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A b s t r a c t - E M E R A L D S  (Extensible Microkernel for  
Embedded, ReAL- t ime ,  Distributed Sys tems)  is a real- 
t i m e  microkernel design,ed f o r  cost-conscious, small  t o  
medium size embedded systems. It not only offers stan- 
dard OS services like multi-threaded processes, real-time 
scheduling, protected address spaces, message-passing, 
semaphores, and tamers, but does so i n  an efficient man-  
ner  whale keeping the kernel sire t o  jus t  t ens  of kilo- 
bytes. For efficiency, E M E R A L D S  uses the novel ap- 
proach of mapping the kernel into each user-leuel ad- 
dress space, so even with ful l  memory  protection, sys- 
t e m  calls do not need context switches unless a user-r‘evel 
server i s  involved. E M E R A L D S  also provides the jflex- 
ibility f o r  users to  add communication protocol stacks 
and device drivers as user-level seruers without modify- 
ing the kernel. We have completed a uniprocessor ver- 
sion of  E M E R A L D S  f o r  the Motorola 68040 processor 
whose size is under 13 KBytes .  Context switch takes 
under 12 p s  and system calls have overhead just  1.8 p s  
more than that of simple subroutine calls. 

1 Introduction 
Real-time computing systems [l] must behave pre- 

dictably in possibly unpredictable environments. This 
predictability is usually ensured by a real-time operat- 
ing system (RTOS). The variety of real-time applications 
- from soft multimedia applications to  hard real-time 
automotive control systems - have resulted in dozens of 
RTOSs being designed for both commercial and research 
purposes. Some RTOSs are “general-purpose” in that 
they cater to a wide range of real-time applications. Ex- 
amples include commercial RTOSs like pSOS [2], Q N X  
[3], and VxWorks [4]; and research ones like Real-Time 
Mach [5]. Somewhat more specialized RTOSs include 
HARTOS [6] and the Spring Kernel [7], designed for par- 
allel and distributed platforms. Even more Specialized 
RTOSs include CHAOS [8] and Harmony [9], designed 
primarily for complex robotic systems. 

In this paper we present the EMERALDS designed 
specifically for mass-produced, small- to medium-sized 
embedded systems. Such systems consist of a small num- 
ber of microprocessors (about 10 or less) interconnec1,ed 
by a local area network. These systems are commonly 
used for automotive applications, robotics, industrial au- 
tomation, etc. Keeping per unit costs down is vital in 
such systems. This necessitates that  any RTOS to be 
used in these systems must not only be predictable but 

also ef iczent  and small in size. The reason for requiring 
efficiency is obvious: an RTOS which incurs less over- 
head needs less powerful (and cheaper) processors to do 
the same job that a less efficient RTOS will do using 
more expensive hardware. Reason for requiring a small- 
sized OS also has to do with keeping costs down. Our 
target applications usually h av’e their executable code 
(including the RTOS) stored in non-volatile memory like 
ROM. A smaller RTOS means that  less ROM is needed 
to  store it and less time to execute i t .  So. if the OS size 
is tens of KBytes instead of hwndreds of KBytes (which 
is typical for modern RTOSs), it will result in consid- 
erable cost savings in ROM chips. Since the system is 
mass-produced, savings of even a few dollars per unit 
translate into millions of dollius overall savings. 

The main goal in designing EMERALDS was to see 
which features of embedded ;systems can we use to re- 
duce size and increase efficiency. Embedded systems 
provide many opportunities f , x  simplification. They do 
not require the same level of security between processes 
as do more general RTOSs. F’rocesses tend to exchange 
short, simple messages like simsor readings and actua- 
tor commands. A file system is usually not needed: all 
executable code is in ROM anid all dynamic memory re- 
quirements are satisfied by RAM. These characteristics 
allowed us to reduce the system call overhead, simplify 
inter-process communication ( I I X ) ,  and keep EMER- 
ALDS’ size down to  a minimum. 

An important question related to reducing size was 
which OS services to include in EMERALDS and which 
to  leave out.  Many RTOSs leave out common OS fea- 
tures like memory protection and threads in an attempt 
to  reduce size and increase speed. We did not take this 
approach. Instead, we provide a.11 common OS services 
but transfer some addressing and naming responsibili- 
ties to the programmer, which we show not to be much 
of a burden at, all for embedded systems. This  enabled 
us to meet our goals of efficiency and small size without 
cutting back on OS services. 

In the next section we give a brief overview of EMER- 
ALDS. Section 3 describes how EMERALDS was opti- 
mized by using the above-mentioned simplifying charac- 
teristics of embedded systems, and the features it pro- 
vides to make it efficient and easy to use (including its 
novel system call mechanism and device driver support). 
Sections 4-7 give the details of EMERALDS, covering 
processes, threads, scheduling, memory protection, IPC, 
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be simplified In the following, we first outline these 
characteristics, then summarize those features and de- 
sign choices which make EMERALDS efficient and easy 
to use in small- to medium-sized embedded systems. 

3.1 Simplifying Characteristics 
Following are some characteristics of embedded sys- 

tems that  allowed us to  simplify the implementation of 
EMERALDS to achieve our goal of a small, fast kernel. 
Cooperative Processes: In time-shared systems, 
there is always the danger that  some processes may act 
maliciously and may intentionally harm or confuse other 
processes. This makes protection an important concern 
in time-shared systems. But in embedded systems, all 
processes belong to one user - the application designer 
- so they do not act maliciously (a t  least not by in- 
tention). This means that an OS designed for embedded 
systems does not need all the protection features present 
in more general 0%. The way we use this characteris- 
tic in EMERALDS is as follows. EMERALDS provides 
several special system calls for writing communication 
protocol servers and device drivers. Some of these calls 
should never be used by a non-server thread, but instead 
of enforcing such rules, EMERALDS trusts the appli- 
cation designer to follow them. The (safe) assumption 
is that the application designer will want his design to 
work properly, so will never violate these simple guide- 
lines. This assumption helps not only in reducing the 
size and increasing the speed of the kernel, but also in 
making device drivers and communication stacks easy to 
install and use in EMERALDS. 
Loca t ion  of Resources is Known: Most operating 
systems provide naming services to translate easy-to- 
remember names into numerical identifiers which may 
also contain location information. Examples include a 
file system directory (translation from filename to lo- 
cation on disk), internet domain name service (trans- 
lation from machine name to  IP address), etc. These 
services are necessary in large, rapidly-changing systems 
where resources may move about. However, in embed- 
ded systems, the designer is very much cognizant of the 
location of various resources. For example, he knows 
which threads run on which node (because he is the one 
who placed them there). These resources usually stay 
fixed unless there is a major design change. This is why 
EMERALDS does not provide any naming service. For 
example, to send a message to  a remote thread, the local 
thread must know the node on which the remote thread 
runs and the identifier of that  thread’s mailbox. When 
creating a shared-memory segment, a process must sup- 
ply a CPU-wide unique identifier. If some other process 
wants to use that  segment it must also know that  iden- 
tifier. Same applies to  semaphores and condition vari- 
ables. 

‘This is why EMERALDS is not POSIX-compliant. POSIX 
requires features like signals, naming schemes, a file system, etc., to 
be included. These are not needed in embedded systems. So even 
though EMERALDS provides many POSIX features relevant to 
embedded systems (like threads, condition variables, and message- 
passing with queues), i t  cannot be fully POSIX-compliant and still 
be as small in size as it is. 
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In short, the programmer must now do the book- 
keeping otherwise done by a naming service. Then, thse 
question is: how much of a burden is this for the pro- 
grammer? We believe that  when dealing with embed- 
ded systems, it is not much of a burden at all because 
the programmer knows where all the resources are and 
what their identifiers are. Macros placed in a common 
header file can be used t o  make this book-keeping easy 
and maintainable. For example, to  send messages to  
some remote thread T1 on node number 3 and with a 
mailbox with identifier 5, the following macros may be 
defined: 
#define N O D E 1  3 
#define TlMBOX 5 
#define T i  N O D E 1  ,TIMBOX 
Then, macro T i  can be used as a "name" for Tl's mail-- 
box. If, during the design cycle, location or identifier of 
any resource changes, only one header file has to  be mod- 
ified. That  is, for embedded systems it is not difficult 
a t  all for the application programmer to  do the address, 
book-keeping himself, and if macros are used properly, 
this information is also easy to  maintain. 
Memory-Resident Applications: Our target a,ppli- 
cations, in general, do not use disks. ROM is used 
as non-volatile storage and on-board RAM satisfies all 
run-time memory requirements of the application. So' 
EMERALDS provides neither a file system nor a backing 
store for virtual memory. This means no device drivers 
for disks, no disk buffer management, no page fault han- 
dlers, or any other such services. 
Simple Messages: In embedded systems, the most' 
common messages are sensor readings and actuat,or com- 
mands. Threads can exchange such simple messages by 
talking directly to  the network device driver without us- 
ing any protocol stack, so EMERALDS does not ha.ve a 
built-in communication protocol stack. 

3.2 Extensibility, Efficiency, and Usability 
Here we describe those features of EMERALDS which 

make it fast and user-friendly. 
Microkernel Architecture: The microkernel archi- 
tecture of EMERALDS was necessary to  allow users the 
flexibility t o  install their own communication protocols 
and device drivers. 

As already mentioned, nodes in most embedded sys- 
tems exchange simple messages for which no protocol 
stack is needed. Such systems prefer to  access the net- 
work directly to  get maximum bandwidth. However, 
some applications require more complicated communi- 
cation protocols to  handle duplicate detection, ordering, 
message fragmentation, etc. In EMERALDS, commu- 
nication protocols run as user-level servers, so users are 
free to  use protocols which suit their particular appli- 
cations. The server can even be bypassed completely 
to  directly access the communication network if needed. 
Moreover, EMERALDS provides the flexibility t o  have 
multiple protocol stacks on the same node. For exam- 
ple, one set of processes may require that messages be 
causally ordered, then they can use one  protocol stack. 
Another set of processes may not have this requirement, 
so they can use a simpler (and faster) protocol stack.. 

Similar flexibility is needsed regarding device drivers. 
Since there are so many devices (e.g., sensors, actuators, 
network adapters) used in embedded systems, it is vir- 
tually impossible for the OS designer to supply device 
drivers for all of them. The  next best, thing is to make 
it as easy as possible for users t o  write their own device 
drivers. EMERALDS does just that .  A device driver is 
just a user process (instead 'of 'being part of the kernel), 
and special system calls are available for device drivers 
to  access devices and deal with interrupts. We use the 
cooperative processes assumption (as already discussed) 
to  rely on the application designer t o  ensure that these 
special system calls are never used with conflicting pa- 
rameters. For example, processes are expected not to  
try to  attach their own separate interrupt service rou- 
tines to the same interrupt level. This and other such 
simple restrictions can be easily ensured a t  design time. 

Need for Memory Protection: Providing memory 
protection requires maintahing page tables and pro- 
gramming the memory management unit. This not only 
increases the size of the kernel. but also adds overhead 
to several kernel services, thus being contrary to  our pri- 
mary goal of building a small and fast kernel. Here we 
justify providing memory protection in EMERALDS. 

The need for memory prohection in time-shared sys- 
tems is indisputable. One user% processes must be pro- 
tected from all other - possibly malicious - users. But 
in embedded systems, all proce,sses are cooperative and 
will never try t o  intentional1,y h.arm another process, so 
providing memory protection seems extraneous. How- 
ever, bugs in application code can manifest themselves 
as malicious faults. For example, suppose some pointer 
in a C program is left uninitia.lizled. If this pointer is used 
for writing, one process can easily corrupt another pro- 
cess or even the kernel. Witlh memory protection, such 
an access will cause a T R A P  t o  the kernel and recovery 
action may be taken, providing a form of software fault- 
tolerance. Without memory protection, such a fault may 
not even be det,ected until the CPU crashes with possibly 
catastrophic consequences. 

Another benefit of memory protection is easier de- 
bugging of application code. During application devel- 
opment, if there is no memor!! protection, each time 
one process crashes, the entire CPU may crash. This 
makes tracking down bugs ,ext,remely frustrating and 
time-consuming. With memory ~protection, software fail- 
ures are contained within an address space and can be 
easily tracked down. 

Efficient System Calls: Above we mentioned the ad- 
vantages of memory protection. Its disadvantage is the 
context switch overhead incurred when making system 
calls (because the user and kernel usually exist in sep- 
arat,e address spaces). This is why some RTOSs omit 
memory protection so they only have to  make subrou- 
tine calls t o  access kernel services; not so with memory 
protection. 

We resolved this problem by mapping the kernel into 
each user-level address space (unilike other OSs  in which 
the kernel runs in its own address space). This way, 
a system call reduces to  a TRAP, then a jump to the 
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appropriate kernel address, without the need to  switch 
0 

The flexibility EMERALDS offers in writing proto- 
col stacks and device drivers, its small size and speed 
set it  apart from other modern RTOSs. EMERALDS 
also provides many standard features found in today’s 
RTOSs such as multi-threaded processes, message-based 
IPC, real-time priority-based scheduling, synchroniza- 
tion variables, timers, etc. These features are described 
in detail in the following sections. 

4 Processes and Threads 
EMERALDS provides multi-threaded processes. A 

process in EMERALDS is a passive entity, representing a 
protected address space in which threads execute. Each 
thread has a user-specified priority and is preemptively 
scheduled by the kernel based on this priority Table 1 
lists the EMERALDS system calls related to processes 
and threads. 

address spaces. Details are given in Section 5. 

System call 1 Imp. Params j Fun c ta o n 
ITh read priority 1 Create process createproCO 

with 1 thread 
create-thread0 Thread priority Create thread 
join-thread0 Thread ID Wait for child 

detach-thread0 Thread ID Tell kernel: will not I wait for thread 

Table 1: Process and thread system calls 

thread to finish 

The two most important features of EMERALDS prc- 
cesses and threads are memory protection and real-time 
scheduling. 

4.1 Memory Protection Implementation 
The benefits of memory protection mentioned earlier 

will not be of much practical use if the implementation 
of memory protection was not efficient and small-sized. 
To meet these goals, we made full use of the fact  tha t  
our target applications are in-memory. This enabled us 
to  reduce the total size of a page table to  a few KBytes 
compared to  several megabytes for virtual memory sys- 
tems with disk backing stores. In the latter, the entire 
page table must exist, even if most of the address space 
is unused. This is needed t o  distinguish unmapped pages 
from those which have been swapped out to disk. But for 
in-memory systems, this distinction is not needed. This 
allows the page table to be trimmed down using the hi- 
erarchical nature of most page tables. For example, the 
Motorola 68040 has three-level page tables. Each third 
level page table represents 256 KBytes of address space. 
So, if a process has three segments - code. data, and 
stack - and each is less than 256 KBytes, then its page 
table will be as shown in Figure 2. 

All but, three entries in the first-level page table are 
null, so only three second-level page tables exist. An at- 
tempt to  access an address covered by an invalid entry 
will result in a TRAP to the kernel indicating a bug in 
the software. Similarly, in each second-level page table, 
only one entry is valid and all other third-level page ta- 
bles do not exist. This way, total size of the page table is 

First 
levef 

C 

Second 
level 

Third 
level 

Figure 2 :  A typical page table in EMERALDS. The 
hierarchical structure is used to reduce the size of the 
page table 

just 2432 bytes for a page size of 8 KBytes. (More third- 
level page tables are needed if any segment exceeds 256 
KBytes). While this example is specific to  the MC 68040, 
most other modern CPUs also provide three-level page 
tables with similar parameters. 

The small size of page tables not, only saves memory, 
but also enables other optimizations like mapping the 
kernel into every address space (see Section 5). This 
greatly reduces the overhead associated with system 
calls, making our implementation of memory protection 
feasible for embedded sydems. 

4.2 Preemptive Real-Time Scheduling 
Currently, EMERALDS provides fully-preemptive, 

fixed-priority scheduling and partial support for dy- 
namic scheduling. The user specifies a thread’s prior- 
ity at creation time. Users may choose priorities based 
on rate-monotonic [lo],  deadline-monotonic [ill, or any 
other fixed-priority scheme suitable for the appl i~a t~ ion  
at hand. Also, a system call is provided to change a 
thread’s priority at run-time to  respond to changing op- 
erating conditions. This can be used to  emulate dynamic 
earliest-deadline first (EDF) [lo] scheduling at the user 
level (even though currently, EDF is not, explicitly sup- 
ported by the kernel). EMERALDS allows for 32-bit 
non-unique thread priorities, so by setting a thread’s pri- 
ority to  its deadline (and re-adjusting every time the t a s k  
is invoked), EDF scheduling can be realized. 

5 Efficient System Call Mechanism 
The  biggest advantage microkernels have over mono- 

lithic operating systems is modularity. By moving func- 
tionality to  user-level server processes, services can be 
added, removed, or modified as needed. The  disadvan- 
tage is the extra overhead. A system call which relies on 
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Figure 3: A typical address space in EMERALDS. Area 
labeled kernel stuck is used for iriterrupts and area la- 
beled user s tack is used by both the user and the kernel. 

a user-level server involves a t  least four context switches: 
from user to  kernel to  server back to  kernel and return- 
ing back to  the user. Moreover, the server process will 
usually make some system calls, each requiring at least 
two context switches. This extra overhead is particu- 
larly unattractive in embedded systems such as in auto- 
motive applications. This overhead can force designers 
to  use more powerful processors than they would otlher- 
wise, costing millions of dollars more when the system 
is mass-produced. Hence, for a microkernel to  be viable 
for use in such an embedded system, it must somehow 
reduce the system call overhead. EMERALDS achieves 
this by mapping the kernel into each process’s address 
space. A typical 32-bit EMERALDS address space is 
shown in Figure 3. 

With this type of mapping, a switch from user to  Iter- 
ne1 involves just a T R A P  (which switches the CPU from 
user t o  kernel/supervisor mode) and a jump to the ap- 
propriate address: there is no need to  switch address 
spaces. Also, system call code in EMERALDS is de- 
signed to  take parameters straight off the user’s stack 
(possible since both kernel and user are in the same ad- 
dress space). This scheme has the following advantages. 

N o  need to  copy parameters from user space to ker- 
nel space. All that L0core.S (assembly code used 
for making system calls) does is point the kernel 
stack pointer to  the user stack and some other mi- 
nor stack adjustments. As a result, system calls in 
EMERALDS (except those involving servers) have 
an overhead comparable to  that of a subroutine call 
(see Section 8). 
No need to  translate pointers. If the user and ker- 
nel are in separate address spaces, the data  pointed 
to  by a pointer must be copied to the kernel’s ,ad- 
dress space, and a pointer to  this copy passed to 
the system call routine. But in EMERALDS, all 
user pointers are valid inside the kernel, so no need 
t o  do any data  copying. 

Now, let’s go back to the overhead of system calls 
involving servers. Instead of having four address space 
switches, there are only two (from user’s address space 

to server’s and back). Switching between user and kernel 
levels doesn’t cause an address space switch and incurs 
far less overhead. Even if the server has to  make its own 
system calls, no more address space switches will occur, 
unless the calls involve other :servers (which typically oc- 
curs only when the server accesses a device driver). In 
this way, the EMERALDS miicrokernel is feasible for use 
in cost-conscious embedded systems while retaining the 
full flexibility and modularity typical of microkernels. 

Implementation: Mapping the kernel into each user 
address space is feasible in EMERALDS because both 
the kernel and its data  segment axe so small. In other op- 
erating systems with standard virtual memory, the size 
of the kernel’s data  segment is so large (due to large 
page tables) that  mapping it into each address space is 
not feasible. The mapping is achieved by having appro- 
priate second-level page table entries point to  common 
third-level page tables which map thc kernel. Thus, size 
of a process’s page table is not affected. Also, the kernel 
areas are protected from corruption by faulty user code 
by using page table entries t o  rnark them as read-only 
for user mode. This way, user processes are protected 
from each other and the kernel is protected from user 
processes. 

6 Inter-Process Communication (IPC) 
T h e  primary IPC mechanism in EMERALDS-for both 
inter- and intra-processor communication-is message- 
passing using mailboxes.’ For intra-processor communi- 
cation, EMERALDS also provides shared memory. 

6.1 Message-Passing 
EMERALDS provides the system calls listed in Ta- 

ble 2 for exchanging messages between threads. These 
calls are used to  create & delete mailboxes and send & 
receive messages. EMERALDS also allows a 32-bit. pri- 
ority to  be assigned to each message which is used to  
sort messages in a mailbox so that the receiver thread 
retrieves the highest-priority message first. 

Message-passing in EMERALIDS has been designed 
with efficiency and flexibility in mind. Most communi- 
cation networks designed for embedded, real-time sys- 
tems such as CAN [12], T T P  [13], SERCOS [14], SP50, 
etc., provide the bottom two layers of the I S 0  OS1 ref- 
erence stack (the physical and daha-link layers) which is 
sufficient for exchanging simple messages (all that the 
sender has to  do is talk directly to  the network device 
driver). For more complex IPC, the remaining stack lay- 
ers must be implemented in sofkware. So EMERALDS 
allows both direct, network access as well as use of proto- 
col stacks - providing the former as a special case of the 
latter. EMERALDS also provildes, optimizations for local 
message-passing between threads on the same node. In 
the following, we first describe the EMERALDS mecha- 
nisms for simple local message-passing, then give details 
of how protocol stacks and network device drivers can 
be used for more complicated :[PC. 

21n the current uniprocessor version of EMERALDS, only the 
intra-processor part has been implemented. 
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mboxdelete( 
m s g s e n d o  

m s g i e c e i v e ( )  

Important Parameters 
CPU-wide unique identifier 
Mailbox identifier 
Destination node and mailbox, 
local server mailbox 
Mailbox identifier 
Mailbox identifier 
Destination mailbox 
Mailbox identifier 

Functzon 
Create mailbox 
Delete mailbox 
Send message to  mailbox 

Retrieve message from mailbox 
Non-blocking version of m s g i e c e i v e ( )  
Send message, but bypass redirection 
Retrieve message with meta-information 

Table 2: Message-passing system calls. The  last two calls are for use by protocol servers. 

redirect 

N1 N2 
r I ,  I 

1 ,/ redirecr 

User Kernel ~~1 
parameter to  mbox-create(). Then any message 
which arrives for M 2  is redirected by the kernel 
and deposited in M s 2 .  The  server will strip mes- 
sage headers, take appropriate actions, then send 
the message directly to  M 2 .  
On the sender side, the server’s mailbox Msl is 
given as a parameter to  m s g s e n d o .  The kernel 
then simply deposits the message in M s l .  The 
server will append headers, then use the network 
device driver to send the message to  its destination 
(as described in the Section 6.1). 

EMERALDS provides two special system calls for 
writing protocol servers. The call m s g i e c e i v e f u l l ( )  
not only retrieves the message from the mailbox but also 
returns meta-information like the final message desti- 
nation (mailbox A42 on node N 2  in our example) and 
whether this message is incoming or outgoing. The 
msg-senddirect ( )  call is used by receiver-side servers 
to  send a message (after stripping headers) directly to  
the destination mailbox ( M 2  in our example). I t  is dif- 
ferent from msgsend() in tha t  it bypasses the redirec- 
tion scheme; otherwise, the message will be caught in an 
infinite loop. 
Priority of Server Processes: User-level servers 
which implement protocol stacks cannot run at a fixed 
priorit,y all the time because of a form of the priority 
inversion [17] problem. Suppose the server runs at a 
low priority and some message arrives for a high-priority 
thread T1. As long as there are runnable threads of 
medium priority, the server will not run and T1 will be 
forced to  wait for the message and may miss its deadline. 
Making the server run at a high priority is also infeasible 
for similar reasons. 

Our solution to this priority inversion problem is to  
use priority inheritance [17] which, in the context of 
message-passing in EMERALDS, works as follows. De- 
fine an inherzted thread priori ty  (ITP) associated with 
each message. For an outgoing message, it is the prior- 
ity of the sender thread, while for incoming messages, it 
is the priority of the receiver thread. We want the server 
thread’s priority to be the highest ITP of all messages 
in its mailbox. To do this, the kernel must know two 
things: which threads are server threads and when does 
a server thread finish processing a message (at which 
time its priority should be re-adjusted). We use seman- 
tic information for this purpose. A server runs an endless 
loop of the form 

loop:  m s g i e c e i v e f u l l 0  ; 
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handle message 

got0 loop; 
To distinguish a server thread from ordinary 

threads, we use the fact that only servers use the 
m s g s e c e i v e A u l l 0  system call ( that  is, we rely on 
the application designer not to  use this system call in. 
non-server threads). Also, once a server finishes han- 
dling a message (and it is time for the server’s prior- 
ity t o  be re-adjusted), the next statement i t  executes is, 
m s g i e c e i v e f u l l ( ) .  So we adjust the server’s priority 
as part of this system call. When this call is made, first 
the calling thread’s (i.e., the server’s) priority is adjusted 
based on I T P  of queued messages, and then a message is 
popped from the queue and returned t o  the server. Also, 
if a new message arrives in the server’s mailbox with an 
ITP higher than the server’s current priority, then the 
server’s priority is immediately increased to  that ITP. 
N e t w o r k  Device  Drivers: EMERALDS device 
drivers in general are discussed in Section 7.3,  but 
here we mention some details specific to  network device 
drivers and their interaction with other threads. 

Network device drivers in EMERALDS must be cog- 
nizant of the concept of mailboxes, i.e., they must im- 
plement part of the network layer of the IS0 OS1 stack. 
Specifically, they have to  add the mailbox identifier to  
a message before transmitting i t ,  and strip it off when 
receiving a message. 

On the sender side, accessing a network device driver 
is no different from accessing a protocol stack because 
both run as user-level servers. All that  has t o  be done is 
to  specify the device driver’s mailbox in the msgsend() 
call. The  device driver can use m s g i e c e i v e f u l l ( : )  to  
retrieve the message, append the destination mailbox to  
the message, then send it out over the network t o  the 
destination node. 

On the receiver side, when the device driver receives 
this message, it will look a t  the destination mailbox, tlhen 
use local message passing t o  send the message t o  that 
mailbox. If a protocol stack has been tied to  that  mail- 
box, the message will be automatically redirected to  the 
protocol server. 

This scheme allows communication protocol stacks to  
be completely bypassed, if needed. User threads can 
send messages directly to  device drivers, and receive mLes- 
sages directly from device drivers. This type of message 
passing is useful for exchanging short, simple messa,ges 
like sensor readings and actuator commands, and is “ore 
efficient than message-passing using protocol stacks. 

6.2 Shared Memory 
EMERALDS allows page-based sharing of memory 

between processes running on the same CPU. Two sys- 
tem calls are provided for this purpose: s h a t t a c h . ( )  
and shmdetach(). 

The system call shmiittach() is called with an iden,ti- 
fier. If no shared-memory segment exists with this iden- 
tifier, then physical memory is allocated and a new seg- 
ment is created. This segment is mapped into the call- 
ing process’s address space and a pointer t o  the start of 

sen-delete  () 
s e m l o c k 0  
sem-trvlock() 

the segment is returned. When shm-attach() is called 
again with the same identifier b y  any process on the same 
CPU, the kernel finds the segment with that identifier 
and maps it into the calling process’s address space (no 
new memory is allocated). 

The system call shmdetisch() does the opposite of 
shm-attach0. I t  unmaps the named segment from the 
calling process’s address space. Moreover, if no other 
process has this segment ma;pped into its address space, 
then the physical memory associated with the segment 
is also freed up. This  providers a simple programming 
model. When processes need to use a shared memory 
segment, they call shmattach.() with t,hat segment’s 
identifier. The first such ca.11 allocates physical mem- 
ory and all the later ones j u t  map in the segment. 
When processes no longer need a segment, they call 
shm-detach(). These calls unmap the segment from 
their address space, except the last call which also frees 
up the physical memory. These semantics are easier to 
use than,  for example, U N I X  isemantics where shared 
memory must be explicitly created before mapping it 
into an address space, and :must be explicitly deleted 
after unmapping it from each address space. 

7 Miscellaneous OS Services 
7.1 Semaphores 

Threads often need t o  ensure mutual exclusion when 
accessing critical regions of code dealing with shared re- 
sources. EMERALDS provides semaphores (sometimes 
also known as mutezes as in POSIX terminology) for 
this purpose. The system calls in Table 3 are used to  
create, delete, lock, and unlock semaphores. If a thread 
tries t o  acquire a semaphore which is already locked, that 
thread will block and will be added to  a queue of threads 
waiting for that  semaphore. When the lock holder re- 
leases the semaphore, the highest-priority thread in the 
queue will be unblocked. An alternative to  t.he block- 
ing s e m l o c k 0  call is the sem-trylock() call which re- 
turns an error if the semaphore is already locked. If the 
semaphore is free, it will be locked. 

Semaphore idelitifier Delete sem. 
Semaphore identifier Acquire sem. 
Semaphore identifier i i  Non-blockinr 

System call 1 Important F i r 1  
sem-create0  I CPU-wide unique ID Create sem. 

Delete CV 
Acquire CV 
Release CV 

Table 3: System calls for semaphores and condition 
variables. 
Priority Inheritance: The  priority inversion problem 
with locks is well understood. The standard solution is 
priority inheritance which is built into EMERALDS. 

If a high-priority thread calls semlock() on a 
semaphore already locked by a low-priority thread T I ,  
the latter’s priority is temporarily increased to that of 
the former. Without priority inheritance, a medium pri- 
ority thread T, can get control of the CPU by preempt- 
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ing Tr while T h  remains blocked on the semaphore. With 
priority inheritance, Ti will keep on running until it un- 
locks the semaphore. At that  point, its priority will go 
back t o  its original value, but now T h  will be unblocked 
and it can continue execution. 

7.2 Condition Variables 
Condition variables differ from semaphores in the ef- 

fect of signaling the variable. When a semaphore is sig- 
naled (using sem-unlock()), its effect lasts. This means 
that  even if no thread is currently blocked waiting for 
the semaphore, the signal will not be lost. If later on 
a thread tries t o  acquire the semaphore, it will succeed. 
On the other hand, signaling a condition variable has no 
effect if no threads are waiting on that condition variable 
a t  the time of the signal. 

The system calls for condition variables are similar to 
those for semaphores and are listed in Table 3. Note that 
a system call such as cv- t rywait  (1  does not make sense 
with condition variable semantics, so it is not provided 
by EMERALDS. 

7.3 Device Drivers 
EMERALDS provides two special system calls t o  

write device drivers. The  first, m a p d e v i c e ( ) ,  allows 
a device driver to  map a memory-mapped device into its 
address space.3 From then on,  the device driver can use 
standard memory operations to  access the device. The 
s e t i s r - ( )  system call allows device drivers to  handle 
interrupts. Device drivers use this call to  tell the kernel 
which ISR subroutine to  execute when an interrupt oc- 
curs. A separate ISR can be attached to each interrupt 
level. As far as communication between user threads and 
device drivers is concerned, standard EMERALDS IPC 
mechanisms (message-passing and shared memory) can 
be used since EMERALDS device drivers run as user- 
level threads. 

EMERALDS allows even non-device driver threads 
to  use the above system calls. When used responsibly. 
this can be a great asset in embedded real-time systems. 
Usually, just one (possibly multi-threaded) process is re- 
sponsible for directly communicating with a certain de- 
vice like a sensor or an actuator. In this situation, it 
becomes very efficient to  integrate the device driver with 
that  process. This way, the device can be accessed using 
subroutine calls - completely avoiding context switch 
overheads. Such optimizations are not possible in other 
0% which require device drivers to  reside inside the ker- 
nel. 

7.4 Memory Management 
The  system call mem-aUoc ( )  can be used by a process 

to  get the desired number of pages of physical memory 
mapped into its address space. This call returns the 
starting address of the allocated space, and can be used 
to build library-based memory allocators to  provide C 
calls like malloc() and free(). Memory obtained through 
m e m a l l o c ( )  is retained by a process until it terminates, 
a t  which time all its memory is reclaimed by the system. 

Currently, EMERALDS does not support I/O-mapped devices 
because the MC 68040 - on which EMERALDS is presently im- 
plemented - does not have a separate 1/0 space. 

7.5 Timers 
The call s t a r t - t i m e r 0  can be used t o  create and 

start a timer. This call has two variants. The first is a 
blocking version, in which the calling thread blocks for 
the specified duration of time. The  second non-blocking 
version is used to  execute a timer ISR. The calling thread 
specifies a routine to  be executed as the ISR and a time 
delay. When the timer expires, the ISR is executed, and 
it can reset the timer for the next interrupt. This way, 
the ISR can execute periodically. 

8 Performance 
We have completed a uniprocessor version of EMER- 

ALDS for the MC 68040 processor which is one of the 
most popular and commonly used processor in embed- 
ded systems with a wide installed base. The size of this 
version of EMERALDS is about 13 KBytes. Comparing 
this to other major RTOSs for embedded applications 
(Table 4 ) ,  we see that  our goal of a small-sized RTOS 
has been achieved. 

Size KBytes -1 VxWorks 5.1 
EMERALDS 

Table 4: Sizes of various RTOSs (uniprocessor versions). 
Size of QNX is from [3] and includes the “kernel,” Proc,  
and Dev modules which is the minimal configuration with 
device driver support. VxWorks’ size is from a compiled 
stand-alone version. 

Table 5 shows the latencies of some system calls and 
other operations in the current version of EMERALDS 
on a 25 hlHz 68040 processor with two independent 
4 KByte instruction and data  caches. Latencies are 
measured using a 5 MHz clock (the fastest clock avail- 
able on the Ironics IV-3207 boards we use). The op- 
erations labeled with * involve a context switch to  an- 
other thread. All other operations return to the calling 
thread. System calls which change a thread’s priority 
such as process/thread calls and calls with priority inher- 
itance ( s e m l o c k ( )  and sem-unlock()) also include the 
overhead of sorting the list of threads according to  their 
new p r i ~ r i t i e s . ~  This overhead depends on the number 
of threads in existence. The timing results are for 20 
threads unless stated otherwise. 

Comparing the null() system call to  the null ( )  sub- 
routine call, we see that  EMERALDS’ technique of map- 
ping the kernel into each address space results in efficient 
system calls, incurring only a 1.8 ps more overhead than 
subroutine calls. Even when a context switch to a dif- 
ferent address space is required, i t  incurs less than 12 ,us 

overhead. 

9 Conclusion 
Small to medium sized embedded real-time systems 

are becoming increasingly common in applications like 

‘In many 0% which support dynamic scheduling, this sort- 
ing/searching is done as part of the context. switch. In EMER- 
ALDS, we do the sort only when necessitated by changed thread 
priorities, instead of doing it on every context switch. 
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Context switch (kernel to  thread) 
n u l l  () subroutine call 
n u l l  () system call 2.0 
c r e a t e D r o c 0  * 1 1944 

La ten& 

11.8 
0.2 

(PSI-  

c r e a t e - t h r e a d 0  50.4 
j o i n - t h r e a d 0  (thread already exited) 17.2 
de t ach - th read0  (thread alreadv exited) I 16.4 

s h m d e t a c h o  (just unmap segment) 

de t ach - th read0  (thread has n i t  exited) 1 2.2 
s h m A t t a c h 0  (one page mem. allocated) I 1 0 3  

8.0 

s h m a t t a c h 0  (attach existing segment) 8.6 
s h m d e t a c h 0  (one page mem. deallocated) 1 10.0 

s e m d e l e t e  () 

s e m l o c k O *  (sem locked; 20 threads) 
s e m l o c k o ’  (sem locked; 10 threads) 
s e m u n l o c k 0  (no thread waiting) 
s e m m l o c k o  * (thread waiting; 20 threads) 
s e m m l o c k 0  * (thread waiting; 10 threads) 
c v - c r e a t e 0  

s e m l o c k o  (semaphore free) 
3.2 
5 8  

39.8 
33.6 
7.0 

42.0 
35.6 

6 .T 
c v d e l e t e  0 
cv-uai t () 
c v s i g n a l 0  (no thread waiting) 
c v s i g n a l 0 ’  (thread waiting) 
nbox-create 0 
nboxde le t e  (1 
n s g s e n d 0  (10 bytes, no server) 
n s g i e c e i v e 0  (IO bytes, no server) 

5.4 
25.4 
3.4 

30.4 
6.4 
3.6 

12.6 
11.0 -- 

Table 5 :  Timing  of various operations in EMERALDS. 

automotive control, robotics, and  industrial automation. 
To be  competit ive in the  market ,  these systems must re- 
duce cost to a minimum. Any RTOS to be  used in these 
systems must therefore not only support  predictatbil- 
i ty (essential in any real-time system and  provided in 
EMERALDS in the  form of predictable scheduling of 
threads) but also be  efficient and small in size. Efficiency 
allows cheaper processors to be used and small size de- 
creases the  cost of ROM needed to store the executable 
code. Most other  modern RTOSs are  either too large 
in size (hundreds of KBytes  or more) or they do not of- 
fer several popular OS features like memory protection 
and threads in a n  a t t e m p t  to reduce size and  increase 
speed. O u r  goal in designing EMERALDS was to de- 
velop an  RTOS which was not only predictable but also 
small and efficient, without  cut t ing back on standard 
OS services relevant to embedded systems. To achieve 
this goal, we m a d e  use of several features of embedded 
systems which allowed us to increase the  efficiency of 
system calls a n d  keep the  size of EMERALDS to jus t  
13 KBytes (uniprocessor version). Another objective in  
the design of EMERALDS was to make it flexible and  
easy to use. This is why we chose a microkernel archi- 
tecture and  provided features such as user-level servers 
for communication protocols and  device drivers. 

The next s tep in the  development of EMERALDS is 
networking. We  plan to use CAN [12] for this purpcse,  
which is a popular network for real-time control applica- 
tions. We also plan to add features like kernel-supported 
deadline-driven scheduling and  clock synchronization to 

EMERALDS. 
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