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Abstract 

In any distributed system, messages must be ordered ac- 
cording to their cause-and-gyect relation to ensure correct 
behavior of the system. Causal ordering is also essential for 
services like atomic multicast and replication. In distributed 
real-time systems, not only must proper causal ordering be 
ensured, but message deadlines must be met as well. Previ- 
ous algorithms which ensure such behavior include the A- 
protocol family [I] and the MARS approach [2]. Howevel; 
both these algorithms give large response times by delay- 
ing all messages for a fixed period of time. In this paper 
we show that for small- to medium-sized real-time systems 
(consisting of a few tens of nodes) as are commonly used 
for embedded applications, it becomes feasible to extend the 
A-protocol so that instead of delaying all messages for a 
$xed period, each message is delayed according to its dead- 
line. Our algorithm requires certain message deadlines to 
be adjusted by the application designel; and we show that 
for small-scale applications such as those used in embedded 
systems, this adjustment is feasible and can be automated by 
the use of proper CAD tools. 

1. Introduction 

Embedded real-time systems are today being used in a 
wide range of applications, from automotive and robotics 
to factory automation and process control. The physically 
and logically distributed nature of such applications has 
prompted researchers to look for distributed solutions. Dis- 
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derCrants MIP-9203895 and DDM-9313222,and by the ONR under Grant 
N00014-94-1-0229, Any opinions, findings, and conclusions or recom- 
mendations are those of the authors and do not necessarily reflect the views 
of the funding agencies. 

tributed solutions have the potential for enhanced perfor- 
mance as well as modularity and a high degree of fault- 
tolerance, but designers are faced with aproblem which was 
a non-issue in centralized systems: ensuring that all nodes 
have the correct and consistent view of the environment. 

In a typical distributedreal-time system, the task of mon- 
itoring and controlling various aspects of the environment 
is divided among the nodes. When a node observes some 
event, it informs other relevant nodes of this event through 
messages. Due to unpredictable communication delays, dif- 
ferent nodes may learn of different events at different points 
in time, causing some nodes to have an incorrect view of 
the environment. They will act inconsistently and perhaps 
cause damage to life and property. For example, suppose a 
smart temperature sensor sends two updates regarding the 
external temperature. If these messages get reordered dur- 
ing transmission, the receiving nodes will perceive the old 
temperature reading to be the correct one even though it 
is outdated. So for correct and reliable operation of a dis- 
tributed real-time system, messages must be ordered so that 
their cause-and-effect relationship is preserved. This order- 
ing must be performed by the operating system to reduce the 
burden on the application programmer. That way, the appli- 
cations can correctly assume that events occur in the order 
they observe, allowing application designers to write soft- 
ware the way they are used to in centralized systems. This 
ordering primitive can then be used as a basis for higher- 
level fault-tolerance mechanisms such as atomic multicast 
[3] and replication for real-time systems. 

The problem of ordering events in non-real-time systems 
has been the focus of research for more than a decade [4,5], 
but has only recently been investigated for real-time systems 
[2,6-91. Real-time systems differ from non-real-time sys- 
tems in that one node may affect other nodes through the ex- 
ternal environment, which is why causal ordering schemes 
for non-real-time systems do not work for real-time sys- 

1060-9857196 $5.00 0 1996 IEEE 
210 

http://eecs.umich.edu


tems [lo, 151. Causal ordering schemes for real-time sys- 
tems fall into two broad categories [9]: clock-driven and 
timer-driven. The former makes use of a global time base 
whereas the latter relies on local timers. Timer-driven pro- 
tocols have a shortcoming that they can order only those 
events which have a large time-separation (tens of millisec- 
onds)'. This is not acceptable for our target applications, so 
we will not consider timer-driven protocols any further. 

Clock-driven protocols can order events with much 
smaller separations (comparable to the precision of the 
global clock). They make use of synchronized clocks to de- 
lay messages in one way or the other to ensure that the or- 
der of events seen by the application is indeed the correct or- 
der. Such schemes include the A-protocol family [ 11 and the 
MARS approach [2]. Each has a simple criterion for delay- 
ing messages but the price of this simplicity is slower speed. 
Faster response can be obtained only by increasing network 
bandwidth and processor speed. In large and complex real- 
time systems (consisting of hundreds of nodes or more), this 
simplicity may be enough to justify the extra cost of faster 
networks and processors, but not in small- to medium-sized 
embedded systems. Such systems usually consist of a few 
tens of nodes interconnected by a real-time LAN. They are 
typically produced in large volumes (tens of thousands or 
sometimes even millions of units) for applications like au- 
tomotive control and factory automation. These large pro- 
duction volumes make it imperative that production costs 
be kept to a minimum because extra costs of even a few 
dollars per unit translate into an overall loss of millions of 
dollars. For such small- to medium-sized applications we 
need an ordering scheme which performs correctly and ef- 
ficiently without delaying all messages unnecessarily thus 
giving faster responses with cheaper networks and proces- 
sors. In this paper we present an extension to the A-protocol 
which, instead of delaying all messages for a fixed period 
A, delays each message according to its deadline. We show 
that implementing this scheme for our target applications is 
feasible and the benefit is faster response and/or cheaper net- 
works and processors than those provided by the original A- 
protocol or the MARS approach. 

The drawback of our scheme is that it requires deadlines 
of causally-related messages to be adjusted by the applica- 
tion designer in a specific manner. Then, the all-important 
question is whether such an adjustment is feasible or is it too 
much of a burden for the application designer. We show that 
these deadline adjustments can be automated by CAD tools 
as long as the scale of the target application is not too large 
and enough a priori information is available (as is com- 
monly the case for embedded systems). This way, the over- 
head of ordering messages shifts from run-time to design- 
time. The advantage is that at design-time, CAD tools can 

be used to facilitate the design process and reduce overhead. 
In the next section we give some definitions and review 

the existing ordering schemes for real-time systems and 
identify their inefficiencies. Then, in Section 3 we present 
our ordering scheme, identify its design-time requirements, 
and show how a CAD tool can help in fulfilling these re- 
quirements. In Section 4, we use simulations to show that 
the run-time impact on network schedulability of our order- 
ing scheme is almost negligible, and we conclude with Sec- 
tion 5 .  

2. Previous Work 

A typical distributed real-time system consists of a set 
of nodes interconnected by an arbitrary topology real-time 
communication network such as Controller Area Network 
(CAN) [12] and token bus [13]. In such systems, nodes usu- 
ally inform each other of events by exchanging messages. 
Since the communication subsystem may take a variable 
amount of time to deliver messages, there is always the PO- 
tential for messages being reordered en route to their desti- 
nations. Even in LANs, arbitration delays and buffering on 
end-nodes may cause messages to be reordered. So if nodes 
have to rely solely on the receive order of messages to order 
events, then they are likely to act inconsistently. 

Before proceeding further, let us define some terms. 
Sending a message m, called the send event and denoted by 
send ( m )  , occurs when a process P passes m to the com- 
munication subsystem on its node. Note that actual trans- 
mission of m on the network may occur later due to arbitra- 
tion delays. Each message has a destination process denoted 
by des t ( m )  . When the communication subsystem on the 
node on which des t ( m )  runs gets m from the network, 
this is called the receive event. The OS may hold m for some 
time, then deliver it to the application, which is known as the 
deliver event denoted deliver ( m )  . 

To tackle the problem of consistent and correct order- 
ing of events, a set of possible relationships between mes- 
sages in a distributed system have been identified. The most 
commonly-known relationship is logical order [ 10,141: 

Logical Order: Logical order is usually defined based on 
Lamport's happens-before relationship [4]. Event El 
is said to happen-before event E2 (denoted as El +.I 
E2 )  if  

El and E2 are events on the same node and El 

El is a send event and E2 is a corresponding de- 
occurs before E2, or 

liver event, or 
w E1 -l  Et and Et - l  E2 for some event E,. 

'In the terminology of [ll], events must be separated by at least 0, the Preserving logical order of events is enough to en- 
sure correctness in non-real-time systems [4,5], but not in steadiness of the protocol, which is usually tens of milliseconds. 
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real-time systems because of “clandestine” communication 
which can occur through what are known as hidden channels 
[2,6,10,15]. A simple example of such communication is 
a process P on one node taking an action (through an actu- 
ator) and notifying other processes of it through messages. 
Sensors on other nodes may detect a change in the environ- 
ment due to this action before those nodes receive the mes- 
sage from P ,  leading processes on these nodes to act incon- 
sistently. This type of communication from an actuator to 
a sensor can be thought of as a “virtual” message. In real- 
time systems, such virtual messages must be considered as 
well - in addition to the “real” messages -when properly 
ordering events and messages. If we extend the definitions 
of send and deliver to apply not only to real messages but 
to virtual ones as well [ 111 (in the above example, the send 
event will be the actuation and the deliver event will be its 
detection by a sensor), then we can define the causal order 
relationship between events: 

Causal Order: Causal order is defined based on the prece- 
dence relationship between events. Event El is said to 
precede event Ea (denoted as El Ea) i f  

Figure 1. Causally-related events must be 
separated by at least 29, otherwise they may 
get the same timestamp. 

described next. They both depend on the observation that 
“temporal order is a prerequisite for causal order” [2]. In 
other words, if event El was the cause of event Ez, then E1 
must temporally precede Ea. 

2.1. The A-Protocols 

Under the A-protocols [l], each message m is times- 
tamped at the source with the timet of the send ( m  ) event. 
The OS at the destination node holds m until timet + A be- 
fore delivering it to the application. A is a system constant 
and is made greater than the sum of the maximum message 
transmission delay and clock precision. Since all messages 
take time A to be delivered, the temporal order is preserved 
and causal order results automatically. 

e El and E2 are events on the same node and E1 

de- 
occurs before Ea, or 

liver event (for real or virtual message), or 
e El + Ei and Ei -+ E2 for some event Ei. 

is a send event and E2 is a 

There are some limitations of all clock-driven ordering 
protocols (includingthe A-protocols) as described in [6] and 
elsewhere, because real clocks have non-zero clock granu.. 
laity2 g and tend to drift apart from each other. This limits 
the system’s ability to order events timestamped on differ- 
ent nodes. If two clocks can be apart by as much as g, then 
two events must be separated by at least 2g in real-time for 
them to be reliably ordered by the system as illustrated by 
Figure 1. If events El and E2 are separated by less than 29, 

Our objective is to ensure that messages are delivered in ac- 
cordance with their causal order. This is known as causal 
delivery and is defined as follows [l l] :  

Causal Delivery: If mj -+ mi and dest (mj ) = 
dest (mi ) , then causal delivery ensures 
deliver (m, ) 4 deliver (mi 1, where mi, 
mj can be real or virtual messages. 

We have already pointed out that ordering schemes which 
preserve only logical order cannot provide causal delivery. 
To secure causal order (actually, potential causal order), we 
can make use of the temporal order relationship between 
messages: 

Temporal Order: The temporal order of events in a dis- 
tributed system is defined in terms of an omniscient 
external observer. This observer possesses a single 

it possible for them to get the sametimestamp. This means 
that if the two events really have a cause-and-effect rela- 
tion and theminimum separation between them is 6, then for 
correct operation, the clock synchronization must be tight 
enough to satisfy 2g 5 6. 

2.2. The MARS Approach 

The MARS approach to causally ordering messages in 

event precedes event if all messages are delayed for a (more or less) fixed duration. 

reference and timestamps each event by this real-time systems is similar in spirit to the A-protocol in that 

timestamp(E1) < timestamp(E2)‘ In 
El Occurs before in then 

if The MARS approach delays messages at both the source as 
well as the destination. It is based on the sparse timebase 
concept [2]. The system proceeds in lock-step and each step precedes E2. 

Two well-known clock-based schemes which use tempo- *For granularity g to be meaningful, it must be larger than the precision 
ral order to correctly order events in real-time systems are of the clock [9]. 
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is one clock tick of usually large granularity (in the order of 
a millisecond [2]). All message send and deliver events are 
constrained to occur at the clock ticks and the clock gran- 
ularity is larger than maximum message transmission time. 
So all messages sent at clock tick k will be delivered at clock 
tick k + 1. As long as S is greater than the clock granularity, 
causal order is ensured. 0 

The main limitation of the above schemes is that each 
message gets delayed a period (say A) which is greater than 
the longest message transmission time. In real-time sys- 
tems, each message has an associated deadline by which it 
must reach its destination. If these deadlines are to be met, 
A must be made smaller than the tightest message dead- 
line. This in effect forces each message to have the same 
tight deadline which adversely affects network schedulabil- 
ity (schedulable utilization). As a result, the application 
designer must either tolerate slower responses or switch to 
faster networks and processors. Neither of these alternatives 
are acceptable in cost-conscious embedded systems where 
fast response is desired at low costs. In the next section 
we present a modification to the A-protocol which delays 
messages according to their individual deadlines instead of 
a fixed delay A for all messages. This requires deadlines of 
causally-related messages to be adjusted in a specific man- 
ner. The important question is then: is such an adjustment 
feasible or not? We show that for our target applications, ad- 
justing message deadlines is feasible and can be automated 
with a CAD tool currently under development in the Real- 
Time Computing Laboratory at the University of Michigan. 

3. Causal Ordering in Embedded Systems 

The simplicity of the schemes described in the previous 
section is very appealing and very useful in designing large, 
complex real-time systems. However, their overhead is un- 
acceptable in smaller, mass-produced embedded systems. 
Fortunately, the small scale of these systems presents op- 
portunities for optimization which are not feasible in larger 
systems. Here we present a new causal ordering scheme 
which uses knowledge of message deadlines to give better 
response times than other known ordering schemes for real- 
time systems. 

3.1. Message Deadlines 

Messages in real-time systems have some deadlines im- 
posed on them by the response time requirements of the 
application which in turn are usually dictated by the ex- 
ternal environment being controlled by this real-time sys- 
tem. Let’s call this the environmental restriction on message 
deadlines. But when two messages m; and mj are causally 

related and have the same destination, there is an additional 
restriction on their deadlines: 

Causal restriction: If mj .--f mi and dest ( m j  ) E 

where Dk is the absolute deadline of mk . If dk is the relative 
deadlineof mk and mk is sentat timetk, then Dk = tk+dk. 
The reason for this restriction is obvious: if the OS must 
deliver mj before mi without violating the environment- 
imposed deadline of mi, then mj must be received before 
mi’s deadline Di expires. 

Notice that Dj < Di is easy to satisfy. Both the A- 
protocol and the MARS approach satisfy this by forcing all 
messages to have the same relative deadline (say A). If the 
environmental restriction is to be satisfied as well for all 
messages, then we need A 5 tightest environment-imposed 
deadline. This requires faster processors and networks to be 
used than would be needed otherwise. 

The small scale of our target applications provides an al- 
ternative. For such small applications, it becomes feasible 
for the application designer to identify causal relationships 
between messages and then adjust the message deadlines so 
that they satisfy Dj  = Di. Next, we describe our causal 
ordering scheme, then, in its context, we discuss details (in 
Section 3.3) of how the causal restriction can be easily sat- 
isfied. 

dest ( m i ) ,  then Dj must be 5 Di, 

3.2. Causal Ordering Scheme 

Initially, assume perfectly synchronized-clocks with a 
clock granularity g close to zero (we will relax these as- 
sumptions later). Then, our scheme works as follows. 

1. The OS at each node knows the relative deadlines of all 
messages it is to receive from all other nodes. There are 
several ways of achieving this, including: 

Deadline values can be statically programmed 
into each node. 

0 The transmitting nodes can inform all receiv- 
ing nodes of message deadlines during a startup 
phase. 

2. The OS at the transmitting node timestamps each mes- 
sage mk with the time of the send (mk ) event. Let t k  

be the timestamp of mk. 

3. The OS at the receiving node will hold message mk un- 
til time Dk = tk + dk, then deliver mk to the applica- 
tion. If more than one message have the same Dk , they 
will be ordered by their tk. 

This scheme will work correctly as long as the applica- 
tion designer ensures the causal restriction on message dead- 
lines is satisfied. Then, any message mj such that mj -t mi 
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Figure 2. Uncertainty due to non-ideal clocks. 
Broken line indicates a virtual message. 

will have Dj 5 Di as well as tj  < t i  (event j must oc- 
cur before event i'if j is to causally precede i [ 2 ] ) .  Network 
scheduling [16-181 will ensure that both mj and mi meet 
their deadlines so that mj will be sure to be received at the 
destination node before time D; . The OS will order these 
messages by their Dk (and tk in case of ties) so that mj will 
be delivered before m; . 

Now, we modify this scheme to work with realistic clock 
synchronization with non-zero granularity g. Clocks on two 
nodes can be out of sync by any value less than g. Known 
clock synchronization schemes for LANs can ensure g to be 
as small as 10-20 ,us [19,20]. As with other clock-based or- 
dering schemes (Section 2) ,  two events must be separated by 
at least 2g for the system to be able to order them properly. 

A non-zero g combined with virtual messages creates the 
problem shown in Figure 2 .  Suppose the minimum separa- 
tion between events i and j is 2 clock ticks by virtue of a vir- 
tual message mu. Then, by the causal restriction, d j  must be 
5 di + 2 if Dj is to be 5 Di. Let d j  = di + 2 .  But since 
the clocks are not perfectly synchronized, it can happen that 
t j  = ti - 1 (instead of ti - 2). Then Dj = tj  + d j  = 
ti +di + 1 = Di + 1, which may cause mj to be delivered af- 
ter mi. So with non-zero g and virtual messages, the proto- 
col as described above can no longer correctly order events 
separated by 29. Note that if we replace mu by a real mes- 
sage mi with dl = 2 ,  then it will not be delivered till time 
t i +  dl = 1 + 2 = 3 by node 2's clock. Then t i  will be t j  + 2 
and there will be no problems. So the problem occurs be- 
cause virtual messages, unlike real ones, cannot be delayed 
at the destination. 

The above example shows that the causal restriction as 
previously stated is no longer enough for non-ideal clocks 
with virtual messages and must be modified as follows (mp 
is the immediate precedent3 of the generic message mk): 

Causal restriction (non-ideal clocks): If mj -+ mi and 
des t ( mj ) 7 des t ( mi ) , then 0 3  must be I; D; -g ,  

3Messagemp is an immediate precedent of m k  if mp + m k  and the 
destination of mp is the source of m k .  

mp is real or mk is virtual 
mk is m; and mp is virtual 

rk =( rp + d p  + g mk is mj and mp is virtual 
mk has no immediate precedent 

TP + d P  
rp + d p  - g 

tk 

These formulae for rk are used for the recursive calculation 
of worst-case Di and Dj as illustrated in the example shown 
in Figure 3. For D;, the worst-case (least Di) occurs when 
the clock on the destination node of a virtual message is g 
time units behind the clock on the source, vice-versa for real 
messages, and real messages take time less than their d k  to 
reach the destination node. The exact opposite situation re- 
sults in the worst-case (i.e., the largest) Dj.  Our experience 
shows that in real systems, it is unusual to find more than 
one virtual message in a chain of messages, so the effect of 
virtual messages is usually not as pronounced as shown in 
this example. 

This new causal restriction is enough to ensure proper or- 
dering since no two clocks can be out of sync by more than 
g. Also, note that since the clocks on the transmitting and 
receiving nodes can be as much as g apart, mi may be de- 
livered on the receiving node g time units before its deadline 
(according to the transmitting node's clock) is reached. This 
is why Dj must now be 5 D; - g (instead of Dj 5 Di as 
was the case for ideal clocks). 

Several questions arise regarding the causal restriction 
for non-ideal clocks: 

1. How much of a negative impact does reducing message 
deadlines have on network schedulability? 

2. How difficult is it to adjust deadlines to conform to this 
causal restriction? 

The first question is investigated further in Section 4 
through simulations. Regarding the second question, the 
difficult task is determining which mj 's precede a given mi, 
the subject of the next subsection. 

3.3. Adjusting Message Deadlines 

Before we can adjust deadlines, we must first identify 
those mj ' s  which precede a given mi. The first step is to 
figure out all messages to be exchanged between nodes of 
the system. These can usually be known at design-time, un- 
less the application is as complex and dynamic as an ATM 
voicetvideotdata network where new network connections 
(with dynamic quality-of-service requirements) are set up at 
run-time. We are not concerned with such complex applica- 
tions. We focus only on smaller embedded systems where 
typically all messages (in the worst-case) a node can ever 
send are known at design-time. 
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Figure 3. Calculation of Di and Dj (worst-case). Messages have deadlines dil = di2 = di3 = di4 = 
d j l  = djs  = 2 clock ticks and d j 2  = 4 clock ticks, and the first messages in both chains are sent at 
to  = 1. With all real messages, both Di4 and Dj3 would be t o  + 8 = 9, but with virtual messages, Dj3 

is 10 while Di4 is only 7. So it is necessary to adjust deadlines to satisfy the causal restriction. 

The next step is for the designer to identify the cause-and- 
effect relations between messages. A CAD tool can greatly 
help in this. The tool will need to know the following two 
pieces of information: 

The source and destination processes of each message 
as well as the message characteristics such as its period 
and whether it is periodic or sporadic. 

The actuator and sensor pairs such that if the actuator 
changes the environment, the change is detectable by 
the sensor. An example would be a heating element and 
a temperature sensor. 

The tool can use this information to suggest to the appli- 
cation designer all possible causal relations between mes- 
sages. This is best described through an example. Suppose 
process PI uses a periodic message ml to control an actu- 
ator a. Actions of this actuator can be detected by a sensor 
s being monitored by process P2. For example, a may be 
an industrial drive and s may be a speed sensor. Suppose 
the system is in a stable state when PI announces a mode 
change. PI uses sporadic message m2 to inform P2 of the 
mode change. In the new mode, PI uses a different strat- 
egy to control a (e.g., the drive may be slowed down) and 
this change is detected by P2 through s before it receives 
m2 (Figure 4). Since P2 is still in the old operating mode, it 
would not expect the drive to slow down and may take some 
counter-productive actions upon detecting the slow-down. 

Notice that ml is periodic and ma is sporadic and the two 
have different destinations. This makes it difficult to see that 
the causal restriction applies to this case because of a virtual 

Drive c. 
drive slows - -’ \ 

,* 
detected by s - - *  

Figure 4. An example where the causal re- 
striction applies because of communication 
through the environment (broken line). 

message m, sent from the drive to P2 through the environ- 
ment. Following are the steps through which the tool can 
automatically detect this causal relationship: 

1. First, the user can specify ml which the tool will graph- 
ically display for the user (Figure 5). Let d l  = 5 clock 
ticks. 

2. The user will then specify the connection between the 
actuator a and the sensor s (Figure 6). The time for 
a “virtual” message to reach its destination will be the 
time an actuator takes to influence the sensor. For our 
example, let d, = 4 clock ticks. 

3. Since m1 is periodic, it may be that ml 4 m,. The 
tool will ask the user to confirm or reject this. Confir- 
mation will result in Figure 7. 
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... 
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Figure 5. Step 1 : specify ml. 

t=O 

Figure 6. Step 2: specify mu. 

t=O 

I 
I '\mv ' \"" ' ,"v 

p2 ; I I I ,  

Figure 7. Step 3: confirm causal relation be- 
tween ml and m,. 

p* 1 
Drive 

Figure 8. Step 4: specify m2. 

4. 

5 .  

6. 

Next, the user will specify mg and the minimum sep- 
aration between events send (ml ) and send ( m2 ) 
(Figure 8). Let this minimum separation be 1 clock tick 
and da = 11 clock ticks. 

At this stage, the tool can detect that m2 -+ mu and 
dest ( m2 ) = des t ( m, ) . 

Now, the tool must check if the causal restriction is sat- 
isfied or not. D2 = r2 + d2 = t 2  + d2 = 0 + 11 = 11 
clock ticks and D, = r, + d,  = T I  + d l  -+- d,  = 
tl + d l  + d ,  = 1 + 5 + 4 = 10 clock ticks. Then the 
tool will notice that 0 2  $ D, and will alert the user 
that deadlines must be adjusted. 

Remarks: 

0 In the example, the user specified ml, mu, and m2 in 
that order. Changing the order will not affect the end 
result. 

0 We assumed that the computation delay between re- 
ceiving a (real or virtual) message and sending another 
one was 0 (i.e., infinitely fast processors). In practice, 
the user must specify both minimum and maximum 
values. The minimum values will be used for Dj and 
the maximum ones for Dj when mj --i mi. 

The graphic display is just to help the user visualize the 
relation between messages -it is not needed in any of 
the calculations. 

At this point the reader may wonder: if all causal rela- 
tionships between messages are known, why not program- 
in this information and use it to order messages (instead of 
using timestamps) ? The answer is that a message mj may 
causally precede mi at one time and not at another. In the 
above example, suppose m2 is sent soon after one invoca- 
tion of ml . Then m2 does not causally precede this invoca- 
tion of ml . 

Such a tool can use information about individual mes- 
sages to guide the application designer in recognizing 
causalities and adjusting deadlines to satisfy the causal re- 
striction. We are currently developing this tool. Still under 
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Figure 9. Simulation workload (for n = 3). 

consideration are several issues such as proving whether or 
not the causal restriction for non-ideal clocks (Section 3.2) 
is a necessary condition, and if not, what changes will make 
it a necessary (optimal) condition. 

4. Performance Evaluation 

One concern regarding our ordering scheme is that reduc- 
ing message deadlines according to the causal restriction for 
non-ideal clocks will reduce network schedulability. We can 
accept the causal restriction for ideal clocks (and the result- 
ing decrease in message deadlines) as inevitable for correct 
operation of the system. But the causal restriction for non- 
ideal clocks reduces deadlines even further. For example, if 
m3 --f m2 --f ml and these messages are related through 
virtual messages as shown in Figure 9 and all three have the 
same destination, then 0 2  must be 5 D1 - g and 0 3  must 
be 5 0 2  - 9. Using the formulae for r k  to calculate the Dk , 
we see that d2 must be reduced by 29. This reduction then 
affects dS which must now be reduced by 4g. So if there is 
a chain of n causally-related messages, then the deadline of 
the first one in the chain may have to be reduced by as much 
as 2(n -  1)g (note that n is always finite, i.e., thecausal chain 
is acyclic because it is impossible for a process to send any 
new information to itself). In this section we use simulations 
to show that, in fact, there is little or no change in network 
schedulability when deadlines are adjusted. 

Figure 9 shows an example of how the simulation work- 
load is constructed, for n = 3. Suppose d ,  is the least 
of the minimum message deadline and the minimum 6 in 
the system. We assign d ,  as the deadline of the last mes- 
sage in the chain, ml. Since the minimum separation be- 
tween send (m2 ) and send ( ml ) is at least d,, we have 
d2 2 dl + d ,  = 2d, for ideal clocks. Let d2 = 2d,. 
This will cause the biggest decrease in d2 when we make 
it conform to the causal restriction for non-ideal clocks. So 
in general, ds = id ,  in accordance with the causal restric- 
tion for ideal clocks. Our workload consists of 13 messages. 
Of these, 12 messages are in 12/n chains, each chain start- 

ing at t = 0. The 13th message has a period of 1.5dm and 
a deadline of 1.2dm (without this message, the workload is 
too degenerate to give any real insight into the problem). We 
want to see for which minimum d ,  is this workload feasibly 
schedulable when only the causal restriction for ideal clocks 
is satisfied, and how does this minimum d ,  change when 
deadlines of the 12 causally-related messages are reduced to 
dj = id ,  - 2 ( i  - l)g, i = 2 , 3 , .  . .n (note that dl  does not 
have to be reduced) to conform with the causal restriction 
for non-ideal clocks. 

For simulation we assume a 1 Mbit/s CAN [12] network 
which is commonly used in embedded systems like auto- 
motive and industrial applications. Assume each of the 12 
causally-related messages is 79 bits long (32 data bits plus 
47 framing bits) and the 13th message is 87 bits long (40 
data bits). For CAN networks, clocks can be synchronized 
to give a g as small as 20ps [20]. In our simulations, we 
allow for some extra variance and let g = 30ps. We sim- 
ulate both the deadline-monotonic (DM) scheduling algo- 
rithm [ 171 and the mixed-traffic scheduler (MTS) algorithm 
[16] while varying both n as well as dm. DM is a fixed- 
priority scheduler which prioritizes messages according to 
the tightness of their relative deadlines. MTS is a combina- 
tion of DM and the earliest-deadline (ED) scheduler. ED is 
a dynamic-priority scheduler which, at any given time, as- 
signs the highest priority to the message with the earliest ab- 
solute deadline. MTS combines both ED and DM to give 
better performance than DM while incurring less overhead 
than ED. 

In our simulations, we first determine the minimum d ,  
under which a workload is feasibly schedulable when the 
d,’s satisfy only the causal restriction for ideal clocks. Then, 
we want to see by how much this minimum d ,  has to be in- 
creased to make the workload schedulable again when dead- 
lines are decreased to satisfy the causal restriction for non- 
ideal clocks. If d ,  does not change by much, it would mean 
that schedulability is not affected much when deadlines are 
decreased, indicating that the causal restriction for non-ideal 
clocks does not significantly degrade system performance. 

Figures 10 and 11 show the simulationresults for DM and 
MTS, respectively, in which for our workloads, the mini- 
mum d ,  does not change at all under MTS when going from 
ideal clocks to non-ideal clocks, and increases only mini- 
mally under DM. The fact that the minimum d ,  changes 
only slightly (if at all) can be explained as follows. First 
of all, the causal restriction for non-ideal clocks does not 
affect the tightest deadline dl  in the chain. If it did, we 
would expect a more pronounced negative effect on network 
schedulability. The second tightest deadline is $2,  which is 
d ,  greater than dl  and then decreased by 29. How much 
of a negative impact this decrease has depends on how 29 
compares to d ,  (which is the least of the minimum mes- 
sage deadline and the minimum 6). In embedded real-time 
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Figure 10. Values of d, for which workload is 
infeasible under DM. 
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Figure 11. Values of d, for which workload is 
infeasible under MTS. 

systems, message deadlines are typically at least a few hun- 
dred microseconds [16]. The minimum S must be greater 
than the response time of the fastest actuator in the system. 
From Table 1, we see that even the fastest actuators have re- 
sponse times of at least several hundred microseconds. On 
the other hand, g is usually as small as tens of microsec- 
onds [ 19,201 for LANs commonly used in embedded sys- 
tems. So, if d l  = d, = 400,us, then d2 will be 8OOps for 
ideal clocks which will reduce to 740,~s for non-ideal clocks 
for g = 30ps, a decrease of only 7.5%. These results show 
that the causal restriction for non-ideal clocks does not, in 
any significant way, reduce network schedulability. 

Actuator 
Automotive actuators 
Switching time for solenoid 
valves in ABS [21] 
Switching time for fuel injectors [21] 

Minimum stepper motor pulse 
response time [22] 

Motors 

Industrial valves 
Solenoid valve (50% step change) [231 

Response Time 

4- 1 Oms 
0.65-1.5ms 

0.83ms 
(1 200 pulseshec) 

0.6-3s 

Table 1. Response times for some commonly- 
used actuators. 

ing atomic multicast, replication, and other such higher level 
services. Causal order must be preserved while ensuring 
that all messages meet their deadlines - a requirement of 
all real-time systems. In mass-produced embedded systems 
such as those used in automotive and industrial control ap- 
plications, there is another requirement: causal order must 
be ensured at low overhead to keep costs down as much as 
possible. Known clock-driven protocols for causal order- 
ing in real-time systems delay all messages for a period A 
greater than the maximum transmission time of any message 
in the system. If message deadlines are to be met as well, A 
must also be made less than the tightest message deadline. 
These two conditions on A make these protocols too ineffi- 
cient for low-cost embedded applications. Fortunately, the 
small scale of such applications presents opportunities for 
optimization. In this paper, we presented an extension to the 
A-protocol which - instead of delaying all messages for a 
fixed period A - delays each message only until its dead- 
line before delivering it to the application. Our scheme re- 
quires that if mJ + m, and the two messages have the same 
destination, then dJ must be adjusted to satisfy DJ 5 D, -9. 
We showed that a CAD tool can greatly help the application 
designer in adjusting deadlines to conform to this require- 
ment. Moreover, we showed that this decrease in deadlines 
barely affects network schedulability. In this way, we trans- 
fer the causal ordering overhead from run-time to design- 
time and provide a tool to make this task easy for the ap- 
plication designer, thereby reducing the per-unit cost of the 
system which makes our scheme feasible and attractive for 
use in small- to medium-sized embedded systems. 
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