
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996 235

PRIAM: Polite Rescheduler for Intelligent
Automated Manufacturing

Thomas K. Tsukada, Member, IEEE, and Kang G. Shin, Fellow, IEEE

Abstract-This paper considers the problem of rescheduling in
a decentralized manufacturing system. Flexible manufacturing
systems must be able to respond to unexpected disruptions,
including schedule disruptions. However, when a cell controller
in a decentralized system responds to a disruption, it may disrupt
some other cell, because the actions taken at one cell may have
some consequence at another cell. In the approach we propose, a
controller at a disrupted cell tries to respond in a way which is
likely to be least disruptive to other cells, through negotiation
with controllers at other cells. This approach, which we call
“polite replanning,” has the advantage of retaining much of
any original distributed plan, while avoiding wide propagation
of the disruption through the rest of the system. We apply
this concept to the domain of distributed factory rescheduling,
and describe PRIAM (polite rescheduler for intelligent automated
manufacturing), a “polite” rescheduling architecture which is
currently under development. Simulation results show that the
use of negotiation in “polite” rescheduling prevents the wide
propagation of disruption from an initial local disruption.

I. INTRODUCTION
ECENTRALIZATION is an important concept and real- D ity in computer-integrated manufacturing. There has been

a great deal of research into new control models for man-
ufacturing system organization, emphasizing organizational
flexibility, and modularity and simplicity of design [lo], [6],
[20]. While decentralization offers many advantages, such as
greater fault-tolerance and exploitation of parallelism, it also
poses new problems, including the problem of coordination.
When interacting components of a manufacturing system have
different controllers, these controllers must coordinate their
actions so that each is allowed to achieve its goals unhindered.

One problem in which coordination is important is that
of recovery from disruptions. Manufacturing systems rou-
tinely experience disruptions (unexpected disruptive events),
such as machine failures and resource unavailability. Flexible
manufacturing systems must be able to recover from such
disruptions efficiently. In a distributed manufacturing system,
intelligent run-time coordination is necessary for such flex-
ibility, because actions taken at one part of the system can
adversely affect other parts of the system. If a disruption
occurs at one cell of the system, that cell’s controller must take
some action. However, this action may result in a disruption

Manuscript received September 19, 1994; revised September 14, 1995. This
work was supported in part by the NSF under Grant IRI-9209031 and Grant
DDM-93 13222.

The authors are with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor MI 48109 USA.

Publisher Item Identifier S 1042-296X(96)02541-4.

at another cell. In such a way, a disruption at one cell may
propagate through the whole system. A good example of
this type of propagation of disruptions can be seen in the
rescheduling (schedule revision) of a cellular manufacturing
system. If one cell suffers a disruption, the jobs at that cell
may have to be rescheduled. However, because of precedence
constraints or resource sharing, this rescheduling may disrupt
the schedules of other cells, by the late arrival of parts or
resource unavailability.

In this domain of factory scheduling, we address the prob-
lem of recovering from a disruption in a distributed plan,
specifically a problem of how an individual agent handles the
recovery from such a disruption. The disruption of a plan may
be costly, not only because of the recovery task itself. When a
factory schedule is disrupted, for example, commitments based
upon the original schedule, dealing with material transport or
personnel, may have to be reorganized. At worst, guarantees
made to a customer about delivery times may be violated.
Thus, when unexpected events can occur, one goal is to
handle disruptions with as little change to existing schedules as
possible. In our approach, which we call “polite replanning,”
the affected agent attempts to solve locally the problem of
finding a response to the disruption, in such a way that it will
be least disruptive to other agents. This approach avoids the
costs of making the local problem into a global problem, while
it remains in a cooperative framework by attempting to isolate
the effects of the disruption. More importantly, by avoiding
complete replanning of the system, and by attempting to isolate
disruptions, it attempts to retain as much of the distributed
plan as possible.

In order to find a response which is least disruptive to
other agents, the affected agent must have some information
about how its actions will affect those other agents. Because
an individual agent does not have global knowledge about
the system, some form of negotiation is needed as a means
of gathering information about other agents. Negotiation is
a well-studied concept in the field of distributed artiJicia1
intelligence (DAI). The disrupted agent searches for the least
disruptive response by negotiating with other agents which
could possibly be disrupted by its actions.

In this paper, we explore the issues of disruption and
coordinated recovery in the domain of distributed job shop
rescheduling. While finding a good schedule is often a very
hard problem, handling the disruption of an already existing
schedule also presents an important problem. We consider
“polite rescheduling,” the application of polite replanning
to the problem of recovering from such a disruption in a

1042-296X/96$05.00 0 1996 IEEE

236 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL 12, NO 2, APRIL 1996

distributed group of manufacturing cells, and describe PRLAM
(polite rescheduler for intelligent automated manufacturing), a
rescheduling architecture for decentralized manufacturing.

This paper is organized as follows. Section IT provides some
background on the DAI field and A1 research in scheduling,
and explains how polite replanning is related to this research.
Section I11 presents a formal model and an outline of our polite
replanning ideas. Section IV describes the application of our
ideas to the job shop rescheduling domain, and describes the
PRIAM architecture. Section V presents simulation results of
our work. Section VI presents a summary of this work.

11. DISTRIBUTED PROBLEM
SOLVING AND POLITE REPLANNING

A, DAI and Intelligent Scheduling

Polite rescheduling attempts to find solution methods for
schedule revision from the field of DAI, which has become
an increasingly important field of AI during the last 15
years [4], [9]. Distributed probleH solving (DPS), a branch
of DAI, studies how several agents cooperate to solve a
common problem. The two most important issues in DPS are
problem decomposition and task organization. These issues are
addressed in the important early work in DAI. The contract
net protocol of Davis and Smith [5] introduced the concept
of negotiation protocols for task decomposition, while Durfee
and others have explored the problem of organization among
agents with interacting goals in a dynamic environment [7].

In the past dozen years, starting with the work of Fox
[8] and Smith [17], there has been much AI research in
the field of factory scheduling, much of which involves
reasoning about schedule constraints and analyzing resource
capacity. Recently, there has been some work on distributed
approaches to scheduling, including Parunak’s distributed run-
time elaboration of a high-level coarse schedule [15], Sycara’s
work on distributed job-shop resource allocation [18], and
Sen’s work on distributed meeting scheduling [161.

Our main concern, schedule revision in a decentralized
manufacturing environment, is not directly addressed in these
works. It is loosely related to the problem of backtracking
in DPS, as discussed in [18] and [13], and the problem of
avoiding “ripple effect” propagation of plan changes is briefly
discussed in Kambhampati’ s work on distributed “hybrid”
planning [l l] . There has been important work on schedule
revision in a single-agent environment, including work by
Minton [la] and Zweben [21] in the domain of space ap-
plications.

B. The Polite Replanning Approach
The problems which we are investigating are those in which

one agent in a system of loosely-coupled agents needs to
recover from a local disruption. By “loosely-coupled,” we
mean that the agents are not necessarily cooperating closely
on any particular task, but they may affect one another, and
in particular, the actions of one may hinder another from
achieving its goals. A cellular manufacturing system is a
good example of a loosely-coupled system, as cells affect one

another through resource sharing and past delivery, but work
largely in isolation on their own tasks. By a “local disruption,”
we mean an unexpected event which is recognized only by one
agent, and the immediate effects of which concern only that
agent.

In the framework provided by the contract net and similar
models, the problem decomposition and task organization are
as follows. The task of finding a “least disruptive” solution
is centralized at the disrupted agent, because this agent is
the only one with knowledge of the disruption and its im-
mediate effects. However, this disrupted agent may lack the
knowledge required to find a good solution, because such a
solution depends upon the states of other agents. Thus, the
responsibility for negotiation lies with this agent. As in the
contract net protocol, it “contracts” other potentially affected
agents to determine how disruptive a proposed solution may
be. If a proposed solution is accepted, then the disrupted agent
leaves as problems for other agents how to respond to the
effects of this proposed solution.

Most DPS approaches involve the construction of plans or
problem-solutions through general cooperation and exchange
of plan and goal information. Our polite replanning approach
is distinguished by addressing the situation in which agents
already have plans, and in which one agent must revise its plan
in the context of other agents’ plans. Obviously, if disruptions
never occur, this style of cooperation is unnecessary. Likewise,
if disruptions occur so frequently that agents are constantly
revising their plans, and are revising plans simultaneously,
then some form of reactive planning [11 or global supervision
is better suited to the problem than cooperation about constant
plan revisions. Our approach, however, may be appropriate
for problems in between these two poles, in which disruptions
may occur and thus must be dealt with, but in which these
disruptions are infrequent enough that having an initial plan is
still useful. Likewise, while plan revision is an unimportant
problem if plan generation is very easy, our approach for
avoiding plan disruption is appropriate when plan generation
is not easy, as in job shop scheduling. Thus, for both these
reasons, we believe that our approach is appropriate for the
problem of rescheduling in a decentralized manufacturing
system.

111. FORMAL MODEL

In order to discuss concepts dealing with disruption propa-
gation and recovery actions in a multiagent environment, we
propose the following model. Let C be the set of n cells. For
each cell i, there is a set S, = { s , ~ , . . . , s , ~ } of states. In the
job shop scheduling domain, for example, this set would be
the set of all schedules. For each cell i , there is a set D, c S,,
which is the set of disrupted states. A state in S, which is not
in D, is a safe state. A disruption is an event which puts a cell
into a disrupted state. A disrupted state in job shop scheduling
would be an infeasible schedule. Let set A, = { u , ~ , . . . , uZp}
be the set of actions which can be taken at cell i . These sets
of states and actions need not be explicitly enumerated; rather,
they represent search spaces through which proper actions are
found, as described below.

TSUKADA AND SHIN: PRIAM 231

For each pair of cells i and k , there is a transition function
&:A; x S k -+ SI, which describes how an action taken by
cell i affects cell I C . Thus, if cell IC is in state s and cell i
takes action a , then cell k will be put into state .Ei~,(a, s).
If cell i takes an action which puts cell j into a disrupted
state, we say cell j has been disrupted by cell i. If cell i is in
state s, and then takes action a, it will itself be put into state

For cell i and state s E D;, let RA;(s) = {a: a E
Ai, .Fii(a, s) E Si - D;} be the set of recovery actions for cell
i while it is in disrupted state s. For cell i and state s E Di,
let GA;(s) = {a: a E RA;(s), F;j(a, s’) = s’ for all s’ E
Sj , j E C , j # i } be the set of guaranteed-local recovery
actions. A guaranteed-local recovery action will not affect
any other cell, regardless of what state it is in. For cell i ,
let T; = {s: s E Di, GA;(s) f: 0} be the set of semisafe
states for cell i. A semisafe state is a disrupted state from
which a cell can recover with a guaranteed-local recovery
action. For cell i and action a c: Ai, let Mi(.) = { j : j E
C , j # i , 3 s E S j ,F i j (a , s) E D j } be the set of remote cells
which could possibly be disrupted by cell i taking action a.
Clearly, if a E GA,(s) for some cell i and action a, then

&(a, 8).

Mi(U) = 0.
Disruptions can be classified by how much they result in

propagation of disruptions. Consider a system state 5 in which
cell i is in disrupted state z; = Sd E Di, and in which every
other cell is in a safe or semisafe state. We call the disruption
which caused cell i to be disrupted a disruption of type 0
if GA;(sd) # 0. By taking an action a E GAi, cell i can
recovery from a type 0 disruption without disrupting other
cells. Likewise, we call the disruption a disruption of type 1,
where 1 > 0, if there is an action a E R A i (s d) such that
Mi(a) # 0, and a cell k E &&(a), such that Fij(a,xj) E Tj
for all j E Mi(a) , j # k , and such that, if cell k is disrupted
by action a (that is, if state F i ~ , (a , xk) E Dk), it is a disruption
of type 1 - 1. Cell i can recover from a disruption of type n
without the disruption being propagated more that 1 levels. If a
disruption is not of any of these types, then this model cannot
describe how the system can recover from this disruption.

A. Outline of Approach

In our “polite replanning” approach, we assume that, in
searching for the lowest cost response to an outside disruption,
it is best to try to limit the propagation of the disruptions. Even
though the best solution might entail the disruption of every
cell in the system, we limit the search space by trying to find
a solution which involves the least disruption propagation.

When a cell experiences a disruption, it tries to determine
whether this disruption is of type 0. If it determines this,
then it takes a recovery action which will not result in a
disruption of another cell. If not, then it tries to determine
through negotiation with other cells whether the disruption is
of type 1. If it determines this, it takes the action which results
in a propagation of the disruption of at most one level. Here
we do not go beyond disruptions of type 1; in our cellular
manufacturing domain, there is not a large number of cells,
so that at greater levels of propagation, the whole system is

affected. This approach can be extended to disruptions of type
1 in systems of greater numbers of cells. In such a case, a
small group of cells may cooperate more fully to prevent the
disruption from propagating beyond that group.

Consider a disruption which puts cell i into disrupted state
Sd. We do not assume that the controller at cell i already knows
its full set of possible actions, and their effects on other cells.
Instead, the controller at cell i uses some heuristic G to try to
find a guaranteed-local action a E GA(sd). If it can find such
an action, it will take that action. If not, some communication
is necessary for the selection of a good recovery action. Thus,
the controller at cell i uses some heuristic H to select a
recovery action a’ E FL4(sd) which seems likely, given local
information, not to be very disruptive to other cells. Cell i
then sends a proposal message to all members of Mz(a’),
proposing action a’.

When a cell j receives a proposal message proposing action
a’, it first determines whether action a’ will cause a disruption
at cell j. If not, then it returns an ok- 0 message. Otherwise, it
tries to determine whether the disruption caused by a‘ will be
one of type 0, which can be handled locally. If so, it returns an
‘ok-1 message. Otherwise, it will return a not-ok message,
perhaps along with some information J which can be used by
the disrupting cell’s heuristic H to propose a better solution.

When the controller at the disrupted cell receives replies to
its proposal, if all replies are ok-0 messages, then it takes
the proposed action. If all replies are either ok-0 or ok-1
messages, then the controller can take the proposed action. If
there is a not-ok reply, then the controller knows that action
a’ will not isolate the disruption to the cells in Mz (a’), so, with
whatever information has been gathered, it uses heuristic H
again to propose a new recovery action, unless it determines
that further negotiation will not be useful.

This approach is of course only a simple outline of an
algorithm for handling this problem. The real issues are what
kinds of heuristics G and H are, what kinds of information
J is to be exchanged, and what to do when no proposal is
acceptable to the other cells. At least some of these answers
are domain dependent, and cannot be more fully described in
this very general model.

IV. POLITE RESCHEDULING

A. Background

In this section, we consider the use of polite replanning
in the domain of scheduling in a cellular manufacturing
system. The scheduling domain is an appropriate one in
which to investigate this problem, because there are easily
definable interactions among cells, in the form of precedence
constraints among jobs. Scheduling is the assignment of jobs to
machines at specified times, and may be done statically (before
execution) or dynamically (during execution). In dynamic
scheduling, all scheduling decisions are made at run-time,
by dispatch rules [3], or by least-commitment opportunistic
planning [14]. While fast and widely used in practice, dynamic
scheduling suffers from being myopic and unpredictable (i.e.,
scheduling actions are unknown before run-time). Static sched-

~

238

A / i 2 3

B 4 5

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

6

uling, constructing a schedule before execution, allows use
of time consuming optimization methods which can allocate
resources much more efficiently. Static scheduling also allows
prediction of task completion times and machine utilization.

One often overlooked but important aspect of scheduling
is the actual execution of an statically-constructed schedule
(a preschedule). During execution, unexpected events, such
as machine breakdown or new job arrival, may disrupt the
preschedule. Revising the schedule on the shop floor may
be difficult, as time is constrained, and shop floor computing
resources may be limited. Thus, even if optimization methods
were used to construct the preschedule, they may be unavail-
able for its revision. One approach to handling unexpected
events is dynamic scheduling, in which no preschedule is
constructed. Another approach is to construct a new schedule
when events render the old one infeasible. One very fast way
of doing this is to “push back” the existing schedule until it
becomes feasible. This method is widely used in practice, but
very often produces an inefficient schedule.

These approaches, however, do not make good use of
the preschedule. We choose instead to follow the matchup
scheduling approach of Bean et al. [2]. In t h s approach;
when unexpected events disrupt the preschedule, the scheduler
attempts to schedule production so that the system can return
to (“match up with”) the original preschedule. Thus, the good
preschedule need not be discarded when disruptions occur, and
commitments based upon that schedule need not necessarily
be broken.

B - 1 5

B. Polite Rescheduling

Our approach, as previously discussed, is to have local
cell schedule controllers reschedule in response to schedule
disruptions in such a way as to limit the disruption, either to
the cell itself, or to a small subset of cells. In order to evaluate
various rescheduling approaches, we consider the following
class of job shop problems. Each job is to be processed on
any machine of one specific cell. Jobs may have successors at
other cells; a successor job may start processing only after its
predecessor has been completed. We assume that a preschedule
has already been constructed for this set of jobs, and that this
preschedule tries to minimize the sum of tardiness over all the
jobs. Tardiness is a common measure, but minimizing tardiness
for even simple problems is NP-hard.

As intelligent schedulers reason about schedule constraints,
an intelligent rescheduler should reason about inter-cell sched-
ule constraints. We assume that each cell has knowledge from
the preschedule about these constraints, including which of
its jobs have successor jobs, and the times those successor
jobs are scheduled to begin processing at other cells. We call
the times the precedence deadlines of the predecessor jobs;
precedence deadlines are not to be confused with due times.
Likewise, each cell has information about which of its jobs
have predecessor jobs. However, cells do not have any other
information about the schedules at other cells.

In this type of problem, cells interact solely through prece-
dence constraints among jobs. Consider the very simple ex-
ample in Fig. 1. Here there are three cells with one machine

6

C

C 1 7 1 a 1 9 1

7 a 9

I 1 I I I I I
0 4 8 12 20 24 16

(a)

B 4 5 6

c

d
24

7 8 9

A

Fig. 1.
Rescheduled schedule.

A simple example. (a) Preschedule. (b) Pushed-back schedule. (c)

per cell. Here job 2 has job 5 as a successor, which in turn has
job 9 as a successor. The preschedule is shown in Fig. l(a).
In Fig. l(b), the machine at cell A is unable to process any
job from time 0 to time 2. Cell A’s schedule has been pushed
back, disrupting the schedule at cell B because of the late
processing of job 2.

The algorithm we propose is based upon the outline de-
scribed in Section HI. When a disruption is identified at a
cell, that cell will try to reschedule itself without disrupt-
ing schedules at other cells; such rescheduling would be a
guaranteed-local recovery action. It will thus try to find a new
schedule in which jobs with successors complete processing
before their successors are scheduled to begin processing
(in the preschedule). If such a nondisrupting schedule can
be found, then the cell will attempt to implement a good
nondisrupting schedule.

If such a schedule cannot be found, then the cell will
try to find a schedule that is likely to)be least disruptive
to other cells. It then will propose that schedule to the
cells which may be affected by it. Each of these other
cells will either accept this schedule, if it determines that it
can reschedule in response to any disruptions caused by the
proposed schedule without disrupting other cells, or reject this
schedule, if it cannot determine this. If all of these cells accept
the proposed schedule, then the originally disrupted cell will
implement it, and the cells disrupted will find and implement
new nondisrupting schedules which deal with the disruptions
caused by the proposed schedule.

In the simple example described before in Fig. 1, while
the pushed-back schedule in Fig. l(b) resulted in a schedule

TSUKADA AND SHIN: PRIAM

I I

~

239

7 8 9

I

2->5->9

A

B

C

A

B

C

5 6

7 8

I I I I I I I
0 4 8 12 16 20 24

Fig. 2. A simple example. (a) Push-back schedule. (b) Rescheduled schedule.

disruption at cell B, the schedule in Fig. l(c) reschedules cell
A without disrupting cell B. In our algorithm, cell A would try
to find such a schedule before beginning any negotiations with
any other cells. Had the machine of cell A been down from
time 0 to time 5 instead, as in Fig. 2, then cell A first would
try to find a nondisruptive schedule, and would fail because
none exists. It then would try to find a schedule least likely to
be disruptive to cell B. It would then propose this schedule.
Were it to propose the pushed-back schedule as in Fig. 2(a),
cell B would not accept the proposal, as it would be unable
to avoid disrupting the schedule at cell C . The schedule in
Fig. 2(b), if proposed by cell A, would be accepted by cell
B, as it can find a nondisruptive schedule to address the late
completion of job 2.

C. Implementation

Our architecture for investigating polite rescheduling is
called PRIAM (Polite Rescheduler for Intelligent Automated
Manufacturing). P R I M consists of a rescheduler module and
a negotiator module, as illustrated in Fig. 3. The rescheduler
produces new schedules according to priorities determined
by the negotiator. The negotiator module determines what
kinds of schedules to propose to other cells, and determines
the priorities through the use of information resident at the
node or gathered through communication. This division is
natural, because negotiating is a higher level task which
is not concerned specifically with making schedules, while
rescheduling is a lower level task in which negotiation does
not play a direct role.

The priorities given to the rescheduler determine what kind
of schedule will be produced. For example, if a disruption

NEGOTIATOR

Disruption
Information

Scheduling
Information

I Schedules

RESCHEDULER
I I

Fig. 3. The PRIAM architecture.

has just been identified, then the initial action will be to
try to find a nondisrupting schedule. The priority for such a
schedule is for all jobs with successors to complete processing
before their precedence deadlines. Except for one machine
scheduling, even this simple problem of scheduling to meet
deadlines is NP-hard, so the rescheduler usually cannot search
for optimal solutions. We use a heuristic priority scheduling
algorithm (Fig. 4) with three priority levels: high priority for
predecessor jobs, low priority for predecessor jobs, and lowest
priority for nonpredecessor jobs. The algorithm first schedules
high priority jobs, and then inserts low priority jobs into
the partial schedule without pushing high priority jobs past
their precedence deadlines. Lowest priority jobs are likewise
inserted into the schedule. In general, the rescheduler must
be fast, because the time allowed for rescheduling on-line
after a disruption is likely to be much shorter than the time
allowed for construction of the preschedule. Likewise, while
the negotiator makes decisions on a higher level, it must also
use heuristics.

240 EEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

Given n high priority predecessor jobs, m low priority predecessor jobs, and s non-predecessor jobs,

and a preferred dispatch rule D:
1. Schedule the high-priority predecessor jobs by earliest precedence deadline, and label

these jobs 1,2 , . . . , n;

2. For each scheduled high-priority predecessor job i in order,

2.1. Define the slack time s1 for job j , i 5 j 5 n as the idle time in the current

schedule between the completion time of job i - 1 and the precedence deadline

for job j ;

2.2. If there is an unscheduled low-priority predecessor job which has processing time less than

mini<j<n(s,), _ _ insert into the schedule before job i the job which has the

smallest precedence deadline of such jobs, and go t o 2.1.

3. Schedule the remaining unscheduled low-priority predecessor jobs by earliest precedence deadline.

4. Relabel the scheduled predecessor jobs in order of starting time 1,2 , . . . n + m;

5. For each scheduled predecessor job in order,

5.1. Define the slack time s, for job j , i 5 j 5 n + m as the idle time in the current

schedule between the completion time of job j - 1 and the precedence deadline

for job j ;

5.2. If there is an unscheduled job which has processing time less than

min;<j<n(sj), - - insert into the schedule before job i one such job chosen by D,
and go t o 5.1.

6. Schedule the remaining unscheduled jobs by D.
Fig. 4. Priority scheduling algorithm for polite scheduling

V. EVALUATION

A. Simulation Model
We evaluate priority scheduling algorithms in PRIAh4

through simulation of disruptions in a generic manufacturing
system. In these simulations, a preschedule is constructed
for a generic manufacturing system, which consists of four
groups of three cells each: a set of machining cells, two sets
of subassembly cells, and a final assembly cell. Each cell has
two identical machines, and a job may be processed only at
one specified cell. Jobs may have precedence constraints: a
job at a machining cell may have a successor at a subassembly
1 cell, a job at a subassembly 1 cell may have a successor at
a subassembly 2 cell, and a job at a subassembly 2 cell may
have a successor at a final assembly cell. But there may be
jobs at any cell which do not have successors or predecessors.

The preschedule is generated from a randomly generated
set of 192 jobs (16 per cell). One parameter in the generation
of the job set is p , the probability that any given job is the
predecessor of some other job (excepting final assembly jobs).
By varying p , job sets with different levels of precedence
constraints are generated. In each of the job sets, a job may

have at most one successor, but may have several predecessors.
We assume, for simplicity, that setup times are not sequence-
dependent, and can be ignored. In each simulation, one of the
machines at a machining cell is disabled for a given interval,
and the system is rescheduled using each of the rescheduling
methods described above.

We are chiefly concerned with how disruptive the reschedul-
ing process is to the manufacturing system. Our primary
measure of disruptiveness is the number of cells which are
affected by the disruption. Other measures that we consider are
the total number of times cells need to reschedule, the number
of jobs whose scheduled completion times are changed, and the
number of jobs which are rescheduled on a machine different
from that on which it was originally scheduled. Our secondary
measme is the makespan, the completion time of the last job
to finish. Makespan is the measure used in constmcting the
original preschedule, and it is a measure of the quality of the
resulting schedule.

We consider three different negotiation strategies in these
simulations. The negotiation strategies that can be used de-
pends upon what kind of information can be obtained from
other cells. For the polite negotiation algorithm for these

TSUKADA AND SHIN: PRIAM 241

negotiations, we assume that, when a disrupted cell proposes a
new schedule to a remote cell, that remote cell will reply ok- 1
if it can reschedule without disrupting other cells; otherwise,
it will include in its reply the identities of the cells it will
disrupt if the proposed schedule is implemented. From this
information, the disrupted cell will have an estimate of how
many cells will be disrupted by a proposed schedule. In the first
polite negotiation algorithm (POL-NEGl), the disrupted cell
will propose a small number of possible schedules generated
from different priorities, and will decide to implement the
first proposal which elicits only ok-1 replies from other
cells. Otherwise it will implement the proposal causing fewest
disruptions. In the second polite negotiation algorithm (POL-
NEG2), the disrupted cell will also propose a small number of
possible schedules and will decide to implement the proposal
causing fewest disruptions. The third negotiation algorithm
(POL-NEG3) is the same as POL-NEG2, except that the
number of proposals is smaller. Only the originally disrupted
cell uses these polite negotiation algorithms; if a cell is
disrupted only by the late completion of a predecessor job,
it will not use negotiation.

In these simulations, we compare the results from our polite
negotiation algorithms with the results from a polite algorithm
(POL) using the previously described priority scheduling algo-
rithm but without negotiation. In this algorithm, the disrupted
cell generates a small number of possible schedules and tries
to limit the number of disrupted cells, but does so without
negotiation with other cells. We also compare these results
with the results from two similarly fast algorithms which do
not consider how the rescheduling of one cell may affect
another: the pushback algorithm (PB), in which schedules
at disrupted cells are simply pushed back, and the largest-
remaining-processing-time-first dispatch rule (LPT), which is
used to achieve a low makespan, but does not consider
the problem of disrupting other cells. These algorithms do
not include optimization techniques. Such techniques usually
consume much time and computation, and our assumption
is that schedule revision at a cell will not take place on
powerful computing platforms dedicated to execution of long
intensive tasks, as the cell controller is responsible for other
local management tasks.

B. Results
Figs. 5 through 16 show results for three simulations for

each of twenty job sets with the constraint parameter p = 0.6.
First we consider only the PB, LPT, and POL algorithms.
Fig. 5 shows the number of cells eventually disrupted from
the propagation of one machine disruption, versus the length
of the original disruption. These results show that the POL
algorithm isolates disruptions much more than the two other
nonnegotiation rescheduling methods. Fig. 6 shows the num-
ber of times cells eventually have to reschedule. Again, the
POL algorithm is much better for preventing other cells from
having to reschedule. Fig. 7 shows the makespan after all
rescheduling is finished. The POL algorithm is slightly better
than the LPT algorithm at keeping the makespan from being
affected by the disruption.

4.0

3.0

2.0

I I I I

I I I I I
10.0

0.0
0.0 2.0 4.0 6.0 8.0

Length of Disruption (avg job p m time = 1)

Fig. 5. Number of cells disrupted.

5.01- I

I

Length of Disruption (avg job proc time = 1)

Fig. 6. Number of rescbedulings.

Figs. 8 through 14 show simulation results for the polite
negotiation algorithms. Figs. 8 and 9 show that for short
disruptions, negotiation does not seem to provide an advan-
tage; for longer disruptions, both polite negotiation algorithms
show a significant advantage over the POL algorithm with-
out negotiation. There seems to be little difference in how
well the POL-NEG1 and POL-NEG2 algorithms prevent the
spread of disruptions, while Fig. 10 shows that the POL-NEG1
algorithm requires fewer message exchanges. Fig. 11 shows
how many levels of propagation are caused by the original
disruption. Figs. 12 through 14 compare the POL-NEG2 and
POL-NEG3 algorithms, and show that while fewer proposals
reduce the number of messages required, it also reduces the
advantage of using negotiation. Figs. 15 and 16 show the

242 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

22.8
% 2 21.a

20. a
2

m a

18.a

17.a

i6.a

15.0

i4.a

13.a

12.11

5 1.11

I .

I , I I

- 1 - - - -
I

1- - - - - - -
I

i0.a
0.0 2.0 4.0 6.0 8.0 10.0

Length of Disruption (avg job proc time = 1)

Fig 7 Makespan

0.0 I I I I I
0.0 2.0 4.0 6.0 8.0 10.0

Length of Disruption (avg job proc tlme = 1)

Fig. 9. Number of reschedulmgs.

L
W n

z 5
3. a

2. a

1.0

I I I I I
0.0 2.0 4.0 6.0 8.0 10.0

Length of Disruption (avg job proc time = 1)

Fig. 8. Number of cells disrupted.

performance of the various algorithms using the measures of
the number of jobs which are rescheduled, and the number of
jobs that are moved to a different machine during rescheduling.
These show that, when the disruption length is low, the polite
algorithms reschedule and move many fewer jobs than the
LPT algorithm. When the disruption length becomes large, it
is much harder to avoid rescheduling jobs.

C. Discussion

While any use of negotiation in distributed manufacturing
systems is necessarily very domain-dependent, our generic
simulations allow us to make some observations about the
usefulness of the polite approach and polite negotiation. These

Length of Disruption (avg job proc time = 1)

Fig. 10. Number of message exchanges.

simulations show that polite rescheduling provides an ad-
vantage for a distributed system, allowing a cell to respond
to a schedule disruption while reducing the spread of this
disruption to other cells. However, they also indicate under
what conditions polite rescheduling is likely to be useful.
When the constraints of the rescheduling problem are light,
as when the initial machine disruption is short, the use of
negotiation does not provide much advantage, because the
disruption is not likely to be propagated even if the possibility
of propagation is not considered. Likewise, other simulation
results not presented here indicate that when the scheduling
problem itself is less constrained (because there are fewer
precedence relations among jobs), the polite approach with
and without negotiation provide less significant advantages,

TSUKADA AND SHIN: PRIAM 243

Length of Disruption (avg job proc time = 1)

Fig. 11. Propagation level.

0.0 v I I I I I
0.0 2.0 4.0 6.0 8.0 10.0

Length of Disruption (avg job proc time = 1)

Fig. 13. Number of reschedulings.

c

Length of Disruption (avg job proc time = 1)

Fig. 12. Number of cells disrupted. Fig. 14. Number of message exchanges.

once again because the disruption is much’less likely to be
propagated.

When the rescheduling problem is more constrained, as
when the initial disruption is longer, the polite strategies which
use negotiation provided a much more significant advantage
over those strategies not using negotiation. Under these con-
ditions, a cell which does not have global information is
not likely to have enough information about how its actions
will affect other cells, and thus communication allows the
cell to make better-informed decisions. However, our other
simulation results suggest that when the scheduling problem
is much more constrained (because there are more precedence
relations among jobs), the polite approaches provide less of an
advantage over other approaches. Under these conditions, the

many constraints of the problem almost ensure that any disrup-
tion will be propagated throughout the system, and attempts to
respond to the disruption using negotiation will merely confirm
that the propagation is almost unavoidable. Thus, there is a
“window” of usefulness for our polite approach; it is most
useful when the problem is constrained enough that a cell
cannot have sufficient information without communication, but
not so constrained that propagation of disruptions cannot be
avoided. The size of this window is obviously very domain-
dependent.

Another important issue for evaluation of the polite ap-
proach is cost. There are at least two dimensions for cost in this
type of problem. The first involves the quality of the resulting
schedule based upon some scheduling measure disregarding

244 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

,, 50.0
Iu
3 U

.c

-

5:
d
o 40.0 n
7
r

5 n
E 2 30.0

< s

20.0

10.0

0.0
4 2.0 4.0 6.0 8.0 10.0

Length of Disruption (avg job proc time = 1)

Fig. 15. Number of jobs rescheduled

IV i
8 I I I I I

10.0
0.0 v

0.0 2.0 4.0 6.0 8.0
Length of Disruption (avg job proc time = 1)

Fig 16. Number of jobs moved

disruption. In these simulations, we considered the makespan
measure, which is a single “global” measure rather than
an aggregate one. Using this measure, our polite methods
performed well, because preventing disruption propagation
also prevents delays in the completion times of jobs with
predecessors. However, in previous simulation results which
we have reported in [19], we considered the average tardiness
measure, which is an aggregate measure. When this measure
was considered, our polite methods produced schedules of less
quality (higher tardiness) than other approaches which allowed
greater disruption propagation, because the polite methods
trade off increased tardiness at the disrupted cell against the
spread of disruptions. Thus, there can be a tradeoff between
the measure for scheduling (e.g., tardiness) and the measure

for rescheduling (e.g., number of cells disrupted). The other
dimension of cost is the computation and communication
overhead for the polite approaches. This overhead is an
important consideration for any use of negotiation, especially
if communication and processing resources are limited, as
might be true for a cell controller computer. Our simulations
show that the communication costs (in number of message
exchanges) grow as the size of the disruption grows (be-
cause more negotiation is needed to find a good rescheduling
solution), and that additional gains in preventing disruption
propagation come at the cost of additional communication
(because more proposals are required to find a better solution).

In these simulations, for simplicity, we have used the same
job characteristic parameters for the job sets for each cell.
Greater heterogeneity among cells is more realistic, as different
cells may process different classes of tasks. Our ongoing work
investigates how such heterogeneity can determine the utility
of different negotiation strategies.

VI. SUMMARY
We have presented polite rescheduling, a new approach to

handling schedule disruptions in a distributed manufacturing
system. Our approach takes into consideration the possibility
that responding to a disruption in one part of the system
may cause disruptions in other parts of the system. It thus
attempts to respond to disruptions local to one manufacturing
cell so that other cells are disrupted as little as possible. Our
simulation results with P R I M show the advantages of using
a scheduling algorithm that emphasizes precedence constraints
over other scheduling considerations, and demonstrate the ad-
vantages of negotiation. We believe that there are other fruitful
applications of DAI concepts to the area of manufacturing
systems, and we are exploring in other domains the problem
of handling disruptions in decentralized environments

REFERENCES

[l] P. E. A p e and D. Chapman, “Pengi: An implementation of a theory
of activity,” in Proc. National Con$ Art$cial Intelligence, 1987, pp.
268-272.

[2] J. C. Bean et al., “Matchup scheduling, with multiple resources, release
dates and disruptions,” Operations Res., vol. 39, no. 3, pp. 470483,
May-June 199 1.

[3] J. H. Blackstone, D. T. Phillips, and G. L. Hogg, “A state-of-the-art
survey of dispatch rules for manufacturing job shop operations,” Int. J.
Prod. Res., vol. 20, no. 1, pp. 2 7 4 5 , 1982.

[4] A. H. Bond and L. Gasser, “An analysis of problems and research in
DAI,” in Readings in Distributed Artificial Intelligence, A. H. Bond and
L. Gasser, Eds. San Mateo, CA: Morgan Kaufmann, 1988, pp. 3-35.

[SI R. Davis and R. G. Smith, “Negotiation as a metaphor for distributed
problem solving,” ArtiJicial Intell., vol. 20, pp. 63-109, 1983.

[6] N. A. Duffie at al., “Fault-tolerant heterarchical control of heterogeneous
manufacturing system entities,” J. Manufact. Syst., vol. 7, no. 4, pp.

[7] E. H. Durfee, V. R. Lesser, and D. D. Corkill, “Coherent cooperation
among communicating problem solvers,” IEEE Trans. Comput., vol.
C-36, no. 11, pp. 1275-1291, Nov. 1987.

[SI M. S. Fox and S. F. Smith, “ISIS-A kuowledge-based system for
factory scheduling,” Expert Syst., vol. 1, no. 1, pp. 2 5 4 9 , 1984.

[9] L. Gasser and M. N. Huhns, Eds., Distributed Artijicial Intelligence, vol.
2.

[lo] A. C. Jones and C. R. McClean, “A proposed hierarchical control model
for automated manufacturing systems,” J. Manufact. Syst., vol. 5, no. 1,

[ll] S. Kambhampati et al., “Integrating general purpose planners and
specialized reasoners: Case study of a hybrid planning architecture,”

315-328, 1988.

San Mateo, CA: Morgan Kaufmann, 1989.

pp. 15-25, 1986.

TSUKADA AND SHIN: PRIAM 245

IEEE Trans. Syst., Man, Cybern., vol. 23, no. 6, pp. 1503-1518, Nov.
1993.

[12] S. Minton and A. B. Philips, “Applying a heuristic repair method
to the hst scheduling problem,” in Proc. DARPA Workshop Planning,
Scheduling and Control, 1990, pp. 215-219.

[13] Y. Nishibe et al., “Effects of heuristics in distributed constraint satisfac-
tion problems,” in Proc. 11th Int. Workshop DAZ, 1992, pp. 285-302.

[14] P. S. Ow and S. F. Smith, “Viewing scheduling as an opportunistic
problem-solving process,” Ann. Operation Res., vol. 12, pp. 85-108,
1988.

[15] H. V. D. Parunak, “Distributed artificial intelligence systems,” in Arti-
jicial Intelligence Implications for Computer Integrated Manufacturing,
A. Kusiak, Ed.

[16] S. Sen and E. H. Durfee, “Unsupervised surrogate agents and search
bias change in flexible distributed scheduling,” in Proc. 1st Int. Con$
Multi-Agent Systems, 1995, pp. 336-342.

[I71 S. Smith, “OPIS: A methodology and architecture for reactive schedul-
ing,” in Intelligent Scheduling, M. Zweben and M. S. Fox, Eds. San
Mateo, CA: Morgan Kaufmann, 1994, pp. 29-66.

[181 K. Sycara et al., “An investigation into distributed constraint-directed
factory scheduling,” in Proc. IEEE AI Applications, 1990, pp. 94-100.

[19] T. K. Tsukada and K. G. Shin, “Polite rescheduling: Responding to
schedule disruptions in a distributed manufacturing system,” in Proc.
1994 IEEE Int. Con$ Robotics and Automation, 1994, pp. 1986-1991.

[20] D. J. Williams and P. Rogers, Eds., Manufacturing Cells: Control,
Programming and Integration. Oxford: Butterworth-Heinemann, 199 1.

1211 M. Zweben et al., “Scheduling and rescheduling with iterative repair,”
in Intelligent Scheduling, M. Zweben and M. S. Fox, Eds. San Mateo,
CA: Morgan Kaufmann, 1994, pp. 241-255.

Bedford: IFS, 1988, pp. 225-251.

Thomas K. Tsukada (S’91-M’93) received the
B.A. degree in economics from Haverford College,
Haverford, PA, in 1987, the B.S. degree in electrical
and computer engineering from the State University
of New York at Buffalo in 1989, and the M.S.
degree in computer science from the University of
Michigan, Ann Arbor, in 1991.

Currently, he is a Ph.D. candidate and a Research
Assistant in the Real-Time Computing Laboratory
in the Department of Electrical Engineering and
ComDuter Science at the Universitv of Michigan. ”

His research interests include computer integrated manufacturing, scheduling,
and distributed artificial intelligence.

Kang G. Shin (S’75-M’78-SM’83-F’92) received
the B.S. degree in electronics engineering from
Seoul National University, Seoul, Korea, in 1970,
and both the M.S. and Ph.D. degrees in electrical
engineering from Cornel1 University, Ithaca, NY, in
1976 and 1978, respectively.

From 1978 to 1982 he was on the faculty of
Rensselaer Polytechnic Institute, Troy, NY. He has
held visiting positions at the U.S. Air Force Flight
Dynamics Laboratories, AT&T Bell Laboratories,
Computer Science Division within the Department

of Electrical Engineering and domputer Science at UC Berkeley, andhterna-
tional Computer Science Institute, Berkeley, CA, IBM T. J. Watson Research
Center, and Software Engineering Institute at Carnegie Mellon University,
Pittsburgh, PA. He also chaired the Computer Science and Engineering
Division, EECS Department at the University of Michigan for three years be-
ginning January 1991. He is currently Professor and Director of the Red-Time
Computing Laboratory, Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor. He has authoredkoauthored
over 350 technical papers (more than 150 of these in archival journals)
and numerous book chapters in the areas of distributed real-time computing
and control, fault-tolerant computing, computer architecture, robotics and
automation, and intelligent manufacturing. He is currently writing (jointly
with C. M. Krishna) a textbook Real-Time Systems, which is scheduled to
be published by McCraw-Hill in 1996. In 1985, he founded the Real-Time
Computing Laboratory, where he and his colleagues are currently building
a 19-node hexagonal mesh multicomputer, called HARTS, and middleware
services for distributed real-time fault-tolerant applications. He has also been
applying the basic research results of real-time computing to multimedia
systems, intelligent transportation systems, and manufacturing applications
ranging from the control of robots and machine tools to the development of
open architectures for manufacturing equipment and processes.

Dr. Shin received the Outstanding IEEE Transactions on Automatic Control
Paper Award for a paper on robot trajectory planning in 1987. In 1989, he
received the Research Excellence Award from the University of Michigan. He
was the Program Chairman of the 1986 IEEE Real-Time Systems Symposium
(RTSS), the General Chairman of the 1987 RTSS, the Guest Editor of the
1987 August special issue of IEEE TRANSACTIONS ON COMPUTERS on Real-
Time Systems, a Program Co-chair for the 1992 International Conference
on Parallel Processing, and served numerous technical program committees.
He also chaired the IEEE Technical Committee on Real-Time Systems during
1991-1993, was a Distinguished Visitor of the Computer Society of the IEEE,
an Editor of IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING,
and an Area Editor of International Journal of Time-Critical Computing
Systems.

