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Adaptive Fau It-Tolerant Deadlock-Free 
Routing in Meshes and Hypercubes 

Chien-Chun Su and Kang G. Shin, fellow, /E€€ 

Abstract-We present an adaptive deadlock-free routing algorithm which decomposes a given network into two virtual 
interconnection networks, VIN, and VlN,. VlN, supports deterministic deadlock-free routing, and VlN, supports fully-adaptive 
routing. Whenever a channel in VIN, or VIN, is available, it can be used to route a message. 

Each node is identified to be in one of three states: safe, unsafe, and faulty. The unsafe state is used for deadlock-free routing, 
and an unsafe node can still send and receive messages. When nodes become faultyiunsafe, some channels in V/N2 around the 
faultyiunsafe nodes are used as the detours of those channels in VIN, passing through the faultyhnsafe nodes, Le., the adaptability 
in VIN, is transformed to support fault-tolerant deadlock-free routing. Using information on the state of each node’s neighbors, we 
have developed an adaptive fault-tolerant deadlock-free routing scheme for n-dimensional meshes and hypercubes with only two 
virtual channels per physical link. 

In an n-dimensional hypercube, any pattern of faulty nodes can be tolerated as long as the number of faulty nodes is no more 
than rni21. The maximum number of faulty nodes that can be tolerated is 2n-i, which occurs when all faulty nodes can be 
encompassed in an (n - 1)-cube. In an n-dimensional mesh, we use a more general fault model, called a disconnected rectangular 
block. Any arbitrary pattern of faulty nodes can be modeled as a rectangular block after finding both unsafe and disabled nodes 
(which are then treated as faulty nodes). This concept can also be applied to k-ary n-cubes with four virtual channels, two in VIN, 
and the other two in VlN,. Finally, we present simulation results for both hypercubes and 2-dimensional meshes by using various 
workloads and fault patterns. 

Index Terms-Wormhole routing, adaptive deadlock-free routing, fault-tolerant routing, hypercubes and meshes, k-ary n-cubes. 

4 

1 INTRODUCTION 
ISTRIBUTED-MEMORY MIMD (multiple-instruction- D multiple-data) multicomputers are usually composed 

of a large number of nodes, each with its own processor 
and local memory. These nodes use an interconnection 
network to exchange data and synchronize with one an- 
other. Thus, the performance of a multicomputer depends 
strongly on network latency and throughput. 

There are two types of message routing: 

1) deterministic routing that uses only a single path from 

2) adaptive routing that allows more freedom in selecting 

Most commercial multicomputers use deterministic routing 
because of its deadlock freedom and ease of implementa- 
tion. However, adaptive routing can reduce network la- 
tency and increase network throughput [4]. It can also tol- 
erate more faults than deterministic routing. But, the flexi- 
bility of adaptive routing may cause deadlock and/or live- 
lock problems. A deadlock occurs when a message waits 
for an event that will never happen. In contrast, a livelock 
keeps a message moving indefinitely without reaching the 
destination. 

the source to destination, and 

message paths. 
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Four types of switching methods for sending or receiv- 
ing messages are used in distributed-memory multicom- 
puter systems: store-and-forward [19], circuit switching, 
virtual cut-through [201, and wormhole routing [7]. The 
store-and-forward and circuit switching methods were 
used in the first-generation multicomputer systems, such as 
the Intel iPSC [28].  Contemporary multicomputers use 
wormhole routing due mainly to its high transmission effi- 
ciency and reduced buffer requirements [27], [24]. All the 
algorithms described in this paper are thus based on worm- 
hole routing. In wormhole-routed multicomputers, a mes- 
sage contains one or more flow-control digits (flits). The first 
flit of a message (head flit) builds the transmission path be- 
tween the source and destination. Each flit of a message fol- 
lowing the head flit advances as soon as the preceding flit 
arrives at a node (i.e., flit pipelining) and gets blocked when 
the required channel resources are not available. 

A routing algorithm is said to be minimal if the message 
goes through a shortest path to its destination. A minimal, 
fully-adaptive routing algorithm allows the message to be 
routed via any one of the shortest paths between its source 
and destination. ln this paper, we first present an adaptive 
deadlock-free routing algorithm by using only one extra 
virtual channel as compared to deterministic routing. This 
algorithm may use minimal or non-minimal routing for a 
given topology, such as hypercubes and k-ary n-cubes. Sec- 
ond, for n-dimensional hypercubes and meshes, we pro- 
pose adaptive fault-tolerant deadlock-free routing schemes 
based on the adaptive routing algorithm developed first. A 
node fault is assumed to be the basic fault element in deal- 
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ing with fault-tolerance. The advance of VLSI technology 
has enabled the computation and communication units in a 
node to be integrated into a single VLSI chip, as was done in 
tWarp [29], Transputer [30], Ncube, and MDP [6]. For a sim- 
pler processor node such as CM-2 [32], even more processors 
can be integrated into a single chip. In our fault-tolerance 
scheme, each node needs to be marked as being in one of 
three states: safe, unsafe, and faulty. The unsafe state is used 
to facilitate deadlock-free routing. An unsafe node can still 
transmit and receive messages. For n-dimensional meshes, 
we use a disconnected rectangular block as the fault model, 
which is composed of unsafe and faulty nodes. The basic 
concept of the proposed adaptive fault-tolerant routing is to 
find a detour in VIN, whenever the requested channel in 
VIN, is connected to an unsafe or faulty node. We also dis- 
cuss a fault-tolerant routing scheme for k-ary n-cubes. 

This paper is organized as follows. Section 2 gives a brief 
review of the related work. Section 3 describes an adaptive 
deadlock-free routing algorithm and its application to n- 
dimensional meshes. Section 4 presents adaptive fault- 
tolerant deadlock-free routing algorithms for n-dimensional 
hypercubes and meshes. Section 5 presents the simulation 
results for both hypercubes and two-dimensional meshes 
with and without faulty nodes. The paper concludes with 
Section 6. 

2 RELATED WORK 
Numerous routing algorithms in multicomputers have been 
proposed in recent years. Some of them consider adaptnbil- 
ity and fault-tolerance in routing messages without consid- 
ering deadlock freedom [l], [2]. However, deadlock free- 
dom is an important design issue for multicomputer sys- 
tems, so we will focus on deadlock-free routing algorithms. 

Dally and Seitz [8] proposed the concept of virtual chan- 
nel to develop deadlock-free routing algorithms. Virtual 
channels are time-multiplexed over a single physical link, 
so one separate queue must be maintained in a node for 
each virtual channel. Virtual channels are also used to re- 
move the cycles in the channel-dependency graph (CDG), 
providing deadlock-freedom during message transmission. 
But the algorithms in [8] are deterministic and hence cannot 
handle component failures in the selected path. 

Linder and Harden 1251 extended the concept of virtual 
channel to multiple, virtual interconnection networks that 
provide adaptability, deadlock-freedom, and fault- 
tolerance. Each link is shared by many virtual channels 
which can be divided into several groups or virtual net- 
works. Message passing inside a virtual network is dead- 
lock-free and messages are constrained to travel through 
virtual networks in a certain predefined order. When the 
message is blocked in a virtual network due to congested or 
faulty nodes/links, it can keep moving forward via another 
virtual network, thereby increasing routing adaptability. 
The chief disadvantage of this method is the requirement of 
many virtual channels,' e.g., a k-ary n-cube needs 2"-'(n + 1) 
virtual channels. 

Glass and Ni [16], [17] proposed partially-adaptive 

1. In general, its number is an exponential function of the network di- 
mension. 

routing algorithms for n-dimensional meshes and k-ary n- 
cubes without adding any physical or virtual channels. 
They first investigated the possible deadlock cycles on 213- 
and 3D-meshes, then proposed some prohibited turns of 
these cycles to prevent deadlocks. However, if minimal 
routing is required, then at least one half of source- 
destination pairs will have only a single routing path from 
the source to destination. Because this algorithm cannot 
route messages along every shortest path in the network, it is 
called partially-adaptive routing. The authors of [ 181 modified 
the routing algorithm of this turn model to make it (n - 1) 
fault-tolerant for n-dimensional meshes. However, for four 
or higher dimensional meshes, it is only a conjecture, i.e., :ts 
validity remains to be proved. 

Chien and Kim [3] proposed a planar-adaptive routing 
algorithm which limits the routing freedom to two dimen- 
sions at a time. The reduced freedom makes it possible to 
prevent deadlocks with only a fixed number of virtual 
channels, indepmdent of network dimension. This algo- 
rithm needs three virtual channels for n-dimensional 
meshes and only supports partially-adaptive routing. 

Duato [9], [lo], [lll, [12] developed a general theorem of 
adaptive deadlock-free routing, defining a criterion for 
deadlock-freedom and then using the theorem to propose a 
fully-adaptive algorithm. The theorem states that by sepa- 
rating virtual channels on a physical link into restricted and 
unrestricted partitions, fully-adaptive deadlock-free routing 
can be achieved. Duato [13] further analyzed the effective 
redundancy of a wormhole network and presented (m 
adaptive fault-tolerant routing algorithm for n-dimensional 
meshes which uses at least 4 virtual channels and has a re- 
dundancy level equal to n - 1. 

Dally and Aoki [51 proposed a dynamic deadlock-free 
routing algorithm which also divides the virtual channels 
of each physical channel into two nonempty classes: adap- 
tive and deterministic. Messages originate from adaptive 
channels. Once a message is on a deterministic channel, the 
message must be routed in dimension order and cannot re- 
enter any adaptive channel. Actually, their method relies on 
a stronger constraint than Duato's algorithm. Lin 1st al. [;!4] 
proposed a message flow model in wormhole-routed net- 
works, and applied it to develop adaptive routing algo- 
rithms. Any routing algorithm under this message flow 
model can be guaranteed to have deadlock-freedorn. 

In [14], [31], Gaughan and Yalamanchili proposed a mis- 
routing backtracking protocol under pipelined circuit 
switching (PCS), a variant of wormhole routing. This proto- 
col is deadlock-free and can tolerate up to 2n - 1 physical 
link failures in k-ary n-cubes. Like traditional circuit 
switching, PCS needs to set up a path before trainsmitting 
messages, and hence, the path setup overhead is relatively 
high for small messages. 

In [23], Lee and Hayes proposed a fault-tolerant dead- 
lock-free routing scheme for n-dimensional hypercubes, but 
it requires (n + 1) virtual channels. It is basically derived 
from the hop-count method [19] used in packet-switched 
networks. The authors of [21] proposed a deadlock-free 
fault-tolerant routing scheme for hypercubes. This scheine 
does not require any additional virtual channel, nor sup- 
ports adaptive routing. 
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In this paper, we also decompose the network into two 
virtual interconnection networks and use a novel number- 
ing method to facilitate the proof of deadlock freedom. The 
adaptive routing algorithm we use turns out to yield a 
similar result as Duato's algorithm [9]. We will primarily 
focus on fault-tolerant routing by using this numbering 
method. 

3 ADAPTIVE DEADLOCK-FREE ROUTING ALGORITHM 
We first describe an adaptive deadlock-free routing algo- 
rithm under the following assumptions: 

AI. The underlying interconnection network can be di- 
vided into two virtual interconnection networks, VIN, 
and VIN,. The virtual channels in VIN,  and VIN2 
share the bandwidth of each physical link. 

A2. A message reaching its destination will eventually 
be consumed. 

A3. The channel allocation algorithm used is free from 
starvation using, for example, first-come first-serve or 
round-robin scheduling. 

A4. Each virtual channel in VIN, is assigned a channel 
number. When a message traverses the nodes be- 
tween the source and destination, the head flit can 
always find a channel in VTN, to use for each hop in 
an increasing order of channel numbers. (We can also 
use a decreasing order of channel numbers, but for 
convenience of presentation, we will henceforth use 
an increasing order of channel numbers.) 

ALGORITHM 3.1 (Adaptive Routing): T h e  head flit first checks 
to  see if there is a n y  channel available in VIN, or VIN,. 
Whenever a channel is available i n  VIN,  or VIN,, the mes- 
sage is routed via this channel. Note that the requested 
channel in VIN, should satisfy A4. 

The chief advantage of this algorithm comes from the 
channels in VIN, that can be treated as free channels. A free 
channel can be used whenever it is released by a message 
without any dimension-order restriction. 
THEOREM 1. The proposed adaptive routing Algori thm 3.1 is 

PROOF. See the Appendix. 
Duato [12] presented a theory of adaptive deadlock-free 

routing similar to Algorithm 3.1. Algorithm 3.1 can use 
minimal or nonminimal routing as long as A1-A4 are satis- 
fied, irrespective of the interconnection network topology 
used. But it's possible that the head flit cannot get a higher- 
number channel in VIN, if the routing algorithm arbitrarily 
chooses an outgoing channel. For some popular topologies, 
such as hypercubes, n-dimensional meshes, and k-ary n- 
cubes, both deadlock and livelock freedom can be guaran- 
teed with minimal routing. However, livelock freedom is 
not guaranteed if non-minimal routing is used. At the end 
of this section, we will mention how to develop a non- 
minimal deadlock-free routing algorithm for n-dimensional 
meshes. Although we don't consider the store-and-forward 
switching scheme, Algorithm 3.1 can also be applied to 
packet-switched networks. In packet-switched networks 
[191, the resources in the channel-dependency graph are 

deadlock-free. 

replaced by packet buffers, and thus, if Al-A4 are satisfied, 
we need two packet buffers on each node to support adap- 
tive routing. 

Now, we would like to apply Algorithm 3.1 to n- 
dimensional meshes. An n-dimensional mesh consists of 
kif-, x k,,_, x . . . x k, x k ,  nodes, where k, 2 2 is the number of 
nodes along dimension i. A node X is represented by n co- 
ordinates, ( x ~ , - ~ ,  x,,->, ..., xa), 0 < xi I k ,  - 1, 0 < i < n - 1. Two 
nodes X and Y are neighbors if and only if x, = yi for all i ,  
0 5 i 5 n - 1, except for one coordinate, say j, such that yl = xi -+ 1. 
Thus, each node has n to 2n neighbors, depending on its 
location in the mesh. If X and Y are neighbors, then the 
channel of dimension i at node X is in the positive direction 
relative to node Y when xi = yf - 1, or in the negative direc- 
tion when x, = y1 + 1. 

Let's define the following notation that will be used 
throughout the rest of this paper. 

Source Node S = (snP1, s,,-~, . . ., so) 
Destination Node D = (dn_,, dn-2, ..., do) 
Current Node C = (cnPl, c,-~, ..., co) 
Routing Tag R = (rrlPl, Y,,->, ..., yo) 

= 

= (dfl-l 0 

- ~ ~ _ , , d , . - ~  - snP2 ,..., d, - sa); /" for 

0 s,_~ ,..., d, 0 so); /" for 
n-dimensional meshes "/ 

n-dimensional hypercubes */ 
f (R):  number of nonzero elements in R; 
f(R, i): the directed dimension with nonzero ith element in R; 
VC,,,: the virtual channel in the ith dimension of the jth vir- 

VC,,*: the virtual channel in the ith dimension of VIN, or 

nnm(VC,,j): the channel number assigned to VC,,J 
detotir_group,,l: the detour of channel VC,,, in dimension j. 
Note that the subscript i in VC,,] is a signed integer for n- 
dimensional meshes. If i is positive, then VC,,J is in the posi- 
tive direction; otherwise, VC,,l is in the negative direction. 
Using the above notation, the traditional dimension-order 
routing algorithm for n-dimensional meshes can be de- 
scribed as follows. 
ALGORITHM 3.2: Dimension-order routing for n-dimensional 

S1. Update R; /*Y, := Y ,  * 1 */ 
S2. If (R == 01, route the message to the local processor and 

S3. Route the message via VCf(R,,l,, and exit; /" only one 

For example, consider source node S = (1, 3, 4, 2) and 
destination node D = (3,3, 1, 3) in a 4 x 4 x 5 x 4 mesh. The 
routing path between S and D is determined by the routing 
tag R = (r3, r2, r l ,  yo)  = (3 - 1, 3 - 3, 1 - 4, 3 - 2) = (2, 0, -3, 1), 
where I r ,  I represents the number of hops in dimension i 
and the sign of Y, indicates the routing direction. f (R)  = 3, 
f ( X ,  1) = +0, f(R, 2) = -1, and f(X, 3) = +3. If minimal dimen- 
sion-order routing is used, then the routing path in this ex- 
ample is 

tual interconnection network 

vrN, 

meshes. 

exit; 

virtual interconnection network is required */ 
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The symbols above the right arrows are the correspondiing 
routing tags. The dimension-order routing for n-dimensional 
meshes is deadlock-free, minimal and deterministic. 

Presented below is an adaptive minimal routing algorithm 
for n-dimensional meshes based on Algorithm 3.2. Assume 
there are two virtual channels running over each physical 
link, one in VIN, and the other in VIN,. The hypercube can be 
treated as a special case of n-dimensional meshes. 
ALGORITHM 3.3: Adaptive minimal routing for n- 

Sl’. Update R; /“Y, := yi k 1 */ 
S2‘. If (X == 0), route the message to the local processor and 

S3’. ParallelLRequest VCl(x,l),., VCf(R,2),2, . . . , VCJ(X,~(~)),~; 
S4‘. Route the message via the first available channel 
among those requested and exit. 

SI’ and 52’ are the same as the dimension-order routing 
mentioned above. In S3’, the algorithm requests simultane- 
ously all the channels in VIN, corresponding to nonzero 
elements of R. It also requests the channel (VCf(R,l),,) in VIN, 
according to the dimension-order rule. Whenever any of 
the requested channels becomes available, the message will 
be routed via that channel. Obviously, this is minimal 
routing because I ri I will be decremented by one for each 
hop the message takes. 

dimensional meshes. 

exit; 

Fig. 1. Numbering the output channels of a node in an n-dimensional 
mesh. 

7 1  Destination 9 

- V I N ,  
---3 VIN2 

Fig. 2. A message holding virtual channels of VIN, and VIN, simul- 
taneously. 

6G9 

THEOREM 2. Algori thm 3.3 f oy  n-dimensional meshes is both 
deadlock-free and livelock-free. 

PROOF. Since this is minimal routing, it guarantees livelock- 
freedom. From Theorem 1, we know the virtual chan- 
nels in VIN, will not affect deadlock-freedom if A1-A.4 
can be satisfied. A1 is satisfied since two virtual inter- 
connection networks are used. A2 and A3 are related to 
the underlying scheduling method; one can (design a 
scheduling method to satisfy A2 and A3, e.g., first- 
come-first-serve and round-robin scheduling, Thus, we 
only have to consider how to satisfy A4, i.e., for each 
hop the head flit can always find a channel (with an in- 
creasing order of channel numbers) in VIN, to use. 

For a kn-, x k,,-, x ._.  x k,  mesh, Fig. 1 shows how to 
number the output channels in VIN, for node X = 

(xnp1, x,-~, . . ., x0). The number of positive-direction 

channels of dimension j is cji:kj +xi,, where 

I = ,  ki = 0, and that of negative-direction channels of 

dimension j is ki - x.. The number of highI2r 
1 

dimensions is always larger than that of lower dimen- 
sions. The numbers of positive- or negative- direction 
channels increase along the corresponding coordinate. 

In Algorithm 3.3, a message may simultaneously hold 
the channels in VIN, and VIN, as shown in Fig. 2. If 
the message takes one or more hops via the channel in 
VIN,, A4 requires that there always exist an outgoing 
channel in VIN, with a higher channel number than 
those channels already held by the message. Assume 
the message holds a channel VCf(,,,,, at node X and 
takes one or more hops via the channels in VN,, then 
the message arrives at node Y and requests the chan- 
nel VCt,,,,),,. There are two cases to consider: (C1) 
(f(R,l) in node X) = (f(R,l) in node Y), and (C2) 
( If(R,l) I in node X) < ( If(R,l) I in node Y). Note that 
( lf(R,l) I in node X) I ( If(R,l) I in node Y), because 
Algorithm 3.3 requests the channels of VIN, in an in- 
creasing dimension order. For C1, VCf(x,l),ls in both X 
and Y use the same dimension and the sarne diroc- 
tion. If the message is routed along the positive direc- 
tion, then c;:: ki + y s  > k ,  + x,, where ys > ;lS, 

s E (1, 2, ..., n - 1) and x,, ys E (0, 1, ..., k J .  If the mes- 
sage is routed along the negative direction, thlen c;=, ki ys > Cbo ki - x,, where ys < x,, s E U,2, . . ., n 
- 1) and xs, ys E (0, 1, . . ., $ 1 .  Therefore, ( ~ U ~ ( V C ~ ( ~ , , , , )  in 
node Y )  > ( ~ U ~ ( V C ~ ( ~ , ~ ) , , )  in node X). For C2, one can 
easily check if the following inequality holds: 

(c:~Akj + ~ s o r C ; = o k i - y s )  >(Z:r:kz + x t o r C : = o k i - x i ) /  

where s > t and s E (1, 2, ..., n - 1). Therefore, the :in- 
creasing channel order in requesting the channels in 
VIN, can be guaranteed, and hence, A4 is satisfied. 
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Can we develop an adaptive nonminimal deadlock-free 
routing scheme for n-dimensional meshes? One key point 
in ensuring deadlock-freedom is to make sure that, after 
taking each hop, a message can always find a channel in 
VIN, in an increasing order of channel numbers. In n- 
dimensional meshes, the message routed via the channel in 
VIN, with the dimension larger than f(R, 1) will not violate 
the dimension-ordering rule because the channel numbers 
in higher dimensions always have larger (using the num- 
bering method in Theorem 2) than that in dimensionf(R, 1). 
For example, if R = (4, 0, -1, 01, then, because f(X, 1) = -1, 
the message can be misrouted via the channels in VIN, in 
dimensions two and three. That is, after misrouting the 
message for one hop, R becomes {4,1, -1,O) or (4, -1, -1, 01, 
or (5, 0, -1, 0). However, it may result in a livelock. One 
way to avoid the livelock is that the number of misrouting 
hops along each dimension cannot be greater than a fixed 
number, but the head flit should use more bits to carry this 
information. 

Dally 1331 and Glass and Ni [151 mentioned the fully- 
adaptive routing in 2D meshes by using only one extra 
channel in either dimension. In our algorithm, if we don’t 
use any free channel in dimension 0, the minimal fully- 
adaptive routing can still be supported. This is because the 
dimension-order routing in VIN, can let messages go 
through the lowest dimension (i.e., f(R, 1)) in a finite time. 
Dimension 0 is always the lowest dimension for any source- 
destination pair, so free channels in dimension 0 are not 
necessary for supporting minimal fully-adaptive routing. 
The number of virtual channels required for 2D meshes is 
therefore the same as the algorithms in [151, [331. However, 
for notational convenience, we still use two virtual channels 
per a physical link in each dimension. Note that the current 
VLSI technology allows for more than two virtual channels 
per channel in such lower dimension topologies as two- 
dimensional meshes. The iWarp is an example of using four 
virtual channels. Using more virtual channels improve not 
only performance but also fault-tolerance. In Section 5, we 
will compare the performance of two and four virtual- 
channel schemes in two-dimensional meshes. 

4 ADAPTIVE FAULT-TOLERANT DEADLOCK-FREE 
ROUTING 

Link and/or node faults are usually used to model 
faulty/injured multicomputers. As mentioned before, we 
use a node fault as a basic faulty element because both 
communication and computation units can be integrated 
into a single chip in contemporary multicomputer systems. 
The fault on each outgoing link can be treated as a corre- 
sponding node fault. There are two fault types for sup- 
porting fault-tolerant routing: dynamic and static faults 
[IS], [311. For a system to tolerate dynamic faults, nodes 
may become faulty or nonfaulty at any time. By contrast, 
the static case assumes components (links or nodes) remain 
nonfaulty during the time they are actively participating in 
message transmission [31]. Tolerating dynamic faults can 

the number of faulty nodes exceeds the tolerable limit, this 
system should be shut down to run a diagnostic program 
and decide node‘s state. Then, the system can be run again 
in a degraded mode; for example, unsafe binary subcubes 
in hypercubes and disconnected rectangular blocks in 
meshes (to be discussed later). Furthermore, if we need to 
tolerate dynamic faults, each node needs to be equipped 
with on-line detection mechanisms. 

First, let’s consider the problem that the proposed adap- 
tive routing Algorithm 3.3 will encounter when a linklnode 
becomes faulty. Assume VIN, uses deterministic routing. If 
no channel in VIN, or VIN,  is available, then the message 
must wait for only one channel of VIN, due to VIN,’s use of 
deterministic routing. However, if this channel is connected 
to a faulty node or runs over a faulty link, then it won’t be 
available, which may in turn lead to a deadlock. One can 
solve this problem by using adaptive routing in VIN,, such 
as planar routing [3], enabling each message to request at 
least two channels in different dimensions so that it can 
avoid the faulty link/node. However, this method requires 
more virtual channels than necessary for fully-adaptive 
routing. 

To reduce the hardware overhead in supporting fault- 
tolerance, we propose a new scheme that treats some of the 
channels in VIN,  around the faulty or unsafe nodes as de- 
tours of the channels in VIN,  connected to the 
faulty/unsafe nodes. Each message waiting for a channel in 
VIN, connected to a faulty/unsafe node can then be routed 
via the corresponding detour in VIN,. In effect, this scheme 
trades adaptability around the faulty nodes for fault- 
tolerance and deadlock-freedom in the entire system. How- 
ever, the adaptability thus achieved affects only a part of 
the system and depends on the number and pattern of 
faulty nodes. 

In order to ensure that fault-tolerant routing is still 
deadlock-free, each possible path on VIN, going through 
the faulty/unsafe node should find a detour. The overhead 
of fault-tolerant routing depends on the interconnection 
topology used. To develop a fault-tolerant routing algo- 
rithm, we need two more assumptions in addition to Al-  
A4 in Section 3: 

A5. There is no message from or to the faulty node. 
A6. Each node keeps its neighbors’ state (Le., faulty, un- 

The following two subsections describe the proposed 
adaptive fault-tolerant deadlock-free routing algorithms for 
hypercubes and n-dimensional meshes. We also discuss 
briefly the adaptive fault-tolerant deadlock-free routing for 
k-ary n-cubes. 

4.1 Hypercubes 
Fault model for hypercubes: We use unsafe binary sub- 
cubes to model node faults in hypercubes [23]. Each node is 
in one of three states: safe, unsafe, and faulty. The unsafe 
nodes are used to facilitate deadlock-free routing. An un- 
safe node can still transmit or receive messages. 

safe, or safe) to help routing messages. 

- - 2  

enhance the run-time life of a multicomputer, thus increas- 
ing reliability. On the other hand, tolerating static faults can 
enhance system availability. When a system is running and 

DEFINITION 1. A ”good” node “ected to two or more 
faultylunsafe nodes is called an ”unsafe” node; otherwise, it 
is called a “safe” node. 
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Before running user programs on the machine, the oper- 
ating system on each node should determine the state of its 
neighbors. The authors of [22] developed a distributed. al- 
gorithm of communication complexity O(n3) to identify all 
unsafe nodes in an n-cube. Each faulty/unsafe node be- 
longs to a corresponding binary subcube, called an unsafe 
binary subcube, which is formed by faulty and/or unsafe 
nodes. If the number of faulty nodes is no more than h/21, 
then the message can be routed to its destination via a path 
of length no greater than the minimal path length plus two 
[23]. However, if we consider deadlock-freedom, this algo- 
rithm needs n + 1 virtual channels. By contrast, our pro- 
posed algorithm requires only two virtual channels, and 
moreover, it provides partial adaptability when nodes be- 
came faulty. The number of faulty nodes that can be toler- 
ated and the maximum message path needed are the same 
as those of the algorithm in [22], [23]. 

Detour channels: One way to assign detour channels 
around an unsafe subcube is that each channel (say, VCr,,,l, 
0 2 m < n - 2) connected to the unsafe subcube is replaced 
by detour channels: VCm+l,2, VCm+,,,, ..., VCnpl,2. Note that 
the subscript i in VC,,, is an unsigned number because in a 
hypercube a node has only one neighbor in each dimen- 
sion. Also, there is no need to assign a detour channel for 
channel VC,-,,, because one of its neighbor nodes is the 
destination. 

Renumbering method: Each VIN, channel in dimension m 
(0 2 m 5 n - 2) is assigned a channel number m. Fig. 3 shows 
a four-dimensional hypercube with the assigned channel 
numbers. When some nodes become faulty, the channels 
connected to an unsafe node must be renumbered. The 
channels in VIN, are assigned integer numbers, and the 
detour channels are assigned noninteger numbers. Specifi- 
cally, we use the following renumbering method. 

1) If the original channel number of VC,,, is m (0 5 m 5 
n - 2),' then all the detour channels VCm+l,2, VC,7i+2,2, 
. . ., VC,-,,, are assigned non-integer channel numbers 
such that m - 1 < num(VC,+,,,) < num(VC,+,,) < ... < 
num(VC,l-,,,) < m. 

2) Each channel in a safe node which is connected to an 
unsafe node is reassigned the largest channel number, IZ. 

3) Each channel in an unsafe node which is connected to a 
safe node is reassigned the smallest channel number,, -1. 

EXAMPLE 1. Consider a four-dimensional hypercube as 
shown in Fig. 4. If nodes 0000 and 1010 are faulty, 
then nodes 1000 and 0010 are unsafe nodes. Thus, 
nodes 0000, 1000, 0010, and 1010 form an unsafe 2- 
cube. The safe nodes around this unsafe subcube 
must build detours. For example, the channel VC, ,  in 
node 0100 is treated as the detour of channel VC,,, in 
node 0100 (channel number = 2). This detour can be 
assigned channel number 1.5. Actually, in this case, 
we can assign any non-integer number between 1 and 
2. The channels VC,,,, VC,,,, and VC,,, in node 0001 
are treated as the detours of channel VC0,, in node 
0001, and their channel numbers are assigned to be 

2. Note that the maximum of m is equal to n - 2 rather than M 1, because 
it would be the faulty last node if m n - 1. 

0 

Fig. 3. Numbering the output channels in a 4-dimensional hypercube. 

0 9  

0 unsafeuodL f'lulty node 
- -> detour with Lhaniicl number 1 5 
+ dctour with channel iiumbcr -0 1 
- - 9 dctour with channel number -0 6 
-32 detour with ~ha~ ine l  number 0 9 

Fig. 4. Building detours in a faulty/injured hypercube. 

-0.9, -0.6, and -0.3, respectively. Likewise, we can iis- 

sign any non-integer number such that -1 < num(VC ,,) 
< num(VC,,) < num(VC,,,) < 0. Following the same 
rule, each virtual channel in VIN, connected It0 an un- 
safe subcube can find the detours in VIN, and assign 
proper channel numbers. Fig. 4 shows all the detours 
around the unsafe subcube. 

Now, we present a fault-tolerant deadlock-free routing 
algorithm for faulty/injured hypercubes. 

ALGORITHM 4.1: Fault-tolerant adaptive routing for hyper- 

1. Update R; /* Y, := Y, 0 1 */ 
2. If ( R  == 0), route the message to the local processor and 

3.1. /" only one more hop required to reach the destination */ 
If ( f ( X )  == 1) then Parallel-Request VCf(R,l),l, VCf(R,l),z; 

3.2. /* messages from an unsafe node to a safe node and 

else if (C == unsafe node) then Parallel-Request 
any channel connected to a safe node; 

cubes. 

exit; 

misrouting may be used"/ 

3.3. /*messages from a safe node to a safe node"/ 
else if VC,,,,, is connected to a safe node 

then Parallel-Request VCAR,l),l and ,311 useful 

else Request VCf(R,2),2; /* route via detour "/ 
channels in VIN,; 

3.4. 
4. Route the message via the first available channel re- 

quested and exit; 
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In Step 3.3, a ”useful” channel means that it is not a de- 
tour channel and the corresponding element in the routing 
tag R is nonzero. Basically, Algorithm 4.1 uses minimal 
routing except for the message whose source and destina- 
tion nodes belong to the same unsafe subcube and are more 
than one hop apart. In case the source is a safe node and 
VCf(R,l,,l is connected to a safe node, the message can re- 
quest simultaneously VCf(x,l,,, and any nondetour channel 
in VIN, with the minimal routing distance. If VCf(R,I),I is 
connected to an unsafe node and more than one hop is re- 
quired to reach the destination, then the message requests 
the detour VCf(R,(x,2),2 instead. Based on the concept of unsafe 
binary subcube, if VCf(x,l,,l in a safe node is connected to a 
faulty/unsafe node, then VCf(R,(x,2),2 would be connected to a 
safe node because a safe node is connected to at most one 
unsafe/faulty node [23]. If only one more hop is required to 
reach the destination, then the message requests vcf(R,l),l or 
VCf(R,2),2r regardless whether they are connected to an unsafe 
node or not. So, the message from a safe source node can 
always reach the destination, because, whenever VC,,,,,,, 
meets an unsafe/faulty node (except for the final hop), the 
message can always find a detour vcf(R,(x,2),2. 

If the source node is unsafe, the message should first 
leave this unsafe subcube unless its destination is a neigh- 
bor of the source. Using the node fault model, a safe node 
can be found to route the message. After taking this hop, 
the message will follow the same procedure for the mes- 
sage from a safe node as discussed above. 

EXAMPLE 2. We use the same faulty hypercube as shown in 
Fig. 4 for this example with the source = 0001 and the 
destination = 1110. At the source node, because 
VCf(x,l),l is connected to a faulty node 0000 (Step 3.4), 
the message is routed via VCf(R,(x,2),2 = VC,,, (channel 
number = -0.9). Note that in node 0001, there are 
three channels defined as detours, i.e., VC,,,,VC,,,, and 
VC,,,, and they cannot be used unless the next lowest 
dimension to be traversed is across a faulty node. In 
this case, the message is routed via VC,,,. After making 
one hop (Le., arriving at node 0011), because VCf(R,l),l is 
connected to an unsafe node 0010 (Step 3.4), the mes- 
sage is routed via VCf(R,2),2 = VC,,, (channel number = 
-0.6). Then, in node 0111, because VCf(x91)r, is con- 
nected to a safe node 0110 (Step 3.3), the message can 
request simultaneously VC,,,, VCo,,, and VC3,,. Assume 
the message is routed via VCo,l (channel number = 0 )  
and arrives at node 0110. Then,f(X) = 1, and hence, the 
last hop is made via VC,,, or VC,,, (Step 3.1). 

Let’s consider another example with an unsafe source 
node and an unsafe destination node. Assume source 
node = 1000 and destination node = 0010. For the first 
hop, because node 1000 is an unsafe node (Step 3.21, 
the message is routed via VC,,,, VCO,,, VC,,I, or VC,,, 
(channel number = -1). Assume the message is routed 
via VC,,, and arrives at node 1100. Because VCf(x,l),, is 
connected to a safe node 1110, the message is routed 
via VC,,z or VC,,, (Step 3.3). Note that VC,,, is a de- 
tour, so it is not eligible for the message to use. As- 
sume the message is routed via VC,,, and arrives at 
node 1110. Because the VCf(R,l,,l is connected to a 
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faulty node, the message is routed via the detour 
VCf(x,,,,, = VC,,, (Step 3.3). Then, the final hop is made 
via VC,,, or VC,,, (Step 3.1). 

THEOREM 3. Algorithm 4.1 is  free f rom both deadlock and live- 
lock i f  the dimensionlsize of each unsafe birzary subcube is 

PROOF. Like the proof of Theorem 2, the four assumptions, 

I Z O  more than rn/21. 

Case 

Cast 

AI-A4, in Section 3 should be satisfied. Again, only 
A4 needs to be considered, i.e., after making one hop, 
the message can always find a higher-number channel 
to request. Based on Theorem 1, the free channels in 
VIN, do not affect deadlock-freedom, so we consider 
the channels in VIN, only. Since the detour channels 
cannot be free channels, we can treat them as a part of 
VIN,. We must consider four cases for different types 
of source-destination pairs. In each case, we must 
prove that the requested channel in VIN, or a detour 
channel observes the increasing-order rule to guar- 
antee deadlock-freedom. 

1:  From a safe source node to  a safe destination node. When a 
message is routed from a safe source node to a safe 
destination node, the intermediate nodes’ VCJ(R,I),I may 
be connected to unsafe/faulty nodes. If no VC,Q,),~ is 
connected to an unsafe or faulty node, then we use the 
dimension-order routing to request the channels in 
VIN,. Because num(VCf(x,l),,) < num(VCf(x,z,,l) < . . . < 
~ U ~ ( V C ~ ( ~ , ~ ~ ~ , , , , ) ,  the dimension ordering can be 
guaranteed. 

If there is an intermediate node whose VCf(R,l),l is con- 
nected to an unsafe/faulty node, then the message 
will request VCf(R,2),2 (Step 3.3). Actually, VCf(x,2),2 is the 
detour of channel VCf(x,l,,l connected to an un- 
safe/faulty node. After taking this hop, V(&),, may 
meet an unsafe/faulty node again; if it does, route the 
message via the detour. By the renumbering method, 

.. . < num(VC,,-,,,) < num(VCf(,,,,,,), thus preserving the 
channel-ordering rule. 

2: From a n  unsafe souyce node to  a safe destination node. 
First, the message must leave the unsafe subcube. 
Based on the fault model of unsafe binary subcubes, 
the message can always find a channel connected to a 
safe node if there are no more than b / 2 1  faulty nodes 
1231. This channel is assigned the smallest channel 
number, -1, and is always used for the first hop. After 
taking this hop, the message will be routed from a 
safe node to a safe node as described in Case 1. Since 
the channel number is equal to -1, and hence smaller 
than any other channel number in Case 1, the channel 
ordering can be guaranteed. 

num(VCf(R,I),I) - < num(Vcf(R,1)+1,2) < num(VCf(R,1)+2,2) < 

Case 3: From a safe*source node to  an  unsafe destination node. 
Because a safe node is connected to at most one un- 
safe/faulty node, if the channel VCf(R,l),l is connected 
to an unsafe/faulty node, then the message can al- 
ways find a detour VCf(R,2),2 except for the final hop. 
From Case 1, we know that the channels’ order can be 
preserved from a safe source node to a safe node next 
to the unsafe destination. Then, only one more hop is 
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required to reach the destination. Since each safe 
channel connected to an unsafe node is assigned the 
largest channel number, the channel ordering can be 
guaranteed. 

Case 4: From an unsafe source node to an unsafe destination node. If 
the source node is connected directly to the destination 
node, then request VCI(R,ll,I or VCflR,ll,2. Because only one 
hop is required in this situation, the channel ordering is 
guaranteed. If two or more hops are required, the 'mes- 
sage should leave the unsafe subcube in the first hop as 
in Case 2,. First, the message is routed from an unsafe 
node to a safe neighbor node, then from a safe node to a 
safe node (a neighbor of the destination), and finally 
from a safe node to an unsafe node. Because the first and 
final hops are made via the channel with the smallest 
and largest channel numbers, respectively, and interme- 
diate hops (from safe to safe nodes) are made via the 
channels of increasing numbers as in Case 1, the channel 
ordering can be guaranteed. 

Since the message in each case is routed in increasing 
channel order, the proposed routing is deadlock-free. 
Algorithm 4.1 uses minimal routing except for the 
first hop from the source node in Case 4, and thus, the 
maximum number of message hops is n + 1. So, live- 
lock-freedom can be guaranteed. 0 

4.2 n-Dimensional Meshes 
Fault model: We use disconnected rectangular blocks (or 
faulty blocks for short) to model node faults and to facilitate 
deadlock-free routing in n-dimensional meshes. In order to 
find faulty blocks, each node should know the encompassing 
nodes' states (faulty or safe) after running a diagnostic pro- 
gram. For example, in Fig. 5, node e knows the states of 
nodes a, b, e, f, i, h, g, and d (encompassing nodes). A.n n- 
dimensional mesh can be treated as being composed of 
multiple two-dimensional planes like Fig. 5. In order to 
make Definition 1 in Section 4.1 suitable for n-dimensional 
meshes, we modified it as follows: 

DEFINITION 1'. For each two-dimensional plane of a mesh, if there 
are two or more faulty nodes on different edges around a 
"good" node, this "good" node is called an "unsaferr node; 
otherwise, it is called a "safe" node. 

0 0 0 0 0 0 0  

For example, faulty nodes g and h are on the same edge 
around good node e, faulty node f is on another edge, and 
thus e is said to be unsafe. Based on Definition 2, we will 
later mark node e as faulty. In addition to Definitilon l', we 
need a rule to "disable" some unsafe nodes as described in 
the following definitions. 

DEFINITION 2. For n-dimensional meshes and k-a y n-cubes, k > 2, 
if an unsafe node is not connected by two or more safe 
nodes in each two dimensional plane, then it is ,marked as 
faulty. 

DEFINITION 3. Two rectangular blocks, B,  and B,, in a two- 
dimensional plane of a mesh are said to be disconnected if 
for each node N ,  E B ,  and N2 E B,, the distance between 
N, and N,  in at  least one dimension is no smaller than 3. 

The steps for finding faulty blocks are to 

1) run a diagnostic program to detect nodes states (good 

2) mark good nodes as safe or unsafe based on Defi:ni- 

3)  disable some unsafe nodes as faulty nodes based on 

For example, nodes b, e, d, e, i, j ,  k, I ,  m, n, and o in Fig. 5 are 
marked as unsafe in Step 2. Then in Step 3, nodes b, d, e, k ,  1, 
m, n, and o are marked as faulty. The rectangular faulty 
blocks B, and B, are disconnected, whereas B,  and B, are 
not. B, is formed by marking some disabled and unsafe 
nodes between B ,  and B,. Obviously, the faulty block is 
composed of faulty (or disabled) and unsafe nodes, and is 
rectangular in each two-dimensional plane. After dets-r- 
mining each node's state, unsafe and faulty/disabled nodes 
will form a disconnected rectangular block on each two- 
dimensional plane. 

In order for messages to bypass a rectangular block, both 
the width and length of the rectangular block should be 
smaller than the corresponding dimension. For example, 
the block size in Fig. 5 must be smaller than the corre- 
sponding dimension, 7. This fault model is referred to a:s a 
block fault model. Some popular fault models such as a single 
node/link fault are subsumed by the block fault mod.el. 
Arbitrary faults can also be modeled as block faults by in- 
cluding some of the nonfaulty nodes in the faulty block. 
Such nodes will be marked as faulty or unsafe. 
Detour channel groups: Building a detour channel in an n- 
dimensional mesh is different from that in a hypercu.be. 

or faulty), 

tion l', and 

Definition 2. 

There are two different properties: 

1) unlike the hypercube, the n-dimensional mesh is not a 
0 :unsafe node 

:laulty node 

:disabled node 

(= :unsafe block 
a b "  

0 0 0 0 0  

0 0 0 0 0  

- 0 0  

H4 

H2 

Fig. 5. Disconnected rectangular blocks are used as the fault model. 

homogeneous topology; 
2) in the n-dimensional mesh, there could be rnore tEan 

one hop a message must travel in each dimension, but 
in a nonfaulty hypercube minimal routing requires at 
most one hop in each dimension. 

The first property makes it more difficult to develop a fault- 
tolerant routing algorithm, because peripheral nodes re- 
quire special care. From the second property, it is not neces- 
sary for the hypercube to find detours for the channels in 
the highest dimension (n - l), because if the message re- 
quests the channel in dimension n - 1 on VIN,, then only one 
more hop is required to reach the destination. However, for 
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an n-dimensional mesh, we still have to find detours for the 
channels in dimension n - 1 because if I Y , ~ ~ ~  I 2 2, then the 
destination is not a neighbor of the current node. 

Using the same method in the hypercube except for the 
highest-dimension channel, we can assign the detour chan- 
nels around a faulty block, i.e., each channel connected to the 
faulty block (say, VC,,,, or VC-,lz,l, 0 5 m 5 n - 2) is replaced 
by the detour channels: VC, (m+l),2,VC, (,n+2),2, . . ., VC, (ll-l),2. 

Note that each mesh dimension has two directions, positive 
and negative. In each two-dimensional plane of the mesh, 
the detours around the faulty block can be divided into four 
detour channel groups (not including the detours of the 
highest-dimension channels), i.e., detour groups a, b, c, and 
d as shown in Figs. 6 and 7. For example, the detours at 
nodes N,, N2, and N3 in Fig. 6 form a detour group a in the 
positive direction and a detour group b in the negative di- 
rection. Each detour belongs to one and only one detour 
group. In hypercubes, each detour group contains only one 
detour channel. To avoid deadlocks, a message should fol- 
low the direction of detour group, and once the message 
leaves one detour group, it cannot enter the group again. 

0 0 0 0 0 0 0  

O f  O O B  O 

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  
C2 C3 

Fig. 6. Building the detours in the higher dimension for the channels in 
VIN, in the lower dimension. There are four detour groups : a, b, c, and 
d. C,, C,, C,, and C, are the corner nodes around the faulty block 

I \ ,- 
/ '  

'f* O 

c[ 

c3 k o  

0 

hrgh dimension 
positive directmi 

I_ 0 0 0 0 0 0 0  
low diineiision 

positive direction 
0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

Fig. 7. When the message is blocked by the  border, it will be  turned 
back along the detour in t h e  opposite direction. There are four detour 
groups: a, b, c, and d. 

If f (R)  2 2 and VCI(R,I),l is connected to a faulty block, then 
the message should request VCf(R,2j,2 instead of VCf(R,ll,l, 
where IJ(X,2) I > If(R,l) I .  Fig. 6 depicts this situation. The 
message from the left side of the faulty block is routed via 
either detour group a or b, depending on the direction of 
VCf(R,2),2. After arriving at the corner node C, (if routed via 
group a) or node C, (if routed via group b),  the message can 
be routed via the channel in VIN,  according to the dimen- 
sion order or routed via any useful free channel in VIN,. 
When the message from the right side of the faulty block is 
routed via either detour group c or d depending on the direc- 
tion of VCicR,2,,2, and after arriving at the corner node C3 or C,, 
it is not routed via the detour channel. Note that when a mes- 
sage is routed via a detour group, only one channel can be 
used, Le., in the zone around a faulty block, we use the de- 
terministic routing to avoid the faulty block. For convenience, 
we use the notation detourquoupi(R,l j,f(R,2) with different direc- 
tions of f(R, 1) and f ( X ,  2) to indicate respectively the detour 
group a if f(R, 1) > 0 and f(R, 2) > 0, the detour group b if f(R, 
1) > 0 and f(R, 2) < 0, the detour group c if f(R, 1) < 0 and f(R, 
2) > 0, and the detour group d if f(R, 1) < 0 and f(R, 2) < 0. If 
the corresponding routing element in dimension f(X, 2) is 
decremented to zero before reaching the corner node, the 
message is routed via the new detouu_guoupf(,,,,,eR,2).3 The new 
detota.,oroupi(,,,j,~~,,) always uses higher-dimension channels 
instead of the original detour_guoupf(s,j,~(R,,). We follow the 
same procedure until the message reaches the destination or 
the corner node, or f(R) is decremented to one. 

If f (R)  = 1, If(R, 1) I # n - 1 and VCl0,,,,, is connected to a 
faulty block, then the message can request the higher- 
dimension detour channel VC,,,,, If(R, 1) I < i < n, and 
should follow the same detour group as shown in Fig. 6. 
The difference from the case mentioned above is that ini- 
tially the message has more detour groups to use, but after 
choosing a detour group, it has only one detour channel to 
use until it leaves the detour group. Actually, in this case, 
the message will be routed away from the destination until 
VCnR,,,,, connects itself to a safe node, Le., the corner node 
around the faulty block. If the message routed via detours 
is blocked by a mesh boundary, then the message will be 
routed back (also via detours) using the detour group in an 
opposite direction. Fig. 7 shows that if the message is first 
routed via detour group b (or c) and blocked by the mesh bor- 
der, then it has to be tumed back via detour group a (or d). 

Now, we consider how to find the detour of the highest- 
dimension channel, Le., the case of f ( X )  = 1 and I f ( X ,  1) I = n - 1. 
We can choose any of VC, ,,,s, i < M - 1, to be the detour of 
VC, (,zpl),l, or choose all of them. However, once a channel in 
VIN, is marked as a detour, it cannot be used as a free 
channel for routing adaptability. Therefore, if VC, (n-lj,, is 
connected to a faulty block, we choose VC, o,2 to be the only 
corresponding detour. However, the detour of VC, has 
one special feature: if the message is routed via a detour, 
say, VC,,,,, then it should be routed back via the detour, 
say, VC&, in the opposite side of faulty block until f ( X )  = 1 
and IfCX, 1) I = n - 1 are corrected again. Thus, a detour 

3. The new detour~roupi(R,,),i(x,z) is different from the original de- 

t ou r~ ro"p i (R , , ) ,~ (R ,~ j  because the second routing element in R is decre- 
mented to zero. That is, the newf(R, 2 )  is the same with the originalf(X, 3). 
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group is composed of two opposite direction channels called 
upper and bottom detour groups. For example, the detour 
groups e (detour_group+(,_,,+,) and f (detour_group-(,..,,,+") 
shown in Fig. 8 are composed of the detours on the upper 
and bottom sides of the faulty block. Note that this situa- 
tion doesn't occur when the message is routed via the de- 
tour of VC, i,l, i < n - l ,  because it is routed via a higher- 
dimension detour channel and can be turned back via the 
channel in VIN, only after reaching a corner node around 
the faulty block. However, for the case with I f(X, 1) I = n - 1, 
once the message is sent via misrouting, it should be turned 
back via the detour, because there is no higher channel in 
VIN, that can be used to return the message. Because we 
use only two virtual channels, if the message in Fig. 8 is 
blocked by the faulty block, then first route it via the detour 
in the positive direction (i.e., detour_group, (rj-l),+o) regardless 
whether the message is from the positive or negative direc- 
tion. For example, the message from the upper (or bottom) 
side of the faulty block is routed via the detour group f (or 
e). One can also route the message via the detour in the 
negative direction first, and after bypassing the faulty 
block, then route back via the detour in the positive direc- 
tion; however, all messages should follo~r the same proce- 
dure. 

chronize this function, we need the number of message hops 
up to the maximum length in dimension 0 minus one. This 
function can be executed when the system executes a proce- 
dure for determining the state of each node. If we use two 
virtual channels in VIN, in dimension 0 (one is the low chan- 
nel, the other is the high channel), then this function is not neces- 
sary. Because if a message is blocked in the highest dimension, 
then we can route the message via the low detour channel in 
VIN, in dimension 0, then route it back via the high detour 
channel if the message is blocked by the mesh border. When the 
message comes to the other side of faulty block, if it is from the 
high detour channel (i.e., blocked by the border when it is 
routed via the low detour channel), then route it via the high 
detour channel; otherwise, route it via the low detour channel. 
The high detour channel in the other side of faulty block can be 
guaranteed to change f(R) to 1 again and no message routed via 
the high detour channel will be blocked by the border. Thus, this 
is an acyclic requesting chain, i.e., no deadlock will occur. How- 
ever, this scheme requires three virtual channels in dimensiort 0, 
one in VIN, and b o  in VIN2 Note that in the other dimensions, 
we can still use two virtual channels. 
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Fig. 8. Building the detours in dimension 0 for the channels in V/N,  in di- 
mension n - 1. Packets are routed via the right side of faulty block. There 

are two detour groups: e and f (or detour_group+(,,),+, and detour-group- 

C,  and C,  are the corner nodes around the faulty block 

Having a message turned back when it is blocked by the 
mesh border may result in a deadlock as shown in Fig. 9. One 
way to solve this problem is to ensure that no message needs to 
be turned back from the mesh border, thus breaking the wait 
cycle. We can set up a special function in the node X = {xn-,, x,,+ 
..., xo] with the maximum x,~-~,  e.g., node B, and B2 in Fig. 10. 
Once this node finds its dimension n - 1 neighbor to be faulty or 
unsafe, it should transmit a message to the neighbor node in the 
negative direction of dimension 0 to change the direction of di- 
mension 0 detour group, i.e., use detour~roup,~n~l),-O instead of 
detour_group,(~~_,),+,. The receiving node of this message will also 
transmit the message to the next node in the negative direction 
of dimension 0, and so on. This procedure continues as long as 
the receiving node is connected to the faulty block. To syn- 
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Fiig. 9. A deadlock may occur if the message is routed via the detour in 
dirnension 0 and turned back after getting blocked by the mesh border. 
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Fig. 10. When the faulty block is located on the rightmost side of dimension 

0, the message is first routed via the detour VC,,2, after encompassing the 

faulty block on the left side, it is turned back via VC+o,2. There are two de- 

toiur groups: g and b (or detourgroup+(,,),-, and detourgroup-(,,) -,). 

C, and C, are the corner nodes around the faulty block. 
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Renumbering method: The channels in VIN, are assigned 
integer numbers as shown in Fig. 1, and the detour chan- 
nels are assigned noninteger numbers. We use a two-level 
approach to assign each detour a channel number. In the 
higher level, we define the range of channel numbers to be 
assigned to each detour group. In the lower level, channels 
in the detour group are assigned increasing non-integer 
numbers along the direction of the detour group. Specifi- 
cally, we use the following renumbering method. 

If channel VC+m,l, 0 i m 5 n - 2, is connected to a 
faulty block and the original channel number is k, 
then the channel numbers of the detours VC, (m+lj,2, 

VC, (m+2j,2, . . ., VC, are assigned to be in the range 
of their corresponding detour groups as follows: k - 1 
< num(detour4roup,,,,(,,~+,)) < num(de touY~roup+n , , k  
< . . .< num(detouv_group+,,,,,,,) < k .  defour-group ,,,,, ~ ~ 

indicates detourJroup+,,+, or detourxYoup,,,, -,, m+l _< i 
5 n - 1. The detour channels VC,,,, and VC-,,2 belong, 
respectively, to detour-group,,+i and detour~Youp, , , , - , ,  
m + 1 5 i _< n - 1. Detour channels in each group 
should be assigned increasing channel numbers along 
the group’s direction. When the faulty block touches 
the mesh border, the channel in the direction away 
from the border will be assigned a larger number than 
that towards the border. For example, channels in the 
detour group a in Fig. 7 are assigned larger numbers 
than those in the detour group b. 
Channel numbers for the detours of channel VC-,,?,,, 
0 5 m 5 n - 2 can be assigned with the same method in 
the first item. The original channel number is k and 
the range of channel numbers in detour groups is de- 
fined as: IC - l < num(detour_group_,,,~ii,,+l~) < 
num(detour_group,,~,+~)) < . . .< num(detour~otrp-, , i , ,  
< k.  The detour channel VC,,, and channel VC-;,, be- 
long, respectively, to detouu-group-,,,,, and de- 
tour_group_,,,-, m + l < i < n - l. 
If the highest-dimension channel VC+(,7-I),1 is con- 
nected to the upper detour_group+(,,_,,,+, (or the bottom 
detouu_group+i,,_,j,+,) and the original channel number is 
k‘ (or k“), then the channel numbers of the detours 
VC+o,2 (next to the bottom of the faulty block) and VC,,, 
(next to the top of the faulty block) are assigned to be 
in the range of their corresponding detour groups as 
follows: IC’< num(upper detour_group+i,,_,,,+,) < (k’ + 1) 
and IC”< num(bottom detour-group+i,,_l),+,) < (k” + 1). 
Based on the numbering method in Fig. 1, k’ is larger 
than k”. Detour channels in each group should be as- 
signed increasing channel numbers along the group’s 
direction. If the faulty block is on the right-side border 
in dimension 0, the detour will belong to de- 
tour~roup+(7,-1),-0 instead of detour_group+i,_,j,+,, i.e., 
the direction will be reversed. 
Channel numbers for the detours of channel VC-(n-l),l 
can be assigned by using the same method as in the 
third item. Assume the channel VC-(,l-l),l is connected 
to the upper detour-gYoup-(,,_,),+, (or bottom de- 
t o ~ r _ g ~ o ~ p _ ( , - ~ ) , + ~ )  and its original channel number is l‘ 
(or l”). The range of channel numbers for a detour 
group is assigned as: I‘ < num(upper detour_group_i,_,,,+~) 
< (I’ + 1) and 1” < num(bottom detol*Y-group_(,_,),+~) < 

(l” + 1). Based on the numbering method in Fig. 1,l” > 
l’. Channels in each detour group should be assigned 
increasing numbers along the group’s direction. If the 
faulty block is on the right-side border in dimension 
0, the detour belongs to detour_group-~,-,,,-, instead of 
detouY-gYoup_(,,_l),+O, i.e., the direction will be reversed. 

5) Each channel in a safe node connected to an unsafe 
node is re-assigned the largest channel number. 

6) Each channel in an unsafe node connected to a safe 
node is reassigned the smallest channel number. 

EXAMPLE 3. Consider a 7 x 7 mesh as shown in Fig. 11. Based 
on the numbering method in Fig. 1, we assign the 
channel numbers in VIN,. In Fig. 17, we label the chan- 
nel numbers in VIN, along dimension 0, but show la- 
bels only in one row. VC+,,, in node X = (i, l), 0 < i i 6, 
is assigned 1 and VC-,, in node Y = (i, 4), 0 < i I 6  is as- 
signed 3. So, the detour VC,,,, (or VC-,,,) in node X 
belonging to de tour~Youp+O,+I  (or detourq.roup+,,-,) can 
be assigned within the range between 0 and 1. We 
choose 0.1, 0.2, and 0.3 (or 0.4, 0.5, and 0.6). One can 
assign channels any increasing numbers within this 
range along the group’s direction. Likewise, the de- 
tour of node Y can be assigned a number within the 
range between 2 and 3, and in this case, we use chan- 
nel numbers 2.1, 2.2, and 2.3 (or 2.4, 2.5, and 2.6). For 
a higher-dimensional mesh, we can first choose the 
range for each detour group and assign a higher de- 
tour group a higher-number range. Then, a detour 
channel in each group can be assigned a number 
along the corresponding group’s direction as shown 
in this example. 

f 

diinension 0 
positive dircctio~i 

=- chamel in VIX I ... 

+ :detour ctimiel 0 

Fig. 11. Numbering the detour channels for a 7 x 7 mesh 

ALGORITHM 4.2: Adaptive fault-tolerant routing for n- 
dimensional meshes. 

1. Update R; / *  Y ,  := Y ,  -c 1 */ 
2.  I f  ( R  == 0) ,  route the message to the local processor and 

3.1. /* only one more hop required to reach destination */ 
exit; 

If ( ( f ( X )  == 1) && ( I f ( X ,  1) I == 1)) 
then Parallel-Request VCf(R,l),X; 

3.2. /* messages from a n  unsafe node to a safe node and 
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misrouting may be used*/ 
else if (C == unsafe node) 

then Parallel-Request any channel connected f a  a 

else if VCf(,3,1j,, is connected to a safe node 
safe node; 

3.3. 
then Parallel_Request VCl(R,lj,l and all useful 

else if f(R) 2 2 
channels in VIN,; 

then Request VCf(x,2),2; /* routed via the 

else if If(R, 1) I f n  - 1 

3.4. 

detour of detourqroupf(R,,,,f(R,2, */ 
3.5. 

then Request detour~roupf(R,,),. un- 

I i I > If@, 1) I ; If blocked by 
the border, then reverse the di- 
rection, 

til reaching the corner node; 
/* 

it., routed via dctotir_grotipyR,,,,T j .  */ 
3.6. else if the faulty block is not on the 

rightmost border in dimension 0 
then Request detour_grou~f(?f,,j,+" 

until f (R)  = 1 is coryected; 
3.7. else Request detour~roupf(R,l),-O 

4. Route the message via the first available channel re quested and 
exit; 
Basically, Algorithm 4.2 uses minimal routing if the 

shortest path between the current node and the destination 
is not blocked (Step 3.3). If f(R) 2 2 and if the channel 
VCl(x,,,,, is blocked by a faulty block, then the message re- 
quests the detour VCf(,,,,,, (Step 3.4). If f(R) = 1 and if the 
message is blocked by a faulty block, we first need to go 
around the faulty block by misrouting. If If(R, 1) I + n - 1, 
then the message will request higher-dimension detours 
and follow the same detour group until reaching the corner 
node around the faulty block (Step 3.5). If the message is 
already in the highest dimension, then it should find a de- 
tour in dimension 0. The message is first routed via channel 
VC,,,,, then via VCf(x,(x,2),1 (i.e., VC,_,,, or VC-(n-l,,l), and fi- 
nally via VC-,,, to get to the destination, or let f(R) = 1 
again. Note that if a message is blocked by a faulty block 
and If(R,1) I = n - 1, then it is routed via the detour in the 
positive direction of dimension 0 to go around the faulty 
block, and finally routed back via the detour in the nega.tive 
direction of dimension 0, i.e., detour$youpf(R,lj,+o (Step 3.6). 
However, if the faulty block is on the rightmost side of di- 
mension 0, then first route the message via the negative di- 
rection of dimension 0 and finally route it back via the posi- 
tive direction of dimension 0, detour~roupf(R,l),-O (Step 3.7). If 

I f ( X , l )  I # n - 1, the message can be routed via either the 
positive or negative direction of a higher dimension. 

However, when we use misrouting, the message could be 
blocked by a mesh border. In such a case, the message cannot 
go around the faulty block, In Algorithm 4.2, we just return 
the message via the detour in the opposite direction. Because 
in our fault model, the edge size of a faulty block is smaller 
than the corresponding dimension, the message can always 
go around the faulty block either in the positive or negative 
direction. Since the correct direction is already set up for the 
detours of highest-dimension channels, the message willl not 
be blocked by the border, even when we use misrouting. 

until f(R) = 1 is corrected; 
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Fig. 12. A tree structure to describe the situation for routing a message 
frorn a safe source to a safe destination. 

THEOREM 4. Algorithm 4.2 is deadlock-pee if the node fault is 
subjected to the block fault model. 

PROOF. Similar to the proof of Theorem 3, we must prove 
that the requested channels in VIN, and the detour 
channels in VIN, follow an increasing channel order, 
thus satisfying A4. Again, we must consider four 
cases for different source-destination pairs. Each 
channel in VIN, and the detour channels are assigned 
numbers according to the proposed renumbering 
method. 

Case 1. From a safe source node to a safe destination node: There 
are several possible subcases for routing a message 
from a safe source to a safe destination. Fig. 12 shows 
a tree structure to describe the situations the message 
may encounter. For the first level, the channel VCf(x, ,,, 
may or may not be connected to a faulty block. If 
VCl(x,lj,l isn't connected to a faulty block, then it is a 
fault-free case which can be handled by Algorithm 3.3, 
thus guaranteeing the channel ordering. If VCf(R,l),l is 
connected to a faulty block, then the message should 
request the detour instead of VCf(x,l),,. In level 2, if f(R) 
> 1, then the message will request the detour VCf(x,(x,2,,2. 
Based on the renumbering method 1) and 2), 

nnm(VCf(R,lj,,). Also, the channel VCf(R,2),2 E de- 
tolkY_grUzip~~,,lj,~~R,*, and the channel numbers in the 
same detour group are assigned in an increasing or- 
der along the corresponding direction. Thus, the 
channel ordering can be guaranteed. However, after 
taking de tuu~_group~(~ , ,~ , ,~~ ,~ , ,  the message may be 
blocked by a faulty block again. Then it is routed via a 
higher-dimension detour group (Step 3.4). Based on 
the renumbering method 1) and 2), the channel nun-  
ber of channel group in the higher dimension is 
higher than that in a lower dimension. 
In level 2, if f(R) = 1 then there are two cases: I f(RJ I = 
n - 1 or # n - 1. If f(R, 1) # n - 1, the message can re- 
quest any higher-dimension detour group and will be 
routed by misrouting. In such a case, the message will 
first be routed away from the destination, so it may be 
blocked by a mesh border. In the latter case, the mes- 

num(VCf(R,,),,) - 1 < num(detour~roup~(R,,),f(i(,,,)) < 
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sage has to be turned back. Based on the renumbering 
method 1) and 2), an increasing order can be guaran- 
teed. In level 3, if 1 f ( X ,  1) I = n - 1 then the message has 
to request detour_group~(~,,,,+,, or request de- 
touuqroupi(,,,,,-,. Based on the renumbering method 3) 
and 4), an increasing channel order can be guaranteed. 

Case 2.  From an unsafe node t o  a safe node: The message first 
finds a safe neighbor (this is guaranteed by the fault 
model). The channel from an unsafe node to a safe 
node is assigned the smallest number. This channel is 
taken only in the first hop. After this hop, the message 
will be routed from a safe node to a safe node as in 
Case 1, thus guaranteeing the channel ordering. 

Case 3. From a safe node to an unsafe node: Whenever VCl(x,,,,, 
is connected to a faulty block, the message can be 
routed via a detour until f(X) = 1. Tf f ( R )  = 1 and the 
message is still blocked by the faulty block, then route 
it by misrouting. Based on Definition 2, for each two- 
dimensional plane of the n-dimensional mesh, an un- 
safe node has at least two links (in different dimen- 
sions) connected to safe nodes. When the plane uses 
misrouting, the misrouting path can cover three edges 
of a faulty block. Hence, at least one edge can reach a 
safe node next to the destination. Also, each channel 
from a safe node to an unsafe node is assigned the 
largest number. Thus, the channel ordering can be 
guaranteed. 

Case 4. From an unsafe node to an unsafe node: The message 
first leaves the faulty block (as Case 21, then from a 
safe node to the unsafe destination (Case 3). Because 
the channel used in the first/last hop is assigned the 
smallest/largest number, the channel ordering can be 

Now, we would like to discuss how to develop an adap- 
tive fault-tolerant routing algorithm for k-ary n-cubes. Since 
the k-ary n-cube is a homogeneous topology, special cases 
for its borders do not exist, and hence, fault-tolerant routing 
for the k-ary n-cube should be simpler than for n- 
dimensional meshes. Similar to the n-dimensional mesh 
case, we first have to find the faulty block using the discon- 
nected rectangular block model. Since deterministic routing 
for k-ary n-cubes needs two virtual channels [8] (one is the 
high channel and the other is the low channel), adaptive 
routing requires three virtual channels according to Algo- 
rithm 3.1. Considering fault-tolerant routing, both high and 
low channels in VIN,  need to find the detour in VIN, to use. 
We need two virtual channels in VIN,  to be assigned as the 
detours, i.e., one for the high channel in VIN, and the other 
for the low channel. Thus, we need a total of four virtual 
channels, two in VIN, and two in VIN,. One can then de- 
velop an adaptive fault-tolerant deadlock-free routing for k- 
ary n-cubes similar to the n-dimensional mesh except for 
the special case of the mesh border. 

guaranteed. 0 

5 PERFORMANCE EVALUATION 
To evaluate the performance of the proposed routing algo- 
rithms, we have carried out time-step simulations at the flit 
level. This simulator is written in C++ and can be used for 

wormhole routing in hypercubes and meshes with and 
without faults. In this simulator, each node consists of a 
processor, a crossbar switch, a router, and virtual channels 
(buffers). The following parameters are used for the simu- 
lation experiments. 

P1. The message length is exponentially distributed with 
a mean of 20 flits, including head and tail flits. 

P2. The destination of each message is distributed uni- 
formly, and the inter-message interval is distributed 
exponentially. 

P3. A faulty node is generated randomly subject to the 
fault model described in the last section. 

P4. The crossbar switch in the router allows multiple 
messages to traverse a node simultaneously without 
interference. 

P5. Each virtual channel uses one input buffer and one 
output buffer. Each buffer can store only single flit. 

P6. Multiple messages can be sent and received simulta- 
neously between a processor and the corresponding 
router. 

P7. A flit can be transferred from an input buffer in node 
A to an input buffer in node 8 during one flit cycle, 
where nodes A and B are neighbors. 

P8. A round-robin scheduling policy is used to arbitrate 
the multiple requests in virtual channels and physical 
links, except for the messages from (or to) processors 
that possess the highest priority. 

P9. We ran each simulation for 20,000 flit times and dis- 
carded information obtained during the first 2,000 flit 
times (i.e., a warmup period). 

Different parameters may provide different results. For 
example, an efficient mechanism is necessary to transfer 
messages between processors and routers; otherwise, many 
messages will be queued in source nodes even under light 
traffic. To evaluate the efficiency of a routing algorithm, we 
are more interested in network queuing delay than source 
queuing delay. Therefore, in P6 we assume that multiple 
messages can be sent and received simultaneously between 
a processor and a router. 

The most important performance measures are message 
latency and network throughput. Many different units have 
been used to express performance measures, including flits 
injected/cycle, flits/ns, bits/cycle, normalized bandwidth, 
etc. As a result, one has to convert units if he wants to com- 
pare one result with others. So, we use normalized band- 
width; this representation of simulation results was pro- 
posed by Snyder [26]. Normalized bandwidth simply ex- 
presses the load or throughput as a fraction of the bisection 
bandwidth limited by the maximum bandwidth of the net- 
work under uniform random traffic. Essentially, this limit 
corresponds to normalized throughput = 1.0 and it is de- 
rived by considering the fact that 50% of uniform random 
traffic crosses the bisection line/plane of the network. Thus, 
if a network has bisection bandwidth B flits/cycle, each 
node in an N-node network can inject a maximum of 2B/N 
flits/cycle. The normalized throughput is equal to the 
number of messages received over the number of messages 
that can be transmitted at the maximum load, 2B/N. The 
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normalized applied load is equal to the traffic density4 over 
the maximum load 2B/N. The bisection bandwidth B is 
equal to 2" and 2n for n-cubes and n x n meshes, respec- 
tively. In what follows, we present the simulation results 
for 8-cubes and 16 x 16 meshes for a variety of workloads 
and fault patterns. 

5.1 Simulation Results for Hypercubes 
Figs. 14 and 13 plot the latency and throughput, respec- 
tively, for different workloads and fault patterns for 8- 
cubes. For fault-free hypercubes, Ai for e-cube routing 
(without any virtual channel) and adaptive routing are 0.25 
and 0.475, respectively. The message latency is from 24 flit 
cycles to 75 flit cycles before saturation. There are many 
reports dealing with performance simulation [71, [121, [311. 
However, it is difficult to compare our results with others' 
because of the differenccs in the underlying simulation pa- 
rameters, such as the number of virtual channels, topology, 
flit scheduling, and the length of simulation time. 

I I I I I I I I 0 5  

0 I I I I I I I I 
0 005 0 1  015 0 2  025 0 3  0 3 5  0 4  045 0 5  

Nomatized vpplied load 

Fig. 13. Normalized achieved throughput vs. normalized applied load 
for 8-cubes. 
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Fig. 14. Messages latency vs. normalized applied load for 8-cubes. 

4. Traffic density = (average message length)/(average message inter- 

5. As is the value of /1 at which the network becomes saturated. 
arrival time x flit number that can be transmitted per cycle). 

To evaluate the performance degradation caused by the 
occurrence of faults, we ran simulations with 8 different 
fault patterns, Le., a single node fault and k-dimensional 
unsafe subcubes, 2 I k < 7. One half of the nodes in an un- 
safe subcube are assumed to be faulty. The reason for th.is 
assumption is to get average numbers. Under the proposed 
routing algorithm, the number of free channels assigned as 
de-tours depends on the underlying fault patterns. If a 
faulty/unsafe node is connected along dimension k,, all fr1.e 
channels along dimension k2 > k, (except for the highest 
dimension) are assigned to be detours. So, when every 
faulty/unsafe node is connected to a safe node in dimen- 
sion 0, one can get the worst-case performance degradation 
caused by faults. On the other hand, if the faulty/unsafe 
node is connected along the highest dimension, there is no 
need for assigning detours. Curves 7 and 8 in Fig:$. 14 and 
13 show these two extreme cases for (n  - 1)-dimensional 
unsafe subcubes with 64 faulty nodes. The value of As is 
reduced from 0.25 to 0.15. For all fault patterns of an unsafe 
( n  - 1)-cube with 64 faulty nodes, As ranges anywhere he- 
tween 0.25 and 0.15. For curves 1-6 and 8, we consider only 
the worst case, i.e., every faulty node is chosen from only 
even-numbered (or odd-numbered) nodes without mixing 
the two types. Any 8-cube with an unsafe subcube of the 
saime size as in curves 1-6 and 8 in which a half of the 
nomdes are faulty has performance better than, or equal -to, 
those shown in curves 1-6 and 8. From this series of simu- 
lations, the message latency of adaptive routing in a net- 
work with an unsafe subcube smaller than a 4-cube is 
found to be smaller than that of e-cube routing without 
virtual channels. 

5.2 Simulation Results for Two-Dimensional Meshes 
Figs. 16 and 15 plot the message latency and throughput, 
respectively, for different workloads and fault patterns 
within 8 x 8 meshes. For e-cube routing without virtual 
channels, the network becomes saturated after A = 0.35. F;or 
adaptive routing with two virtual channels, A, = 0.45. \Ye 
can use more virtual channels for low-dimensional topolo- 
gies like two-dimensional meshes. For adaptive routing 
with four virtual channels, A, = 0.7. Using more virtual 
ch.annels can not only improve throughput and latency, but 
also enhance fault-tolerance because a less-constrained fault 
model can be used, i.e., the minimum distance between 
faulty blocks can be two. Due to the limit of space we show 
only the performance of a network with two virtual chan- 
nels. Each faulty block consists of a single faulty ncde 
(c,alled disconnected single faulty node) and the total num- 
ber of faulty nodes ranges from four to 24. 

Under this assumption, a randomly-generated faulty 
node won't form a larger faulty block with other faulty 
nodes. It allows the comparison with different number of 
faulty nodes to have the same basis; otherwise, with the 
same number of faulty nodes, it could consist of many dif- 
ferent fault patterns, e.g., four faulty nodes can by formed 
by four disconnected faulty nodes or by 2 x 2 fault pattern 
or by 1 x 4 fault pattern or even more complicated cases 
including unsafe nodes. 

Fig. 15 plots the performance measures of fault-tolermt 
routing with four faulty nodes which provides lower mes- 
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sage latency and higher network throughput as compared 
with the fault-free e-cube routing. The saturation points As 
for fault-tolerant routing with eight, 16, and 24 faulty nodes 
are 0.3, 0.25, and 0.25, respectively. Obviously, they are 
worse than e-cube routing (the performance with eight 
faulty nodes is very close to that of e-cube routing). When 
faults occur, the network gets saturated quickly. One solu- 
tion is to use more virtual channels. We indeed found that 
the performance can be improved greatly with more virtual 
channels. When four virtual channels were used, the per- 
formance of the proposed fault-tolerant routing with the 
fault patterns described above is better than, or similar to, 
that of e-cube routing. 

0 7  I I I I I 

2 virtual channels + 4 taulty nodes (1) +- 
2 virtuai channels + 8 faulty nodes (2) i-- 

2 viilual channels + 16 faulty nodes (3) -B 
2 virtual channels + 24 faulty nodes (4) X 

Fig. 15. Normalized achieved throughput vs. normalized applied load 
for 8 x 8 meshes. 
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Fig. 16. Messages latency vs. normalized applied load for 8 x 8 meshes 

6 CONCLUSION 
Wormhole routing has become popular due mainly to its 
reduced need of buffers and support for efficient communi- 
cation. When the head flit is blocked by a busy buffer, it 
will busy-wait for the buffer to be available, thereby intro- 
ducing a possible deadlock. To avoid deadlocks, most mul- 
ticomputers use deterministic routing schemes, such as di- 
mension-order routing. Under deterministic routing, there 

is only one path between the source and destination. 
Adaptive routing, on the other hand, can choose one of the 
multiple paths between the source and destination based 
on a local traffic condition6 to avoid the busy link, but it 
makes deadlock-freedom more difficult. 

We used a novel numbering method to prove the dead- 
lock freedom of adaptive routing algorithms which decom- 
pose the network into two virtual interconnection net- 
works, VIN, and VIN,. VIN,  supports deadlock-free routing 
and VIN,  is used as the source of free channels to enhance 
adaptability. Whenever a channel in VIN,  or VIN, is avail- 
able, a message can be routed via this channel. Duato [121 
has demonstrated such a theory of adaptive deadlock-free 
routing. 

When a multicomputer is built with a large number of 
processing nodes, the probability of one or more nodes be- 
coming faulty is high. Moreover, a faulty node may cause a 
communication deadlock. It is therefore important to de- 
sign a deadlock-free fault-tolerant routing algorithm. The 
number of required virtual channels should not be too large 
to implement an efficient crossbar switch in the communi- 
cation router. The numbers of virtual channels required to 
support our adaptive fault-tolerant routing scheme are two, 
two, and four, respectively, for hypercubes, n-dimensional 
meshes, and k-ary n-cubes. 

A node is in one of three states: safe, unsafe, and faulty. 
Each node is assumed to know the state of its neighbors. 
This state information can help messages avoid faulty 
nodes and communication deadlocks. In case of an n- 
dimensional hypercube, our scheme can tolerate any fault 
pattern composed of up to rn/21 faulty nodes. If the faulty 
nodes form an (n  - 1)-cube, then it can tolerate up to 2n-1 
nodes. For n-dimensional meshes and k-ary n-cubes, we use 
a disconnected rectangular block as the fault model. Any 
arbitrary combination of faults can be modeled as a faulty 
rectangular block. 

Using the state information of a node's neighbors, some 
channels in VIN, are chosen as detours of the channels in 
VIN, connected to an unsafe/faulty node. We presented 
adaptive fault-tolerant routing algorithms for n- 
dimensional hypercubes and meshes, both of which use 
only two virtual channels. Another advantage of our fault- 
tolerant routing scheme is that it is still adaptive if the mes- 
sage does not encounter any unsafe/faulty node on its way 
to the destination. For k-ary n-cubes, this adaptive fault- 
tolerant routing scheme needs four virtual channels, two in 
VIN, and two in VIN,. The numbering method is also used 
to prove the deadlock freedom of the proposed fault- 
tolerant routing algorithms. 

To evaluate the proposed algorithms, we have carried 
out time-step simulations of the network operation at the 
flit level. 8-cubes and 16 x 16 meshes are simulated. From 
the simulation results, networks with up to a five- 
dimensional unsafe subcube in which a half of the nodes 
are faulty can get smaller latency and higher throughput as 
compared to that of fault-free e-cube routing. In case of six- 
dimensional unsafe subcube, the performance measures are 

6. It is impractical to use a global condition for all but simple multicom- 
puter systems. 
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similar to those of e-cube routing. For 16 x 16 meshes, we 
assume each faulty block to consist of a single faulty node 
and the number of random faulty nodes are four, eight, 16, 
and 24. The simulation results have shown the network to 
get saturated after the applied normalized load is 0.4, 0.3, 
0.25, 0.25, when the number of faulty nodes is four, eight, 
16, and 24, respectively. By reflecting the reality of low- 
dimensional topologies, we can use more virtual channels 
to improve the performance. 

APPENDIX 

THEOREM 1. The proposed adaptive routing Algorithm 3.1 is 
dead lock-free . 

PROOF. Since the wormhole routing is used, if the head flit 
advances one hop closer to the destination, then the 
subsequent flits will progress, without getting 
blocked, one hop on the same channel path; other- 
wise, the subsequent flits will be blocked. In the latter 
case, we first check the waiting cycle in the channel- 
dependency graph, as shown in Fig. 17a, where the 
arrowed lines represent messages and the black cir- 
cles indicate the channels requested or held by the 
messages. A channel with blocked messages is called a 
blocked channel, e.g., channels a, b, c, and d in Fig 17a. 
Using the property of wormhole routing, the channels 
between two blocked channels can be removed or 
added without affecting the deadlock itself. So, the 
channel-dependency graph (CDG) can be reduced to 
the one consisting of blocked channels only, as shown 
in Fig. 1%. 

We can then decompose the proof into two parts: 
1) at least one blocked channel in the waiting cycle of 

2) the waiting cycle in CDG is not a real deadlock. 

PROOF OF PART 1. We prove this part by contradiction. As- 
sume there exists a deadlock in which all of the 
deadlocked channels belong to VIN,, then we can get 
a reduced CDG with a circular wait among the chan- 
nel resources as shown in Fig. 1%. This is a waiting 
cycle of four messages; one can easily extend this 
proof to those cases with more messages involved. 

Channels a, b, c, and d are therefore the virtual chan- 
nels of VIN,. According to the proposed routing algo- 
rithm, the virtual channels of VIN,  should obey a 
strict (say, increasing) order of the requested channel 
numbers, and the relationships among channels a, b, 
c, and d are summarized as: a < b for message B, b < c 
for message C, c < d for message D, and d < a for 
message A. Thus, a < b < c < d < a, a contradiction, 
and hence, there is at least one virtual channel be- 
longing to VIN,. 

CDG does not belong to VIN,,  and 

~ 
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and the blocked channels a, c, and d belong to VLV,. 
Since the channel e in Fig. 18 belongs to VIN,, the 
message B in Fig. 18 can find a channel b in VIN,  to 
request, while satisfying the increasing order restric- 
tion, A4. If channel b is allowed to be held only for a 
finite time, then the waiting cycle consisting of chan- 
nels a, c, d, and e is not a real deadlock, because once 
message B holds channel b, the channel e will no 
longer be requested by message B, and hence, the 
waiting cycle no longer exists. Now, we check to see if 
channel b is held for a finite time. At a particular time, 
if channel b cannot be held by message B, there must 
be another message C holding channel b and re- 
questing a higher-number channel. Thus, the number 
of higher-number channels needed increases with the 
number of requested channels involved, i.e., f > ... :> h 
> g > b > a > d > c. Since only a finite number of 
channels are used, the message holding the last chan- 
nel f must reach its destination or keep moving closer 
to its destination via the channels in VIN,. Accordmg 
to A2, a message reaching its destination will eventu- 
ally be consumed, and hence, channel f will be re- 
leased. Since a fair channel allocation scheme is as- 
sumed (A3), the message requesting channel f will 
hold channel f only for a finite time. Packet B is thus 
guaranteed to acquire channel b in finite time. 

For a waiting cycle with more blocked channels in- 
volved and with more than one blocked channel be- 
longing to VIN,, we can follow the same logic as 
above and guarantee the message requesting a chan- 
nel in VIN,  to capture it in a finite time. Thus, unlder 
the proposed routing algorithm, the waiting cycle in 
the channel-dependency graph is not a real deadlock, 
i.e., the proposed routing algorithm is deadlock-free. 0 ,Da;a 

a a ‘B 
C C - :Message 

0 ~ l i a n n c ~  
A&- :Message A holds Channel i 

A* :Message A requests Channel i 

(a) CIi.mnel.de elidelicy graph 
with a wa& cycle. 

(b) Reduced channel-dependency graph 
for a waiting cyclc 

Fig. 17. A waiting cycle of four messages. 

PROOF OF PART 2. Since Algorithm 3.1 is an adaptive rout- 
ing algorithm, a message may simultaneously request 
more than one channel. From Part 1, we know that at 
least one blocked channel belongs to VIN,. Fig. 18 
shows a waiting cycle (a reduced CDG) consisting of 
four messages: the blocked channel e belonps to VIAL 

http://CIi.mnel.de
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D 

Fig. 18. A waiting cycle in the channel-dependency graph is not a real 
deadlock. 
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