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Abstract-This paper considers the problem of rescheduling in 
a decentralized manufacturing system. Flexible manufacturing 
systems must be able to respond to unexpected disruptions, 
including schedule disruptions. However, when a cell controller 
in a decentralized system responds to a disruption, it may disrupt 
some other cell, because the actions taken at one cell may have 
some consequence at another cell. In the approach we propose, a 
controller at a disrupted cell tries to respond in a way which is 
likely to be least disruptive to other cells, through negotiation 
with controllers at other cells. This approach, which we call 
“polite replanning,” has the advantage of retaining much of 
any original distributed plan, while avoiding wide propagation 
of the disruption through the rest of the system. We apply 
this concept to the domain of distributed factory rescheduling, 
and describe PRIAM (polite rescheduler for intelligent automated 
manufacturing), a “polite” rescheduling architecture which is 
currently under development. Simulation results show that the 
use of negotiation in “polite” rescheduling prevents the wide 
propagation of disruption from an initial local disruption. 

I. INTRODUCTION 
ECENTRALIZATION is an important concept and real- D ity in computer-integrated manufacturing. There has been 

a great deal of research into new control models for man- 
ufacturing system organization, emphasizing organizational 
flexibility, and modularity and simplicity of design [lo], [6], 
[20]. While decentralization offers many advantages, such as 
greater fault-tolerance and exploitation of parallelism, it also 
poses new problems, including the problem of coordination. 
When interacting components of a manufacturing system have 
different controllers, these controllers must coordinate their 
actions so that each is allowed to achieve its goals unhindered. 

One problem in which coordination is important is that 
of recovery from disruptions. Manufacturing systems rou- 
tinely experience disruptions (unexpected disruptive events), 
such as machine failures and resource unavailability. Flexible 
manufacturing systems must be able to recover from such 
disruptions efficiently. In a distributed manufacturing system, 
intelligent run-time coordination is necessary for such flex- 
ibility, because actions taken at one part of the system can 
adversely affect other parts of the system. If a disruption 
occurs at one cell of the system, that cell’s controller must take 
some action. However, this action may result in a disruption 
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at another cell. In such a way, a disruption at one cell may 
propagate through the whole system. A good example of 
this type of propagation of disruptions can be seen in the 
rescheduling (schedule revision) of a cellular manufacturing 
system. If one cell suffers a disruption, the jobs at that cell 
may have to be rescheduled. However, because of precedence 
constraints or resource sharing, this rescheduling may disrupt 
the schedules of other cells, by the late arrival of parts or 
resource unavailability. 

In this domain of factory scheduling, we address the prob- 
lem of recovering from a disruption in a distributed plan, 
specifically a problem of how an individual agent handles the 
recovery from such a disruption. The disruption of a plan may 
be costly, not only because of the recovery task itself. When a 
factory schedule is disrupted, for example, commitments based 
upon the original schedule, dealing with material transport or 
personnel, may have to be reorganized. At worst, guarantees 
made to a customer about delivery times may be violated. 
Thus, when unexpected events can occur, one goal is to 
handle disruptions with as little change to existing schedules as 
possible. In our approach, which we call “polite replanning,” 
the affected agent attempts to solve locally the problem of 
finding a response to the disruption, in such a way that it will 
be least disruptive to other agents. This approach avoids the 
costs of making the local problem into a global problem, while 
it remains in a cooperative framework by attempting to isolate 
the effects of the disruption. More importantly, by avoiding 
complete replanning of the system, and by attempting to isolate 
disruptions, it attempts to retain as much of the distributed 
plan as possible. 

In order to find a response which is least disruptive to 
other agents, the affected agent must have some information 
about how its actions will affect those other agents. Because 
an individual agent does not have global knowledge about 
the system, some form of negotiation is needed as a means 
of gathering information about other agents. Negotiation is 
a well-studied concept in the field of distributed artiJicia1 
intelligence (DAI). The disrupted agent searches for the least 
disruptive response by negotiating with other agents which 
could possibly be disrupted by its actions. 

In this paper, we explore the issues of disruption and 
coordinated recovery in the domain of distributed job shop 
rescheduling. While finding a good schedule is often a very 
hard problem, handling the disruption of an already existing 
schedule also presents an important problem. We consider 
“polite rescheduling,” the application of polite replanning 
to the problem of recovering from such a disruption in a 
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distributed group of manufacturing cells, and describe PRLAM 
(polite rescheduler for intelligent automated manufacturing), a 
rescheduling architecture for decentralized manufacturing. 

This paper is organized as follows. Section IT provides some 
background on the DAI field and A1 research in scheduling, 
and explains how polite replanning is related to this research. 
Section I11 presents a formal model and an outline of our polite 
replanning ideas. Section IV describes the application of our 
ideas to the job shop rescheduling domain, and describes the 
PRIAM architecture. Section V presents simulation results of 
our work. Section VI presents a summary of this work. 

11. DISTRIBUTED PROBLEM 
SOLVING AND POLITE REPLANNING 

A, DAI and Intelligent Scheduling 

Polite rescheduling attempts to find solution methods for 
schedule revision from the field of DAI, which has become 
an increasingly important field of AI during the last 15 
years [4], [9]. Distributed probleH solving (DPS), a branch 
of DAI, studies how several agents cooperate to solve a 
common problem. The two most important issues in DPS are 
problem decomposition and task organization. These issues are 
addressed in the important early work in DAI. The contract 
net protocol of Davis and Smith [5] introduced the concept 
of negotiation protocols for task decomposition, while Durfee 
and others have explored the problem of organization among 
agents with interacting goals in a dynamic environment [7]. 

In the past dozen years, starting with the work of Fox 
[8] and Smith [17], there has been much AI research in 
the field of factory scheduling, much of which involves 
reasoning about schedule constraints and analyzing resource 
capacity. Recently, there has been some work on distributed 
approaches to scheduling, including Parunak’s distributed run- 
time elaboration of a high-level coarse schedule [15], Sycara’s 
work on distributed job-shop resource allocation [18], and 
Sen’s work on distributed meeting scheduling [ 161. 

Our main concern, schedule revision in a decentralized 
manufacturing environment, is not directly addressed in these 
works. It is loosely related to the problem of backtracking 
in DPS, as discussed in [18] and [13], and the problem of 
avoiding “ripple effect” propagation of plan changes is briefly 
discussed in Kambhampati’ s work on distributed “hybrid” 
planning [ l l ] .  There has been important work on schedule 
revision in a single-agent environment, including work by 
Minton [la] and Zweben [21] in the domain of space ap- 
plications. 

B. The Polite Replanning Approach 
The problems which we are investigating are those in which 

one agent in a system of loosely-coupled agents needs to 
recover from a local disruption. By “loosely-coupled,” we 
mean that the agents are not necessarily cooperating closely 
on any particular task, but they may affect one another, and 
in particular, the actions of one may hinder another from 
achieving its goals. A cellular manufacturing system is a 
good example of a loosely-coupled system, as cells affect one 

another through resource sharing and past delivery, but work 
largely in isolation on their own tasks. By a “local disruption,” 
we mean an unexpected event which is recognized only by one 
agent, and the immediate effects of which concern only that 
agent. 

In the framework provided by the contract net and similar 
models, the problem decomposition and task organization are 
as follows. The task of finding a “least disruptive” solution 
is centralized at the disrupted agent, because this agent is 
the only one with knowledge of the disruption and its im- 
mediate effects. However, this disrupted agent may lack the 
knowledge required to find a good solution, because such a 
solution depends upon the states of other agents. Thus, the 
responsibility for negotiation lies with this agent. As in the 
contract net protocol, it “contracts” other potentially affected 
agents to determine how disruptive a proposed solution may 
be. If a proposed solution is accepted, then the disrupted agent 
leaves as problems for other agents how to respond to the 
effects of this proposed solution. 

Most DPS approaches involve the construction of plans or 
problem-solutions through general cooperation and exchange 
of plan and goal information. Our polite replanning approach 
is distinguished by addressing the situation in which agents 
already have plans, and in which one agent must revise its plan 
in the context of other agents’ plans. Obviously, if disruptions 
never occur, this style of cooperation is unnecessary. Likewise, 
if disruptions occur so frequently that agents are constantly 
revising their plans, and are revising plans simultaneously, 
then some form of reactive planning [ 11 or global supervision 
is better suited to the problem than cooperation about constant 
plan revisions. Our approach, however, may be appropriate 
for problems in between these two poles, in which disruptions 
may occur and thus must be dealt with, but in which these 
disruptions are infrequent enough that having an initial plan is 
still useful. Likewise, while plan revision is an unimportant 
problem if plan generation is very easy, our approach for 
avoiding plan disruption is appropriate when plan generation 
is not easy, as in job shop scheduling. Thus, for both these 
reasons, we believe that our approach is appropriate for the 
problem of rescheduling in a decentralized manufacturing 
system. 

111. FORMAL MODEL 

In order to discuss concepts dealing with disruption propa- 
gation and recovery actions in a multiagent environment, we 
propose the following model. Let C be the set of n cells. For 
each cell i, there is a set S, = { s , ~ ,  . . . , s , ~ }  of states. In the 
job shop scheduling domain, for example, this set would be 
the set of all schedules. For each cell i ,  there is a set D, c S,, 
which is the set of disrupted states. A state in S, which is not 
in D, is a safe state. A disruption is an event which puts a cell 
into a disrupted state. A disrupted state in job shop scheduling 
would be an infeasible schedule. Let set A, = { u , ~ , .  . . , uZp}  
be the set of actions which can be taken at cell i .  These sets 
of states and actions need not be explicitly enumerated; rather, 
they represent search spaces through which proper actions are 
found, as described below. 
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For each pair of cells i and k ,  there is a transition function 
&:A; x S k  -+ SI, which describes how an action taken by 
cell i affects cell I C .  Thus, if cell IC is in state s and cell i 
takes action a ,  then cell k will be put into state .Ei~,(a, s). 
If cell i takes an action which puts cell j into a disrupted 
state, we say cell j has been disrupted by cell i. If cell i is in 
state s, and then takes action a, it will itself be put into state 

For cell i and state s E D;, let RA;(s) = {a:  a E 
Ai, .Fii(a, s )  E Si - D;} be the set of recovery actions for cell 
i while it is in disrupted state s. For cell i and state s E Di, 
let GA;(s) = {a:  a E RA;(s), F;j(a, s’) = s’ for all s’ E 
Sj ,  j E C , j  # i }  be the set of guaranteed-local recovery 
actions. A guaranteed-local recovery action will not affect 
any other cell, regardless of what state it is in. For cell i ,  
let T; = {s: s E Di, GA;(s) f: 0} be the set of semisafe 
states for cell i. A semisafe state is a disrupted state from 
which a cell can recover with a guaranteed-local recovery 
action. For cell i and action a c: Ai, let Mi(.) = { j :  j E 
C , j  # i , 3 s  E S j ,F i j (a , s )  E D j }  be the set of remote cells 
which could possibly be disrupted by cell i taking action a. 
Clearly, if a E GA,(s) for some cell i and action a,  then 

&(a,  8). 

Mi(U) = 0. 
Disruptions can be classified by how much they result in 

propagation of disruptions. Consider a system state 5 in which 
cell i is in disrupted state z; = Sd E Di, and in which every 
other cell is in a safe or semisafe state. We call the disruption 
which caused cell i to be disrupted a disruption of type 0 
if GA;(sd) # 0. By taking an action a E GAi, cell i can 
recovery from a type 0 disruption without disrupting other 
cells. Likewise, we call the disruption a disruption of type 1, 
where 1 > 0, if there is an action a E R A i ( s d )  such that 
Mi(a) # 0, and a cell k E &&(a), such that Fij(a,xj) E Tj 
for all j E Mi(a) ,  j # k ,  and such that, if cell k is disrupted 
by action a (that is, if state F i ~ , ( a ,  xk) E Dk), it is a disruption 
of type 1 - 1. Cell i can recover from a disruption of type n 
without the disruption being propagated more that 1 levels. If a 
disruption is not of any of these types, then this model cannot 
describe how the system can recover from this disruption. 

A. Outline of Approach 

In our “polite replanning” approach, we assume that, in 
searching for the lowest cost response to an outside disruption, 
it is best to try to limit the propagation of the disruptions. Even 
though the best solution might entail the disruption of every 
cell in the system, we limit the search space by trying to find 
a solution which involves the least disruption propagation. 

When a cell experiences a disruption, it tries to determine 
whether this disruption is of type 0. If it determines this, 
then it takes a recovery action which will not result in a 
disruption of another cell. If not, then it tries to determine 
through negotiation with other cells whether the disruption is 
of type 1. If it determines this, it takes the action which results 
in a propagation of the disruption of at most one level. Here 
we do not go beyond disruptions of type 1; in our cellular 
manufacturing domain, there is not a large number of cells, 
so that at greater levels of propagation, the whole system is 

affected. This approach can be extended to disruptions of type 
1 in systems of greater numbers of cells. In such a case, a 
small group of cells may cooperate more fully to prevent the 
disruption from propagating beyond that group. 

Consider a disruption which puts cell i into disrupted state 
Sd.  We do not assume that the controller at cell i already knows 
its full set of possible actions, and their effects on other cells. 
Instead, the controller at cell i uses some heuristic G to try to 
find a guaranteed-local action a E GA(sd). If it can find such 
an action, it will take that action. If not, some communication 
is necessary for the selection of a good recovery action. Thus, 
the controller at cell i uses some heuristic H to select a 
recovery action a’ E FL4(sd) which seems likely, given local 
information, not to be very disruptive to other cells. Cell i 
then sends a proposal message to all members of Mz(a’), 
proposing action a’. 

When a cell j receives a proposal message proposing action 
a’, it first determines whether action a’ will cause a disruption 
at cell j. If not, then it returns an ok- 0 message. Otherwise, it 
tries to determine whether the disruption caused by a‘ will be 
one of type 0, which can be handled locally. If so, it returns an 
‘ok-1 message. Otherwise, it will return a not-ok message, 
perhaps along with some information J which can be used by 
the disrupting cell’s heuristic H to propose a better solution. 

When the controller at the disrupted cell receives replies to 
its proposal, if all replies are ok-0 messages, then it takes 
the proposed action. If all replies are either ok-0 or ok-1 
messages, then the controller can take the proposed action. If 
there is a not-ok reply, then the controller knows that action 
a’ will not isolate the disruption to the cells in Mz ( a’), so, with 
whatever information has been gathered, it uses heuristic H 
again to propose a new recovery action, unless it determines 
that further negotiation will not be useful. 

This approach is of course only a simple outline of an 
algorithm for handling this problem. The real issues are what 
kinds of heuristics G and H are, what kinds of information 
J is to be exchanged, and what to do when no proposal is 
acceptable to the other cells. At least some of these answers 
are domain dependent, and cannot be more fully described in 
this very general model. 

IV. POLITE RESCHEDULING 

A. Background 

In this section, we consider the use of polite replanning 
in the domain of scheduling in a cellular manufacturing 
system. The scheduling domain is an appropriate one in 
which to investigate this problem, because there are easily 
definable interactions among cells, in the form of precedence 
constraints among jobs. Scheduling is the assignment of jobs to 
machines at specified times, and may be done statically (before 
execution) or dynamically (during execution). In dynamic 
scheduling, all scheduling decisions are made at run-time, 
by dispatch rules [3], or by least-commitment opportunistic 
planning [14]. While fast and widely used in practice, dynamic 
scheduling suffers from being myopic and unpredictable (i.e., 
scheduling actions are unknown before run-time). Static sched- 
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uling, constructing a schedule before execution, allows use 
of time consuming optimization methods which can allocate 
resources much more efficiently. Static scheduling also allows 
prediction of task completion times and machine utilization. 

One often overlooked but important aspect of scheduling 
is the actual execution of an statically-constructed schedule 
(a preschedule). During execution, unexpected events, such 
as machine breakdown or new job arrival, may disrupt the 
preschedule. Revising the schedule on the shop floor may 
be difficult, as time is constrained, and shop floor computing 
resources may be limited. Thus, even if optimization methods 
were used to construct the preschedule, they may be unavail- 
able for its revision. One approach to handling unexpected 
events is dynamic scheduling, in which no preschedule is 
constructed. Another approach is to construct a new schedule 
when events render the old one infeasible. One very fast way 
of doing this is to “push back” the existing schedule until it 
becomes feasible. This method is widely used in practice, but 
very often produces an inefficient schedule. 

These approaches, however, do not make good use of 
the preschedule. We choose instead to follow the matchup 
scheduling approach of Bean et al. [2]. In t h s  approach; 
when unexpected events disrupt the preschedule, the scheduler 
attempts to schedule production so that the system can return 
to (“match up with”) the original preschedule. Thus, the good 
preschedule need not be discarded when disruptions occur, and 
commitments based upon that schedule need not necessarily 
be broken. 

B - 1  5 

B. Polite Rescheduling 

Our approach, as previously discussed, is to have local 
cell schedule controllers reschedule in response to schedule 
disruptions in such a way as to limit the disruption, either to 
the cell itself, or to a small subset of cells. In order to evaluate 
various rescheduling approaches, we consider the following 
class of job shop problems. Each job is to be processed on 
any machine of one specific cell. Jobs may have successors at 
other cells; a successor job may start processing only after its 
predecessor has been completed. We assume that a preschedule 
has already been constructed for this set of jobs, and that this 
preschedule tries to minimize the sum of tardiness over all the 
jobs. Tardiness is a common measure, but minimizing tardiness 
for even simple problems is NP-hard. 

As intelligent schedulers reason about schedule constraints, 
an intelligent rescheduler should reason about inter-cell sched- 
ule constraints. We assume that each cell has knowledge from 
the preschedule about these constraints, including which of 
its jobs have successor jobs, and the times those successor 
jobs are scheduled to begin processing at other cells. We call 
the times the precedence deadlines of the predecessor jobs; 
precedence deadlines are not to be confused with due times. 
Likewise, each cell has information about which of its jobs 
have predecessor jobs. However, cells do not have any other 
information about the schedules at other cells. 

In this type of problem, cells interact solely through prece- 
dence constraints among jobs. Consider the very simple ex- 
ample in Fig. 1. Here there are three cells with one machine 
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Fig. 1. 
Rescheduled schedule. 

A simple example. (a) Preschedule. (b) Pushed-back schedule. (c) 

per cell. Here job 2 has job 5 as a successor, which in turn has 
job 9 as a successor. The preschedule is shown in Fig. l(a). 
In Fig. l(b), the machine at cell A is unable to process any 
job from time 0 to time 2. Cell A’s schedule has been pushed 
back, disrupting the schedule at cell B because of the late 
processing of job 2. 

The algorithm we propose is based upon the outline de- 
scribed in Section HI. When a disruption is identified at a 
cell, that cell will try to reschedule itself without disrupt- 
ing schedules at other cells; such rescheduling would be a 
guaranteed-local recovery action. It will thus try to find a new 
schedule in which jobs with successors complete processing 
before their successors are scheduled to begin processing 
(in the preschedule). If such a nondisrupting schedule can 
be found, then the cell will attempt to implement a good 
nondisrupting schedule. 

If such a schedule cannot be found, then the cell will 
try to find a schedule that is likely to )be least disruptive 
to other cells. It then will propose that schedule to the 
cells which may be affected by it. Each of these other 
cells will either accept this schedule, if it determines that it 
can reschedule in response to any disruptions caused by the 
proposed schedule without disrupting other cells, or reject this 
schedule, if it cannot determine this. If all of these cells accept 
the proposed schedule, then the originally disrupted cell will 
implement it, and the cells disrupted will find and implement 
new nondisrupting schedules which deal with the disruptions 
caused by the proposed schedule. 

In the simple example described before in Fig. 1, while 
the pushed-back schedule in Fig. l(b) resulted in a schedule 
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Fig. 2. A simple example. (a) Push-back schedule. (b) Rescheduled schedule. 

disruption at cell B, the schedule in Fig. l(c) reschedules cell 
A without disrupting cell B. In our algorithm, cell A would try 
to find such a schedule before beginning any negotiations with 
any other cells. Had the machine of cell A been down from 
time 0 to time 5 instead, as in Fig. 2, then cell A first would 
try to find a nondisruptive schedule, and would fail because 
none exists. It then would try to find a schedule least likely to 
be disruptive to cell B. It would then propose this schedule. 
Were it to propose the pushed-back schedule as in Fig. 2(a), 
cell B would not accept the proposal, as it would be unable 
to avoid disrupting the schedule at cell C .  The schedule in 
Fig. 2(b), if proposed by cell A, would be accepted by cell 
B, as it can find a nondisruptive schedule to address the late 
completion of job 2. 

C. Implementation 

Our architecture for investigating polite rescheduling is 
called PRIAM (Polite Rescheduler for Intelligent Automated 
Manufacturing). P R I M  consists of a rescheduler module and 
a negotiator module, as illustrated in Fig. 3. The rescheduler 
produces new schedules according to priorities determined 
by the negotiator. The negotiator module determines what 
kinds of schedules to propose to other cells, and determines 
the priorities through the use of information resident at the 
node or gathered through communication. This division is 
natural, because negotiating is a higher level task which 
is not concerned specifically with making schedules, while 
rescheduling is a lower level task in which negotiation does 
not play a direct role. 

The priorities given to the rescheduler determine what kind 
of schedule will be produced. For example, if a disruption 

NEGOTIATOR 

Disruption 
Information 

Scheduling 
Information 

I Schedules 

RESCHEDULER 
I I 

Fig. 3. The PRIAM architecture. 

has just been identified, then the initial action will be to 
try to find a nondisrupting schedule. The priority for such a 
schedule is for all jobs with successors to complete processing 
before their precedence deadlines. Except for one machine 
scheduling, even this simple problem of scheduling to meet 
deadlines is NP-hard, so the rescheduler usually cannot search 
for optimal solutions. We use a heuristic priority scheduling 
algorithm (Fig. 4) with three priority levels: high priority for 
predecessor jobs, low priority for predecessor jobs, and lowest 
priority for nonpredecessor jobs. The algorithm first schedules 
high priority jobs, and then inserts low priority jobs into 
the partial schedule without pushing high priority jobs past 
their precedence deadlines. Lowest priority jobs are likewise 
inserted into the schedule. In general, the rescheduler must 
be fast, because the time allowed for rescheduling on-line 
after a disruption is likely to be much shorter than the time 
allowed for construction of the preschedule. Likewise, while 
the negotiator makes decisions on a higher level, it must also 
use heuristics. 
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Given n high priority predecessor jobs, m low priority predecessor jobs, and s non-predecessor jobs, 

and a preferred dispatch rule D: 
1. Schedule the high-priority predecessor jobs by earliest precedence deadline, and label 

these jobs 1,2 , .  . . , n; 

2. For each scheduled high-priority predecessor job i in order, 

2.1. Define the slack time s1 for job j ,  i 5 j 5 n as the idle time in the current 

schedule between the completion time of job i - 1 and the precedence deadline 

for job j ;  

2.2. If there is an unscheduled low-priority predecessor job which has processing time less than 

mini<j<n(s,), _ _  insert into the schedule before job i the job which has the 

smallest precedence deadline of such jobs, and go t o  2.1. 

3. Schedule the remaining unscheduled low-priority predecessor jobs by earliest precedence deadline. 

4. Relabel the scheduled predecessor jobs in order of  starting time 1,2 , .  . . n + m; 

5. For each scheduled predecessor job in order, 

5.1. Define the slack time s, for job j ,  i 5 j 5 n + m as the idle time in the current 

schedule between the completion time of job j - 1 and the precedence deadline 

for job j ;  

5.2. If there is an unscheduled job which has processing time less than 

min;<j<n(sj), - -  insert into the schedule before job i one such job chosen by D, 
and go t o  5.1. 

6. Schedule the remaining unscheduled jobs by D. 
Fig. 4. Priority scheduling algorithm for polite scheduling 

V. EVALUATION 

A. Simulation Model 
We evaluate priority scheduling algorithms in PRIAh4 

through simulation of disruptions in a generic manufacturing 
system. In these simulations, a preschedule is constructed 
for a generic manufacturing system, which consists of four 
groups of three cells each: a set of machining cells, two sets 
of subassembly cells, and a final assembly cell. Each cell has 
two identical machines, and a job may be processed only at 
one specified cell. Jobs may have precedence constraints: a 
job at a machining cell may have a successor at a subassembly 
1 cell, a job at a subassembly 1 cell may have a successor at 
a subassembly 2 cell, and a job at a subassembly 2 cell may 
have a successor at a final assembly cell. But there may be 
jobs at any cell which do not have successors or predecessors. 

The preschedule is generated from a randomly generated 
set of 192 jobs (16 per cell). One parameter in the generation 
of the job set is p ,  the probability that any given job is the 
predecessor of some other job (excepting final assembly jobs). 
By varying p ,  job sets with different levels of precedence 
constraints are generated. In each of the job sets, a job may 

have at most one successor, but may have several predecessors. 
We assume, for simplicity, that setup times are not sequence- 
dependent, and can be ignored. In each simulation, one of the 
machines at a machining cell is disabled for a given interval, 
and the system is rescheduled using each of the rescheduling 
methods described above. 

We are chiefly concerned with how disruptive the reschedul- 
ing process is to the manufacturing system. Our primary 
measure of disruptiveness is the number of cells which are 
affected by the disruption. Other measures that we consider are 
the total number of times cells need to reschedule, the number 
of jobs whose scheduled completion times are changed, and the 
number of jobs which are rescheduled on a machine different 
from that on which it was originally scheduled. Our secondary 
measme is the makespan, the completion time of the last job 
to finish. Makespan is the measure used in constmcting the 
original preschedule, and it is a measure of the quality of the 
resulting schedule. 

We consider three different negotiation strategies in these 
simulations. The negotiation strategies that can be used de- 
pends upon what kind of information can be obtained from 
other cells. For the polite negotiation algorithm for these 
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negotiations, we assume that, when a disrupted cell proposes a 
new schedule to a remote cell, that remote cell will reply ok- 1 
if it can reschedule without disrupting other cells; otherwise, 
it will include in its reply the identities of the cells it will 
disrupt if the proposed schedule is implemented. From this 
information, the disrupted cell will have an estimate of how 
many cells will be disrupted by a proposed schedule. In the first 
polite negotiation algorithm (POL-NEGl), the disrupted cell 
will propose a small number of possible schedules generated 
from different priorities, and will decide to implement the 
first proposal which elicits only ok-1 replies from other 
cells. Otherwise it will implement the proposal causing fewest 
disruptions. In the second polite negotiation algorithm (POL- 
NEG2), the disrupted cell will also propose a small number of 
possible schedules and will decide to implement the proposal 
causing fewest disruptions. The third negotiation algorithm 
(POL-NEG3) is the same as POL-NEG2, except that the 
number of proposals is smaller. Only the originally disrupted 
cell uses these polite negotiation algorithms; if a cell is 
disrupted only by the late completion of a predecessor job, 
it will not use negotiation. 

In these simulations, we compare the results from our polite 
negotiation algorithms with the results from a polite algorithm 
(POL) using the previously described priority scheduling algo- 
rithm but without negotiation. In this algorithm, the disrupted 
cell generates a small number of possible schedules and tries 
to limit the number of disrupted cells, but does so without 
negotiation with other cells. We also compare these results 
with the results from two similarly fast algorithms which do 
not consider how the rescheduling of one cell may affect 
another: the pushback algorithm (PB), in which schedules 
at disrupted cells are simply pushed back, and the largest- 
remaining-processing-time-first dispatch rule (LPT), which is 
used to achieve a low makespan, but does not consider 
the problem of disrupting other cells. These algorithms do 
not include optimization techniques. Such techniques usually 
consume much time and computation, and our assumption 
is that schedule revision at a cell will not take place on 
powerful computing platforms dedicated to execution of long 
intensive tasks, as the cell controller is responsible for other 
local management tasks. 

B. Results 
Figs. 5 through 16 show results for three simulations for 

each of twenty job sets with the constraint parameter p = 0.6. 
First we consider only the PB, LPT, and POL algorithms. 
Fig. 5 shows the number of cells eventually disrupted from 
the propagation of one machine disruption, versus the length 
of the original disruption. These results show that the POL 
algorithm isolates disruptions much more than the two other 
nonnegotiation rescheduling methods. Fig. 6 shows the num- 
ber of times cells eventually have to reschedule. Again, the 
POL algorithm is much better for preventing other cells from 
having to reschedule. Fig. 7 shows the makespan after all 
rescheduling is finished. The POL algorithm is slightly better 
than the LPT algorithm at keeping the makespan from being 
affected by the disruption. 
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Fig. 5. Number of cells disrupted. 

5.01-  I 

I 

Length of Disruption (avg job proc time = 1) 

Fig. 6. Number of rescbedulings. 

Figs. 8 through 14 show simulation results for the polite 
negotiation algorithms. Figs. 8 and 9 show that for short 
disruptions, negotiation does not seem to provide an advan- 
tage; for longer disruptions, both polite negotiation algorithms 
show a significant advantage over the POL algorithm with- 
out negotiation. There seems to be little difference in how 
well the POL-NEG1 and POL-NEG2 algorithms prevent the 
spread of disruptions, while Fig. 10 shows that the POL-NEG1 
algorithm requires fewer message exchanges. Fig. 11 shows 
how many levels of propagation are caused by the original 
disruption. Figs. 12 through 14 compare the POL-NEG2 and 
POL-NEG3 algorithms, and show that while fewer proposals 
reduce the number of messages required, it also reduces the 
advantage of using negotiation. Figs. 15 and 16 show the 



242 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996 

22.8 
% 2 21.a 

20. a 
2 

m a  

18.a 

17.a 

i6.a 

15.0 

i4.a 

13.a 

12.11 

5 1.11 

I .  

I , I I 

- 1 -  - - - 
I 

1- - - - - - - 
I 

i0.a 
0.0 2.0 4.0 6.0 8.0 10.0 

Length of Disruption (avg job proc time = 1) 

Fig 7 Makespan 

0.0 I I I I I 
0.0 2.0 4.0 6.0 8.0 10.0 

Length of Disruption (avg job proc tlme = 1 )  

Fig. 9. Number of reschedulmgs. 

L 
W n 

z 5 
3. a 

2. a 

1.0 

I I I I I 
0.0 2.0 4.0 6.0 8.0 10.0 

Length of Disruption (avg job proc time = 1) 

Fig. 8. Number of cells disrupted. 

performance of the various algorithms using the measures of 
the number of jobs which are rescheduled, and the number of 
jobs that are moved to a different machine during rescheduling. 
These show that, when the disruption length is low, the polite 
algorithms reschedule and move many fewer jobs than the 
LPT algorithm. When the disruption length becomes large, it 
is much harder to avoid rescheduling jobs. 

C. Discussion 

While any use of negotiation in distributed manufacturing 
systems is necessarily very domain-dependent, our generic 
simulations allow us to make some observations about the 
usefulness of the polite approach and polite negotiation. These 

Length of Disruption (avg job proc time = 1) 

Fig. 10. Number of message exchanges. 

simulations show that polite rescheduling provides an ad- 
vantage for a distributed system, allowing a cell to respond 
to a schedule disruption while reducing the spread of this 
disruption to other cells. However, they also indicate under 
what conditions polite rescheduling is likely to be useful. 
When the constraints of the rescheduling problem are light, 
as when the initial machine disruption is short, the use of 
negotiation does not provide much advantage, because the 
disruption is not likely to be propagated even if the possibility 
of propagation is not considered. Likewise, other simulation 
results not presented here indicate that when the scheduling 
problem itself is less constrained (because there are fewer 
precedence relations among jobs), the polite approach with 
and without negotiation provide less significant advantages, 
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Fig. 12. Number of cells disrupted. Fig. 14. Number of message exchanges. 

once again because the disruption is much’less likely to be 
propagated. 

When the rescheduling problem is more constrained, as 
when the initial disruption is longer, the polite strategies which 
use negotiation provided a much more significant advantage 
over those strategies not using negotiation. Under these con- 
ditions, a cell which does not have global information is 
not likely to have enough information about how its actions 
will affect other cells, and thus communication allows the 
cell to make better-informed decisions. However, our other 
simulation results suggest that when the scheduling problem 
is much more constrained (because there are more precedence 
relations among jobs), the polite approaches provide less of an 
advantage over other approaches. Under these conditions, the 

many constraints of the problem almost ensure that any disrup- 
tion will be propagated throughout the system, and attempts to 
respond to the disruption using negotiation will merely confirm 
that the propagation is almost unavoidable. Thus, there is a 
“window” of usefulness for our polite approach; it is most 
useful when the problem is constrained enough that a cell 
cannot have sufficient information without communication, but 
not so constrained that propagation of disruptions cannot be 
avoided. The size of this window is obviously very domain- 
dependent. 

Another important issue for evaluation of the polite ap- 
proach is cost. There are at least two dimensions for cost in this 
type of problem. The first involves the quality of the resulting 
schedule based upon some scheduling measure disregarding 
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disruption. In these simulations, we considered the makespan 
measure, which is a single “global” measure rather than 
an aggregate one. Using this measure, our polite methods 
performed well, because preventing disruption propagation 
also prevents delays in the completion times of jobs with 
predecessors. However, in previous simulation results which 
we have reported in [19], we considered the average tardiness 
measure, which is an aggregate measure. When this measure 
was considered, our polite methods produced schedules of less 
quality (higher tardiness) than other approaches which allowed 
greater disruption propagation, because the polite methods 
trade off increased tardiness at the disrupted cell against the 
spread of disruptions. Thus, there can be a tradeoff between 
the measure for scheduling (e.g., tardiness) and the measure 

for rescheduling (e.g., number of cells disrupted). The other 
dimension of cost is the computation and communication 
overhead for the polite approaches. This overhead is an 
important consideration for any use of negotiation, especially 
if communication and processing resources are limited, as 
might be true for a cell controller computer. Our simulations 
show that the communication costs (in number of message 
exchanges) grow as the size of the disruption grows (be- 
cause more negotiation is needed to find a good rescheduling 
solution), and that additional gains in preventing disruption 
propagation come at the cost of additional communication 
(because more proposals are required to find a better solution). 

In these simulations, for simplicity, we have used the same 
job characteristic parameters for the job sets for each cell. 
Greater heterogeneity among cells is more realistic, as different 
cells may process different classes of tasks. Our ongoing work 
investigates how such heterogeneity can determine the utility 
of different negotiation strategies. 

VI. SUMMARY 
We have presented polite rescheduling, a new approach to 

handling schedule disruptions in a distributed manufacturing 
system. Our approach takes into consideration the possibility 
that responding to a disruption in one part of the system 
may cause disruptions in other parts of the system. It thus 
attempts to respond to disruptions local to one manufacturing 
cell so that other cells are disrupted as little as possible. Our 
simulation results with P R I M  show the advantages of using 
a scheduling algorithm that emphasizes precedence constraints 
over other scheduling considerations, and demonstrate the ad- 
vantages of negotiation. We believe that there are other fruitful 
applications of DAI concepts to the area of manufacturing 
systems, and we are exploring in other domains the problem 
of handling disruptions in decentralized environments 
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