solution (where no process misses its
deadline), when one exists. We also provide the reason why it
occasionally fails.

The general idea of the branch-and-bound algorithm in [1] is to
minimize schedule lateness defined as the maximum process late-
ness over all scheduled processes. At each search vertex an earliest
deadline first (EDF) schedule is found for each processor (subject
to the defined constraints between processes), a process with the
maximum lateness (the latest process) is identified, and an attempt
to reduce its lateness is made. Shephard and Gagne [1] argue that

“to improve the lateness of the latest process in a schedule, that
process must be forced to precede or preempt another process pre-
sently preceding it on the same schedule” (p. 673). This is accom-
plished by appropriately introducing an extra precedence or pre-
emption constraint. A search vertex is expanded by generating a
child vertex for each possible lateness improvement; that is, for
each possible way the latest process may be forced to precede or
preempt some earlier process on the same schedule (by introduc-
ing an extra constraint) such that schedule lateness is reduced. The
algorithm terminates when a feasible solution is reached, or when
no further improvements (over the nonfeasible schedules obtained
thus far) are possible, i.e., no more vertices can be expanded. As
will be demonstrated below, in the latter case a feasible solution
may actually exist.

2 Counterexample
Consider a set of four processes T1, T2, T3, and T4, with a constraint
T3 precedes T2. No exclusion constraints are defined (specifically, no
exclusion constraint exists between T1 and T2). Each process Ti has
an arrival time ri, a computation time ci, and a deadline di as
shown in Table 1. To account for precedence constraints, task arri-
val times and deadlines are modified as described in [1]. Thus, the
arrival time r2 becomes r2 = 0 + c3 = 2. Similarly, the deadline d3
becomes d3 = 12 � c2 = 7.

TABLE 1
PROCESS DATA

Task ci ri di

T1 4 4 11

T2 5 0 12

T3 2 0 12

T4 3 0 6

Assume the system has two processors, P1 and P2. Let processes
T1 and T2 be assigned to processor P1, and processes T3 and T4 be
assigned to processor P2. Fig. 1a depicts the EDF schedule ob-
tained at the root of the search. The latest process is T2 , which is
scheduled after process T1 on P1. The schedule is not feasible be-
cause T2 misses its deadline. According to [1], since T1 has an ear-
lier deadline than T2, forcing T2 to precede or preempt T1 can only
increase schedule lateness. Thus, the root vertex cannot be ex-
panded and the algorithm terminates with no feasible solution.
However, a feasible solution does exist! If process T3 is scheduled
before T4 on P2, all processes meet their deadlines as depicted in
Fig. 1b.1 The resulting schedule, however, is no longer EDF.

The reason why the algorithm failed to find a feasible solution
is that it attempts to reduce schedule lateness by modifying only
the schedule of the processor running the latest task. In general, if
the latest process has predecessors on other processors it is possi-
ble to improve lateness by shifting these predecessors earlier in
their schedules. This aspect was apparently overlooked by the
authors of [1].

It is conjectured that one way to fix this flaw is to extend the
notion of a contiguous set, used in [1], to span over multiple proces-
sors.2 The contiguous set, as defined in [1], is the set of all proc-
esses immediately preceding the latest process on the same proc-
essor in a continuous execution sequence (including the latest
process itself). The branching function considers rescheduling only
the processes in the contiguous set, all of which are on the same
processor with the latest process. A pre-run-time multiprocessor

1. To obtain the schedule in Fig. 1b, we also need to permit T1 to pre-
empt T2 by introducing a corresponding preemption constraint [1].

2. The application of this idea to the algorithm in [1] was suggested by
one of the referees reviewing an earlier version of this correspondence.

0098-5589/97/$10.00 © 1997 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• T.F. Abdelzaher and K.G. Shin are with the Real-Time Computing Labora-
tory, Department of Electrical Engineering and Computer Science, Univer-
sity of Michigan, Ann Arbor, MI 48109.

 E-mail: {zaher, kgshin}@eecs.umich.edu.

Manuscript received 14 June 1995.
Recommended for acceptance by D. Eager.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 105650.

600 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 9, SEPTEMBER 1997

scheduling algorithm, which uses the extended notion of the con-
tiguous set is proposed in Xu [3]. It defines it as a set Z[l] of all
processes in the period preceding and including the latest process
such that within that period there does not exist any time where all
processors are idle. This allows the branching function to modify
schedules of other processors when rescheduling processes in the
contiguous set. Further intuition behind this definition is de-
scribed in [3].

It should be noted that [3] does not supersede the algorithm in
[1] because it attempts to solve a slightly different multiprocessor
scheduling problem. While [3] allows processes to run/resume on
any processor, [1] assumes a static process-to-processor assign-
ment which is an extra constraint. Also, [3] considers nonpre-
emptive scheduling, while [1] allows preemption.

ACKNOWLEDGMENT

The work reported in this paper was supported, in part, by the
Advanced Research Project Agency (ARPA), monitored by the
United States Air Force Rome Laboratory under Grant No. F30602-
95-1-0044. Any opinions, findings, and conclusions or recommen-
dations are those of the authors and do not necessarily reflect the
views of the funding agency.

REFERENCES
[1] T. Shepard and M. Gagne, “A Pre-Run-Time Scheduling Algo-

rithm for Hard Real-Time Systems,” IEEE Trans. Software Eng.,
vol. 17, no. 7, pp. 669–677, July 1991.

[2] T. Shepard and M. Gagne, “A Model of the F-18 Mission Com-
puter Software for Pre-Run-Time Scheduling, IEEE 10th Int’l Conf.
Distributed Computing Systems, Paris, France, May 1990.

[3] J. Xu, “Multiprocessor Scheduling of Processes with Release
Times, Deadlines, Precedence and Exclusion Relations,” IEEE
Trans. Software Eng., vol. 19, no. 2, pp. 139–154, Feb. 1993.

(a)

(b)

Fig. 1. The process schedule. (a) The best schedule obtained by the
algorithm in [1]; (b) the optimal schedule for the given task set.

