
666 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

Adaptive Fau It-Tolerant Deadlock-Free
Routing in Meshes and Hypercubes

Chien-Chun Su and Kang G. Shin, fellow, /E€€

Abstract-We present an adaptive deadlock-free routing algorithm which decomposes a given network into two virtual
interconnection networks, VIN, and VlN,. VlN, supports deterministic deadlock-free routing, and VlN, supports fully-adaptive
routing. Whenever a channel in VIN, or VIN, is available, it can be used to route a message.

Each node is identified to be in one of three states: safe, unsafe, and faulty. The unsafe state is used for deadlock-free routing,
and an unsafe node can still send and receive messages. When nodes become faultyiunsafe, some channels in V/N2 around the
faultyiunsafe nodes are used as the detours of those channels in VIN, passing through the faultyhnsafe nodes, Le., the adaptability
in VIN, is transformed to support fault-tolerant deadlock-free routing. Using information on the state of each node’s neighbors, we
have developed an adaptive fault-tolerant deadlock-free routing scheme for n-dimensional meshes and hypercubes with only two
virtual channels per physical link.

In an n-dimensional hypercube, any pattern of faulty nodes can be tolerated as long as the number of faulty nodes is no more
than rni21. The maximum number of faulty nodes that can be tolerated is 2n-i, which occurs when all faulty nodes can be
encompassed in an (n - 1)-cube. In an n-dimensional mesh, we use a more general fault model, called a disconnected rectangular
block. Any arbitrary pattern of faulty nodes can be modeled as a rectangular block after finding both unsafe and disabled nodes
(which are then treated as faulty nodes). This concept can also be applied to k-ary n-cubes with four virtual channels, two in VIN,
and the other two in VlN,. Finally, we present simulation results for both hypercubes and 2-dimensional meshes by using various
workloads and fault patterns.

Index Terms-Wormhole routing, adaptive deadlock-free routing, fault-tolerant routing, hypercubes and meshes, k-ary n-cubes.

4

1 INTRODUCTION
ISTRIBUTED-MEMORY MIMD (multiple-instruction- D multiple-data) multicomputers are usually composed

of a large number of nodes, each with its own processor
and local memory. These nodes use an interconnection
network to exchange data and synchronize with one an-
other. Thus, the performance of a multicomputer depends
strongly on network latency and throughput.

There are two types of message routing:

1) deterministic routing that uses only a single path from

2) adaptive routing that allows more freedom in selecting

Most commercial multicomputers use deterministic routing
because of its deadlock freedom and ease of implementa-
tion. However, adaptive routing can reduce network la-
tency and increase network throughput [4]. It can also tol-
erate more faults than deterministic routing. But, the flexi-
bility of adaptive routing may cause deadlock and/or live-
lock problems. A deadlock occurs when a message waits
for an event that will never happen. In contrast, a livelock
keeps a message moving indefinitely without reaching the
destination.

the source to destination, and

message paths.

C.-C. Su is with Nantai College, Tainan, Taiwan.
K.G. Shin is with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, the University of Michigan,
Ann Arbor, Ml48109-2122. E-mail: kgshin@eecs.umiciz.edti.

Manuscript received Oct. 2,1994; revised Nau. I O , 1995.
For information on obtaining reprints of this article, please send e-mail to.
tunnscom@coinputer.org, and refwence IEEECS Log Number C96046.

Four types of switching methods for sending or receiv-
ing messages are used in distributed-memory multicom-
puter systems: store-and-forward [19], circuit switching,
virtual cut-through [201, and wormhole routing [7]. The
store-and-forward and circuit switching methods were
used in the first-generation multicomputer systems, such as
the Intel iPSC [28]. Contemporary multicomputers use
wormhole routing due mainly to its high transmission effi-
ciency and reduced buffer requirements [27], [24]. All the
algorithms described in this paper are thus based on worm-
hole routing. In wormhole-routed multicomputers, a mes-
sage contains one or more flow-control digits (flits). The first
flit of a message (head flit) builds the transmission path be-
tween the source and destination. Each flit of a message fol-
lowing the head flit advances as soon as the preceding flit
arrives at a node (i.e., flit pipelining) and gets blocked when
the required channel resources are not available.

A routing algorithm is said to be minimal if the message
goes through a shortest path to its destination. A minimal,
fully-adaptive routing algorithm allows the message to be
routed via any one of the shortest paths between its source
and destination. ln this paper, we first present an adaptive
deadlock-free routing algorithm by using only one extra
virtual channel as compared to deterministic routing. This
algorithm may use minimal or non-minimal routing for a
given topology, such as hypercubes and k-ary n-cubes. Sec-
ond, for n-dimensional hypercubes and meshes, we pro-
pose adaptive fault-tolerant deadlock-free routing schemes
based on the adaptive routing algorithm developed first. A
node fault is assumed to be the basic fault element in deal-

0018-9340/96$05.00 01996 IEEE

mailto:tunnscom@coinputer.org

SU AND SHIN: ADAPTIVE FAULT-TOLERANT DEADLOCK-FREE ROUTIIVG IN MESHES AND HYPERCUBES 667

ing with fault-tolerance. The advance of VLSI technology
has enabled the computation and communication units in a
node to be integrated into a single VLSI chip, as was done in
tWarp [29], Transputer [30], Ncube, and MDP [6]. For a sim-
pler processor node such as CM-2 [32], even more processors
can be integrated into a single chip. In our fault-tolerance
scheme, each node needs to be marked as being in one of
three states: safe, unsafe, and faulty. The unsafe state is used
to facilitate deadlock-free routing. An unsafe node can still
transmit and receive messages. For n-dimensional meshes,
we use a disconnected rectangular block as the fault model,
which is composed of unsafe and faulty nodes. The basic
concept of the proposed adaptive fault-tolerant routing is to
find a detour in VIN, whenever the requested channel in
VIN, is connected to an unsafe or faulty node. We also dis-
cuss a fault-tolerant routing scheme for k-ary n-cubes.

This paper is organized as follows. Section 2 gives a brief
review of the related work. Section 3 describes an adaptive
deadlock-free routing algorithm and its application to n-
dimensional meshes. Section 4 presents adaptive fault-
tolerant deadlock-free routing algorithms for n-dimensional
hypercubes and meshes. Section 5 presents the simulation
results for both hypercubes and two-dimensional meshes
with and without faulty nodes. The paper concludes with
Section 6.

2 RELATED WORK
Numerous routing algorithms in multicomputers have been
proposed in recent years. Some of them consider adaptnbil-
ity and fault-tolerance in routing messages without consid-
ering deadlock freedom [l], [2]. However, deadlock free-
dom is an important design issue for multicomputer sys-
tems, so we will focus on deadlock-free routing algorithms.

Dally and Seitz [8] proposed the concept of virtual chan-
nel to develop deadlock-free routing algorithms. Virtual
channels are time-multiplexed over a single physical link,
so one separate queue must be maintained in a node for
each virtual channel. Virtual channels are also used to re-
move the cycles in the channel-dependency graph (CDG),
providing deadlock-freedom during message transmission.
But the algorithms in [8] are deterministic and hence cannot
handle component failures in the selected path.

Linder and Harden 1251 extended the concept of virtual
channel to multiple, virtual interconnection networks that
provide adaptability, deadlock-freedom, and fault-
tolerance. Each link is shared by many virtual channels
which can be divided into several groups or virtual net-
works. Message passing inside a virtual network is dead-
lock-free and messages are constrained to travel through
virtual networks in a certain predefined order. When the
message is blocked in a virtual network due to congested or
faulty nodes/links, it can keep moving forward via another
virtual network, thereby increasing routing adaptability.
The chief disadvantage of this method is the requirement of
many virtual channels,' e.g., a k-ary n-cube needs 2"-'(n + 1)
virtual channels.

Glass and Ni [16], [17] proposed partially-adaptive

1. In general, its number is an exponential function of the network di-
mension.

routing algorithms for n-dimensional meshes and k-ary n-
cubes without adding any physical or virtual channels.
They first investigated the possible deadlock cycles on 213-
and 3D-meshes, then proposed some prohibited turns of
these cycles to prevent deadlocks. However, if minimal
routing is required, then at least one half of source-
destination pairs will have only a single routing path from
the source to destination. Because this algorithm cannot
route messages along every shortest path in the network, it is
called partially-adaptive routing. The authors of [181 modified
the routing algorithm of this turn model to make it (n - 1)
fault-tolerant for n-dimensional meshes. However, for four
or higher dimensional meshes, it is only a conjecture, i.e., :ts
validity remains to be proved.

Chien and Kim [3] proposed a planar-adaptive routing
algorithm which limits the routing freedom to two dimen-
sions at a time. The reduced freedom makes it possible to
prevent deadlocks with only a fixed number of virtual
channels, indepmdent of network dimension. This algo-
rithm needs three virtual channels for n-dimensional
meshes and only supports partially-adaptive routing.

Duato [9], [lo], [lll, [12] developed a general theorem of
adaptive deadlock-free routing, defining a criterion for
deadlock-freedom and then using the theorem to propose a
fully-adaptive algorithm. The theorem states that by sepa-
rating virtual channels on a physical link into restricted and
unrestricted partitions, fully-adaptive deadlock-free routing
can be achieved. Duato [13] further analyzed the effective
redundancy of a wormhole network and presented (m
adaptive fault-tolerant routing algorithm for n-dimensional
meshes which uses at least 4 virtual channels and has a re-
dundancy level equal to n - 1.

Dally and Aoki [51 proposed a dynamic deadlock-free
routing algorithm which also divides the virtual channels
of each physical channel into two nonempty classes: adap-
tive and deterministic. Messages originate from adaptive
channels. Once a message is on a deterministic channel, the
message must be routed in dimension order and cannot re-
enter any adaptive channel. Actually, their method relies on
a stronger constraint than Duato's algorithm. Lin 1st al. [;!4]
proposed a message flow model in wormhole-routed net-
works, and applied it to develop adaptive routing algo-
rithms. Any routing algorithm under this message flow
model can be guaranteed to have deadlock-freedorn.

In [14], [31], Gaughan and Yalamanchili proposed a mis-
routing backtracking protocol under pipelined circuit
switching (PCS), a variant of wormhole routing. This proto-
col is deadlock-free and can tolerate up to 2n - 1 physical
link failures in k-ary n-cubes. Like traditional circuit
switching, PCS needs to set up a path before trainsmitting
messages, and hence, the path setup overhead is relatively
high for small messages.

In [23], Lee and Hayes proposed a fault-tolerant dead-
lock-free routing scheme for n-dimensional hypercubes, but
it requires (n + 1) virtual channels. It is basically derived
from the hop-count method [19] used in packet-switched
networks. The authors of [21] proposed a deadlock-free
fault-tolerant routing scheme for hypercubes. This scheine
does not require any additional virtual channel, nor sup-
ports adaptive routing.

668 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

In this paper, we also decompose the network into two
virtual interconnection networks and use a novel number-
ing method to facilitate the proof of deadlock freedom. The
adaptive routing algorithm we use turns out to yield a
similar result as Duato's algorithm [9]. We will primarily
focus on fault-tolerant routing by using this numbering
method.

3 ADAPTIVE DEADLOCK-FREE ROUTING ALGORITHM
We first describe an adaptive deadlock-free routing algo-
rithm under the following assumptions:

AI. The underlying interconnection network can be di-
vided into two virtual interconnection networks, VIN,
and VIN,. The virtual channels in VIN, and VIN2
share the bandwidth of each physical link.

A2. A message reaching its destination will eventually
be consumed.

A3. The channel allocation algorithm used is free from
starvation using, for example, first-come first-serve or
round-robin scheduling.

A4. Each virtual channel in VIN, is assigned a channel
number. When a message traverses the nodes be-
tween the source and destination, the head flit can
always find a channel in VTN, to use for each hop in
an increasing order of channel numbers. (We can also
use a decreasing order of channel numbers, but for
convenience of presentation, we will henceforth use
an increasing order of channel numbers.)

ALGORITHM 3.1 (Adaptive Routing): T h e head flit first checks
to see if there is a n y channel available in VIN, or VIN,.
Whenever a channel is available i n VIN, or VIN,, the mes-
sage is routed via this channel. Note that the requested
channel in VIN, should satisfy A4.

The chief advantage of this algorithm comes from the
channels in VIN, that can be treated as free channels. A free
channel can be used whenever it is released by a message
without any dimension-order restriction.
THEOREM 1. The proposed adaptive routing Algori thm 3.1 is

PROOF. See the Appendix.
Duato [12] presented a theory of adaptive deadlock-free

routing similar to Algorithm 3.1. Algorithm 3.1 can use
minimal or nonminimal routing as long as A1-A4 are satis-
fied, irrespective of the interconnection network topology
used. But it's possible that the head flit cannot get a higher-
number channel in VIN, if the routing algorithm arbitrarily
chooses an outgoing channel. For some popular topologies,
such as hypercubes, n-dimensional meshes, and k-ary n-
cubes, both deadlock and livelock freedom can be guaran-
teed with minimal routing. However, livelock freedom is
not guaranteed if non-minimal routing is used. At the end
of this section, we will mention how to develop a non-
minimal deadlock-free routing algorithm for n-dimensional
meshes. Although we don't consider the store-and-forward
switching scheme, Algorithm 3.1 can also be applied to
packet-switched networks. In packet-switched networks
[191, the resources in the channel-dependency graph are

deadlock-free.

replaced by packet buffers, and thus, if Al-A4 are satisfied,
we need two packet buffers on each node to support adap-
tive routing.

Now, we would like to apply Algorithm 3.1 to n-
dimensional meshes. An n-dimensional mesh consists of
kif-, x k,,_, x . . . x k, x k , nodes, where k, 2 2 is the number of
nodes along dimension i. A node X is represented by n co-
ordinates, (x ~ , - ~ , x,,->, ..., xa), 0 < xi I k , - 1, 0 < i < n - 1. Two
nodes X and Y are neighbors if and only if x, = yi for all i ,
0 5 i 5 n - 1, except for one coordinate, say j, such that yl = xi -+ 1.
Thus, each node has n to 2n neighbors, depending on its
location in the mesh. If X and Y are neighbors, then the
channel of dimension i at node X is in the positive direction
relative to node Y when xi = yf - 1, or in the negative direc-
tion when x, = y1 + 1.

Let's define the following notation that will be used
throughout the rest of this paper.

Source Node S = (snP1, s,,-~, . . ., so)
Destination Node D = (dn_,, dn-2, ..., do)
Current Node C = (cnPl, c,-~, ..., co)
Routing Tag R = (rrlPl, Y,,->, ..., yo)

=

= (dfl-l 0

- ~ ~ _ , , d , . - ~ - snP2 ,..., d, - sa); /" for

0 s,_~ ,..., d, 0 so); /" for
n-dimensional meshes "/

n-dimensional hypercubes */
f (R): number of nonzero elements in R;
f(R, i): the directed dimension with nonzero ith element in R;
VC,,,: the virtual channel in the ith dimension of the jth vir-

VC,,*: the virtual channel in the ith dimension of VIN, or

nnm(VC,,j): the channel number assigned to VC,,J
detotir_group,,l: the detour of channel VC,,, in dimension j.
Note that the subscript i in VC,,] is a signed integer for n-
dimensional meshes. If i is positive, then VC,,J is in the posi-
tive direction; otherwise, VC,,l is in the negative direction.
Using the above notation, the traditional dimension-order
routing algorithm for n-dimensional meshes can be de-
scribed as follows.
ALGORITHM 3.2: Dimension-order routing for n-dimensional

S1. Update R; /*Y, := Y , * 1 */
S2. If (R == 01, route the message to the local processor and

S3. Route the message via VCf(R,,l,, and exit; /" only one

For example, consider source node S = (1, 3, 4, 2) and
destination node D = (3,3, 1, 3) in a 4 x 4 x 5 x 4 mesh. The
routing path between S and D is determined by the routing
tag R = (r3, r2, r l , yo) = (3 - 1, 3 - 3, 1 - 4, 3 - 2) = (2, 0, -3, 1),
where I r , I represents the number of hops in dimension i
and the sign of Y, indicates the routing direction. f (R) = 3,
f (X , 1) = +0, f(R, 2) = -1, and f(X, 3) = +3. If minimal dimen-
sion-order routing is used, then the routing path in this ex-
ample is

tual interconnection network

vrN,

meshes.

exit;

virtual interconnection network is required */

SU AND SHIN: ADAPTIVE FAULT-TOLERANT DEADLOCK-FREE ROUTING IN MESHES AND HYPERCUBES

The symbols above the right arrows are the correspondiing
routing tags. The dimension-order routing for n-dimensional
meshes is deadlock-free, minimal and deterministic.

Presented below is an adaptive minimal routing algorithm
for n-dimensional meshes based on Algorithm 3.2. Assume
there are two virtual channels running over each physical
link, one in VIN, and the other in VIN,. The hypercube can be
treated as a special case of n-dimensional meshes.
ALGORITHM 3.3: Adaptive minimal routing for n-

Sl’. Update R; /“Y, := yi k 1 */
S2‘. If (X == 0), route the message to the local processor and

S3’. ParallelLRequest VCl(x,l),., VCf(R,2),2, . . . , VCJ(X,~(~)),~;
S4‘. Route the message via the first available channel
among those requested and exit.

SI’ and 52’ are the same as the dimension-order routing
mentioned above. In S3’, the algorithm requests simultane-
ously all the channels in VIN, corresponding to nonzero
elements of R. It also requests the channel (VCf(R,l),,) in VIN,
according to the dimension-order rule. Whenever any of
the requested channels becomes available, the message will
be routed via that channel. Obviously, this is minimal
routing because I ri I will be decremented by one for each
hop the message takes.

dimensional meshes.

exit;

Fig. 1. Numbering the output channels of a node in an n-dimensional
mesh.

7 1 Destination 9

- V I N ,
---3 VIN2

Fig. 2. A message holding virtual channels of VIN, and VIN, simul-
taneously.

6G9

THEOREM 2. Algori thm 3.3 f oy n-dimensional meshes is both
deadlock-free and livelock-free.

PROOF. Since this is minimal routing, it guarantees livelock-
freedom. From Theorem 1, we know the virtual chan-
nels in VIN, will not affect deadlock-freedom if A1-A.4
can be satisfied. A1 is satisfied since two virtual inter-
connection networks are used. A2 and A3 are related to
the underlying scheduling method; one can (design a
scheduling method to satisfy A2 and A3, e.g., first-
come-first-serve and round-robin scheduling, Thus, we
only have to consider how to satisfy A4, i.e., for each
hop the head flit can always find a channel (with an in-
creasing order of channel numbers) in VIN, to use.

For a kn-, x k,,-, x ._. x k, mesh, Fig. 1 shows how to
number the output channels in VIN, for node X =

(xnp1, x,-~, . . ., x0). The number of positive-direction

channels of dimension j is cji:kj +xi,, where

I = , ki = 0, and that of negative-direction channels of

dimension j is ki - x.. The number of highI2r
1

dimensions is always larger than that of lower dimen-
sions. The numbers of positive- or negative- direction
channels increase along the corresponding coordinate.

In Algorithm 3.3, a message may simultaneously hold
the channels in VIN, and VIN, as shown in Fig. 2. If
the message takes one or more hops via the channel in
VIN,, A4 requires that there always exist an outgoing
channel in VIN, with a higher channel number than
those channels already held by the message. Assume
the message holds a channel VCf(,,,,, at node X and
takes one or more hops via the channels in VN,, then
the message arrives at node Y and requests the chan-
nel VCt,,,,),,. There are two cases to consider: (C1)
(f(R,l) in node X) = (f(R,l) in node Y), and (C2)
(If(R,l) I in node X) < (If(R,l) I in node Y). Note that
(lf(R,l) I in node X) I (If(R,l) I in node Y), because
Algorithm 3.3 requests the channels of VIN, in an in-
creasing dimension order. For C1, VCf(x,l),ls in both X
and Y use the same dimension and the sarne diroc-
tion. If the message is routed along the positive direc-
tion, then c;:: ki + y s > k , + x,, where ys > ;lS,

s E (1, 2, ..., n - 1) and x,, ys E (0, 1, ..., k J . If the mes-
sage is routed along the negative direction, thlen c;=, ki ys > Cbo ki - x,, where ys < x,, s E U,2, . . ., n
- 1) and xs, ys E (0, 1, . . ., $ 1 . Therefore, (~ U ~ (V C ~ (~ , , , ,) in
node Y) > (~ U ~ (V C ~ (~ , ~) , ,) in node X). For C2, one can
easily check if the following inequality holds:

(c:~Akj + ~ s o r C ; = o k i - y s) >(Z:r:kz + x t o r C : = o k i - x i) /

where s > t and s E (1, 2, ..., n - 1). Therefore, the :in-
creasing channel order in requesting the channels in
VIN, can be guaranteed, and hence, A4 is satisfied.

670 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

Can we develop an adaptive nonminimal deadlock-free
routing scheme for n-dimensional meshes? One key point
in ensuring deadlock-freedom is to make sure that, after
taking each hop, a message can always find a channel in
VIN, in an increasing order of channel numbers. In n-
dimensional meshes, the message routed via the channel in
VIN, with the dimension larger than f(R, 1) will not violate
the dimension-ordering rule because the channel numbers
in higher dimensions always have larger (using the num-
bering method in Theorem 2) than that in dimensionf(R, 1).
For example, if R = (4, 0, -1, 01, then, because f(X, 1) = -1,
the message can be misrouted via the channels in VIN, in
dimensions two and three. That is, after misrouting the
message for one hop, R becomes {4,1, -1,O) or (4, -1, -1, 01,
or (5, 0, -1, 0). However, it may result in a livelock. One
way to avoid the livelock is that the number of misrouting
hops along each dimension cannot be greater than a fixed
number, but the head flit should use more bits to carry this
information.

Dally 1331 and Glass and Ni [151 mentioned the fully-
adaptive routing in 2D meshes by using only one extra
channel in either dimension. In our algorithm, if we don’t
use any free channel in dimension 0, the minimal fully-
adaptive routing can still be supported. This is because the
dimension-order routing in VIN, can let messages go
through the lowest dimension (i.e., f(R, 1)) in a finite time.
Dimension 0 is always the lowest dimension for any source-
destination pair, so free channels in dimension 0 are not
necessary for supporting minimal fully-adaptive routing.
The number of virtual channels required for 2D meshes is
therefore the same as the algorithms in [151, [331. However,
for notational convenience, we still use two virtual channels
per a physical link in each dimension. Note that the current
VLSI technology allows for more than two virtual channels
per channel in such lower dimension topologies as two-
dimensional meshes. The iWarp is an example of using four
virtual channels. Using more virtual channels improve not
only performance but also fault-tolerance. In Section 5, we
will compare the performance of two and four virtual-
channel schemes in two-dimensional meshes.

4 ADAPTIVE FAULT-TOLERANT DEADLOCK-FREE
ROUTING

Link and/or node faults are usually used to model
faulty/injured multicomputers. As mentioned before, we
use a node fault as a basic faulty element because both
communication and computation units can be integrated
into a single chip in contemporary multicomputer systems.
The fault on each outgoing link can be treated as a corre-
sponding node fault. There are two fault types for sup-
porting fault-tolerant routing: dynamic and static faults
[IS], [311. For a system to tolerate dynamic faults, nodes
may become faulty or nonfaulty at any time. By contrast,
the static case assumes components (links or nodes) remain
nonfaulty during the time they are actively participating in
message transmission [31]. Tolerating dynamic faults can

the number of faulty nodes exceeds the tolerable limit, this
system should be shut down to run a diagnostic program
and decide node‘s state. Then, the system can be run again
in a degraded mode; for example, unsafe binary subcubes
in hypercubes and disconnected rectangular blocks in
meshes (to be discussed later). Furthermore, if we need to
tolerate dynamic faults, each node needs to be equipped
with on-line detection mechanisms.

First, let’s consider the problem that the proposed adap-
tive routing Algorithm 3.3 will encounter when a linklnode
becomes faulty. Assume VIN, uses deterministic routing. If
no channel in VIN, or VIN, is available, then the message
must wait for only one channel of VIN, due to VIN,’s use of
deterministic routing. However, if this channel is connected
to a faulty node or runs over a faulty link, then it won’t be
available, which may in turn lead to a deadlock. One can
solve this problem by using adaptive routing in VIN,, such
as planar routing [3], enabling each message to request at
least two channels in different dimensions so that it can
avoid the faulty link/node. However, this method requires
more virtual channels than necessary for fully-adaptive
routing.

To reduce the hardware overhead in supporting fault-
tolerance, we propose a new scheme that treats some of the
channels in VIN, around the faulty or unsafe nodes as de-
tours of the channels in VIN, connected to the
faulty/unsafe nodes. Each message waiting for a channel in
VIN, connected to a faulty/unsafe node can then be routed
via the corresponding detour in VIN,. In effect, this scheme
trades adaptability around the faulty nodes for fault-
tolerance and deadlock-freedom in the entire system. How-
ever, the adaptability thus achieved affects only a part of
the system and depends on the number and pattern of
faulty nodes.

In order to ensure that fault-tolerant routing is still
deadlock-free, each possible path on VIN, going through
the faulty/unsafe node should find a detour. The overhead
of fault-tolerant routing depends on the interconnection
topology used. To develop a fault-tolerant routing algo-
rithm, we need two more assumptions in addition to Al-
A4 in Section 3:

A5. There is no message from or to the faulty node.
A6. Each node keeps its neighbors’ state (Le., faulty, un-

The following two subsections describe the proposed
adaptive fault-tolerant deadlock-free routing algorithms for
hypercubes and n-dimensional meshes. We also discuss
briefly the adaptive fault-tolerant deadlock-free routing for
k-ary n-cubes.

4.1 Hypercubes
Fault model for hypercubes: We use unsafe binary sub-
cubes to model node faults in hypercubes [23]. Each node is
in one of three states: safe, unsafe, and faulty. The unsafe
nodes are used to facilitate deadlock-free routing. An un-
safe node can still transmit or receive messages.

safe, or safe) to help routing messages.

- - 2

enhance the run-time life of a multicomputer, thus increas-
ing reliability. On the other hand, tolerating static faults can
enhance system availability. When a system is running and

DEFINITION 1. A ”good” node “ected to two or more
faultylunsafe nodes is called an ”unsafe” node; otherwise, it
is called a “safe” node.

SU AND SHIN: ADAPTIVE FAULT-TOLERANT DEADLOCK-FREE ROUTING IN MESHES AND HYPERCUBES 671

Before running user programs on the machine, the oper-
ating system on each node should determine the state of its
neighbors. The authors of [22] developed a distributed. al-
gorithm of communication complexity O(n3) to identify all
unsafe nodes in an n-cube. Each faulty/unsafe node be-
longs to a corresponding binary subcube, called an unsafe
binary subcube, which is formed by faulty and/or unsafe
nodes. If the number of faulty nodes is no more than h/21,
then the message can be routed to its destination via a path
of length no greater than the minimal path length plus two
[23]. However, if we consider deadlock-freedom, this algo-
rithm needs n + 1 virtual channels. By contrast, our pro-
posed algorithm requires only two virtual channels, and
moreover, it provides partial adaptability when nodes be-
came faulty. The number of faulty nodes that can be toler-
ated and the maximum message path needed are the same
as those of the algorithm in [22], [23].

Detour channels: One way to assign detour channels
around an unsafe subcube is that each channel (say, VCr,,,l,
0 2 m < n - 2) connected to the unsafe subcube is replaced
by detour channels: VCm+l,2, VCm+,,,, ..., VCnpl,2. Note that
the subscript i in VC,,, is an unsigned number because in a
hypercube a node has only one neighbor in each dimen-
sion. Also, there is no need to assign a detour channel for
channel VC,-,,, because one of its neighbor nodes is the
destination.

Renumbering method: Each VIN, channel in dimension m
(0 2 m 5 n - 2) is assigned a channel number m. Fig. 3 shows
a four-dimensional hypercube with the assigned channel
numbers. When some nodes become faulty, the channels
connected to an unsafe node must be renumbered. The
channels in VIN, are assigned integer numbers, and the
detour channels are assigned noninteger numbers. Specifi-
cally, we use the following renumbering method.

1) If the original channel number of VC,,, is m (0 5 m 5
n - 2),' then all the detour channels VCm+l,2, VC,7i+2,2,
. . ., VC,-,,, are assigned non-integer channel numbers
such that m - 1 < num(VC,+,,,) < num(VC,+,,) < ... <
num(VC,l-,,,) < m.

2) Each channel in a safe node which is connected to an
unsafe node is reassigned the largest channel number, IZ.

3) Each channel in an unsafe node which is connected to a
safe node is reassigned the smallest channel number,, -1.

EXAMPLE 1. Consider a four-dimensional hypercube as
shown in Fig. 4. If nodes 0000 and 1010 are faulty,
then nodes 1000 and 0010 are unsafe nodes. Thus,
nodes 0000, 1000, 0010, and 1010 form an unsafe 2-
cube. The safe nodes around this unsafe subcube
must build detours. For example, the channel VC, , in
node 0100 is treated as the detour of channel VC,,, in
node 0100 (channel number = 2). This detour can be
assigned channel number 1.5. Actually, in this case,
we can assign any non-integer number between 1 and
2. The channels VC,,,, VC,,,, and VC,,, in node 0001
are treated as the detours of channel VC0,, in node
0001, and their channel numbers are assigned to be

2. Note that the maximum of m is equal to n - 2 rather than M 1, because
it would be the faulty last node if m n - 1.

0

Fig. 3. Numbering the output channels in a 4-dimensional hypercube.

0 9

0 unsafeuodL f'lulty node
- -> detour with Lhaniicl number 1 5
+ dctour with channel iiumbcr -0 1
- - 9 dctour with channel number -0 6
-32 detour with ~ha~ ine l number 0 9

Fig. 4. Building detours in a faulty/injured hypercube.

-0.9, -0.6, and -0.3, respectively. Likewise, we can iis-

sign any non-integer number such that -1 < num(VC ,,)
< num(VC,,) < num(VC,,,) < 0. Following the same
rule, each virtual channel in VIN, connected It0 an un-
safe subcube can find the detours in VIN, and assign
proper channel numbers. Fig. 4 shows all the detours
around the unsafe subcube.

Now, we present a fault-tolerant deadlock-free routing
algorithm for faulty/injured hypercubes.

ALGORITHM 4.1: Fault-tolerant adaptive routing for hyper-

1. Update R; /* Y, := Y, 0 1 */
2. If (R == 0), route the message to the local processor and

3.1. /" only one more hop required to reach the destination */
If (f (X) == 1) then Parallel-Request VCf(R,l),l, VCf(R,l),z;

3.2. /* messages from an unsafe node to a safe node and

else if (C == unsafe node) then Parallel-Request
any channel connected to a safe node;

cubes.

exit;

misrouting may be used"/

3.3. /*messages from a safe node to a safe node"/
else if VC,,,,, is connected to a safe node

then Parallel-Request VCAR,l),l and ,311 useful

else Request VCf(R,2),2; /* route via detour "/
channels in VIN,;

3.4.
4. Route the message via the first available channel re-

quested and exit;

672

In Step 3.3, a ”useful” channel means that it is not a de-
tour channel and the corresponding element in the routing
tag R is nonzero. Basically, Algorithm 4.1 uses minimal
routing except for the message whose source and destina-
tion nodes belong to the same unsafe subcube and are more
than one hop apart. In case the source is a safe node and
VCf(R,l,,l is connected to a safe node, the message can re-
quest simultaneously VCf(x,l,,, and any nondetour channel
in VIN, with the minimal routing distance. If VCf(R,I),I is
connected to an unsafe node and more than one hop is re-
quired to reach the destination, then the message requests
the detour VCf(R,(x,2),2 instead. Based on the concept of unsafe
binary subcube, if VCf(x,l,,l in a safe node is connected to a
faulty/unsafe node, then VCf(R,(x,2),2 would be connected to a
safe node because a safe node is connected to at most one
unsafe/faulty node [23]. If only one more hop is required to
reach the destination, then the message requests vcf(R,l),l or
VCf(R,2),2r regardless whether they are connected to an unsafe
node or not. So, the message from a safe source node can
always reach the destination, because, whenever VC,,,,,,,
meets an unsafe/faulty node (except for the final hop), the
message can always find a detour vcf(R,(x,2),2.

If the source node is unsafe, the message should first
leave this unsafe subcube unless its destination is a neigh-
bor of the source. Using the node fault model, a safe node
can be found to route the message. After taking this hop,
the message will follow the same procedure for the mes-
sage from a safe node as discussed above.

EXAMPLE 2. We use the same faulty hypercube as shown in
Fig. 4 for this example with the source = 0001 and the
destination = 1110. At the source node, because
VCf(x,l),l is connected to a faulty node 0000 (Step 3.4),
the message is routed via VCf(R,(x,2),2 = VC,,, (channel
number = -0.9). Note that in node 0001, there are
three channels defined as detours, i.e., VC,,,,VC,,,, and
VC,,,, and they cannot be used unless the next lowest
dimension to be traversed is across a faulty node. In
this case, the message is routed via VC,,,. After making
one hop (Le., arriving at node 0011), because VCf(R,l),l is
connected to an unsafe node 0010 (Step 3.4), the mes-
sage is routed via VCf(R,2),2 = VC,,, (channel number =
-0.6). Then, in node 0111, because VCf(x91)r, is con-
nected to a safe node 0110 (Step 3.3), the message can
request simultaneously VC,,,, VCo,,, and VC3,,. Assume
the message is routed via VCo,l (channel number = 0)
and arrives at node 0110. Then,f(X) = 1, and hence, the
last hop is made via VC,,, or VC,,, (Step 3.1).

Let’s consider another example with an unsafe source
node and an unsafe destination node. Assume source
node = 1000 and destination node = 0010. For the first
hop, because node 1000 is an unsafe node (Step 3.21,
the message is routed via VC,,,, VCO,,, VC,,I, or VC,,,
(channel number = -1). Assume the message is routed
via VC,,, and arrives at node 1100. Because VCf(x,l),, is
connected to a safe node 1110, the message is routed
via VC,,z or VC,,, (Step 3.3). Note that VC,,, is a de-
tour, so it is not eligible for the message to use. As-
sume the message is routed via VC,,, and arrives at
node 1110. Because the VCf(R,l,,l is connected to a

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

faulty node, the message is routed via the detour
VCf(x,,,,, = VC,,, (Step 3.3). Then, the final hop is made
via VC,,, or VC,,, (Step 3.1).

THEOREM 3. Algorithm 4.1 is free f rom both deadlock and live-
lock i f the dimensionlsize of each unsafe birzary subcube is

PROOF. Like the proof of Theorem 2, the four assumptions,

I Z O more than rn/21.

Case

Cast

AI-A4, in Section 3 should be satisfied. Again, only
A4 needs to be considered, i.e., after making one hop,
the message can always find a higher-number channel
to request. Based on Theorem 1, the free channels in
VIN, do not affect deadlock-freedom, so we consider
the channels in VIN, only. Since the detour channels
cannot be free channels, we can treat them as a part of
VIN,. We must consider four cases for different types
of source-destination pairs. In each case, we must
prove that the requested channel in VIN, or a detour
channel observes the increasing-order rule to guar-
antee deadlock-freedom.

1: From a safe source node to a safe destination node. When a
message is routed from a safe source node to a safe
destination node, the intermediate nodes’ VCJ(R,I),I may
be connected to unsafe/faulty nodes. If no VC,Q,),~ is
connected to an unsafe or faulty node, then we use the
dimension-order routing to request the channels in
VIN,. Because num(VCf(x,l),,) < num(VCf(x,z,,l) < . . . <
~ U ~ (V C ~ (~ , ~ ~ ~ , , , ,) , the dimension ordering can be
guaranteed.

If there is an intermediate node whose VCf(R,l),l is con-
nected to an unsafe/faulty node, then the message
will request VCf(R,2),2 (Step 3.3). Actually, VCf(x,2),2 is the
detour of channel VCf(x,l,,l connected to an un-
safe/faulty node. After taking this hop, V(&),, may
meet an unsafe/faulty node again; if it does, route the
message via the detour. By the renumbering method,

.. . < num(VC,,-,,,) < num(VCf(,,,,,,), thus preserving the
channel-ordering rule.

2: From a n unsafe souyce node to a safe destination node.
First, the message must leave the unsafe subcube.
Based on the fault model of unsafe binary subcubes,
the message can always find a channel connected to a
safe node if there are no more than b / 2 1 faulty nodes
1231. This channel is assigned the smallest channel
number, -1, and is always used for the first hop. After
taking this hop, the message will be routed from a
safe node to a safe node as described in Case 1. Since
the channel number is equal to -1, and hence smaller
than any other channel number in Case 1, the channel
ordering can be guaranteed.

num(VCf(R,I),I) - < num(Vcf(R,1)+1,2) < num(VCf(R,1)+2,2) <

Case 3: From a safe*source node to an unsafe destination node.
Because a safe node is connected to at most one un-
safe/faulty node, if the channel VCf(R,l),l is connected
to an unsafe/faulty node, then the message can al-
ways find a detour VCf(R,2),2 except for the final hop.
From Case 1, we know that the channels’ order can be
preserved from a safe source node to a safe node next
to the unsafe destination. Then, only one more hop is

SU AND SHIN: ADAPTIVE FAULT-TOLERANT DEADLOCK-FREE ROUTING IN MESHES AND HYPERCUBES ti73

required to reach the destination. Since each safe
channel connected to an unsafe node is assigned the
largest channel number, the channel ordering can be
guaranteed.

Case 4: From an unsafe source node to an unsafe destination node. If
the source node is connected directly to the destination
node, then request VCI(R,ll,I or VCflR,ll,2. Because only one
hop is required in this situation, the channel ordering is
guaranteed. If two or more hops are required, the 'mes-
sage should leave the unsafe subcube in the first hop as
in Case 2,. First, the message is routed from an unsafe
node to a safe neighbor node, then from a safe node to a
safe node (a neighbor of the destination), and finally
from a safe node to an unsafe node. Because the first and
final hops are made via the channel with the smallest
and largest channel numbers, respectively, and interme-
diate hops (from safe to safe nodes) are made via the
channels of increasing numbers as in Case 1, the channel
ordering can be guaranteed.

Since the message in each case is routed in increasing
channel order, the proposed routing is deadlock-free.
Algorithm 4.1 uses minimal routing except for the
first hop from the source node in Case 4, and thus, the
maximum number of message hops is n + 1. So, live-
lock-freedom can be guaranteed. 0

4.2 n-Dimensional Meshes
Fault model: We use disconnected rectangular blocks (or
faulty blocks for short) to model node faults and to facilitate
deadlock-free routing in n-dimensional meshes. In order to
find faulty blocks, each node should know the encompassing
nodes' states (faulty or safe) after running a diagnostic pro-
gram. For example, in Fig. 5, node e knows the states of
nodes a, b, e, f, i, h, g, and d (encompassing nodes). A.n n-
dimensional mesh can be treated as being composed of
multiple two-dimensional planes like Fig. 5. In order to
make Definition 1 in Section 4.1 suitable for n-dimensional
meshes, we modified it as follows:

DEFINITION 1'. For each two-dimensional plane of a mesh, if there
are two or more faulty nodes on different edges around a
"good" node, this "good" node is called an "unsaferr node;
otherwise, it is called a "safe" node.

0 0 0 0 0 0 0

For example, faulty nodes g and h are on the same edge
around good node e, faulty node f is on another edge, and
thus e is said to be unsafe. Based on Definition 2, we will
later mark node e as faulty. In addition to Definitilon l', we
need a rule to "disable" some unsafe nodes as described in
the following definitions.

DEFINITION 2. For n-dimensional meshes and k-a y n-cubes, k > 2,
if an unsafe node is not connected by two or more safe
nodes in each two dimensional plane, then it is ,marked as
faulty.

DEFINITION 3. Two rectangular blocks, B, and B,, in a two-
dimensional plane of a mesh are said to be disconnected if
for each node N , E B , and N2 E B,, the distance between
N, and N, in at least one dimension is no smaller than 3.

The steps for finding faulty blocks are to

1) run a diagnostic program to detect nodes states (good

2) mark good nodes as safe or unsafe based on Defi:ni-

3) disable some unsafe nodes as faulty nodes based on

For example, nodes b, e, d, e, i, j , k, I , m, n, and o in Fig. 5 are
marked as unsafe in Step 2. Then in Step 3, nodes b, d, e, k , 1,
m, n, and o are marked as faulty. The rectangular faulty
blocks B, and B, are disconnected, whereas B, and B, are
not. B, is formed by marking some disabled and unsafe
nodes between B , and B,. Obviously, the faulty block is
composed of faulty (or disabled) and unsafe nodes, and is
rectangular in each two-dimensional plane. After dets-r-
mining each node's state, unsafe and faulty/disabled nodes
will form a disconnected rectangular block on each two-
dimensional plane.

In order for messages to bypass a rectangular block, both
the width and length of the rectangular block should be
smaller than the corresponding dimension. For example,
the block size in Fig. 5 must be smaller than the corre-
sponding dimension, 7. This fault model is referred to a:s a
block fault model. Some popular fault models such as a single
node/link fault are subsumed by the block fault mod.el.
Arbitrary faults can also be modeled as block faults by in-
cluding some of the nonfaulty nodes in the faulty block.
Such nodes will be marked as faulty or unsafe.
Detour channel groups: Building a detour channel in an n-
dimensional mesh is different from that in a hypercu.be.

or faulty),

tion l', and

Definition 2.

There are two different properties:

1) unlike the hypercube, the n-dimensional mesh is not a
0 :unsafe node

:laulty node

:disabled node

(= :unsafe block
a b "

0 0 0 0 0

0 0 0 0 0

- 0 0

H4

H2

Fig. 5. Disconnected rectangular blocks are used as the fault model.

homogeneous topology;
2) in the n-dimensional mesh, there could be rnore tEan

one hop a message must travel in each dimension, but
in a nonfaulty hypercube minimal routing requires at
most one hop in each dimension.

The first property makes it more difficult to develop a fault-
tolerant routing algorithm, because peripheral nodes re-
quire special care. From the second property, it is not neces-
sary for the hypercube to find detours for the channels in
the highest dimension (n - l), because if the message re-
quests the channel in dimension n - 1 on VIN,, then only one
more hop is required to reach the destination. However, for

674 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

an n-dimensional mesh, we still have to find detours for the
channels in dimension n - 1 because if I Y , ~ ~ ~ I 2 2, then the
destination is not a neighbor of the current node.

Using the same method in the hypercube except for the
highest-dimension channel, we can assign the detour chan-
nels around a faulty block, i.e., each channel connected to the
faulty block (say, VC,,,, or VC-,lz,l, 0 5 m 5 n - 2) is replaced
by the detour channels: VC, (m+l),2,VC, (,n+2),2, . . ., VC, (ll-l),2.

Note that each mesh dimension has two directions, positive
and negative. In each two-dimensional plane of the mesh,
the detours around the faulty block can be divided into four
detour channel groups (not including the detours of the
highest-dimension channels), i.e., detour groups a, b, c, and
d as shown in Figs. 6 and 7. For example, the detours at
nodes N,, N2, and N3 in Fig. 6 form a detour group a in the
positive direction and a detour group b in the negative di-
rection. Each detour belongs to one and only one detour
group. In hypercubes, each detour group contains only one
detour channel. To avoid deadlocks, a message should fol-
low the direction of detour group, and once the message
leaves one detour group, it cannot enter the group again.

0 0 0 0 0 0 0

O f O O B O

0 0 0 0 0 0 0

0 0 0 0 0 0 0
C2 C3

Fig. 6. Building the detours in the higher dimension for the channels in
VIN, in the lower dimension. There are four detour groups : a, b, c, and
d. C,, C,, C,, and C, are the corner nodes around the faulty block

I \ ,-
/ '

'f* O

c[

c3 k o

0

hrgh dimension
positive directmi

I_ 0 0 0 0 0 0 0
low diineiision

positive direction
0 0 0 0 0 0 0

0 0 0 0 0 0 0

Fig. 7. When the message is blocked by the border, it will be turned
back along the detour in t h e opposite direction. There are four detour
groups: a, b, c, and d.

If f (R) 2 2 and VCI(R,I),l is connected to a faulty block, then
the message should request VCf(R,2j,2 instead of VCf(R,ll,l,
where IJ(X,2) I > If(R,l) I . Fig. 6 depicts this situation. The
message from the left side of the faulty block is routed via
either detour group a or b, depending on the direction of
VCf(R,2),2. After arriving at the corner node C, (if routed via
group a) or node C, (if routed via group b), the message can
be routed via the channel in VIN, according to the dimen-
sion order or routed via any useful free channel in VIN,.
When the message from the right side of the faulty block is
routed via either detour group c or d depending on the direc-
tion of VCicR,2,,2, and after arriving at the corner node C3 or C,,
it is not routed via the detour channel. Note that when a mes-
sage is routed via a detour group, only one channel can be
used, Le., in the zone around a faulty block, we use the de-
terministic routing to avoid the faulty block. For convenience,
we use the notation detourquoupi(R,l j,f(R,2) with different direc-
tions of f(R, 1) and f (X , 2) to indicate respectively the detour
group a if f(R, 1) > 0 and f(R, 2) > 0, the detour group b if f(R,
1) > 0 and f(R, 2) < 0, the detour group c if f(R, 1) < 0 and f(R,
2) > 0, and the detour group d if f(R, 1) < 0 and f(R, 2) < 0. If
the corresponding routing element in dimension f(X, 2) is
decremented to zero before reaching the corner node, the
message is routed via the new detouu_guoupf(,,,,,eR,2).3 The new
detota.,oroupi(,,,j,~~,,) always uses higher-dimension channels
instead of the original detour_guoupf(s,j,~(R,,). We follow the
same procedure until the message reaches the destination or
the corner node, or f(R) is decremented to one.

If f (R) = 1, If(R, 1) I # n - 1 and VCl0,,,,, is connected to a
faulty block, then the message can request the higher-
dimension detour channel VC,,,,, If(R, 1) I < i < n, and
should follow the same detour group as shown in Fig. 6.
The difference from the case mentioned above is that ini-
tially the message has more detour groups to use, but after
choosing a detour group, it has only one detour channel to
use until it leaves the detour group. Actually, in this case,
the message will be routed away from the destination until
VCnR,,,,, connects itself to a safe node, Le., the corner node
around the faulty block. If the message routed via detours
is blocked by a mesh boundary, then the message will be
routed back (also via detours) using the detour group in an
opposite direction. Fig. 7 shows that if the message is first
routed via detour group b (or c) and blocked by the mesh bor-
der, then it has to be tumed back via detour group a (or d).

Now, we consider how to find the detour of the highest-
dimension channel, Le., the case of f (X) = 1 and I f (X , 1) I = n - 1.
We can choose any of VC, ,,,s, i < M - 1, to be the detour of
VC, (,zpl),l, or choose all of them. However, once a channel in
VIN, is marked as a detour, it cannot be used as a free
channel for routing adaptability. Therefore, if VC, (n-lj,, is
connected to a faulty block, we choose VC, o,2 to be the only
corresponding detour. However, the detour of VC, has
one special feature: if the message is routed via a detour,
say, VC,,,,, then it should be routed back via the detour,
say, VC&, in the opposite side of faulty block until f (X) = 1
and IfCX, 1) I = n - 1 are corrected again. Thus, a detour

3. The new detour~roupi(R,,),i(x,z) is different from the original de-

t ou r~ ro"p i (R , ,) ,~ (R ,~ j because the second routing element in R is decre-
mented to zero. That is, the newf(R, 2) is the same with the originalf(X, 3).

SU AND SHIN: ADAPTIVE FAULT-TOLERANT DEADLOCK-FREE ROUTING IN MESHES AND HYPERCUBES

-

ti75

group is composed of two opposite direction channels called
upper and bottom detour groups. For example, the detour
groups e (detour_group+(,_,,+,) and f (detour_group-(,..,,,+")
shown in Fig. 8 are composed of the detours on the upper
and bottom sides of the faulty block. Note that this situa-
tion doesn't occur when the message is routed via the de-
tour of VC, i,l, i < n - l , because it is routed via a higher-
dimension detour channel and can be turned back via the
channel in VIN, only after reaching a corner node around
the faulty block. However, for the case with I f(X, 1) I = n - 1,
once the message is sent via misrouting, it should be turned
back via the detour, because there is no higher channel in
VIN, that can be used to return the message. Because we
use only two virtual channels, if the message in Fig. 8 is
blocked by the faulty block, then first route it via the detour
in the positive direction (i.e., detour_group, (rj-l),+o) regardless
whether the message is from the positive or negative direc-
tion. For example, the message from the upper (or bottom)
side of the faulty block is routed via the detour group f (or
e). One can also route the message via the detour in the
negative direction first, and after bypassing the faulty
block, then route back via the detour in the positive direc-
tion; however, all messages should follo~r the same proce-
dure.

chronize this function, we need the number of message hops
up to the maximum length in dimension 0 minus one. This
function can be executed when the system executes a proce-
dure for determining the state of each node. If we use two
virtual channels in VIN, in dimension 0 (one is the low chan-
nel, the other is the high channel), then this function is not neces-
sary. Because if a message is blocked in the highest dimension,
then we can route the message via the low detour channel in
VIN, in dimension 0, then route it back via the high detour
channel if the message is blocked by the mesh border. When the
message comes to the other side of faulty block, if it is from the
high detour channel (i.e., blocked by the border when it is
routed via the low detour channel), then route it via the high
detour channel; otherwise, route it via the low detour channel.
The high detour channel in the other side of faulty block can be
guaranteed to change f(R) to 1 again and no message routed via
the high detour channel will be blocked by the border. Thus, this
is an acyclic requesting chain, i.e., no deadlock will occur. How-
ever, this scheme requires three virtual channels in dimensiort 0,
one in VIN, and b o in VIN2 Note that in the other dimensions,
we can still use two virtual channels.

0 0

G O
G G O O G O O

f f c5
e e

0 0 0 ~ 0 ~ 0 0 0

0 0 0

0 0 0 G 0

dimension n- I
positivc direction

i
I-, 0 0 u 0 0 0
dimension 0

O O O O G O O

Fig. 8. Building the detours in dimension 0 for the channels in V/N, in di-
mension n - 1. Packets are routed via the right side of faulty block. There

are two detour groups: e and f (or detour_group+(,,),+, and detour-group-

C, and C, are the corner nodes around the faulty block

Having a message turned back when it is blocked by the
mesh border may result in a deadlock as shown in Fig. 9. One
way to solve this problem is to ensure that no message needs to
be turned back from the mesh border, thus breaking the wait
cycle. We can set up a special function in the node X = {xn-,, x,,+
..., xo] with the maximum x,~-~, e.g., node B, and B2 in Fig. 10.
Once this node finds its dimension n - 1 neighbor to be faulty or
unsafe, it should transmit a message to the neighbor node in the
negative direction of dimension 0 to change the direction of di-
mension 0 detour group, i.e., use detour~roup,~n~l),-O instead of
detour_group,(~~_,),+,. The receiving node of this message will also
transmit the message to the next node in the negative direction
of dimension 0, and so on. This procedure continues as long as
the receiving node is connected to the faulty block. To syn-

0 0
dimension 11-1

positive dircction
0 0 I

I_ 0 0
dimension 0

positive dircction
0 0

0 0

G O O G O

.-e*: : : :

Fiig. 9. A deadlock may occur if the message is routed via the detour in
dirnension 0 and turned back after getting blocked by the mesh border.

G O O G O O G

0 0 -
C I g e &&&B1

h 11 h h

diniciision n-1
positive dircction

ih

0

0 0
O

dimneii~ion 0
posiuve direction

0 0

0 0 0 0 0 0 0

Fig. 10. When the faulty block is located on the rightmost side of dimension

0, the message is first routed via the detour VC,,2, after encompassing the

faulty block on the left side, it is turned back via VC+o,2. There are two de-

toiur groups: g and b (or detourgroup+(,,),-, and detourgroup-(,,) -,).

C, and C, are the corner nodes around the faulty block.

676 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

Renumbering method: The channels in VIN, are assigned
integer numbers as shown in Fig. 1, and the detour chan-
nels are assigned noninteger numbers. We use a two-level
approach to assign each detour a channel number. In the
higher level, we define the range of channel numbers to be
assigned to each detour group. In the lower level, channels
in the detour group are assigned increasing non-integer
numbers along the direction of the detour group. Specifi-
cally, we use the following renumbering method.

If channel VC+m,l, 0 i m 5 n - 2, is connected to a
faulty block and the original channel number is k,
then the channel numbers of the detours VC, (m+lj,2,

VC, (m+2j,2, . . ., VC, are assigned to be in the range
of their corresponding detour groups as follows: k - 1
< num(detour4roup,,,,(,,~+,)) < num(de touY~roup+n , , k
< . . .< num(detouv_group+,,,,,,,) < k . defour-group ,,,,, ~ ~

indicates detourJroup+,,+, or detourxYoup,,,, -,, m+l _< i
5 n - 1. The detour channels VC,,,, and VC-,,2 belong,
respectively, to detour-group,,+i and detour~Youp, , , , - , ,
m + 1 5 i _< n - 1. Detour channels in each group
should be assigned increasing channel numbers along
the group’s direction. When the faulty block touches
the mesh border, the channel in the direction away
from the border will be assigned a larger number than
that towards the border. For example, channels in the
detour group a in Fig. 7 are assigned larger numbers
than those in the detour group b.
Channel numbers for the detours of channel VC-,,?,,,
0 5 m 5 n - 2 can be assigned with the same method in
the first item. The original channel number is k and
the range of channel numbers in detour groups is de-
fined as: IC - l < num(detour_group_,,,~ii,,+l~) <
num(detour_group,,~,+~)) < . . .< num(detour~otrp-, , i , ,
< k. The detour channel VC,,, and channel VC-;,, be-
long, respectively, to detouu-group-,,,,, and de-
tour_group_,,,-, m + l < i < n - l.
If the highest-dimension channel VC+(,7-I),1 is con-
nected to the upper detour_group+(,,_,,,+, (or the bottom
detouu_group+i,,_,j,+,) and the original channel number is
k‘ (or k“), then the channel numbers of the detours
VC+o,2 (next to the bottom of the faulty block) and VC,,,
(next to the top of the faulty block) are assigned to be
in the range of their corresponding detour groups as
follows: IC’< num(upper detour_group+i,,_,,,+,) < (k’ + 1)
and IC”< num(bottom detour-group+i,,_l),+,) < (k” + 1).
Based on the numbering method in Fig. 1, k’ is larger
than k”. Detour channels in each group should be as-
signed increasing channel numbers along the group’s
direction. If the faulty block is on the right-side border
in dimension 0, the detour will belong to de-
tour~roup+(7,-1),-0 instead of detour_group+i,_,j,+,, i.e.,
the direction will be reversed.
Channel numbers for the detours of channel VC-(n-l),l
can be assigned by using the same method as in the
third item. Assume the channel VC-(,l-l),l is connected
to the upper detour-gYoup-(,,_,),+, (or bottom de-
t o ~ r _ g ~ o ~ p _ (, - ~) , + ~) and its original channel number is l‘
(or l”). The range of channel numbers for a detour
group is assigned as: I‘ < num(upper detour_group_i,_,,,+~)
< (I’ + 1) and 1” < num(bottom detol*Y-group_(,_,),+~) <

(l” + 1). Based on the numbering method in Fig. 1,l” >
l’. Channels in each detour group should be assigned
increasing numbers along the group’s direction. If the
faulty block is on the right-side border in dimension
0, the detour belongs to detour_group-~,-,,,-, instead of
detouY-gYoup_(,,_l),+O, i.e., the direction will be reversed.

5) Each channel in a safe node connected to an unsafe
node is re-assigned the largest channel number.

6) Each channel in an unsafe node connected to a safe
node is reassigned the smallest channel number.

EXAMPLE 3. Consider a 7 x 7 mesh as shown in Fig. 11. Based
on the numbering method in Fig. 1, we assign the
channel numbers in VIN,. In Fig. 17, we label the chan-
nel numbers in VIN, along dimension 0, but show la-
bels only in one row. VC+,,, in node X = (i, l), 0 < i i 6,
is assigned 1 and VC-,, in node Y = (i, 4), 0 < i I 6 is as-
signed 3. So, the detour VC,,,, (or VC-,,,) in node X
belonging to de tour~Youp+O,+I (or detourq.roup+,,-,) can
be assigned within the range between 0 and 1. We
choose 0.1, 0.2, and 0.3 (or 0.4, 0.5, and 0.6). One can
assign channels any increasing numbers within this
range along the group’s direction. Likewise, the de-
tour of node Y can be assigned a number within the
range between 2 and 3, and in this case, we use chan-
nel numbers 2.1, 2.2, and 2.3 (or 2.4, 2.5, and 2.6). For
a higher-dimensional mesh, we can first choose the
range for each detour group and assign a higher de-
tour group a higher-number range. Then, a detour
channel in each group can be assigned a number
along the corresponding group’s direction as shown
in this example.

f

diinension 0
positive dircctio~i

=- chamel in VIX I ...

+ :detour ctimiel 0

Fig. 11. Numbering the detour channels for a 7 x 7 mesh

ALGORITHM 4.2: Adaptive fault-tolerant routing for n-
dimensional meshes.

1. Update R; / * Y , := Y , -c 1 */
2. I f (R == 0) , route the message to the local processor and

3.1. /* only one more hop required to reach destination */
exit;

If ((f (X) == 1) && (I f (X , 1) I == 1))
then Parallel-Request VCf(R,l),X;

3.2. /* messages from a n unsafe node to a safe node and

SU AND SHIN: ADAPTIVE FAULT-TOLERANT DEADLOCK-FREE ROUTING IN MESHES AND HYPERCUBES

misrouting may be used*/
else if (C == unsafe node)

then Parallel-Request any channel connected f a a

else if VCf(,3,1j,, is connected to a safe node
safe node;

3.3.
then Parallel_Request VCl(R,lj,l and all useful

else if f(R) 2 2
channels in VIN,;

then Request VCf(x,2),2; /* routed via the

else if If(R, 1) I f n - 1

3.4.

detour of detourqroupf(R,,,,f(R,2, */
3.5.

then Request detour~roupf(R,,),. un-

I i I > If@, 1) I ; If blocked by
the border, then reverse the di-
rection,

til reaching the corner node;
/*

it., routed via dctotir_grotipyR,,,,T j . */
3.6. else if the faulty block is not on the

rightmost border in dimension 0
then Request detour_grou~f(?f,,j,+"

until f (R) = 1 is coryected;
3.7. else Request detour~roupf(R,l),-O

4. Route the message via the first available channel re quested and
exit;
Basically, Algorithm 4.2 uses minimal routing if the

shortest path between the current node and the destination
is not blocked (Step 3.3). If f(R) 2 2 and if the channel
VCl(x,,,,, is blocked by a faulty block, then the message re-
quests the detour VCf(,,,,,, (Step 3.4). If f(R) = 1 and if the
message is blocked by a faulty block, we first need to go
around the faulty block by misrouting. If If(R, 1) I + n - 1,
then the message will request higher-dimension detours
and follow the same detour group until reaching the corner
node around the faulty block (Step 3.5). If the message is
already in the highest dimension, then it should find a de-
tour in dimension 0. The message is first routed via channel
VC,,,,, then via VCf(x,(x,2),1 (i.e., VC,_,,, or VC-(n-l,,l), and fi-
nally via VC-,,, to get to the destination, or let f(R) = 1
again. Note that if a message is blocked by a faulty block
and If(R,1) I = n - 1, then it is routed via the detour in the
positive direction of dimension 0 to go around the faulty
block, and finally routed back via the detour in the nega.tive
direction of dimension 0, i.e., detour$youpf(R,lj,+o (Step 3.6).
However, if the faulty block is on the rightmost side of di-
mension 0, then first route the message via the negative di-
rection of dimension 0 and finally route it back via the posi-
tive direction of dimension 0, detour~roupf(R,l),-O (Step 3.7). If

I f (X , l) I # n - 1, the message can be routed via either the
positive or negative direction of a higher dimension.

However, when we use misrouting, the message could be
blocked by a mesh border. In such a case, the message cannot
go around the faulty block, In Algorithm 4.2, we just return
the message via the detour in the opposite direction. Because
in our fault model, the edge size of a faulty block is smaller
than the corresponding dimension, the message can always
go around the faulty block either in the positive or negative
direction. Since the correct direction is already set up for the
detours of highest-dimension channels, the message willl not
be blocked by the border, even when we use misrouting.

until f(R) = 1 is corrected;

677

I.evcl0 Safe Source Node

/\ NO ~dLllty Block
1.cvel 1 I'aulty Rlock

A
Level 3 f(K, I)=n- 1

Lcvel3 No Border Border No Border

Fig. 12. A tree structure to describe the situation for routing a message
frorn a safe source to a safe destination.

THEOREM 4. Algorithm 4.2 is deadlock-pee if the node fault is
subjected to the block fault model.

PROOF. Similar to the proof of Theorem 3, we must prove
that the requested channels in VIN, and the detour
channels in VIN, follow an increasing channel order,
thus satisfying A4. Again, we must consider four
cases for different source-destination pairs. Each
channel in VIN, and the detour channels are assigned
numbers according to the proposed renumbering
method.

Case 1. From a safe source node to a safe destination node: There
are several possible subcases for routing a message
from a safe source to a safe destination. Fig. 12 shows
a tree structure to describe the situations the message
may encounter. For the first level, the channel VCf(x, ,,,
may or may not be connected to a faulty block. If
VCl(x,lj,l isn't connected to a faulty block, then it is a
fault-free case which can be handled by Algorithm 3.3,
thus guaranteeing the channel ordering. If VCf(R,l),l is
connected to a faulty block, then the message should
request the detour instead of VCf(x,l),,. In level 2, if f(R)
> 1, then the message will request the detour VCf(x,(x,2,,2.
Based on the renumbering method 1) and 2),

nnm(VCf(R,lj,,). Also, the channel VCf(R,2),2 E de-
tolkY_grUzip~~,,lj,~~R,*, and the channel numbers in the
same detour group are assigned in an increasing or-
der along the corresponding direction. Thus, the
channel ordering can be guaranteed. However, after
taking de tuu~_group~(~ , ,~ , ,~~ ,~ , , the message may be
blocked by a faulty block again. Then it is routed via a
higher-dimension detour group (Step 3.4). Based on
the renumbering method 1) and 2), the channel nun-
ber of channel group in the higher dimension is
higher than that in a lower dimension.
In level 2, if f(R) = 1 then there are two cases: I f(RJ I =
n - 1 or # n - 1. If f(R, 1) # n - 1, the message can re-
quest any higher-dimension detour group and will be
routed by misrouting. In such a case, the message will
first be routed away from the destination, so it may be
blocked by a mesh border. In the latter case, the mes-

num(VCf(R,,),,) - 1 < num(detour~roup~(R,,),f(i(,,,)) <

678 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

sage has to be turned back. Based on the renumbering
method 1) and 2), an increasing order can be guaran-
teed. In level 3, if 1 f (X , 1) I = n - 1 then the message has
to request detour_group~(~,,,,+,, or request de-
touuqroupi(,,,,,-,. Based on the renumbering method 3)
and 4), an increasing channel order can be guaranteed.

Case 2. From an unsafe node t o a safe node: The message first
finds a safe neighbor (this is guaranteed by the fault
model). The channel from an unsafe node to a safe
node is assigned the smallest number. This channel is
taken only in the first hop. After this hop, the message
will be routed from a safe node to a safe node as in
Case 1, thus guaranteeing the channel ordering.

Case 3. From a safe node to an unsafe node: Whenever VCl(x,,,,,
is connected to a faulty block, the message can be
routed via a detour until f(X) = 1. Tf f (R) = 1 and the
message is still blocked by the faulty block, then route
it by misrouting. Based on Definition 2, for each two-
dimensional plane of the n-dimensional mesh, an un-
safe node has at least two links (in different dimen-
sions) connected to safe nodes. When the plane uses
misrouting, the misrouting path can cover three edges
of a faulty block. Hence, at least one edge can reach a
safe node next to the destination. Also, each channel
from a safe node to an unsafe node is assigned the
largest number. Thus, the channel ordering can be
guaranteed.

Case 4. From an unsafe node to an unsafe node: The message
first leaves the faulty block (as Case 21, then from a
safe node to the unsafe destination (Case 3). Because
the channel used in the first/last hop is assigned the
smallest/largest number, the channel ordering can be

Now, we would like to discuss how to develop an adap-
tive fault-tolerant routing algorithm for k-ary n-cubes. Since
the k-ary n-cube is a homogeneous topology, special cases
for its borders do not exist, and hence, fault-tolerant routing
for the k-ary n-cube should be simpler than for n-
dimensional meshes. Similar to the n-dimensional mesh
case, we first have to find the faulty block using the discon-
nected rectangular block model. Since deterministic routing
for k-ary n-cubes needs two virtual channels [8] (one is the
high channel and the other is the low channel), adaptive
routing requires three virtual channels according to Algo-
rithm 3.1. Considering fault-tolerant routing, both high and
low channels in VIN, need to find the detour in VIN, to use.
We need two virtual channels in VIN, to be assigned as the
detours, i.e., one for the high channel in VIN, and the other
for the low channel. Thus, we need a total of four virtual
channels, two in VIN, and two in VIN,. One can then de-
velop an adaptive fault-tolerant deadlock-free routing for k-
ary n-cubes similar to the n-dimensional mesh except for
the special case of the mesh border.

guaranteed. 0

5 PERFORMANCE EVALUATION
To evaluate the performance of the proposed routing algo-
rithms, we have carried out time-step simulations at the flit
level. This simulator is written in C++ and can be used for

wormhole routing in hypercubes and meshes with and
without faults. In this simulator, each node consists of a
processor, a crossbar switch, a router, and virtual channels
(buffers). The following parameters are used for the simu-
lation experiments.

P1. The message length is exponentially distributed with
a mean of 20 flits, including head and tail flits.

P2. The destination of each message is distributed uni-
formly, and the inter-message interval is distributed
exponentially.

P3. A faulty node is generated randomly subject to the
fault model described in the last section.

P4. The crossbar switch in the router allows multiple
messages to traverse a node simultaneously without
interference.

P5. Each virtual channel uses one input buffer and one
output buffer. Each buffer can store only single flit.

P6. Multiple messages can be sent and received simulta-
neously between a processor and the corresponding
router.

P7. A flit can be transferred from an input buffer in node
A to an input buffer in node 8 during one flit cycle,
where nodes A and B are neighbors.

P8. A round-robin scheduling policy is used to arbitrate
the multiple requests in virtual channels and physical
links, except for the messages from (or to) processors
that possess the highest priority.

P9. We ran each simulation for 20,000 flit times and dis-
carded information obtained during the first 2,000 flit
times (i.e., a warmup period).

Different parameters may provide different results. For
example, an efficient mechanism is necessary to transfer
messages between processors and routers; otherwise, many
messages will be queued in source nodes even under light
traffic. To evaluate the efficiency of a routing algorithm, we
are more interested in network queuing delay than source
queuing delay. Therefore, in P6 we assume that multiple
messages can be sent and received simultaneously between
a processor and a router.

The most important performance measures are message
latency and network throughput. Many different units have
been used to express performance measures, including flits
injected/cycle, flits/ns, bits/cycle, normalized bandwidth,
etc. As a result, one has to convert units if he wants to com-
pare one result with others. So, we use normalized band-
width; this representation of simulation results was pro-
posed by Snyder [26]. Normalized bandwidth simply ex-
presses the load or throughput as a fraction of the bisection
bandwidth limited by the maximum bandwidth of the net-
work under uniform random traffic. Essentially, this limit
corresponds to normalized throughput = 1.0 and it is de-
rived by considering the fact that 50% of uniform random
traffic crosses the bisection line/plane of the network. Thus,
if a network has bisection bandwidth B flits/cycle, each
node in an N-node network can inject a maximum of 2B/N
flits/cycle. The normalized throughput is equal to the
number of messages received over the number of messages
that can be transmitted at the maximum load, 2B/N. The

SU AND SHIN: ADAPTIVE FAULT-TOLERANT DEADLOCK-FREE ROUTING IN MESHES AND HYPERCUBES 6 79

normalized applied load is equal to the traffic density4 over
the maximum load 2B/N. The bisection bandwidth B is
equal to 2" and 2n for n-cubes and n x n meshes, respec-
tively. In what follows, we present the simulation results
for 8-cubes and 16 x 16 meshes for a variety of workloads
and fault patterns.

5.1 Simulation Results for Hypercubes
Figs. 14 and 13 plot the latency and throughput, respec-
tively, for different workloads and fault patterns for 8-
cubes. For fault-free hypercubes, Ai for e-cube routing
(without any virtual channel) and adaptive routing are 0.25
and 0.475, respectively. The message latency is from 24 flit
cycles to 75 flit cycles before saturation. There are many
reports dealing with performance simulation [71, [121, [311.
However, it is difficult to compare our results with others'
because of the differenccs in the underlying simulation pa-
rameters, such as the number of virtual channels, topology,
flit scheduling, and the length of simulation time.

I I I I I I I I 0 5

0 I I I I I I I I
0 005 0 1 015 0 2 025 0 3 0 3 5 0 4 045 0 5

Nomatized vpplied load

Fig. 13. Normalized achieved throughput vs. normalized applied load
for 8-cubes.

300 I
I 1 h"1V " L e (1, c

2 unsafe nodes 2 faulty nodes 2) +
4 unsafe nodes 4 IaUItY nodes 131 a-

64 unsafe nodes 64 tau16 ncdes:(7) +--
64 unsafe nodes 64 faully noded(8) + -

fault-free adaptive roufin(i(91 D~
fault-free e-cube routing (io) Jt

Fig. 14. Messages latency vs. normalized applied load for 8-cubes.

4. Traffic density = (average message length)/(average message inter-

5. As is the value of /1 at which the network becomes saturated.
arrival time x flit number that can be transmitted per cycle).

To evaluate the performance degradation caused by the
occurrence of faults, we ran simulations with 8 different
fault patterns, Le., a single node fault and k-dimensional
unsafe subcubes, 2 I k < 7. One half of the nodes in an un-
safe subcube are assumed to be faulty. The reason for th.is
assumption is to get average numbers. Under the proposed
routing algorithm, the number of free channels assigned as
de-tours depends on the underlying fault patterns. If a
faulty/unsafe node is connected along dimension k,, all fr1.e
channels along dimension k2 > k, (except for the highest
dimension) are assigned to be detours. So, when every
faulty/unsafe node is connected to a safe node in dimen-
sion 0, one can get the worst-case performance degradation
caused by faults. On the other hand, if the faulty/unsafe
node is connected along the highest dimension, there is no
need for assigning detours. Curves 7 and 8 in Fig:$. 14 and
13 show these two extreme cases for (n - 1)-dimensional
unsafe subcubes with 64 faulty nodes. The value of As is
reduced from 0.25 to 0.15. For all fault patterns of an unsafe
(n - 1)-cube with 64 faulty nodes, As ranges anywhere he-
tween 0.25 and 0.15. For curves 1-6 and 8, we consider only
the worst case, i.e., every faulty node is chosen from only
even-numbered (or odd-numbered) nodes without mixing
the two types. Any 8-cube with an unsafe subcube of the
saime size as in curves 1-6 and 8 in which a half of the
nomdes are faulty has performance better than, or equal -to,
those shown in curves 1-6 and 8. From this series of simu-
lations, the message latency of adaptive routing in a net-
work with an unsafe subcube smaller than a 4-cube is
found to be smaller than that of e-cube routing without
virtual channels.

5.2 Simulation Results for Two-Dimensional Meshes
Figs. 16 and 15 plot the message latency and throughput,
respectively, for different workloads and fault patterns
within 8 x 8 meshes. For e-cube routing without virtual
channels, the network becomes saturated after A = 0.35. F;or
adaptive routing with two virtual channels, A, = 0.45. \Ye
can use more virtual channels for low-dimensional topolo-
gies like two-dimensional meshes. For adaptive routing
with four virtual channels, A, = 0.7. Using more virtual
ch.annels can not only improve throughput and latency, but
also enhance fault-tolerance because a less-constrained fault
model can be used, i.e., the minimum distance between
faulty blocks can be two. Due to the limit of space we show
only the performance of a network with two virtual chan-
nels. Each faulty block consists of a single faulty ncde
(c,alled disconnected single faulty node) and the total num-
ber of faulty nodes ranges from four to 24.

Under this assumption, a randomly-generated faulty
node won't form a larger faulty block with other faulty
nodes. It allows the comparison with different number of
faulty nodes to have the same basis; otherwise, with the
same number of faulty nodes, it could consist of many dif-
ferent fault patterns, e.g., four faulty nodes can by formed
by four disconnected faulty nodes or by 2 x 2 fault pattern
or by 1 x 4 fault pattern or even more complicated cases
including unsafe nodes.

Fig. 15 plots the performance measures of fault-tolermt
routing with four faulty nodes which provides lower mes-

680 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

sage latency and higher network throughput as compared
with the fault-free e-cube routing. The saturation points As
for fault-tolerant routing with eight, 16, and 24 faulty nodes
are 0.3, 0.25, and 0.25, respectively. Obviously, they are
worse than e-cube routing (the performance with eight
faulty nodes is very close to that of e-cube routing). When
faults occur, the network gets saturated quickly. One solu-
tion is to use more virtual channels. We indeed found that
the performance can be improved greatly with more virtual
channels. When four virtual channels were used, the per-
formance of the proposed fault-tolerant routing with the
fault patterns described above is better than, or similar to,
that of e-cube routing.

0 7 I I I I I

2 virtual channels + 4 taulty nodes (1) +-
2 virtuai channels + 8 faulty nodes (2) i--

2 viilual channels + 16 faulty nodes (3) -B
2 virtual channels + 24 faulty nodes (4) X

Fig. 15. Normalized achieved throughput vs. normalized applied load
for 8 x 8 meshes.

300

250

200

150

100

50

01 0.2 0 3 0 4 0.5 0 6 0.7
Normalized applied load

Fig. 16. Messages latency vs. normalized applied load for 8 x 8 meshes

6 CONCLUSION
Wormhole routing has become popular due mainly to its
reduced need of buffers and support for efficient communi-
cation. When the head flit is blocked by a busy buffer, it
will busy-wait for the buffer to be available, thereby intro-
ducing a possible deadlock. To avoid deadlocks, most mul-
ticomputers use deterministic routing schemes, such as di-
mension-order routing. Under deterministic routing, there

is only one path between the source and destination.
Adaptive routing, on the other hand, can choose one of the
multiple paths between the source and destination based
on a local traffic condition6 to avoid the busy link, but it
makes deadlock-freedom more difficult.

We used a novel numbering method to prove the dead-
lock freedom of adaptive routing algorithms which decom-
pose the network into two virtual interconnection net-
works, VIN, and VIN,. VIN, supports deadlock-free routing
and VIN, is used as the source of free channels to enhance
adaptability. Whenever a channel in VIN, or VIN, is avail-
able, a message can be routed via this channel. Duato [121
has demonstrated such a theory of adaptive deadlock-free
routing.

When a multicomputer is built with a large number of
processing nodes, the probability of one or more nodes be-
coming faulty is high. Moreover, a faulty node may cause a
communication deadlock. It is therefore important to de-
sign a deadlock-free fault-tolerant routing algorithm. The
number of required virtual channels should not be too large
to implement an efficient crossbar switch in the communi-
cation router. The numbers of virtual channels required to
support our adaptive fault-tolerant routing scheme are two,
two, and four, respectively, for hypercubes, n-dimensional
meshes, and k-ary n-cubes.

A node is in one of three states: safe, unsafe, and faulty.
Each node is assumed to know the state of its neighbors.
This state information can help messages avoid faulty
nodes and communication deadlocks. In case of an n-
dimensional hypercube, our scheme can tolerate any fault
pattern composed of up to rn/21 faulty nodes. If the faulty
nodes form an (n - 1)-cube, then it can tolerate up to 2n-1
nodes. For n-dimensional meshes and k-ary n-cubes, we use
a disconnected rectangular block as the fault model. Any
arbitrary combination of faults can be modeled as a faulty
rectangular block.

Using the state information of a node's neighbors, some
channels in VIN, are chosen as detours of the channels in
VIN, connected to an unsafe/faulty node. We presented
adaptive fault-tolerant routing algorithms for n-
dimensional hypercubes and meshes, both of which use
only two virtual channels. Another advantage of our fault-
tolerant routing scheme is that it is still adaptive if the mes-
sage does not encounter any unsafe/faulty node on its way
to the destination. For k-ary n-cubes, this adaptive fault-
tolerant routing scheme needs four virtual channels, two in
VIN, and two in VIN,. The numbering method is also used
to prove the deadlock freedom of the proposed fault-
tolerant routing algorithms.

To evaluate the proposed algorithms, we have carried
out time-step simulations of the network operation at the
flit level. 8-cubes and 16 x 16 meshes are simulated. From
the simulation results, networks with up to a five-
dimensional unsafe subcube in which a half of the nodes
are faulty can get smaller latency and higher throughput as
compared to that of fault-free e-cube routing. In case of six-
dimensional unsafe subcube, the performance measures are

6. It is impractical to use a global condition for all but simple multicom-
puter systems.

SU AND SHIN: ADAPTIVE FAULT-TOLERANT DEADLOCK-FREE ROUTING IN MESHES AND HYPERCUBES

similar to those of e-cube routing. For 16 x 16 meshes, we
assume each faulty block to consist of a single faulty node
and the number of random faulty nodes are four, eight, 16,
and 24. The simulation results have shown the network to
get saturated after the applied normalized load is 0.4, 0.3,
0.25, 0.25, when the number of faulty nodes is four, eight,
16, and 24, respectively. By reflecting the reality of low-
dimensional topologies, we can use more virtual channels
to improve the performance.

APPENDIX

THEOREM 1. The proposed adaptive routing Algorithm 3.1 is
dead lock-free .

PROOF. Since the wormhole routing is used, if the head flit
advances one hop closer to the destination, then the
subsequent flits will progress, without getting
blocked, one hop on the same channel path; other-
wise, the subsequent flits will be blocked. In the latter
case, we first check the waiting cycle in the channel-
dependency graph, as shown in Fig. 17a, where the
arrowed lines represent messages and the black cir-
cles indicate the channels requested or held by the
messages. A channel with blocked messages is called a
blocked channel, e.g., channels a, b, c, and d in Fig 17a.
Using the property of wormhole routing, the channels
between two blocked channels can be removed or
added without affecting the deadlock itself. So, the
channel-dependency graph (CDG) can be reduced to
the one consisting of blocked channels only, as shown
in Fig. 1%.

We can then decompose the proof into two parts:
1) at least one blocked channel in the waiting cycle of

2) the waiting cycle in CDG is not a real deadlock.

PROOF OF PART 1. We prove this part by contradiction. As-
sume there exists a deadlock in which all of the
deadlocked channels belong to VIN,, then we can get
a reduced CDG with a circular wait among the chan-
nel resources as shown in Fig. 1%. This is a waiting
cycle of four messages; one can easily extend this
proof to those cases with more messages involved.

Channels a, b, c, and d are therefore the virtual chan-
nels of VIN,. According to the proposed routing algo-
rithm, the virtual channels of VIN, should obey a
strict (say, increasing) order of the requested channel
numbers, and the relationships among channels a, b,
c, and d are summarized as: a < b for message B, b < c
for message C, c < d for message D, and d < a for
message A. Thus, a < b < c < d < a, a contradiction,
and hence, there is at least one virtual channel be-
longing to VIN,.

CDG does not belong to VIN,, and

~

581

and the blocked channels a, c, and d belong to VLV,.
Since the channel e in Fig. 18 belongs to VIN,, the
message B in Fig. 18 can find a channel b in VIN, to
request, while satisfying the increasing order restric-
tion, A4. If channel b is allowed to be held only for a
finite time, then the waiting cycle consisting of chan-
nels a, c, d, and e is not a real deadlock, because once
message B holds channel b, the channel e will no
longer be requested by message B, and hence, the
waiting cycle no longer exists. Now, we check to see if
channel b is held for a finite time. At a particular time,
if channel b cannot be held by message B, there must
be another message C holding channel b and re-
questing a higher-number channel. Thus, the number
of higher-number channels needed increases with the
number of requested channels involved, i.e., f > ... :> h
> g > b > a > d > c. Since only a finite number of
channels are used, the message holding the last chan-
nel f must reach its destination or keep moving closer
to its destination via the channels in VIN,. Accordmg
to A2, a message reaching its destination will eventu-
ally be consumed, and hence, channel f will be re-
leased. Since a fair channel allocation scheme is as-
sumed (A3), the message requesting channel f will
hold channel f only for a finite time. Packet B is thus
guaranteed to acquire channel b in finite time.

For a waiting cycle with more blocked channels in-
volved and with more than one blocked channel be-
longing to VIN,, we can follow the same logic as
above and guarantee the message requesting a chan-
nel in VIN, to capture it in a finite time. Thus, unlder
the proposed routing algorithm, the waiting cycle in
the channel-dependency graph is not a real deadlock,
i.e., the proposed routing algorithm is deadlock-free. 0 ,Da;a

a a ‘B
C C - :Message

0 ~ l i a n n c ~
A&- :Message A holds Channel i

A* :Message A requests Channel i

(a) CIi.mnel.de elidelicy graph
with a wa& cycle.

(b) Reduced channel-dependency graph
for a waiting cyclc

Fig. 17. A waiting cycle of four messages.

PROOF OF PART 2. Since Algorithm 3.1 is an adaptive rout-
ing algorithm, a message may simultaneously request
more than one channel. From Part 1, we know that at
least one blocked channel belongs to VIN,. Fig. 18
shows a waiting cycle (a reduced CDG) consisting of
four messages: the blocked channel e belonps to VIAL

http://CIi.mnel.de

682 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

D

Fig. 18. A waiting cycle in the channel-dependency graph is not a real
deadlock.

ACKNOWLEDGMENTS
The work reported in this paper was supported in part by
the National Science Foundation under Grant MIP-9203895
and the Office of Naval Research under Grants N00014-94-
1-0229 and N00014-J-91-1115. The opinions, findings, and
recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the
funding agencies.

REFERENCES
M.6. Chen and K.G. Shin, ”Adaptive Fault-Tolerant Routing in
Hvpercube Multicomputers,” IEEE Trans. Computers, vol. 39, no. 12,
pp.A1,406-1,416, Dec. i990.
M.-S. Chen and K.G. Shin, “Depth-First Search Approach for
Fault-Tolerant Routing in Hypercube Multicomputers,” IEEE
Trans. Computers, vol. 39, no. 4, pp. 152-159, Apr. 1990.
A.A. Chien and J.H. Kim, ”Planar-Adaptive Routing: Low-Cost
Adaptive Networks for Multiprocessors,” Proc. 19th A n n . Int’l
Symp. Compnter Architecture, pp. 268-277,1992.
W. Chou, A.W. Bragg, and A.A. Nilsson, ”The Need for Adaptive
Routing in the Chaotic and Unbalanced Traffic Environment,”
I E E E Trans. Comm., pp. 481-490, Apr. 1981.
W.J. Dally and H. Aoki, ”Deadlock-Free Adaptive Routing in
Multicomputer Networks Using Virtual Channels,” IEEE Trans.
Parallel and Distributed Systems, pp. 466-475, Apr. 1993.
W.J. Dally, ”The Message-Driven Processor: A Multicomputer
Processing Node with Efficient Mechanisms,” IEEE Micro, pp. 23-
39, Apr. 1992.
W.J. Dally, ”Virtual-Channel Flow Control,” IEEE Trans. Parallel
and Distributed Systems, vol. 3, no. 2, pp. 194-205, Mar. 1992.
W.J. Dally and C.L. Seitz, ”Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,” IEEE Trans. Compui-
ers, vol. 36, no. 5, pp. 547-553, May 19987.
J. Duato, ”On the Design of Deadlock-Free Adaptive Routing
Algorithms for Multicomputers: Design Methodologies,” Proc.
Pardlel Architectures and Languages Europe, pp. 391-405, June 1991.
J. Duato, “On the Design of Deadlock-Free Adaptive Routing
Algorithms for Multicomputers: Theoretical Aspects,” Proc. Sec-
ond European Distributed Memory Computing Conf., pp. 234-243,
Apr. 1991.
J. Duato, ”Improving the Efficiency of Virtual Channels with
Time-Dependent Selection Functions,” Proc. Parallel Architectures
and Languages Europe, pp. 635-650, June 1992.
J. Duato, “A New Theory of Deadlock-Free Adaptive Routing in
Wormhole Networks,” I E E E Tuans. Parallel and Distributed Sys-
tems, pp. 1,320-1,331, Dec. 1993.
J. Duato, “A Theory to Increase the Effective Redundancy in
Wormhole Networks,” Parallel Processing Letters, vol. 4, nos. 1 & 2,
pp. 125-138,1994.
P.T. Gaughan and S. Yalamanchili, ”Pipelined Circuit-Switching:
A Fault-Tolerant Variant of Wormhole Routing,’’ Proc. IEEE Symp.
Parallel and Distributed Processing, Dec. 1992.
C. Glass and L. Ni, ”Maximally Fully Adaptive Routing in 2D
Meshes,” Proc. 1992 Int’l Conf. Parallel Processing, pp. 1101-104,
Aug. 1992.
C.J. Glass and L.M. Ni, ”Adaptive Routing in Mesh-Connected
Networks,” Proc. 1992 Int’l Conf. Distributed Computing Systems,
pp. 12-19, 1992.

C.j. Glass and L.M. Ni, ”The Turn Model for Adaptive Routing,”
Proc. 1992 Int’l Symp. Computer Architecture, pp. 278-287, 1992.
C.J. Glass and L.M. Ni, ”Fault-Tolerant Wormhole Routing in
Meshes,” Proc. IEEE 23rd Int’l Symp. Fault-Tolerant Computing, pp. 240-
249,1993.
I S . Gopal, ”Prevention of Store-and-Forward Deadlock in Com-
puter Networks,” IEEE Trans. Comm., pp. 1,258-1,264, Dec. 1985.
P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New
Computer Communication Switching Technique,” Computer Net-
works, vol. 3, pp. 267-286, Sept. 1979.
1. Kim and K.G. Shin, ”Deadlock-Free Fault-Tolerant Routing in
Injured Hypercubes,” I E E E Trans. Computers, vol. 42, no. 9, pp.
1,078-1,088, Sept. 1993.
T.C. Lee and J.P. Hayes, ”Routing and Broadcasting in Faulty
Hypercube Computers,” Proc. Third Conf. Hypercube Concurrent
Computing and Applications, pp. 346-354, Jan. 1988.
T.C. Lee and J.P. Hayes, ”A Fault-Tolerant Communication
Scheme for Hypercube Computers,” I E E E Trans. Computers, vol. 41,
no. 10, pp. 1,242-1,256, Oct. 1992.
X. Lin, P.K. McKinley, and L.M. Li, “The Message Flow Model for
Routing in Wormhole-Routed Networks,” PYOC. Int’l Conf. Payallel
Processing, vol. 1, pp. 1294.1297, Aug. 1993.
D.H. Linder and J.C. Harden, “An Adaptive Fault Tolerant
Wormhole Routing Strategy for k-Ary n-Cubes,” I E E E Trans.
Computers, vol. 40, no. 1, pp. 2-12, Jan. 1991.
T.D. Nguyen and L. Snyder, ”Performance of a Minimal Adaptive
Router,” Proc. Parallel Computer Routing and Comm. Workshop, pp.
31-44, Seattle, May 1994.
L.M. Ni and P.K. McKinley, “A Survey of Wormhole Routing
Techniques in Direct Networks,” Computer, pp. 62-76, Feb. 1993.
Multicomputer Network: Message-Based Parallel Processing, D. Reed
and R. Fujimoto, eds. Cambridge, Mass.: MIT Press, 1987.
J. Sutton, P. Wiley, and C. Peterson, “iWarp: A 100-MOPS, LIW
Microprocessor for Multicomputers,” I E E E Micro, pp. 26-29, June
1991.
D. Taiia, ”Message-Routing Systems for Transputer-Based Multi-
computers,” I E E E Micro, pp. 62-72, June 1993.
P.T. Gaughan and S. Yalamanchili, “A Family of Fault-Tolerant
Routing Protocols for Direct Multiprocessor Networks,” I E E E
Trans. Parallel and Distributed Systems, pp. 482-496, May 1995.
W.D. Hillis, The Connection Machine. Cambridge, Mass.: MIT
Press, 1985.
W.J. Dally, “Fine-Grain Message Passing Concurrent Computers,”
Proc. Third Con$ Hypercube Concurrent Computers, pp. 2-12, Jan.
1988.
X. Zhang, ”Systems of Interprocessor Communication Latency in
Multicomputers,” IEEE Micro, pp. 12-15 and 52-55, Apr. 1991.

Chien-Chun Su graduated from the National
Kaohsiung Institute of Technology in 1981 and
received the MS and PhD degrees in electrical
engineering from the National Tsing Hua Uni-
versity, Hsinchu, Taiwan, in 1986 and 1990,
respectively

Since 1995, he has been with the Nantai
College, Tainan, Taiwan, where he is currently
an associate professor. Previously he was with

_(q the Department of Electrical Engineering at
Tatung Institute of Technology, Taipei, Taiwan.

During the academic years 1992-1994, he was a visiting scholar in the
Real-Time Computing Laboratory of the Department of Electrical Engi-
neering and Computer Science at the University of Michigan, Ann Ar-
bor His current research interests are computer architectures, high-
speed networks, and operating systems

1

SU AND SHIN: ADAPTIVE FAULT-TOLERANT DEADLOCK-FREE ROUTING IN MESHES AND HYPERCUBES

Kang G. Shin received the BS degree in elec-
tronics engineering from Seoul National Univer-
sity, Seoul, Korea, in 1970, and both the MS and
PhD degrees in electrical engineering from
Cornell University, Ithaca, New York, in 1976
and 1978, respectively He is a professor and
director of the Real-Time Computing Laboratory,
Department of Electrical Engineering and Com-
puter Science, the University of Michigan Ann
Arbor

He has authoredicoauthored more than 350
technical papers (more than 150 of these in archival journals) and
numerous book chapters in the areas of distributed real-time comput-
ing and control, fault-tolerant computing, computer architecture, robot-
ics and automation, and intelligent manufacturing He is currently writ-
ing (jointly with C M Krishna) a textbook Real-Time Systems, which is
scheduled to be published by McGraw-Hill in 1996. In 1987, he re-
ceived the Outstanding IEEE Transactions on Automatic Control Paper
Award for a paper on robot trajectory planning In 1989, he also re-
ceived the Research Excellence Award from the University of Michi-
gan In 1985, he founded the Real-Time Computing Laboratory, where
he and his colleagues are currently building a 19-node hexagonal
mesh multicomputer, called HARTS, and middleware services for dis-
tributed real-time fault-tolerant applications

He has also been applying the basic research results of real-time
computing to multimedia systems, intelligent transportation systems,
and manufacturing applications, ranging from the control of robots and
machine tools to the development of open architectures for manufac-
turing equipment and processes

From 1978 to 1982, he was on the faculty of Rensselaer Polytech-
nic Institute, Troy, New York He has held visiting positions at the U S
Air Force Flight Dynamics Laboratory, AT&T Bell Laboratories, Com-
puter Science Division within the Department of Electrical Engineering
and Computer Science at the University of California at Berkeley, In-
ternational Computer Science Institute, Berkeley, California, IBM T J
Watson Research Center, and Software Engineering Institute at
Carnegie Mellon University He also chaired the Computer Science
and Engineering Division, EECS Department, at the University of
Michigan for three years beginning in January 1991

Dr Shin is an IEEE fellow, was the program chairman of the 1986
IEEE Real-Time Systems Symposium (RTSS), the general chairman of
the 1987 RTSS, the guest editor of the August 1987 special issue of
IEEE Transactions on Computers on real-time systems, a program co-
chair for the 1992 International Conference on Parallel Processing, and
served on numerous technical program committees He also chaired the
IEEE Technical Committee on Real-Time Systems during 1991 1993,
was a distinguished visitor of the IEEE Computer Society, and editor of
/€€E Transacbons on Parallel and Dsfr/bufed Systems, and an area
editor of Internaf/onal Journal of Tme-CrItIcal Compubng Systems

