
EMERALDS: A Microkernel for Embedded Real-Time Systems

Khawar M. Zuberi and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, hlI 48109-2122

A b s t r a c t - E M E R A L D S (Extensible Microkernel for
Embedded, ReAL- t ime , Distributed Sys tems) is a real-
t i m e microkernel design,ed f o r cost-conscious, small t o
medium size embedded systems. It not only offers stan-
dard OS services like multi-threaded processes, real-time
scheduling, protected address spaces, message-passing,
semaphores, and tamers, but does so i n an efficient man-
ner whale keeping the kernel sire t o jus t t ens of kilo-
bytes. For efficiency, E M E R A L D S uses the novel ap-
proach of mapping the kernel into each user-leuel ad-
dress space, so even with ful l memory protection, sys-
t e m calls do not need context switches unless a user-r‘evel
server i s involved. E M E R A L D S also provides the jflex-
ibility f o r users to add communication protocol stacks
and device drivers as user-level seruers without modify-
ing the kernel. We have completed a uniprocessor ver-
sion of E M E R A L D S f o r the Motorola 68040 processor
whose size is under 13 KBytes . Context switch takes
under 12 p s and system calls have overhead just 1.8 p s
more than that of simple subroutine calls.

1 Introduction
Real-time computing systems [l] must behave pre-

dictably in possibly unpredictable environments. This
predictability is usually ensured by a real-time operat-
ing system (RTOS). The variety of real-time applications
- from soft multimedia applications to hard real-time
automotive control systems - have resulted in dozens of
RTOSs being designed for both commercial and research
purposes. Some RTOSs are “general-purpose” in that
they cater to a wide range of real-time applications. Ex-
amples include commercial RTOSs like pSOS [2], Q N X
[3], and VxWorks [4]; and research ones like Real-Time
Mach [5]. Somewhat more specialized RTOSs include
HARTOS [6] and the Spring Kernel [7], designed for par-
allel and distributed platforms. Even more Specialized
RTOSs include CHAOS [8] and Harmony [9], designed
primarily for complex robotic systems.

In this paper we present the EMERALDS designed
specifically for mass-produced, small- to medium-sized
embedded systems. Such systems consist of a small num-
ber of microprocessors (about 10 or less) interconnec1,ed
by a local area network. These systems are commonly
used for automotive applications, robotics, industrial au-
tomation, etc. Keeping per unit costs down is vital in
such systems. This necessitates that any RTOS to be
used in these systems must not only be predictable but

also ef iczent and small in size. The reason for requiring
efficiency is obvious: an RTOS which incurs less over-
head needs less powerful (and cheaper) processors to do
the same job that a less efficient RTOS will do using
more expensive hardware. Reason for requiring a small-
sized OS also has to do with keeping costs down. Our
target applications usually h av’e their executable code
(including the RTOS) stored in non-volatile memory like
ROM. A smaller RTOS means that less ROM is needed
to store it and less time to execute i t . So. if the OS size
is tens of KBytes instead of hwndreds of KBytes (which
is typical for modern RTOSs), it will result in consid-
erable cost savings in ROM chips. Since the system is
mass-produced, savings of even a few dollars per unit
translate into millions of dollius overall savings.

The main goal in designing EMERALDS was to see
which features of embedded ;systems can we use to re-
duce size and increase efficiency. Embedded systems
provide many opportunities f , x simplification. They do
not require the same level of security between processes
as do more general RTOSs. F’rocesses tend to exchange
short, simple messages like simsor readings and actua-
tor commands. A file system is usually not needed: all
executable code is in ROM anid all dynamic memory re-
quirements are satisfied by RAM. These characteristics
allowed us to reduce the system call overhead, simplify
inter-process communication (I I X) , and keep EMER-
ALDS’ size down to a minimum.

An important question related to reducing size was
which OS services to include in EMERALDS and which
to leave out. Many RTOSs leave out common OS fea-
tures like memory protection and threads in an attempt
to reduce size and increase speed. We did not take this
approach. Instead, we provide a.11 common OS services
but transfer some addressing and naming responsibili-
ties to the programmer, which we show not to be much
of a burden at, all for embedded systems. This enabled
us to meet our goals of efficiency and small size without
cutting back on OS services.

In the next section we give a brief overview of EMER-
ALDS. Section 3 describes how EMERALDS was opti-
mized by using the above-mentioned simplifying charac-
teristics of embedded systems, and the features it pro-
vides to make it efficient and easy to use (including its
novel system call mechanism and device driver support).
Sections 4-7 give the details of EMERALDS, covering
processes, threads, scheduling, memory protection, IPC,

241
0-8186-7448-2/96 $05.00 0 1996 IEEE

Multi-threaded Cornmumleation Device
user processes protocol servers drivers

_ - - _ _ - - _ - - - _

EMERALDS Kernel

_ - - -

Timers Kernel

drivers

I

_ _ - - - - _

be simplified In the following, we first outline these
characteristics, then summarize those features and de-
sign choices which make EMERALDS efficient and easy
to use in small- to medium-sized embedded systems.

3.1 Simplifying Characteristics
Following are some characteristics of embedded sys-

tems that allowed us to simplify the implementation of
EMERALDS to achieve our goal of a small, fast kernel.
Cooperative Processes: In time-shared systems,
there is always the danger that some processes may act
maliciously and may intentionally harm or confuse other
processes. This makes protection an important concern
in time-shared systems. But in embedded systems, all
processes belong to one user - the application designer
- so they do not act maliciously (a t least not by in-
tention). This means that an OS designed for embedded
systems does not need all the protection features present
in more general 0%. The way we use this characteris-
tic in EMERALDS is as follows. EMERALDS provides
several special system calls for writing communication
protocol servers and device drivers. Some of these calls
should never be used by a non-server thread, but instead
of enforcing such rules, EMERALDS trusts the appli-
cation designer to follow them. The (safe) assumption
is that the application designer will want his design to
work properly, so will never violate these simple guide-
lines. This assumption helps not only in reducing the
size and increasing the speed of the kernel, but also in
making device drivers and communication stacks easy to
install and use in EMERALDS.
Loca t ion of Resources is Known: Most operating
systems provide naming services to translate easy-to-
remember names into numerical identifiers which may
also contain location information. Examples include a
file system directory (translation from filename to lo-
cation on disk), internet domain name service (trans-
lation from machine name to IP address), etc. These
services are necessary in large, rapidly-changing systems
where resources may move about. However, in embed-
ded systems, the designer is very much cognizant of the
location of various resources. For example, he knows
which threads run on which node (because he is the one
who placed them there). These resources usually stay
fixed unless there is a major design change. This is why
EMERALDS does not provide any naming service. For
example, to send a message to a remote thread, the local
thread must know the node on which the remote thread
runs and the identifier of that thread’s mailbox. When
creating a shared-memory segment, a process must sup-
ply a CPU-wide unique identifier. If some other process
wants to use that segment it must also know that iden-
tifier. Same applies to semaphores and condition vari-
ables.

‘This is why EMERALDS is not POSIX-compliant. POSIX
requires features like signals, naming schemes, a file system, etc., to
be included. These are not needed in embedded systems. So even
though EMERALDS provides many POSIX features relevant to
embedded systems (like threads, condition variables, and message-
passing with queues), i t cannot be fully POSIX-compliant and still
be as small in size as it is.

242

In short, the programmer must now do the book-
keeping otherwise done by a naming service. Then, thse
question is: how much of a burden is this for the pro-
grammer? We believe that when dealing with embed-
ded systems, it is not much of a burden at all because
the programmer knows where all the resources are and
what their identifiers are. Macros placed in a common
header file can be used t o make this book-keeping easy
and maintainable. For example, to send messages to
some remote thread T1 on node number 3 and with a
mailbox with identifier 5, the following macros may be
defined:
#define N O D E 1 3
#define TlMBOX 5
#define T i N O D E 1 ,TIMBOX
Then, macro T i can be used as a "name" for Tl's mail--
box. If, during the design cycle, location or identifier of
any resource changes, only one header file has to be mod-
ified. That is, for embedded systems it is not difficult
a t all for the application programmer to do the address,
book-keeping himself, and if macros are used properly,
this information is also easy to maintain.
Memory-Resident Applications: Our target a,ppli-
cations, in general, do not use disks. ROM is used
as non-volatile storage and on-board RAM satisfies all
run-time memory requirements of the application. So'
EMERALDS provides neither a file system nor a backing
store for virtual memory. This means no device drivers
for disks, no disk buffer management, no page fault han-
dlers, or any other such services.
Simple Messages: In embedded systems, the most'
common messages are sensor readings and actuat,or com-
mands. Threads can exchange such simple messages by
talking directly to the network device driver without us-
ing any protocol stack, so EMERALDS does not ha.ve a
built-in communication protocol stack.

3.2 Extensibility, Efficiency, and Usability
Here we describe those features of EMERALDS which

make it fast and user-friendly.
Microkernel Architecture: The microkernel archi-
tecture of EMERALDS was necessary to allow users the
flexibility t o install their own communication protocols
and device drivers.

As already mentioned, nodes in most embedded sys-
tems exchange simple messages for which no protocol
stack is needed. Such systems prefer to access the net-
work directly to get maximum bandwidth. However,
some applications require more complicated communi-
cation protocols to handle duplicate detection, ordering,
message fragmentation, etc. In EMERALDS, commu-
nication protocols run as user-level servers, so users are
free to use protocols which suit their particular appli-
cations. The server can even be bypassed completely
to directly access the communication network if needed.
Moreover, EMERALDS provides the flexibility t o have
multiple protocol stacks on the same node. For exam-
ple, one set of processes may require that messages be
causally ordered, then they can use one protocol stack.
Another set of processes may not have this requirement,
so they can use a simpler (and faster) protocol stack..

Similar flexibility is needsed regarding device drivers.
Since there are so many devices (e.g., sensors, actuators,
network adapters) used in embedded systems, it is vir-
tually impossible for the OS designer to supply device
drivers for all of them. The next best, thing is to make
it as easy as possible for users t o write their own device
drivers. EMERALDS does just that . A device driver is
just a user process (instead 'of 'being part of the kernel),
and special system calls are available for device drivers
to access devices and deal with interrupts. We use the
cooperative processes assumption (as already discussed)
to rely on the application designer t o ensure that these
special system calls are never used with conflicting pa-
rameters. For example, processes are expected not to
try to attach their own separate interrupt service rou-
tines to the same interrupt level. This and other such
simple restrictions can be easily ensured a t design time.

Need for Memory Protection: Providing memory
protection requires maintahing page tables and pro-
gramming the memory management unit. This not only
increases the size of the kernel. but also adds overhead
to several kernel services, thus being contrary to our pri-
mary goal of building a small and fast kernel. Here we
justify providing memory protection in EMERALDS.

The need for memory prohection in time-shared sys-
tems is indisputable. One user% processes must be pro-
tected from all other - possibly malicious - users. But
in embedded systems, all proce,sses are cooperative and
will never try t o intentional1,y h.arm another process, so
providing memory protection seems extraneous. How-
ever, bugs in application code can manifest themselves
as malicious faults. For example, suppose some pointer
in a C program is left uninitia.lizled. If this pointer is used
for writing, one process can easily corrupt another pro-
cess or even the kernel. Witlh memory protection, such
an access will cause a T R A P t o the kernel and recovery
action may be taken, providing a form of software fault-
tolerance. Without memory protection, such a fault may
not even be det,ected until the CPU crashes with possibly
catastrophic consequences.

Another benefit of memory protection is easier de-
bugging of application code. During application devel-
opment, if there is no memor!! protection, each time
one process crashes, the entire CPU may crash. This
makes tracking down bugs ,ext,remely frustrating and
time-consuming. With memory ~protection, software fail-
ures are contained within an address space and can be
easily tracked down.

Efficient System Calls: Above we mentioned the ad-
vantages of memory protection. Its disadvantage is the
context switch overhead incurred when making system
calls (because the user and kernel usually exist in sep-
arat,e address spaces). This is why some RTOSs omit
memory protection so they only have to make subrou-
tine calls t o access kernel services; not so with memory
protection.

We resolved this problem by mapping the kernel into
each user-level address space (unilike other OSs in which
the kernel runs in its own address space). This way,
a system call reduces to a TRAP, then a jump to the

243

appropriate kernel address, without the need to switch
0

The flexibility EMERALDS offers in writing proto-
col stacks and device drivers, its small size and speed
set it apart from other modern RTOSs. EMERALDS
also provides many standard features found in today’s
RTOSs such as multi-threaded processes, message-based
IPC, real-time priority-based scheduling, synchroniza-
tion variables, timers, etc. These features are described
in detail in the following sections.

4 Processes and Threads
EMERALDS provides multi-threaded processes. A

process in EMERALDS is a passive entity, representing a
protected address space in which threads execute. Each
thread has a user-specified priority and is preemptively
scheduled by the kernel based on this priority Table 1
lists the EMERALDS system calls related to processes
and threads.

address spaces. Details are given in Section 5.

System call 1 Imp. Params j Fun c ta o n
ITh read priority 1 Create process createproCO

with 1 thread
create-thread0 Thread priority Create thread
join-thread0 Thread ID Wait for child

detach-thread0 Thread ID Tell kernel: will not I wait for thread

Table 1: Process and thread system calls

thread to finish

The two most important features of EMERALDS prc-
cesses and threads are memory protection and real-time
scheduling.

4.1 Memory Protection Implementation
The benefits of memory protection mentioned earlier

will not be of much practical use if the implementation
of memory protection was not efficient and small-sized.
To meet these goals, we made full use of the fact tha t
our target applications are in-memory. This enabled us
to reduce the total size of a page table to a few KBytes
compared to several megabytes for virtual memory sys-
tems with disk backing stores. In the latter, the entire
page table must exist, even if most of the address space
is unused. This is needed t o distinguish unmapped pages
from those which have been swapped out to disk. But for
in-memory systems, this distinction is not needed. This
allows the page table to be trimmed down using the hi-
erarchical nature of most page tables. For example, the
Motorola 68040 has three-level page tables. Each third
level page table represents 256 KBytes of address space.
So, if a process has three segments - code. data, and
stack - and each is less than 256 KBytes, then its page
table will be as shown in Figure 2.

All but, three entries in the first-level page table are
null, so only three second-level page tables exist. An at-
tempt to access an address covered by an invalid entry
will result in a TRAP to the kernel indicating a bug in
the software. Similarly, in each second-level page table,
only one entry is valid and all other third-level page ta-
bles do not exist. This way, total size of the page table is

First
levef

C

Second
level

Third
level

Figure 2 : A typical page table in EMERALDS. The
hierarchical structure is used to reduce the size of the
page table

just 2432 bytes for a page size of 8 KBytes. (More third-
level page tables are needed if any segment exceeds 256
KBytes). While this example is specific to the MC 68040,
most other modern CPUs also provide three-level page
tables with similar parameters.

The small size of page tables not, only saves memory,
but also enables other optimizations like mapping the
kernel into every address space (see Section 5). This
greatly reduces the overhead associated with system
calls, making our implementation of memory protection
feasible for embedded sydems.

4.2 Preemptive Real-Time Scheduling
Currently, EMERALDS provides fully-preemptive,

fixed-priority scheduling and partial support for dy-
namic scheduling. The user specifies a thread’s prior-
ity at creation time. Users may choose priorities based
on rate-monotonic [lo], deadline-monotonic [ill, or any
other fixed-priority scheme suitable for the appl i~a t~ ion
at hand. Also, a system call is provided to change a
thread’s priority at run-time to respond to changing op-
erating conditions. This can be used to emulate dynamic
earliest-deadline first (EDF) [lo] scheduling at the user
level (even though currently, EDF is not, explicitly sup-
ported by the kernel). EMERALDS allows for 32-bit
non-unique thread priorities, so by setting a thread’s pri-
ority to its deadline (and re-adjusting every time the t a s k
is invoked), EDF scheduling can be realized.

5 Efficient System Call Mechanism
The biggest advantage microkernels have over mono-

lithic operating systems is modularity. By moving func-
tionality to user-level server processes, services can be
added, removed, or modified as needed. The disadvan-
tage is the extra overhead. A system call which relies on

244

User code m
I Free I

$00000000

$80000000

S f f f f f f f f

Figure 3: A typical address space in EMERALDS. Area
labeled kernel stuck is used for iriterrupts and area la-
beled user s tack is used by both the user and the kernel.

a user-level server involves a t least four context switches:
from user to kernel to server back to kernel and return-
ing back to the user. Moreover, the server process will
usually make some system calls, each requiring at least
two context switches. This extra overhead is particu-
larly unattractive in embedded systems such as in auto-
motive applications. This overhead can force designers
to use more powerful processors than they would otlher-
wise, costing millions of dollars more when the system
is mass-produced. Hence, for a microkernel to be viable
for use in such an embedded system, it must somehow
reduce the system call overhead. EMERALDS achieves
this by mapping the kernel into each process’s address
space. A typical 32-bit EMERALDS address space is
shown in Figure 3.

With this type of mapping, a switch from user to Iter-
ne1 involves just a T R A P (which switches the CPU from
user t o kernel/supervisor mode) and a jump to the ap-
propriate address: there is no need to switch address
spaces. Also, system call code in EMERALDS is de-
signed to take parameters straight off the user’s stack
(possible since both kernel and user are in the same ad-
dress space). This scheme has the following advantages.

N o need to copy parameters from user space to ker-
nel space. All that L0core.S (assembly code used
for making system calls) does is point the kernel
stack pointer to the user stack and some other mi-
nor stack adjustments. As a result, system calls in
EMERALDS (except those involving servers) have
an overhead comparable to that of a subroutine call
(see Section 8).
No need to translate pointers. If the user and ker-
nel are in separate address spaces, the data pointed
to by a pointer must be copied to the kernel’s ,ad-
dress space, and a pointer to this copy passed to
the system call routine. But in EMERALDS, all
user pointers are valid inside the kernel, so no need
t o do any data copying.

Now, let’s go back to the overhead of system calls
involving servers. Instead of having four address space
switches, there are only two (from user’s address space

to server’s and back). Switching between user and kernel
levels doesn’t cause an address space switch and incurs
far less overhead. Even if the server has to make its own
system calls, no more address space switches will occur,
unless the calls involve other :servers (which typically oc-
curs only when the server accesses a device driver). In
this way, the EMERALDS miicrokernel is feasible for use
in cost-conscious embedded systems while retaining the
full flexibility and modularity typical of microkernels.

Implementation: Mapping the kernel into each user
address space is feasible in EMERALDS because both
the kernel and its data segment axe so small. In other op-
erating systems with standard virtual memory, the size
of the kernel’s data segment is so large (due to large
page tables) that mapping it into each address space is
not feasible. The mapping is achieved by having appro-
priate second-level page table entries point to common
third-level page tables which map thc kernel. Thus, size
of a process’s page table is not affected. Also, the kernel
areas are protected from corruption by faulty user code
by using page table entries t o rnark them as read-only
for user mode. This way, user processes are protected
from each other and the kernel is protected from user
processes.

6 Inter-Process Communication (IPC)
T h e primary IPC mechanism in EMERALDS-for both
inter- and intra-processor communication-is message-
passing using mailboxes.’ For intra-processor communi-
cation, EMERALDS also provides shared memory.

6.1 Message-Passing
EMERALDS provides the system calls listed in Ta-

ble 2 for exchanging messages between threads. These
calls are used to create & delete mailboxes and send &
receive messages. EMERALDS also allows a 32-bit. pri-
ority to be assigned to each message which is used to
sort messages in a mailbox so that the receiver thread
retrieves the highest-priority message first.

Message-passing in EMERALIDS has been designed
with efficiency and flexibility in mind. Most communi-
cation networks designed for embedded, real-time sys-
tems such as CAN [12], T T P [13], SERCOS [14], SP50,
etc., provide the bottom two layers of the I S 0 OS1 ref-
erence stack (the physical and daha-link layers) which is
sufficient for exchanging simple messages (all that the
sender has to do is talk directly to the network device
driver). For more complex IPC, the remaining stack lay-
ers must be implemented in sofkware. So EMERALDS
allows both direct, network access as well as use of proto-
col stacks - providing the former as a special case of the
latter. EMERALDS also provildes, optimizations for local
message-passing between threads on the same node. In
the following, we first describe the EMERALDS mecha-
nisms for simple local message-passing, then give details
of how protocol stacks and network device drivers can
be used for more complicated :[PC.

21n the current uniprocessor version of EMERALDS, only the
intra-processor part has been implemented.

245

mboxdelete(
m s g s e n d o

m s g i e c e i v e ()

Important Parameters
CPU-wide unique identifier
Mailbox identifier
Destination node and mailbox,
local server mailbox
Mailbox identifier
Mailbox identifier
Destination mailbox
Mailbox identifier

Functzon
Create mailbox
Delete mailbox
Send message to mailbox

Retrieve message from mailbox
Non-blocking version of m s g i e c e i v e ()
Send message, but bypass redirection
Retrieve message with meta-information

Table 2: Message-passing system calls. The last two calls are for use by protocol servers.

redirect

N1 N2
r I , I

1 ,/ redirecr

User Kernel ~~1
parameter to mbox-create(). Then any message
which arrives for M 2 is redirected by the kernel
and deposited in M s 2 . The server will strip mes-
sage headers, take appropriate actions, then send
the message directly to M 2 .
On the sender side, the server’s mailbox Msl is
given as a parameter to m s g s e n d o . The kernel
then simply deposits the message in M s l . The
server will append headers, then use the network
device driver to send the message to its destination
(as described in the Section 6.1).

EMERALDS provides two special system calls for
writing protocol servers. The call m s g i e c e i v e f u l l ()
not only retrieves the message from the mailbox but also
returns meta-information like the final message desti-
nation (mailbox A42 on node N 2 in our example) and
whether this message is incoming or outgoing. The
msg-senddirect () call is used by receiver-side servers
to send a message (after stripping headers) directly to
the destination mailbox (M 2 in our example). I t is dif-
ferent from msgsend() in tha t it bypasses the redirec-
tion scheme; otherwise, the message will be caught in an
infinite loop.
Priority of Server Processes: User-level servers
which implement protocol stacks cannot run at a fixed
priorit,y all the time because of a form of the priority
inversion [17] problem. Suppose the server runs at a
low priority and some message arrives for a high-priority
thread T1. As long as there are runnable threads of
medium priority, the server will not run and T1 will be
forced to wait for the message and may miss its deadline.
Making the server run at a high priority is also infeasible
for similar reasons.

Our solution to this priority inversion problem is to
use priority inheritance [17] which, in the context of
message-passing in EMERALDS, works as follows. De-
fine an inherzted thread priori ty (ITP) associated with
each message. For an outgoing message, it is the prior-
ity of the sender thread, while for incoming messages, it
is the priority of the receiver thread. We want the server
thread’s priority to be the highest ITP of all messages
in its mailbox. To do this, the kernel must know two
things: which threads are server threads and when does
a server thread finish processing a message (at which
time its priority should be re-adjusted). We use seman-
tic information for this purpose. A server runs an endless
loop of the form

loop: m s g i e c e i v e f u l l 0 ;

246

handle message

got0 loop;
To distinguish a server thread from ordinary

threads, we use the fact that only servers use the
m s g s e c e i v e A u l l 0 system call (that is, we rely on
the application designer not to use this system call in.
non-server threads). Also, once a server finishes han-
dling a message (and it is time for the server’s prior-
ity t o be re-adjusted), the next statement i t executes is,
m s g i e c e i v e f u l l () . So we adjust the server’s priority
as part of this system call. When this call is made, first
the calling thread’s (i.e., the server’s) priority is adjusted
based on I T P of queued messages, and then a message is
popped from the queue and returned t o the server. Also,
if a new message arrives in the server’s mailbox with an
ITP higher than the server’s current priority, then the
server’s priority is immediately increased to that ITP.
N e t w o r k Device Drivers: EMERALDS device
drivers in general are discussed in Section 7.3, but
here we mention some details specific to network device
drivers and their interaction with other threads.

Network device drivers in EMERALDS must be cog-
nizant of the concept of mailboxes, i.e., they must im-
plement part of the network layer of the IS0 OS1 stack.
Specifically, they have to add the mailbox identifier to
a message before transmitting i t , and strip it off when
receiving a message.

On the sender side, accessing a network device driver
is no different from accessing a protocol stack because
both run as user-level servers. All that has t o be done is
to specify the device driver’s mailbox in the msgsend()
call. The device driver can use m s g i e c e i v e f u l l (:) to
retrieve the message, append the destination mailbox to
the message, then send it out over the network t o the
destination node.

On the receiver side, when the device driver receives
this message, it will look a t the destination mailbox, tlhen
use local message passing t o send the message t o that
mailbox. If a protocol stack has been tied to that mail-
box, the message will be automatically redirected to the
protocol server.

This scheme allows communication protocol stacks to
be completely bypassed, if needed. User threads can
send messages directly to device drivers, and receive mLes-
sages directly from device drivers. This type of message
passing is useful for exchanging short, simple messa,ges
like sensor readings and actuator commands, and is “ore
efficient than message-passing using protocol stacks.

6.2 Shared Memory
EMERALDS allows page-based sharing of memory

between processes running on the same CPU. Two sys-
tem calls are provided for this purpose: s h a t t a c h . ()
and shmdetach().

The system call shmiittach() is called with an iden,ti-
fier. If no shared-memory segment exists with this iden-
tifier, then physical memory is allocated and a new seg-
ment is created. This segment is mapped into the call-
ing process’s address space and a pointer t o the start of

sen-delete ()
s e m l o c k 0
sem-trvlock()

the segment is returned. When shm-attach() is called
again with the same identifier b y any process on the same
CPU, the kernel finds the segment with that identifier
and maps it into the calling process’s address space (no
new memory is allocated).

The system call shmdetisch() does the opposite of
shm-attach0. I t unmaps the named segment from the
calling process’s address space. Moreover, if no other
process has this segment ma;pped into its address space,
then the physical memory associated with the segment
is also freed up. This providers a simple programming
model. When processes need to use a shared memory
segment, they call shmattach.() with t,hat segment’s
identifier. The first such ca.11 allocates physical mem-
ory and all the later ones j u t map in the segment.
When processes no longer need a segment, they call
shm-detach(). These calls unmap the segment from
their address space, except the last call which also frees
up the physical memory. These semantics are easier to
use than, for example, U N I X isemantics where shared
memory must be explicitly created before mapping it
into an address space, and :must be explicitly deleted
after unmapping it from each address space.

7 Miscellaneous OS Services
7.1 Semaphores

Threads often need t o ensure mutual exclusion when
accessing critical regions of code dealing with shared re-
sources. EMERALDS provides semaphores (sometimes
also known as mutezes as in POSIX terminology) for
this purpose. The system calls in Table 3 are used to
create, delete, lock, and unlock semaphores. If a thread
tries t o acquire a semaphore which is already locked, that
thread will block and will be added to a queue of threads
waiting for that semaphore. When the lock holder re-
leases the semaphore, the highest-priority thread in the
queue will be unblocked. An alternative to t.he block-
ing s e m l o c k 0 call is the sem-trylock() call which re-
turns an error if the semaphore is already locked. If the
semaphore is free, it will be locked.

Semaphore idelitifier Delete sem.
Semaphore identifier Acquire sem.
Semaphore identifier i i Non-blockinr

System call 1 Important F i r 1
sem-create0 I CPU-wide unique ID Create sem.

Delete CV
Acquire CV
Release CV

Table 3: System calls for semaphores and condition
variables.
Priority Inheritance: The priority inversion problem
with locks is well understood. The standard solution is
priority inheritance which is built into EMERALDS.

If a high-priority thread calls semlock() on a
semaphore already locked by a low-priority thread T I ,
the latter’s priority is temporarily increased to that of
the former. Without priority inheritance, a medium pri-
ority thread T, can get control of the CPU by preempt-

247

ing Tr while T h remains blocked on the semaphore. With
priority inheritance, Ti will keep on running until it un-
locks the semaphore. At that point, its priority will go
back t o its original value, but now T h will be unblocked
and it can continue execution.

7.2 Condition Variables
Condition variables differ from semaphores in the ef-

fect of signaling the variable. When a semaphore is sig-
naled (using sem-unlock()), its effect lasts. This means
that even if no thread is currently blocked waiting for
the semaphore, the signal will not be lost. If later on
a thread tries t o acquire the semaphore, it will succeed.
On the other hand, signaling a condition variable has no
effect if no threads are waiting on that condition variable
a t the time of the signal.

The system calls for condition variables are similar to
those for semaphores and are listed in Table 3. Note that
a system call such as cv- t rywait (1 does not make sense
with condition variable semantics, so it is not provided
by EMERALDS.

7.3 Device Drivers
EMERALDS provides two special system calls t o

write device drivers. The first, m a p d e v i c e () , allows
a device driver to map a memory-mapped device into its
address space.3 From then on, the device driver can use
standard memory operations to access the device. The
s e t i s r - () system call allows device drivers to handle
interrupts. Device drivers use this call to tell the kernel
which ISR subroutine to execute when an interrupt oc-
curs. A separate ISR can be attached to each interrupt
level. As far as communication between user threads and
device drivers is concerned, standard EMERALDS IPC
mechanisms (message-passing and shared memory) can
be used since EMERALDS device drivers run as user-
level threads.

EMERALDS allows even non-device driver threads
to use the above system calls. When used responsibly.
this can be a great asset in embedded real-time systems.
Usually, just one (possibly multi-threaded) process is re-
sponsible for directly communicating with a certain de-
vice like a sensor or an actuator. In this situation, it
becomes very efficient to integrate the device driver with
that process. This way, the device can be accessed using
subroutine calls - completely avoiding context switch
overheads. Such optimizations are not possible in other
0% which require device drivers to reside inside the ker-
nel.

7.4 Memory Management
The system call mem-aUoc () can be used by a process

to get the desired number of pages of physical memory
mapped into its address space. This call returns the
starting address of the allocated space, and can be used
to build library-based memory allocators to provide C
calls like malloc() and free(). Memory obtained through
m e m a l l o c () is retained by a process until it terminates,
a t which time all its memory is reclaimed by the system.

Currently, EMERALDS does not support I/O-mapped devices
because the MC 68040 - on which EMERALDS is presently im-
plemented - does not have a separate 1/0 space.

7.5 Timers
The call s t a r t - t i m e r 0 can be used t o create and

start a timer. This call has two variants. The first is a
blocking version, in which the calling thread blocks for
the specified duration of time. The second non-blocking
version is used to execute a timer ISR. The calling thread
specifies a routine to be executed as the ISR and a time
delay. When the timer expires, the ISR is executed, and
it can reset the timer for the next interrupt. This way,
the ISR can execute periodically.

8 Performance
We have completed a uniprocessor version of EMER-

ALDS for the MC 68040 processor which is one of the
most popular and commonly used processor in embed-
ded systems with a wide installed base. The size of this
version of EMERALDS is about 13 KBytes. Comparing
this to other major RTOSs for embedded applications
(Table 4) , we see that our goal of a small-sized RTOS
has been achieved.

Size KBytes -1 VxWorks 5.1
EMERALDS

Table 4: Sizes of various RTOSs (uniprocessor versions).
Size of QNX is from [3] and includes the “kernel,” Proc,
and Dev modules which is the minimal configuration with
device driver support. VxWorks’ size is from a compiled
stand-alone version.

Table 5 shows the latencies of some system calls and
other operations in the current version of EMERALDS
on a 25 hlHz 68040 processor with two independent
4 KByte instruction and data caches. Latencies are
measured using a 5 MHz clock (the fastest clock avail-
able on the Ironics IV-3207 boards we use). The op-
erations labeled with * involve a context switch to an-
other thread. All other operations return to the calling
thread. System calls which change a thread’s priority
such as process/thread calls and calls with priority inher-
itance (s e m l o c k () and sem-unlock()) also include the
overhead of sorting the list of threads according to their
new p r i ~ r i t i e s . ~ This overhead depends on the number
of threads in existence. The timing results are for 20
threads unless stated otherwise.

Comparing the null() system call to the null () sub-
routine call, we see that EMERALDS’ technique of map-
ping the kernel into each address space results in efficient
system calls, incurring only a 1.8 ps more overhead than
subroutine calls. Even when a context switch to a dif-
ferent address space is required, i t incurs less than 12 ,us

overhead.

9 Conclusion
Small to medium sized embedded real-time systems

are becoming increasingly common in applications like

‘In many 0% which support dynamic scheduling, this sort-
ing/searching is done as part of the context. switch. In EMER-
ALDS, we do the sort only when necessitated by changed thread
priorities, instead of doing it on every context switch.

248

- ~ -
DjGGiZn-

Context switch (kernel to thread)
n u l l () subroutine call
n u l l () system call 2.0
c r e a t e D r o c 0 * 1 1944

La ten&

11.8
0.2

(PSI-

c r e a t e - t h r e a d 0 50.4
j o i n - t h r e a d 0 (thread already exited) 17.2
de t ach - th read0 (thread alreadv exited) I 16.4

s h m d e t a c h o (just unmap segment)

de t ach - th read0 (thread has n i t exited) 1 2.2
s h m A t t a c h 0 (one page mem. allocated) I 1 0 3

8.0

s h m a t t a c h 0 (attach existing segment) 8.6
s h m d e t a c h 0 (one page mem. deallocated) 1 10.0

s e m d e l e t e ()

s e m l o c k O * (sem locked; 20 threads)
s e m l o c k o ’ (sem locked; 10 threads)
s e m u n l o c k 0 (no thread waiting)
s e m m l o c k o * (thread waiting; 20 threads)
s e m m l o c k 0 * (thread waiting; 10 threads)
c v - c r e a t e 0

s e m l o c k o (semaphore free)
3.2
5 8

39.8
33.6
7.0

42.0
35.6

6 .T
c v d e l e t e 0
cv-uai t ()
c v s i g n a l 0 (no thread waiting)
c v s i g n a l 0 ’ (thread waiting)
nbox-create 0
nboxde le t e (1
n s g s e n d 0 (10 bytes, no server)
n s g i e c e i v e 0 (IO bytes, no server)

5.4
25.4
3.4

30.4
6.4
3.6

12.6
11.0 --

Table 5 : Timing of various operations in EMERALDS.

automotive control, robotics, and industrial automation.
To be competit ive in the market , these systems must re-
duce cost to a minimum. Any RTOS to be used in these
systems must therefore not only support predictatbil-
i ty (essential in any real-time system and provided in
EMERALDS in the form of predictable scheduling of
threads) but also be efficient and small in size. Efficiency
allows cheaper processors to be used and small size de-
creases the cost of ROM needed to store the executable
code. Most other modern RTOSs are either too large
in size (hundreds of KBytes or more) or they do not of-
fer several popular OS features like memory protection
and threads in a n a t t e m p t to reduce size and increase
speed. O u r goal in designing EMERALDS was to de-
velop an RTOS which was not only predictable but also
small and efficient, without cut t ing back on standard
OS services relevant to embedded systems. To achieve
this goal, we m a d e use of several features of embedded
systems which allowed us to increase the efficiency of
system calls a n d keep the size of EMERALDS to jus t
13 KBytes (uniprocessor version). Another objective in
the design of EMERALDS was to make it flexible and
easy to use. This is why we chose a microkernel archi-
tecture and provided features such as user-level servers
for communication protocols and device drivers.

The next s tep in the development of EMERALDS is
networking. We plan to use CAN [12] for this purpcse,
which is a popular network for real-time control applica-
tions. We also plan to add features like kernel-supported
deadline-driven scheduling and clock synchronization to

EMERALDS.

References
[I] K. G. Shin and P. Ramanathan, “Real-time computing:

a new discipline of computer science and engineering,”
Procedings of the IEEE, vol. 82, no. 1, pp. 6-24, January
1994.

[Z] L. M. Thompson, “Using p;SOS+ for embedded real-time
computing,” in COMPCO.N, pp. 282-288, 1990.

[3] D. Hildebrand, “An architectural overview of QNX,”
in Proc. Usenix Workshop on Micro-Kernels and Other
Kernel Architectures, April 1992.

[4] VxWorks Programmer’s Guide, 5 . i , Wind River Sys-
tems, 1993.

[5] H. Toknda, T. Nakajima., and P. Rao, “Real-Time
Mach: Towards a predictable real-time system,” in Proc.
USENIX Mach Workshop, October 1990.

[6] K. G. Shin, D. D. Kandlnr, D. Kiskis, P. Dodd,
H. Rosenberg, and A. Incliresan, “A distributed real-
time operating system,” IEEE Software, pp. 58-68,
September 1992.

[7] J. Stankovic and K . Ramamritham, “The Spring Kernel:
a new paradigm for real-tirne operating systems,” ACM
Operating Systems Review, vol. 23, no. 3, pp. 54-71, July
1989.

[8] P. Gopinath and K . Schwan, “CHAOS: Why one can-
not have only an operating system for real-time appli-
cations,” A CM SIGOPS Operating Systems Review, vol.
23, no. 3, pp. 106-125, Februa.ry 1989.

[9] W. M. Gentleman, “Realtime applications: Multipro-
cessors in Harmony,” in Proc. BUSCON/88 East, pp.
269-278, October 1988.

[IO] C. L. Liu and J. W. Layland, “Scheduling algorithms
for multiprogramming in a hard real-time environment,”
Journal of the AGM, vol. 20, no. 1, pp. 46-61, January
1973.

[ll] J. Y.-T. Leung and J. Whitehead, “On the complexity
of fixed-priority scheduling of periodic, real-time tasks,”
Performance Evaluation, vol. 2, no. 4, pp. 237-250, De-
cember 1982.

[12] Road vehicles - Interchange of digital information -
Controller area network (C A N) for high-speed commu-
nication. I S 0 11898, 1st editio’n, 1993.

[13] H. Kopetz and G. Grunsteidl., “TTP - a protocol for
fault-tolerant real-time systems,” I E E E Computer, vol.
27, no. 1, pp. 14-23, January 1.994.

[I41 Electrical Equipment of In(dustria1 Machines - Serial
Data Link for Real- Time Communication between Con-
trols and Drives, Internationa.1 Electrotechnical Com-
mission, 1994. Revision 8.

[I51 H. Kopetz, “Sparse time versus dense time in distributed
real-time systems,” in Proc. int’I Conf. on Distributed
Computing Systems, pp. 460-467, June 1992.

[16] L. Lamport, “Time. clocks, and the ordering of events
in a distributed system,” Communications of the ACM,
vol. 21, no. 7, pp. 558-565, Jul,y 1978.

[17] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inher-
itance protocols: an approach l,o real-time synchroniza-
tion,* iEEE Trans. Compul., vol. 39, no. 3, pp. 1175-
1198, 1990.

249

