
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2808547

ARMADA Middleware Suite

Article · April 2000

Source: CiteSeer

CITATIONS

16
READS

41

14 authors, including:

Some of the authors of this publication are also working on these related projects:

Participatory Sensing View project

NetS-NOSS: Towards Dynamically Reconfigurable Mobile, Multimodal Sensing Systems View project

Wu-chang Feng

Portland State University

107 PUBLICATIONS   3,672 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Wu-chang Feng on 06 October 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2808547_ARMADA_Middleware_Suite?enrichId=rgreq-7e47639ab5097b291497f72c0c900ebe-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg1NDc7QVM6MTQ5NDA0NzY1OTIxMjgwQDE0MTI2MzIyODAyNTE%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2808547_ARMADA_Middleware_Suite?enrichId=rgreq-7e47639ab5097b291497f72c0c900ebe-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg1NDc7QVM6MTQ5NDA0NzY1OTIxMjgwQDE0MTI2MzIyODAyNTE%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Participatory-Sensing-2?enrichId=rgreq-7e47639ab5097b291497f72c0c900ebe-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg1NDc7QVM6MTQ5NDA0NzY1OTIxMjgwQDE0MTI2MzIyODAyNTE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/NetS-NOSS-Towards-Dynamically-Reconfigurable-Mobile-Multimodal-Sensing-Systems?enrichId=rgreq-7e47639ab5097b291497f72c0c900ebe-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg1NDc7QVM6MTQ5NDA0NzY1OTIxMjgwQDE0MTI2MzIyODAyNTE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7e47639ab5097b291497f72c0c900ebe-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg1NDc7QVM6MTQ5NDA0NzY1OTIxMjgwQDE0MTI2MzIyODAyNTE%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wu-chang_Feng?enrichId=rgreq-7e47639ab5097b291497f72c0c900ebe-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg1NDc7QVM6MTQ5NDA0NzY1OTIxMjgwQDE0MTI2MzIyODAyNTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wu-chang_Feng?enrichId=rgreq-7e47639ab5097b291497f72c0c900ebe-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg1NDc7QVM6MTQ5NDA0NzY1OTIxMjgwQDE0MTI2MzIyODAyNTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Portland_State_University?enrichId=rgreq-7e47639ab5097b291497f72c0c900ebe-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg1NDc7QVM6MTQ5NDA0NzY1OTIxMjgwQDE0MTI2MzIyODAyNTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wu-chang_Feng?enrichId=rgreq-7e47639ab5097b291497f72c0c900ebe-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg1NDc7QVM6MTQ5NDA0NzY1OTIxMjgwQDE0MTI2MzIyODAyNTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wu-chang_Feng?enrichId=rgreq-7e47639ab5097b291497f72c0c900ebe-XXX&enrichSource=Y292ZXJQYWdlOzI4MDg1NDc7QVM6MTQ5NDA0NzY1OTIxMjgwQDE0MTI2MzIyODAyNTE%3D&el=1_x_10&_esc=publicationCoverPdf


1



ARMADA Middleware Suite

T. Abdelzaher, S. Dawson, W. Feng, S. Ghoshy, F. Jahanian,
S. Johnson, A. Mehra, T. Mitton, J. Nortony, A. Shaikh,

K. Shin, V. Vaidyany, Z. Wang, H. Zou

Real-Time Computing Laboratory y Honeywell Technology Center
Dept. of Electrical Engineering and Computer Science Honeywell, Inc.

University of Michigan 3660 Technology Drive
Ann Arbor, MI 48109-2122 Minneapolis, MN 55418

Abstract
ARMADA is a set of communication and middleware ser-
vices that provide support for fault-tolerance and end-to-
end guarantees for embedded real-time distributed appli-
cations. Since the real-time performance of such appli-
cations depends heavily on the communication subsystem,
the first goal of the project was to develop a predictable
communication service and architecture to ensure QoS-
sensitive message delivery. Second, ARMADA aimed to
offload the complexity of developing fault-tolerant appli-
cations from the application programmer by focusing on
a collection of modular, composable middleware for fault-
tolerant group communication and replication under tim-
ing constraints. Finally, we developed tools for testing and
validating the behavior of our services. In this paper, we
give a brief overview of the ARMADA project, describing
the architecture and services it provides, along with its im-
plementation status.
Keywords: distributed real-time system, communication
protocol, fault-tolerant applications.

1 Introduction
Real-time embedded systems have evolved during the

past several decades from small custom-designed digi-
tal hardware to large distributed processing systems. As
these systems become more complex, their interoperabil-
ity, evolvability and cost-effectiveness requirements moti-
vate the use of commercial-off-the-shelf (COTS) compo-
nents. This introduces the challenge of constructing de-
pendable and predictable real-time services for application
developers on top of inexpensive hardware and software
components which have minimal support for timeliness�This work is supported in part by a research grant from the Defense
Advanced Research Projects Agency, monitored by the U.S. Air Force
Rome Laboratory under Grant F30602-95-1-0044.

and dependability guarantees. We are addressing this chal-
lenge in the ARMADA project.

ARMADA is a collaborative project between the Real-
Time Computing Laboratory (RTCL) at the University of
Michigan and the Honeywell Technology Center. The goal
of the project is to develop and demonstrate an integrated
set of communication and middleware services and tools
which realize embedded fault-tolerant and real-time ser-
vices on distributed, evolving computing platforms. These
techniques and tools together compose an environment of
capabilities for designing, implementing, modifying, and
integrating real-time distributed systems. Key challenges
addressed by the ARMADA project include: timely de-
livery of services with end-to-end hard and soft real-time
constraints; dependability of services in the presence of
hardware or software failures; scalability of computation
and communication resources; and exploitation of open
systems and emerging standards in operating systems and
communication services. Due to space considerations,
this paper provides an introduction and basic overview of
the different middleware services developed as part of the
project. For a more complete description of the ARMADA
project and its ongoing research, the reader is referred to
[1].

The ARMADA project was divided into three comple-
mentary thrust areas: (i) low-level middleware for real-
time communication support, (ii) middleware services for
fault-tolerant group communication and replication, and
(iii) dependability evaluation and validation tools. Figure 1
summarizes the structuring of the ARMADA environment.

The first thrust focused on the design and development
of real-time communication services for a microkernel.
These services could then be used as a foundation for con-
structing higher-level real-time middleware services. We
present a generic architecture for designing the commu-
nication subsystem which allows predictability and QoS



API

APPLICATIONS

MIDDLEWARE
SERVICESTOOLS

EVALUATION

CHANNELS
REAL-TIME

Microkernel

Figure 1: Overview of ARMADA Environment.

guarantees to be maintained. This architecture is indepen-
dent of any particular communication service. We illustrate
the architecture by presenting the design of thereal-time
channel: a low-level communication service that imple-
ments a simplex, ordered virtual connection between two
networked hosts and provides either deterministic or sta-
tistical end-to-end delay guarantees between each sender-
receiver pair.

The second thrust of the project focused on a collection
of modular and composable middleware services (or build-
ing blocks) for constructing embedded applications. A lay-
ered open-architecture supports modular insertion of a new
service or implementation as requirements evolve over the
lifespan of a system. The ARMADA middleware services
include a suite of fault-tolerant group communication ser-
vices with real-time guarantees, called RTCAST, which
are intended to support embedded applications with fault-
tolerance and timeliness requirements. ARMADA also in-
cludes a real-time primary-backup (RTPB) replication ser-
vice, which ensurestemporally consistentreplicated ob-
jects on redundant nodes.

The third thrust of the project was to build a toolset for
validating and evaluating the timeliness and fault-tolerance
capabilities of the target system. Although a more com-
plete description of the tools is beyond the scope of this
paper, details are available in [1, 2].

Figure 2 gives an overview of a prospective applica-
tion to illustrate the utility of our services for embedded
real-time fault-tolerant systems. We believe that by devel-
oping our middleware services in conjunction with a real-
world application it is possible to design services and, just
as importantly, interfaces to those services, that are robust
and easily usable by application developers. This applica-

Sensory Input

Track Data Server

Hypothesis 
Testing

Plot Track Assignment

Threat
Analysis

and Scheduling
Assignment

Weapon

Figure 2: A command and control application

tion, developed at Honeywell, is a subset of a command
and control facility. Consider a radar installation where
a set of sensors are used to detect incoming threats. Hy-
potheses are formed regarding the identity and positions
of the threats, and their flight trajectories are computed
accordingly. These trajectories are extrapolated into the
future and deadlines are imposed to intercept them. The
time intervals during which the estimated threat trajecto-
ries are reachable from various ground defense bases are
estimated, and appropriate resources (weapons) are com-
mitted to handle the threats. Eventually, the weapons are
released to intercept the threats.

The services required to support applications such as
this are derived naturally from their operating require-
ments. In our sample application for example, based on
the anticipated system load, communication between dif-
ferent system components (the different boxes in Figure 2)
must occur in bounded time to ensure a bounded end-to-
end response from threat detection to weapon release. Our
real-time communication service computes and enforces
predictable deterministic bounds on message delays given
an application traffic specification. Critical system com-
ponents such as hypothesis testing and threat identification
have high dependability requirements which are best met
using active replication. For such components, RTCAST
exports multicast and membership primitives to facilitate
fault detection, fault handling, and consistency manage-
ment of actively replicated tasks. Similarly, extrapolated
trajectories of identified threats represent critical system
state. A backup of such state needs to be maintained con-
tinually and updated to represent the current state within a
tolerable consistency (or error) margin. The RTPB service
is implemented to meet such requirements.

The remainder of this paper describes these services in
more detail. Section 2 introduces our generic architec-
ture for designing the communication subsystem. Section



3 presents a description of the middleware services. Fi-
nally, section 4 provides a description of our implementa-
tion platform and a summary of the current implementation
status of each project component.

2 ARMADA Real-Time Communication
Architecture

In this section we present the overall architecture of the
ARMADA real-time communication service. This service
provides a number of real-time communication guaran-
tees which can be utilized by other middleware to provide
higher-level services. The first half of this section describes
the goals and paradigm of our real-time communication ar-
chitecture. The second part highlights key aspects of the
service architecture that meet our stated goals.
2.1 Real-Time Communication Service: Goals

and Paradigm
The primary goal of the real-time communication service
is to provide applications and middleware with a service
that can be used to request and obtain (real-time) guaran-
teed QoS unicast connections between hosts. Such a ser-
vice must satisfy three primary architectural requirements
for guaranteed-QoS communication [3]: (i) maintenance
of per-connection QoS guarantees, (ii) overload protection
via per-connection traffic enforcement, and (iii) fairnessto
best-effort traffic. In order for the service to satisfy these
requirements, an application must specify the worst-case
traffic profile it expects to generate, and the end-to-end
QoS it desires for parameters such as delay, bandwidth,
and likelihood of packet loss. A secondary, but also very
important, goal is to design the service in a way that al-
lows (a) constituent architectural components to be reused
for other middleware services, and (b) flexibility to real-
ize other QoS paradigms and service models. This is im-
portant because in our environment, multiple middleware
services must coexist and interoperate; reusing architec-
tural components, whenever possible, makes service inte-
gration relatively easier. Equally important, in order to re-
alize generic components, one must decouple the service
model from the component architecture. This facilitates
the ability to extend the service to more relaxed QoS mod-
els such as probabilistic guarantees, QoS negotiation, and
adaptation.

To realize the real-time communication service, we
adopt the service model ofreal-time channels[4, 5], a
paradigm for guaranteed-QoS communication in packet-
switched networks. This model is similar to other propos-
als for guaranteed-QoS communication [6], and we have
developed significant insights by extending the model ap-
propriately for practical use [3, 7]. A real-time channel isa
simplex, fixed-route, virtual connection between a source
and a destination host, with sequenced messages and asso-
ciated performance guarantees on message delivery.

S I I D

D: Destination nodeS: Source node I: Intermediate node

request

reply

Figure 3: Signaling between two hosts.

resource
reservation

NETWORK

APPLICATIONS & MIDDLEWARE

RTCOP CLIPS

signalling data transfer

REAL-TIME COMMUNICATION API

resources
local

RTC SERVICE

LOWER PROTOCOL STACK LAYERS

Figure 4: Software architecture for real-time communica-
tion.

Real-time communication via real-time channels is per-
formed in three phases (see Figure 3). In the first phase,
the source host S (sender) creates a channel to the desti-
nation host D (receiver) by specifying the channel’s traffic
parameters and QoS requirements. Signaling requests are
sent from S to D via one or more intermediate (I) nodes;
replies are delivered in the reverse direction from D to S.
At each hop, an admission test is performed and sufficient
resources are allocated and reserved to meet the channel’s
QoS requirements. If the channel is successfully estab-
lished, the second phase begins and S uses the channel
to send messages to D. Finally, the sender tears down the
cahnnel when communication is complete so that resources
may be released. This is the third phase of the communi-
cation.
2.2 Service Architecture
Figure 4 illustrates the software architecture of our
guaranteed-QoS service at hosts and intermediate nodes.
The core functionality of the service is realized via three
distinct components that interact to provide guaranteed-
QoS communication: the real-time communication API,
the real-time channel ordination protocol (RTCOP), and
the communication library for implementing priority se-
mantics (CLIPS). Applications access the service via the
RTC API. End-to-end signalling and resource reservation



is coordinated by RTCOP and run-time management of
resources for data transfer is performed by CLIPS. The
CORDS services framework, described in section 4, pro-
vides a common interface which allows these components
to be implemented independently and composed into a sin-
gle protocol stack. As mentioned above, the run-time re-
source management in the service architecture is based in
large part on the architecture proposed in [3], with signif-
icant enhancements to accommodate the specific require-
ments of the ARMADA project and its implementation en-
vironment. Details on the internals of the service com-
ponents and their interaction are provided in [8]. A brief
description of the implementation status can be found in
Section 4.

3 ARMADA Composable Middleware
The previous section introduced the architecture of the

ARMADA real-time communication service. This section
now presents a collection of modular and composable mid-
dleware services which build upon this architecture to pro-
vide support for constructing embedded applications. The
ARMADA middleware can be divided into two relatively
independent suites of services:� RTCAST group communication services, and� RTPB real-time primary-back replication service.

The remainder of this section describes each of these ser-
vices in more detail, and section 4 presents the current sta-
tus of their implementation.
3.1 RTCAST Group Communication Services
Process groupsare a widely-studied paradigm for design-
ing dependable distributed systems in both asynchronous
[9, 10, 11, 12] and synchronous [13, 14, 15] environments.
In this approach, a distributed system is structured as a
group of cooperating processes which provide services to
an application. A process group may be used, for example,
to provide active replication of system state or to rapidly
disseminate information from an application to the mem-
bers of the group. Two key primitives for supporting pro-
cess groups in a distributed environment arefault-tolerant
multicast communicationandgroup membership. Coordi-
nation of a process group must address several subtle issues
including delivering messages to the group in a reliable
fashion, maintaining consistent views of group member-
ship, and detecting and handling process or communication
failures. If multicast messages are atomic and globally or-
dered, process group members can be kept consistent when
process state is determined by initial state and the sequence
of received messages.

We developed RTCAST to provide a lightweight fault-
tolerant multicast and membership service for real-time
process groups which exchange periodic and/or aperiodic

messages. The RTCAST group communication does not
require acknowledgments for every message, and message
delivery is immediate without needing additional “rounds”
of message transmissions. RTCAST is designed to sup-
port hard real-time guarantees without requiring a static
schedule to be computeda priori for application tasks and
messages. Instead, an on-line schedulability analysis com-
ponent performs admission control on multicast messages.
The proposed multicast and membership protocols are part
of a larger suite of middleware group communication ser-
vices that form a composable architecture for the develop-
ment of embedded real-time applications. As illustrated in
Figure 5, the RTCAST suite of services include a timed
atomic multicast, a group membership service, and an ad-
mission control service. The first two are tightly coupled
and thus are considered a single service. Clock synchro-
nization is typically required for real-time protocols and
is provided by the clock synchronization service. To sup-
port portability, avirtual network interfacelayer exports a
uniform network abstraction. This interface transparently
handles different network topologies, each potentially hav-
ing different connectivity, timing, or bandwidth character-
istics, by exporting a generic network abstraction to upper
layers. The network is only assumed to support a unicast
datagram service. Finally, the top layer provides an appli-
cation programming interface for implementing distributed
applications using real-time process groups.

Note that each component of the RTCAST exports a
well known interface to the other software components, but
each can be implemented independently and the system
designer can choose to compose only those components
needed to achieve the desired level of service guarantee.
The system designer might also select between different
versions of each component, depending upon the particular
requirements of the application. For example, in a system
with hard real-time constraints, an admission control algo-
rithm might be used which employed a strict, worst-case
analysis when allocating resources and admitting message
traffic, while in a system with softer constraints a differ-
ent implementation of the admission control protocol could
be inserted that would provide higher throughput or faster
response time at the expense of having a less predictable
probability of missed deadlines. If the system designer
only needs RTCAST’s membership and total ordering ser-
vices, he or she may even choose not to include the admis-
sion control protocol at all, reducing the size and system
resources required by the service.

RTCAST supports bounded-time message transport,
atomicity, and total order for multicasts within a group
of communicating processes in the presence of processor
crashes and communication failures. It guarantees agree-
ment on membership among the communicating proces-



Unreliable Unicast Communication

Virtual Network Interface

Real-Time Process Groups API

Admission Control and
Schedulability Analysis

Timed Atomic
Multicast

Communication

Group
Membership

Service

Clock Synchronization

Figure 5: Software architecture for the RTCAST middle-
ware services.

sors, and ensures that membership changes are atomic and
ordered with respect to multicast messages. It is designed
as a a logical ring, with senders taking turns multicast-
ing messages over the network. A processor’s turn comes
when the logical token arrives, or when it times out wait-
ing for it. After its last message, each sender multicasts
a heartbeat that is used for crash detection. The heartbeat
received from an immediate predecessor also serves as the
logical token. Destinations detect missed messages using
sequence numbers and when a processor detects a receive
omission, it crashes. Each processor, when its turn comes,
checks for missing heartbeats and eliminates the crashed
members, if any, from the group membership by multi-
casting a membership change message. Although this gap
detection policy may seem excessively restrictive, in most
fault-tolerant systems the physical network is redundant,
and the likelihood of transmission failures is low. Further-
more, by removing incorrect processors from the group im-
mediately, we can provide immediate delivery at all correct
nodes, which is a significant performance advantage.

A more detailed explanation of RTCAST’s operation
and proof of the correctness of its algorithms are available
in [16].

3.2 Real-Time Primary-backup (RTPB)
Replication Service

While the RTCAST group communication services are
a suitable mechanism for implementing active replication
in real-time systems, some applications may not need such
a strong level of redundancy; instead, they may prefer to
make use of the primary-backup approach. Unfortunately,
traditional primary backup systems can require extra man-

agement overhead and a significant amount of communica-
tion resources as changes to the application state are prop-
agated from the primary to the backup. The timing un-
certainty involved in this approach may make it unsuitable
for use in hard real-time systems. Our Real-Time Primary
Backup (RTPB) service solves this problem by exploit-
ing application data semantics and allowing the backup to
maintain a less current copy of the data that resides on the
primary [17].

With sufficiently recent data, the backup can safely sup-
plant a failed primary; the backup can then reconstruct a
consistent system state by extrapolating from previous val-
ues and new sensor readings. However, the system must
ensure that the lag between the primary and the backup
data is bounded within a predefined time window. Data
objects may have distinct tolerances in how far the backup
can lag behind the primary before the object state becomes
stale. The challenge is to bound the distance between the
primary and the backup such that consistency is not com-
promised, while minimizing the overhead of exchanging
messages between the primary and its backup. We have
designed RTPB to meet these goals.

RTPB employs two types of consistency checking to en-
sure that data at the backup is acceptably recent with re-
spect to the primary. One is theexternal temporal consis-
tencybetween an object in the external world and its image
in the real-time application, and the other is theinter-object
temporal consistencybetween different objects or events.

External temporal consistency is satisfied for an objecti if the timestamp ofi at a server is no later than a predeter-
mined time from its timestamp at the client in the external
world. In other words, the state of the primary server must
closely reflect that of the actual world. This consistency is
also needed at the backup if the backup is to successfully
replace the primary when the primary fails. The consis-
tency restriction placed on the backup may not be as tight
as that on the primary but must be within a tolerable range
for the intended applications.

Inter-object temporal consistency is defined as the time
lag allowed between when an update to one object is per-
formed and when an update must be completed for a sec-
ond object. This lag may be different on the primary and
the backup. For example, an application may specify that
the replica of object B on the primary must be updated
within 100ms after an update to the replica of object A
on the primary, but the replica of object B at the backup
need only be updated within200ms after an update to the
replica of object A at the backup.

By specifying appropriate values for the desired exter-
nal and inter-object consistency constraints, a system de-
signer can use RTPB to meet desired consistency semantics
while incurring less overhead than with traditional replica-



tion techniques. In order to ensure these guarantees, RTPB
operates as follows. Both the client and the primary server
run on the same physical node. First, the client must reg-
ister any object that is to be replicated with the RTPB pri-
mary server, specifying both the update period and the tem-
poral bounds that must be observed at both the primary and
the backup. The primary server performs admission con-
trol to decide whether it has the resources to update the
object at the requested frequency. During registration, any
necessary resources for the object are reserved on both the
primary and backup servers. If there are not enough re-
sources available to satisfy the request, it is rejected.

Once an object is admitted to the system, it will be
backed up by the primary server periodically, always ensur-
ing that the backup is within the requested temporal bound
of the primary. Note that object backups are decoupled
from the application; that is, updates between the appli-
cation and the primary occur independently from updates
between the primary and the backup. This reduces the la-
tency seen by the application when updating objects while
still maintaining the requested consistency semantics.

The primary and backup servers periodically exchange
heartbeat messages. If the backup fails, a new one is started
by the primary. If the primary fails, the backup takes over
as the primary and starts a new copy of the application
using the replicated data objects. It also initiates a new
backup server to maintain redundancy.

A brief description of the implementation status of
RTPB is given in section 4 of this paper. For a more de-
tailed description of the operation and architecture of the
Real-Time primary backup replication service, as well as
proofs of the algorithm’s correctness, see [17, 18].

4 ARMADA Middleware Services
Implementation

To facilitate the development of communication ori-
ented services, our communication subsystem is imple-
mented using thex-kernel object-oriented networking
framework originally developed at the University of Ari-
zona [19], with the CORDS framework extensions for con-
trolled allocation of system resources [20]. The advantage
of using thex-kernel is the ease of composing protocol
stacks. Anx-kernel communication subsystem is imple-
mented as a configurable graph of protocol objects. It al-
lows easy reconfiguration of the protocol stack by adding
or removing protocols. The CORDS framework runs un-
der the OSF MK7.2 Mach operating system, on a testbed
of Intel Pentium-based PCs connected by an off-the-shelf
10 Mbps ethernet network.

Following the microkernel philosophy, our services
were first implemented as user level servers. Clients of the
services are separate processes that communicate with the
servers via a user library which exports the desired mid-

dleware API. Communication-oriented services generally
implement their own protocol stack which lies on top of
the kernel-level communication driver. Although the pro-
tocol stacks usually run in user space, because we are im-
plementing them on a micro-kernel platform we are able
to easily migrate them into the operating system kernel to
improve performance and reduce overhead due to context
switches and data copying. By running in the kernel, we
also benefit from a higher scheduling priority which re-
sults in more predictable thread scheduling and processor
utilization. Figure 6-a and 6-b illustrate the configurations
of user level servers and servers which are colocated in the
kernel, respectively.

Whether the server runs in user space or is colocated
in the microkernel, processes use the same service API to
communicate with it. Automatically-generated stubs in-
terface the user library (implementing the service API) to
the microkernel and the server process. These stubs hide
the details of the kernel’s local communication mechanism
from the programmer of the real-time service, thus making
the service code independent of the specifics of the under-
lying microkernel.

All of the ARMADA middleware services have been
implemented and tested under the CORDS framework.
The Real-Time Channels implementation makes use of the
services provided by CORDS to reserve resources on a per-
connection basis. It also modifies the lower-level ethernet
drivers to support link scheduling and resource reclama-
tion. Real-Time channels currently runs as a user-level
server for development purposes, but as we have already
mentioned it can easily be moved into the operating sys-
tem kernel to improve performance. The implementation
includes an API which exports the Real-Time Channels
service interface to user-level applications.

RTCAST has also been fully implemented within the
CORDS framework. It currently runs as part of the op-
erating system kernel, which gives it a very fast response
time and greatly reduces the latencies associated with fault-
detection and message processing. We have designed a ro-
bust API and an additional service library for RTCAST,
and are in the process of implementing these APIs for use
by application developers. We have conducted extensive
performance tests of RTCAST, and the results compare fa-
vorably to other group multicast protocols [21].

The Real-time Primary Backup system has been imple-
mented and tested with a sample application. It currently
runs as a user-level server, though it also can be moved
into the kernel to improve performance. An API has been
implemented that enables applications to specify their ob-
ject consistency requirements and replicate those objects
on the backup. A performance evaluation of this service is
available in [18].



user

network

Application Application

device driver

(and protocol stack)
Server

Microkernel

LibraryLibrary
   Stub    Stub

user

Application Application

device driver

Server
Colocated

Microkernel

network

Library Library
   Stub   Stub

(a) User level server configuration (b) Colocated server

Figure 6: Service implementation.

In the near future, we plan to port these services to the
Windows NT environment, taking advantage of its micro-
kernel architecture and wide availability to make the AR-
MADA middleware services more accessible to real-time
system developers. Although Windows NT currently does
not provide OS-level real-time support, this functionality
is currently being developed by a number of third parties.
The CORDS framework which we use for our services im-
plementations has been ported to NT, and we have been
made aware of a number of other third-party extensions
which are also being developed for this purpose. We there-
fore feel that it is a promising platform for future real-time
communication development.

5 Conclusions
This paper presented the architecture of the ARMADA
project conducted at the University of Michigan in collab-
oration with the Honeywell Technology Center. We de-
scribed a number of communication and middleware ser-
vices developed in the context of this project, and illus-
trated the general methodology adopted to design and in-
tegrate these services. For modularity and composability,
ARMADA middleware was realized as a set of servers on
top of a microkernel-based operating system. Special at-
tention was given to the communication subsystem since
it is a common resource for the middleware services devel-
oped. We proposed a general architecture for QoS sensitive
communication, and also described a communication ser-
vice that implements this architecture.

We are currently redesigning an existing command and
control application to benefit from the ARMADA middle-
ware. The application requires bounded-time end-to-end
communication delays which are guaranteed by our com-
munication subsystem, as well as fault-tolerant replication
and backup services which are provided by RTCAST’s

group communication and membership support. It also
makes use of the primary-backup replication service to en-
sure critical data integrity.

Our services and tools are designed independently of
the underlying microkernel or communication subsystem;
our choice of experimentation platform was based largely
on the rich protocol development environment provided by
x-kernel and CORDS. For better portability,we are extend-
ing our communication subsystem to provide a socket-like
API and looking at implementing it on other platforms,
such as Windows NT. We are also investigating the scala-
bility of the services developed. We are looking into appro-
priate ways of defining generic structural system compo-
nents and composing large architectures from these com-
ponents such that desirable properties are globally pre-
served. It is our hope that by developing the “tokens”
and “operators” of such system compositions, we will be
able to build predictable analytical and semantic models of
larger systems based on the properties of their individual
constituents.

References
[1] T. Abdelzaher, S. Dawson, W. Feng, F. Jahanian,

S. Johnson, A. Mehra, T. Mitton, A. Shaikh, K. Shin,
Z. Wang, and H. Zou, “ARMADA Middleware and
Communication Services,” Technical report, Dept. of
Electrical Engineering and Computer Science, Uni-
versity of Michigan, 1997. Submitted for publication.

[2] S. Dawson, F. Jahanian, and T. Mitton, “Testing of
Fault-Tolerant and Real-Time Distributed Systems
via Protocol Fault Injection,” inInternational Sym-
posium on Fault-Tolerant Computing, pp. 404–414,
Sendai, Japan, June 1996.



[3] A. Mehra, A. Indiresan, and K. Shin, “Structur-
ing Communication Software for Quality of Service
Guarantees,” inProc. 17th Real-Time Systems Sym-
posium, pp. 144–154, December 1996.

[4] D. Ferrari and D. Verma, “A Scheme for Real-time
Channel Establishment in Wide-Area Networks,”
IEEE Journal on Selected Areas in Communications,
vol. 8, no. 3, pp. 368–379, April 1990.

[5] D. Kandlur, K. Shin, and D. Ferrari, “Real-time Com-
munication in Multi-hop Networks,”IEEE Trans. on
Parallel and Distributed Systems, vol. 5, no. 10, pp.
1044–1056, October 1994.

[6] C. Aras, J. Kurose, D. Reeves, and H. Schulzrinne,
“Real-Time Communication in Packet-Switched Net-
works,” Proceedings of the IEEE, vol. 82, no. 1, pp.
122–139, January 1994.

[7] A. Mehra, A. Indiresan, and K. Shin, “Resource
Management for Real-Time Communication: Mak-
ing Theory Meet Practice,” inProc. 2nd Real-Time
Technology and Applications Symposium, pp. 130–
138, June 1996.

[8] A. Mehra, A. Shaikh, T. Abdelzaher, Z. Wang, and
K. Shin, “Realizing Guaranteed-QoS Communica-
tion Services on a Micro-kernel Operating System,”
In preparation, July 1997.

[9] K. Birman, “The Process Group Approach to Reli-
able Distributed Computing,”Communications of the
ACM, vol. 36, no. 12, pp. 37–53, December 1993.

[10] Y. Amir, D. Dolev, S. Kramer, and D. Malki, “The
Transis Approach to High Availability Cluster Com-
munication,”Communications of the ACM, vol. 39,
no. 4, pp. 64–70, April 1996.

[11] R. van Renesse, K. Birman, and S. Maffeis, “Horus:
A Flexible Group Communication System,”Commu-
nications of the ACM, vol. 39, no. 4, pp. 76–83, April
1996.

[12] S. Mishra, L. Peterson, and R. Schlichting, “Consul:
A Communication Substrate for Fault-tolerant Dis-
tributed Programs,”Distributed Systems Engineering
Journal, vol. 1, no. 2, pp. 87–103, December 1993.

[13] H. Kopetz and G. Grünsteidl, “TTP – A Protocol for
Fault-Tolerant Real-Time Systems,”IEEE Computer,
vol. 27, no. 1, pp. 14–23, January 1994.

[14] Y. Amir, L. Moser, P. Melliar-Smith, D. Agarwal, and
P. Ciarfella, “The Totem Single-Ring Ordering and

Membership Protocol,”ACM Transactions on Com-
puter Systems, vol. 13, no. 4, pp. 311–342, November
1995.

[15] F. Cristian, B. Dancy, and J. Dehn, “Fault-Tolerance
in the Advanced Automation System,” inProc.
of Fault-Tolerant Computing Symposium, pp. 6–17,
June 1990.

[16] T. Abdelzaher, A. Shaikh, F. Jahanian, and K. Shin,
“RTCAST: Lightweight Multicast for Real-Time Pro-
cess Groups,” inProc. IEEE Real-Time Technology
and Applications Symposium (RTAS ’96), pp. 250–
259, Boston, MA, June 1996.

[17] A. Mehra, J. Rexford, and F. Jahanian, “Design and
Evaluation of a Window-Consistent Replication Ser-
vice,” IEEE Transactions on Computer, vol. 46, no.
9, , September 1997.

[18] H. Zou and F. Jahanian, “Real-Time Primary Backup
Replication with Temporal Consistency,” Technical
report, Dept. of Electrical Engineering and Computer
Science, University of Michigan, 1997.

[19] N. Hutchinson and L. Peterson, “Thex-Kernel: An
Architecture for Implementing Network Protocols,”
IEEE Trans. Software Engineering, vol. 17, no. 1, pp.
1–13, January 1991.

[20] F. Travostino, E. Menze, and F. Reynolds, “Paths:
Programming with System Resources in Support of
Real-Time Distributed Applications,” inProc. IEEE
Workshop on Object-Oriented Real-Time Depend-
able Systems, February 1996.

[21] T. Abdelzaher, A. Shaikh, S. Johnson, F. Jahanian,
and K. Shin, “RTCAST: Lightweight Multicast for
Real-Time Process Groups,” Technical report, Dept.
of Electrical Engineering and Computer Science,
University of Michigan, 1997. Submitted for pub-
lication.

View publication statsView publication stats

https://www.researchgate.net/publication/2808547

