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Abstract-We rigorously analyze load sharing (LS) in a distributed real-time system, called HARTS (Hexagonal Architecture for 
Real-Time Systems), while considering LS-related communication activities, such as task transfers and state-change broadcasts. 

First, we give an overview of the general distributed real-time LS approach described in [I], [2],  and then adapt it to HARTS by 
exploiting the topological properties of HARTS. Second, we model task arrival/completion/transfer activities in HARTS as a continuous- 
time Markov chain from which we derive the distribution of queue length and the rate of generating LS-related traffic-task transfer-out 
rate and state-region change broadcast rate. Third, we derive the distribution of packet delivery time as a function of LS-related traffic 
rates by characterizing the hexagonal mesh topology and the virtual cut-through capability of HARTS. Finally, we derive the distribution 
of task waiting time (the time a task is queued for execution plus the time it would spend if the task is to be transferred), from which the 
probability of a task failing to complete in time, called the probability of dynamic faiiure, can be computed. 

The results obtained from our analytic models are verified through event-driven simulations, and can be used to study the effects 
of varying various design parameters on the performance of LS while considering the details of LS-related communication activities. 

Index Terms-Dynamic failure, distributed real-time systems, wrapped hexagonal mesh, virtual cut-through, point-to-point 
broadcasts, adaptive load sharing, queuing models, performance analysis. 

+ 

UE to their potential for high performance and high 
reliability, distributed systems are considered most 

suitable for real-time applications. To realize part of this 
potential, at the Real-time Computing Laboratory of the 
University of Michigan we are currently building an ex- 
perimental distributed real-time system, called HARTS 
(Hexagonal Architecture for Real-Time Systems) [31. 

Although there are many potentially attractive features 
of distributed systems, they cannot be realized without 
careful coordination of processing nodes in the system. For 
example, non-uniform and/or bursty task arrivals at proc- 
essing nodes may temporarily overload some nodes while 
leaving some other nodes idle. This problem can be allevi- 
ated by enabling idle/underloaded nodes to share the loads 
of overloaded ones, which is termed load sharing (LS). 

LS for general-purpose distributed systems has been ad- 
dressed by many researchers [41, [51, [61, 171, [81, 191, 101, 
[11], [121, 1131, [141, [15]. In particular, Eager et al. and 
Shivaratri et al. characterized LS with three component 
policies: the transfer policy which determines when to trans- 
fer a task, the locafion policy which determines where to 
transfer the task, and the information policy which deter- 
mines how each node exchanges state information. Re- 
cently, there has been considerable interest in developing 
LS algorithms for real-time applications [l], [21, [16], [17]. 
The LS requirements for real-time applications differ sig- 
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nificantly from those of traditional nonreal-time LS. First, 
real-time LS performance is assessed on a per-task basis, 
whereas nonreal-time systems deal with average perform- 
ance. Second, a task that is not completed within a certain 
time limit (called the deadline) after its invocation is consid- 
ered failed, regardless whether it is eventually completed or 
not. One consequence of these differences is that the pri- 
mary performance objective is no longer to minimize aver- 
age response t ime ,  but rather to minimize the probability of a 
node failing to complete a task before its deadline, called 
the probability of dynamic  failure, Pdyn [18]. 

The above differences suggest that the transfer policy in 
a real-time system should not be of the static threshold type 
commonly used for nonreal-time systems 181, 1141, but 
should instead depend on the laxity of each task, or the lat- 
est time the task must start execution in order to meet its 
deadline. In other words, upon arrival of a task, a node de- 
termines whether or not it can complete the task in time. 
Similarly, a node with an "overflow" task-a task that can- 
not be completed locally in time-locates a candidate node 
for task transfer using the information on whether or not 
the candidate node has the ability to complete the task in 
time. To this end, all LS approaches need to gather the 
workload information (or state) of other nodes by either 
periodic information exchange, state bidding/probing, or 
state-change broadcasts. 

No matter which information collection strategy or loca- 
tion policy is used, we must consider an underlying com- 
munication subsystem responsible for exchanging mes- 
sages or transferring tasks. In particular, the interconnec- 
tion network affects how tasks or broadcast-messages are 
routed, and the underlying switching scheme determines 
whether tasks/messages may be queued at intermediate 
nodes or not. Consequently, we must consider the under- 
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lying communication subsystem that supports all LS- 
related communications. 

In this paper, we adapt the concept of b u d d y  sets, pre- 
ferred lists, and region-change broadcasts proposed in I l l ,  121 
to HARTS [3]. The nodes in HARTS are interconnected by a 
C-wrapped hexagonal mesh' and coordinated to evenly 
share "overflow" tasks. The HARTS routing and broad- 
casting algorithms in 1191, [20] are used for transferring 
tasks and broadcasting state-changes. The virtual cut- 
through switching scheme' [21] implemented in HARTS 
[22] is used for inter-node communication. Moreover, by 
exploiting/integrating features of these algorithms for/into 
LS, we rigorously analyze the performance of LS in HARTS 
while considering all LS-related communication activities. 

We first construct a continuous-time Markov chain to 
describe task arrival/transfer/completion activities under 
the proposed LS approach. Second, we derive the traffic 
overheads introduced by LS (i.e., the rate of task transfer 
and the rate of state-change broadcast) from the Markov 
chain. Then, using the LS traffic rates as input and charac- 
terizing the hexagonal mesh topology and the virtual cut- 
through switching scheme implemented in HARTS, we 
construct a queuing network model from which the distri- 
bution of packet delivery time is derived. Finally, we derive 
the distribution of task waiting time (i.e., the time a task is 
queued for execution plus the delay the task experiences if 
it is to be transferred), from which the probability of dy- 
namic failure can be computed. 

The impact of communication activities/delays on LS 
was first analyzed in [14]. They developed a continuous- 
time Markov chain for LS algorithms with state probing, 
and characterized task-transfer delays with some percent- 
age of mean task service time, but did not consider the un- 
derlying communication topology and the switching 
scheme used. Shin et al. [2], [23] applied Bayesian analysis 
to alleviate the negative effect of communication delays on 
maintaining up-to-date state information. By on-line col- 
lection of time-stamped state information, they calculated 
for each node the posterior distribution of other nodes' true 
state given the corresponding observation. Although they 
considered the hypercube as the underlying interconnec- 
tion system and included the effect of possible 
task/message queuing at intermediate nodes on the way to 
the destination node of each transfer/broadcast, their per- 
formance evaluation was solely based on simulations. To 
our best knowledge, this is the first attempt to consider the 
underlying communication subsystem along with its task 
transfer, state-change broadcasting, and message-passing 
functions as an integrated part of the LS mechanism, and 
analytically evaluate the integrated LS performance using 
Pdyll as a yardstick. 

The rest of the paper is organized as follows. For com- 
pleteness Section 2 gives a brief description of HARTS along 
with its routing and broadcasting algorithms, and its 
switching scheme. The LS algorithm proposed in [11, [21 is 
also described and adapted to HARTS in Section 2. Section 3 
deals with an integrated performance analysis of the pro- 
posed LS approach, the underlying communication subsys- 

1. To be defined in Section 2.1. 
2. To be discussed in Section 2.1 

tem, and the interaction between them. Section 4 describes a 
simulator for modeling the LS operations in HARTS (and for 
verifying our analysis), and presents some representative 
analytic/simulation results. Section 5 concludes this paper. 

2 SYSTEM MODEL AND LOAD SHARING MECHANISM 

2.1 Overview of HARTS 
HARTS is an experimental distributed real-time system being 
built at the Real-Time Computing Laboratory, the University 
of Michigan [3]. A set of Application Processors (AI's) along 
with a Network Processor (NP) form a node of HARTS. 
These nodes are interconnected via a C-wrapped hexagonal 
mesh topology. The APs execute computational tasks, and 
the NP (which contains a custom-designed router, buffer 
memory, a RISC processor, and the interface to AI's) handles 
both intra- and inter-node communications. 

Specifically, a C-wrapped hexagonal mesh (H-mesh) can 
be defined succinctly as follows. 

DEFINITION 1. A C-wrapped hexagonal mesh  of dimension e, 
denoted as H,, is comprised ofM = 3e(e - 1) + 1 nodes, la- 
beled from 0 to M - 1, suck that each node k has six neigh- 
bors [k  + 1IM, [k + 3e - 1IM, Ik + 3e - 2IM, [k + 3e(e - 1)IM, 
[k  + 3e2 ~ 6e + 2],, and [k + 3e2 - 6e + 3],, where the di- 
mension of a n  H-mesh is defined as the number  of nodes o n  
a peripheral edge of the H-mesh, and [ a ] ,  denotes a mod b. 

C-type wrapping is performed in the following three steps: 

FOR HARTS 

S1. Partition the nodes of a nonwrapped H-mesh of di- 
mension e into rows in three different directions, d,, 
d,, d,. The mesh can be viewed as composed of 2e - 1 
horizontal rows (the do direction), 2e - 1 rows in the 
60 degree clockwise direction (the d ,  direction), or 
2e - 1 rows in the 120 degree clockwise direction 
(the d, direction). 

Label from the top the rows Lo through L2e--1 in each 
direction. 

Connect the last processor in L,  to the first processor 

S2. 

S3. 
in 4,+"1,2<,-, ' 

For example, Fig. 1 shows a simple C-wrapped H-mesh of 
dimension 5. 

C-wrapped H-meshes have several nice properties as re- 
ported in [19]. First, C-type wrapping results in a simple, 
transparent addressing scheme, where the center node is 
labeled as node 0, and the other nodes are labeled in se- 
quence along the d,  direction. (An example of the address- 
ing for an H5 is shown in Fig. 1.) Second, C-type wrapping 
results in a homogeneous network. Every node may view 
the mesh as a set of concentric hexagons (where each hexa- 
gon has one more node on each edge than the one immedi- 
ately inside of it) with itself as the center node. Conse- 
quently, all nodes are topologically equivalent. Third, the 
diameter of an He is e - 1. Consequently, any rout- 
ing/broadcast packet traverses at most e - 2 intermediate 
nodes before reaching its destination node. Fourth, simple 
and efficient routing and broadcast algorithms can be de- 
vised, as discussed in [191, [201. 
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Fig. 1. A C-wrapped hexagonal mesh of dimension 5, H5, Also shown 
is how the buddy sets of node 0 (the set of nodes within solid lines), 
node 28 (the set of nodes within dashed lines), and node 50 (the set of 
nodes within dotted lines) overlap with one another. 

In what follows, we summarize the important features of 
the routing algorithm [191, the broadcast algorithm [201, and 
the virtual cut-through switching scheme [22], all of which 
support LS-related communication activities. These will be 
exploited in our analysis of the proposed LS mechanism. 

Features of Routing Algorithm: The routing algorithm 
derived from the simple addressing scheme determines all 
shortest paths between any two nodes. In particular, it de- 
termines the number of hops, k,, k,, and k,, from the source 
node to the destination node along the do, d,, and d, direc- 
tions, respectively” Note that all shortest paths are com- 
pletely specified by k,, i = 0, 1, 2, and the number of shortest 
paths with ki hops in direction d, is ( I k,  I + I k ,  I + 

1 k, I ) ! /(  I k ,  I ! I k ,  1 ! I k, I !). All shortest paths between any 
two nodes are assumed to be equally used with probability 
( I k, I ! I k ,  I ! I k, I !)/( I k ,  I + I k ,  I + I k, I )!. Another notable 
feature is that at each node on a shortest path there are at 
most two different neighbors of the node to which the 
shortest path runs, i.e., at most two of k,s are nonzero [19]. 
That is, all shortest routes between a pair of nodes are 
formed by links along at most two different directions only. 

Features of Broadcast Algorithm: An example of simple 
broadcasting in an H4 is shown in Fig. 2, where, without 
loss of generality, the broadcasting node is placed at the 
center (node 0). For notational convenience, the 6h nodes 
which are h hops away from node 0 are said to be on the 
hth ring centered at node 0, 1 5 h 5 e ~ 1. The algorithm 
propagates a packet, ring by ring, toward the periphery of 
the mesh. The broadcasting node generates and transmits 
six copies of each broadcast message, one along each direc- 
tion, d,, 0 5 i 5 5. Upon receiving the broadcast message, if the 
node is a corner node4 relative to the broadcasting node (node 
0) -the node lies along the direction, d, (0 5 i 55) with re- 

3. Negative values mean the moves are in opposite directions 
4. Note that there are six corner nodes on each ring. 

spect to node 0-then it transmits the broadcast packet 
along the direction 60 degree clockwise to the direction 
from which the packet arrived, in addition to propagating 
the packet to the next node along the direction of packet 
receipt. Otherwise, it just forwards the packet to the next 
node along the same direction in which it is received. 

Fig. 2. Simple broadcast for a hexagonal mesh of dimension 4, H4. Cor- 
ner nodes are shaded. Links between nodes are not drawn for clarity. 

Virtual Cut-Through: One of the switching schemes that 
support message routing and broadcasting in HARTS is 
commonly referred to as virtual cut-through switching. For 
this type of switching, packets arrived at an intermediate 
node are forwarded to the next node in the route without 
getting buffered if a circuit to the next node can be estab- 
lished. Specifically, the routing controller of HARTS con- 
tains six pairs of receivers and transmitters that are con- 
nected to a single time-sliced’ bus. This bus is interfaced to 
the buffer management unit (BMU) in the node to store 
packets that cannot cut through the node, or are generated 
by or destined for the node. The operations for handling 
packets work as follows: when a packet is received, the re- 
ceiver first recognizes the packet type. If the packet is of 
regular type, the receiver examines the routing tags in the 
packet header to check whether or not the packet has 
reached its destination. If not, it checks the directions in 
which a packet can be forwarded and tries to reserve a 
transmitter in one of these directions. If the reservation suc- 
ceeds, the transmitter accepts the packet and forwards it to 
the next node (i.e., a cut-through occurs). If the reservation 
attempts do not succeed, the receiver requests BMU to store 
the packet for later transmission. If the received packet is of 
broadcast type, the receiver attempts to reserve the trans- 
mitter in the same direction, and drops a copy of the packet 
in the BMU simul.taneously. Also, if the receiving node is a 
corner node, it will attempt to send a copy of the packet in 
the direction 60 degree clockwise to the direction from 
which the packet was received. If any of the reservation 
attempts does not succeed, the copy in the BMU will be 
transmitted later. 

We use the LS approach in [l], [2] as the distributed sched- 

5. Each receiver IS guaranteed to have access to the bus so that it may 
place on the bus the data it receives. 
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ding mechanism in HARTS. Salient features of this LS ap- 
proach are that 

1) It exploits the topological properties of the underlying 
interconnection network to evenly distribute overflow 
tasks over the entire system by using the concept of 
overlapping buddy sets and preferred lists in both loca- 
tion and information policies. 

2) It reduces LS-related traffic while keeping the state in- 
formation of other nodes as up-to-date as possible by 
using region-change broadcasts for the information policy. 

We summarize in this subsection the transfer, information, 
and location policies used by the proposed LS approach, 
and discuss in the next subsection how to adapt this ap- 
proach to HARTS. Specifically, we discuss how to construct 
the preferred list and buddy set in a C-wrapped H-mesh. 

The transfer policy used works as follows: upon arrival of 
a task at node i, the node checks whether or not it can com- 
plete the task in time. For example, if the cumulative execu- 
tion time (CET) contributed by those tasks queued on a node 
is the measure of workload, the node checks whether CET is 
greater than the task laxity or not. It is straightforward to 
extend this policy to cases with different measures of work- 
load, such as the commonly-used measure, queue length 
(QL). If node i is capable of completing the task in time, the 
task will be accepted and queued for execution. Otherwise, 
the task will be transferred (in the form of routing packets) to 
a receiver node chosen by the location policy. 

The following strategies are used in the proposed loca- 
tion and information policies. 

Preferred Lists and Buddy Sets: To reduce the possibility 
of more than one node simultaneously transferring their over- 
flow tasks to the same destination node and thus overloading 
the node, we order all other nodes according to the distance 
from node i into the preferred list of node i. If there are multi- 
ple nodes of the same distance, they are ordered based on 
their location. Each preferred list should be arranged so that 
every node in the system is selected as the kth preferred node 
of one and only one other node, for k = 1, ..., 3e(e - 1). One 
method of systematically constructing and preferred lists for 
hypercubes has been addressed in [l]. Once each node’s pre- 
ferred list is constructed, the node’s buddy set can be formed 
with any required number of nodes counting from the top of 
its preferred list. A node with an overflow task can then se- 
lect the first node found in its buddy set that is capable of 
completing the task in time, and transfers its overflow task to 
that node. (If all nodes in a buddy set are incapable of com- 
pleting an overflow task at some time instant, the overflow 
task is declared failed and thus discarded.) 

It is important to note that although the buddy set and 
preferred list of each node are generated statically, the 
node’s actual preference in transferring an overflow task 
may change dynamically with the loading status of the 
nodes in its preferred list. That is, if a node’s most preferred 
node gets overloaded, this fact will be known to the node 
via a state-change broadcast and its second preferred node 
will become the most preferred. (It will be changed to the 
second most preferred whenever the original most pre- 
ferred node becomes underloaded, which will be again 
communicated via a state-change broadcast.) 

By using the buddy sets constructed above, one can re- 
duce the overhead of transferring tasks (as well as for col- 
lecting state information discussed below), because each 
node i is restricted to communicate with, maintain state 
information of, and transfer tasks to, only a set of N B  nodes 
in its proximity (e.g., those nodes that are within h hops for 
some h). Moreover, these buddy sets overlap with one an- 
other so that an overflow task may be transferred from an 
overloaded node to some other node that is included a dif- 
ferent buddy set. For example, Fig. 1 shows how buddy sets 
overlap in HARTS. That is, those tasks arrived at a con- 
gested region-in which most nodes cannot complete all of 
their own tasks in time-can be shared by the entire sys- 
tem, rather than overloading the nodes in the region. 

Region-Change Broadcasts: Each node exchanges state 
information via region-change broadcasts. Specifically, KT 
state regions defined by (K, - 1) thresholds, TH,, TH,, ..., 
THKT-1, are used to characterize the workload of each node. 
Each node broadcasts a message, informing all the other 
nodes in its buddy set of its state-region change whenever 
its state crosses TH, for some i E (1, ..., K, - 1). The state 
information kept at each node is thus up-to-date as long as 
the broadcast delay is not significant. In contrast to other 
information policies such as bidding and state probing, this 
method avoids the need of collecting state information at 
the time of making LS decisions. 

2.3 Construction of Preferred Lists and Buddy Sets 

We discuss how to construct preferred lists in a C-wrapped 
H-mesh to minimize the probability of more than one node 
simultaneously transferring their overflow tasks to the 
same node. 

Due to the homogeneity of a C-wrapped H-mesh, any node 
can consider itself as the center (node 0) of the mesh. Without 
loss of generality, we can henceforth concentrate on con- 
structing the preferred list of node 0. Each node on the ”ring” 
of h hops away from node 0 (or simply the hth ring of node 0)  
can be reached from node 0 by a sequence of directions, 

in HARTS 

A d/ d W ) ,  di d .  1“”’ d . d .  5 [i+l], d[,+,,, ...d[l+l,, - Ii+ll, 

j items (h - j )  items 

for some i and 1, where we have used the shortest-route 
feature of routing algorithm in Section 2.1. Also note that all 
permutations of dj’ d;:+;{i lead us to the same node, i.e., all 

sequences of directions which are composed of j d,s and 
( h  - j )  drj+,,, s lead us to the same node. Consequently, the 
address of each node can be uniquely determined by the 
sequence of directions as follows. 

LEMMA 1. The node reachable from node i with any permutation 
of the sequence of directions, a ,  a2 ... akr ai E {do, d,, ..., d5], 
Vj  E 11, , . ., kl, has address 

[i  +4!,+t, (3e2 - 6e + 3 )  +t2 (3e2 - 6e + 2)  + 

where t, (0 5 j 5 5) is the number of times d, appears in the 
sequence a,  a2 ... ak, and e is the dimension of the H-mesh. 
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The proof of this lemma follows directly from the recur- 
sive use of Definition 1. For example, the node reachable 
from node 0 with the sequence, do d:, has address 

LO + 1 + 2(3.5’ - 6.5 + 3)1352-35+1 = [97]61 = 36 

in an H5 (Fig. 1). 
Now, let the 6h nodes in the hth ring be ordered as 

d(l””, z0&u-11, d,”, z:, dF-l)d,, zih-l)z,, 4J-21d:, 4 h - 2 ) 2 , 2 ,  ..., 

d”’-l) 2 p l )  
di ,  zl, d:-”d,, z?-’)z3, d?-”d;, ~ ~ h - 2 ’ l f 3 2 ,  ..., 2 3  2 3  , 

(2.1) 

where d, = LI,~+~,, . Node 0’s preference in transferring an 
overflow task is then determined ring by ring, beginning 
with the innermost ring and terminating at the outermost 
ring. (Nodes within each ring are ordered as above.) Spe- 
cifically, the kth preferred node of node 0 can be deter- 
mined as follows: 

0 1  
d:, z:, dih-”d2, z;h-l)d2, d:h-”d;, z;h-2’z:, .. . , d , d(h-11 , z,z;h-l), 

- A  

h-1 . h 
1) find h such that 6j 5 k < 6j, i.e., 

j=1 ]=1 
h deter- 

mines which ring the k-th preferred node lies on; 
h-1 , 

61 specifies the position of the kth ]=1 

preferred node within the hth ring. 

The address of the kth preferred node can then be deter- 
mined by (2.1) and Lemma 1. 

In what follows, we show that the preferred lists con- 
structed above satisfy the requirements stated in Section 2.2. 

LEMMA 2. Each node in an H-mesh will be selected as the kth pre- 
ferred node by one and only one other node, 1 s k s 3e(e - 1). 

PROOF. An H-mesh forms a homogeneous processing sur- 
face where a sequence of directions, d! d;l’>\:, leading 
to a given destination uniquely determines the corre- 
sponding source node. Thus, the lemma follows from 
the way preferred lists are constructed (i.e., k uniquely 
determines h and which in turn uniquely determine 

LEMMA 3. If node i is the kth pyefewed node of node j, fhen node j is the 

PROOF. Suppose one follows the sequence, d,“ d;::,’yb) to 

reach node j from node i, for some h, m, and e. (Note 
that h, m, and e are uniquely determined by k.) Then 
one can reach node i from node j by following the se- 
quence, zr %?+;:), where 2: qy+y:’ is the direction 

right after (before) within the hth ring in 
(2.1) if k is odd (even). U 

This semi-symmetry property6 implies that the task flow 
in one direction be approximately counter-balanced by that 
in the opposite direction. Now, the buddy set of a node can 
be formed with the first NB nodes from the top of its pre- 
ferred list. For ease of analysis, we assume that NB is chosen 

(k + 1)th ((k - 1)th) prefewed node of node i i fk is odd (men). 

6. Unlike hypercubes, the symmetry property-if node i is the kth pre- 
ferred node of node j ,  then node j is the kth preferred node of node i- 
cannot be achieved by any ordering of nodes due to the fact that the num- 
ber of nodes in an H-mesh is odd. 

i J 

Compuwtion ofpioh. 

of dynamc T.ilI”iC 

Fig. 3. Analysis methodology used for evaluating the integrated LS 
performance. 

such that the buddy set itself is also an H-mesh of dimen- 
sion m < e, and NB = 3m(m - 1) + 1. 

3 PERFORMANCE ANALYSIS 
Our analysis method and the notations used are outlined in 
Fig. 3 and Table 1. We first construct an embedded con- 
tinuous-time Markov chain to characterize task arri- 
val/completion/transfer activities under the proposed LS 
mechanism in HARTS. Two sets of parameters are derived 
from the constructed Markov model: 

1) the probability density function of QL, (p,(n), n 2 01, and 
2) the rate of transferring tasks, 4, the rate of state- 

change broadcasts, /Iso and the probability of trans- 
ferring an overflow task to a node h hops away, qh. 

The latter set of parameters is fed into the queuing network 
that models the handling of both task-transfer and broad- 
casting packets at each node in HARTS as a G/M/1 queue. 
The probability density function of packet delivery time, 
f D ,  ( t ) ,  can then be derived from the queuing network model 

and is used, along with {p,(n), n 2 01, to derive the prob- 
ability density function of task waiting time, fwk ( t )  . Finally, 

the probability of dynamic failure, P,,,, can be computed 
from fwk ( t ) .  

3.1 LS Analytic Model 
As discussed in Section 2.1, every node in HARTS may 
view the C-wrapped mesh as a set of concentric hexagons 
with itself as the center node. Hence, the nodes in HARTS 
are topologically homogeneous and are identical in proc- 
essing capability and speed. Besides, all nodes are assumed 
to have the same arrival rate of ”external”’ tasks. Conse- 
quently, the task arrival/ transfer activities experienced by 
each node are stochastically identical over a long term. Un- 

7. By “external,” we mean all arrived tasks minus transfer-in tasks at a node. 
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for M stays in state t 
the probability that a packet arriving (and receiving services if necessary) 
at  a node will be forwarded to one of its neighboring nodes. 

TABLE 1 
NOTATIONS USED AND THEIR ASSOCIATED MEANINGS 

A 
Pc 

fD.(t) 

Symbol I Meaning 

the throughput rate of a node. 
the probability of a packet cutting through an intermediate node. 
the probability density function of the time needed for a packet to travel i 

I Section 3 1 spends in R, 
I the stationary probability that the underlying discrete time Markov chain 

- 
Tk 

e, 
eTT 

e 
h3 

X A , B  

the mean length of broadcast packets. 
the mean length of task transfer packets. 
the mean packet length. 
the rate of generating broadcast packets a t  a node. 
the rate of terminal broadcast packets arrived at  a node 

AT,TT 
fw,(t) 

P 

the rate of transit task-transfer packets arrived at  a node. 
the probability density function of task waiting time. 
the traffic intensity of the queueing network of interest. 

I AT rl I the rate of transit broadcast uackets arrived at  a node. I 
2 , -  

ATT 
AA,TT 

I the rate of generating task-transfer packets at  a node. 
I the rate of terminal task-transfer packets arrived at  a node. 

der this assumption, we can employ the general methodol- 
ogy-which was verified (via simulations) to be valid for 
homogeneous systems in [B], and was also used in [l l ,  
[16]-of first modeling the state evolution of a single node 
in isolation and then combining node-level models into a 
system-level model. 

Specifically, we first model the state evolution of a node 
by a continuous-time Markov chain that serves as the un- 
derlying model. The parameters of this model are then de- 
rived to characterize task arrival/ transfer/completion ac- 
tivities at the system level under the proposed LS strategy. 
Finally, a two-step iterative approach is taken to obtain a 
numerical solution to the Markov chain. 

To facilitate the analysis, we make the following as- 
sumptions: 
Al. External task arrivals at a node are Poisson with rate 

4. Task execution times are exponentially distributed 
with mean l. 

PT 

A2. Tasks are independent of one another, and are 
queued/executed on a node on a first-come-first- 
served (FCFS) basis. 

Each task is associated with a laxity k' (in units of mean 
task execution time) with probability f j t ,  0 5 k' 5 L,,,, 

A3. 

where L,,, is the maximum task laxity in the entire task 
system. 

The composite (both external and transferred) task 
arrivals can be approximated as Poisson. Also implied 
in this assumption is that task arrival/departure ac- 
tivities on a node are approximately independent of 
those on others over a long term. 

AlGA2 are consistent with those assumptions commonly 
used in the open literature [6], [8], [14]. The reason for A2 is 
two-fold: first, FCFS is more analytically tractable than 
other local scheduling policies (e.g., minimum-laxity-first- 
served policy); second, as shown in [23] the choice of a local 
scheduling policy has only a minimal effect on the qualita- 
tive assessment of LS performance. That is, the LS perform- 
ance lies more on the transfer, location and information 
policies. A4 serves only as an approximation, because 

1) the probability of sending a task to (or receiving a 
task from) a node depends on the state of both nodes, 
making the splitting process non-Poisson; 

2) as will be derived later, task-transfer times in HARTS 
(as well as in many other distributed systems) are not 
exponentially distributed, making the arrival of trans- 
fer-in tasks non-Poisson. 

A4. 
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However, A4 is known to become realistic as the system size 
grows, and has been used implicitly in [l], [14]. We verified 
(via simulations) in [23] that this approximation is valid for 
reasonably large (2 12 nodes) homogeneous systems. 

Underlying Model: For analysis simplicity, the state, N, 
of a node is defined as its queue length (QL), and each node 
is modeled as an M/M/1 queue. (The underlying model 
with the cumulative execution time (CET) as the state can 
be modeled as an M'kl/G/l queue with bulk arrivals at each 
node and was studied in [24].) The composite (both external 
and transferred) task arrival rate at a node with QL = n, 
denoted as A(n), depends on the node's QL, and the loca- 
tion and transfer policies used. The key issue in linking 
node-level models to a system-level model is to properly 
specify /Z(n), n 2 0, so as to describe task arrivals and trans- 
fers in the system level. Once A(n), n > 0, is specified, the QL 
density function of a node, {p,(n), n 2 01, can be obtained by 
solving 

and - 
P N ( n )  = 1. (3.2) 

n=O 

By the definition of &E), fin), and A(n) in Table 1, we have, 

%n) = n, - a(n) + P(M). (3.3) 

By appropriately specifying &n) and P(n) to describe both 
the transfer and location policies, one can use a Markov 
chain model to describe the operations of the proposed LS 
approach. Since a task is transferred to another node if it 
cannot be completed in time locally (i.e., QL > the laxity of 
the task), &n) can be expressed as: 

n-1 

a ( n ) = + C p l ,  (3.4) 
]=o 

i.e., all tasks arrived with laxities less than n will be trans- 
ferred out of a node with QL : n. 

On the other hand, P(n) can be expressed as: 

(3.5) 

Note that 
1) a node with QL = n can accept any task with laxity 

greater than n, hence the summation from n to L,,,, and 
2) the term AT PI  . y;+l (1 5 k 5 N, - 1) is "contributed 

by the node whose first (k  - 1) preferred nodes cannot 
complete an additional task with laxity j, and the term 
it, Pj yFl accounts for the situation when all nodes in 
a buddy set cannot complete a task with laxity j in time. 

Task Flow Conservation: Although dn) and P(n) are 
derived by considering task activities on a single node only, 
the law of flow conservation leads to the following relation 

between d n )  and En): 
THEOREM 1. - a 

PROOF. The theorem follows directly from the law of flow 

conservation, i.e., cLo A ( k ) .  p N ( k )  = A,, and (3.3). 0 

The correctness of (3.4) and (3.5) can now be verified by 
the following lemma. 

LEMMA 4. If no tusks are rejected, then (3.6) holds ~ O Y  the pro- 

PROOF. With a little algebraic manipulation, we have 

posed LS approach. 

] = O  

where the second equality follows from interchanging 
the summation indices while preserving the range of 
summation. On the other hand, 

k=O k=O ]=o 

] = O  

Inconsistency results from the nonzero probability of 
dynamic failure, since the term, y$, is the probability 
that in a buddy set a task with laxity j misses its 
deadline. If these "locally unsuccessful" tasks are not 
rejected or continuously transferred from node to 
node, (1 + yl+l +. . . + yNB-l) in (3.5) is replaced by 

N 

I f 1  

and 

from which (3.6) follows. 0 

Two-step Iterative Approach: A(n) and E n )  must be 
known before solving the Markov chain model for (p,(n), n 2 
0) (see (3.1)). However, A(n) depends on 7; which in turn de- 
pends on p,(n). An iterative approach (first proposed in [241) 
is taken to handle the difficulty associated with this recur- 
siveness. In the first step, pN(n) is obtained by solving (3.1) 
and (3.2) with both dn) and f i n )  set to 0, or, equivalently, 
A(n) = 4, 'ifn. The resulting pN(n)s are used to compute and 
P(n) and A(n) in the second step. Then pN(n)s are recalculated 
with the new fin) and Ah). This procedure repeats until both 
p,(n) and A(n) converge to some fixed values. 
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3.2 LS-Related Traffic: Derivation of An, ASa and qh 
In this subsection, we derive 

1) the rate of transferring tasks out of a node, &, 
2)  the rate of state-change broadcasts, /Isc, and 
3) the probability of sending a task (in the form of a 

task-transfer message) to a node h hops away, q h ,  

to characterize LS-related communication activities. 

As indicated in Fig. 3, these parameters model the interac- 
tion between LS and the underlying communication sub- 
system. 
Derivation of jlTT: Since a task with laxity j arrived at a 

node has to be transferred if QL 2 j + 1, the task trans- 
fer-out rate, &, of a node can be expressed as 

j=O 

k = l  

Derivation of Asc: Recall that there exist K, state regions 
defined by (K, - 1) thresholds, TH,,TH,, ... ,TH(KT-l)  

in the state (QL) space, and a node broadcasts a mes- 
sage, informing the other nodes in its buddy set of its 
state-region change whenever its state crosses any of 
the broadcast thresholds. Thus, the rate of state- 
change broadcasts, Asc, is related to the mean recur- 
rence time, T,,, of the ith state region, R,, 1 -5 i < K,. 
Specifically, let T,, be the expected time until the first 
transition into the ith state region given that the node 
starts in the ith state region. Then ilsc can be ex- 
pressed as: 

T,,, 1 -5 i < K,, can be derived from the continuous-time 
Markov chain, 34,  constructed in Section 3.1. That is, 
for an irreducible, positive recurrent, and non-lattice 
continuous-time Markov chain (such as 30,  we have 

T, T,, = ~ 

PdRI)‘  
where T, is the average time 34 spends in R,, and can 
be expressed“ as 

and 

8. Since the distribution of the time until the next transition occurs given 
that 74 has just entered a state n is exponentially distributed with rate 
Dui + A(n1.1 

1 - 

where zk is the stationary probability of the underlying 
discrete-time Markov chain for 34 stays in state k. 
p,(R,) is the probability of 3 4  being in R,, and can be 
expressed as 

Derivation of qh: Recall that node i transfers its overflow 
task to the first capable node found in its preferred 
list. By the way preferred lists are constructed, node i 
will transfer an overflow task to a node h hops away 
only if the first 3h(h - 1) nodes (that are within h - 1 
hops) cannot complete the task in time and at least 
one of the 6h nodes on the hth ring can. By A4 and 
Lemma 3, qh can be expressed in terms of 8 and as: 

3.3 HARTS Queuing Network Model 
Packet delivery in the H-mesh is modeled as a queuing 
network, where each of 3e(e - 1) + 1 nodes forms a G/M/l 
queue. Broadcast and task-transfer packets are generated at 
a node when its state region changes and when the node 
cannot complete a newly-arrived task in time, respectively. 
These occurrences do not follow Poisson, and hence a gen- 
eral distribution is needed to describe the packet arrival 
process on each node. Fortunately, characterizing packet 
arrival patterns only in terms of the rate of state-change 
broadcasts, As,,-, and the rate of task transfers, &, while 
keeping the packet arrival process general suffices to derive 
the probability density function of packet delivery time. 
Both /Is, and 4, depend on task arrival and departure ac- 
tivities in a node (and hence the LS mechanism used), and 
serve as the connection between the LS model and the 
HARTS queuing network. 

A packet arriving at a node may go to one of its six imme- 
diate neighbors if it has not reached the destination node, or 
may otherwise exit from the system. The delay that a packet 
experiences at an intermediate node depends on whether or 
not it can cut through that node. If the packet establishes a 
circuit to a neighboring node, it will experience a negligible 
delay (so, we assume it to be 0). Otherwise, the packet re- 
quires ”services,” i.e., buffering and later transmission. 

Thanks to the node homogeneity of HARTS, we can con- 
centrate on evaluating the distribution of delivery time only 
for those packets generated at the center node, node 0. We 
will derive the following parameters in sequence. As will be 
clearer later, the derivation of one parameter depends on 
the other parameters derived before it. 

1) Both transit and non-transit loads handled by node 0. 
By a ”transit task-transfer packet,” we mean a task- 
transfer packet traversing a node that is not destined 
for the node. By a “transit broadcast packet,” we 
mean a broadcast packet that should be forwarded to 
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the next neighbor node(s) (because it has not reached 
a periphery node relative to the broadcasting node). 
We use AB, &, iLr,B, &,, AA T7', and &,,, to describe dif- 
ferent packet arrival rates. The definitions for these 
variables are listed in Table 1. 
The probability, p f ,  that a packet arriving (and receiv- 
ing services if necessary) at a node will be forwarded 
to one of its neighboring nodes. 
The throughput rate, A, at a node. 
The probability, pc, of a packet cutting through an in- 
termediate node. 
The probability density function, fD,(f), of the time 
needed for a packet to travel i hops. 

To facilitate the analysis, we make the following as- 
sumptions: 

B1. 

B2. 

B3. 

B4. 

B5. 

The probability of a node sending a packet to a node lz 
hops away is qh which was derived in Section 3.2. 

All shortest paths between a pair of nodes are equally 
used for task-transfer packets. 
The lengths of broadcast packets and task-transfer 
packets are exponentially distributed with mean and 
e r r ,  respectively. , is a constant in our algorithm. 

The length of a packet is regenerated at each interme- 
diate node of its route independently of its length at 
other intermediate nodes. 

Only communication traffic required by load sharing 
is considered. 

- - 

B2 can be justified as follows. The routing algorithm in [19] 
gives all shortest paths between a pair of nodes by specify- 
ing k,, k,, and k,. Upon receipt of a task-transfer packet, the 
routing algorithm in [22] determines whether or not the 
packet has reached its destination node (i.e., ko = k ,  = k, = 0). 
If not, the packet is forwarded along one of the directions 
with nonzero k, (and the corresponding k, is updated) if cut- 
through can be established in that direction. Since the sys- 
tem is homogeneous, the probability of establishing a cut- 
through in any of the forwarding directions is assumed to 
be the same, meaning that all shortest paths are equally 
used for task-transfer packets. B2 along with the topologi- 
cal properties of C-wrapped H-meshes will be used to de- 
termine the total number of shortest routes passing through 
node 0 for all pairs of communicating nodes. B3-B4 coin- 
cide with Kermani and Kleinrock's assumptions in 1211, and 
B4 is commonly referred to as the independence assump- 
tion [21]. What is also implied in B4 is the independence of 
the queue distributions in different nodes. Although B4 is 
unrealistic in practice, several empirical studies in [21] have 
shown that the mean packet delay times computed under 
this assumption closely match the actual mean packet de- 
livery times. B5 is made to facilitate the analysis. 

The method used to derive the various parameters is 
highlighted as follows. The rates AB, and &,B, contrib- 
uted by broadcast packets (the rate A,, AA,Tr, and A,,,,, con- 
tributed by task-transfer packets) are first derived using the 
homogeneity property of a C-wrapped H-mesh and the fea- 
ture of the broadcast algorithm (the routing algorithm). The 
probability, pc  of forwarding a packet to neighboring nodes 

can then be computed as the ratio of the traffic bound for im- 
mediate neighbors (expressed in terms of AB, &, &,5, and &,& 
to all arrived traffic (expressed in terms of a,, &, & B ,  and 
A.4,n). The third quantity, the throughput, A,, at node i, is de- 
rived, as a function of &, &, and pp with use of the principle 
of flow consewation. The probability of virtual cut-through, pc, 
is then derived, as a function of A, and U, with the use of the 
utilization /mu. Finally, by conditioning on whether or not a 
packet gets buffered at intermediate nodes, the distribution of 
the delivery time for a packet traveling i hops, D ,  can be de- 
rived using the feature of virtual cut through. 

Derivation of Packet Arrival Rates: 

LEMMA 5. AB, and &,B are g iven  by  
a, = 6(" - ipse, 

where As' is the rate of state-region changes at node 0, and 
in < e is the dimension of a buddy  set, H,. 

PROOF. As indicated in Fig. 2, 

1) the broadcasting node generates six packets per 
broadcast, 

2) every nonperiphery corner node, upon receiving 
(and storing) a broadcast packet, transmits an ad- 
ditional copy along the direction 60 degree clock- 
wise to the direction of packet receipt. 

By l), the rate of generating broadcast packets for 
node 0 is 64,. Also, by the homogeneity property of 
an H-mesh, node 0 acts as a nonperiphery corner 
node relative to 6(m - 2)  nodes in its buddy set (see 
Fig. l), and is responsible for generating (and for- 
warding) a new packet upon arrival of a packet 
broadcast by those 6 ( m  - 2) nodes. Thus, by 2), node 0 
generates broadcast packets for 6(m - 2) other nodes 
in its buddy set at the total rate of 6(m - 2)Asc. The ex- 
pression of & thus follows from 1) and 2). 

Node 0 receives broadcast packets from the other 
3m(m - 1) nodes in its buddy set, and since all nodes 
are homogeneous each with a state-change broadcast 
rate &, the expression of follows. On the other 
hand, node 0 lies on the periphery of the buddy set of 
other 6(m - 1) nodes whose broadcast packets will not 
be forwarded by node 0. That is, the non-transit 
load (destined for node 0) is 6 ( m  - l)&. jti,R is thus 

U [ ~ Y T Z ( H Z  - 1) - 6(1n - l)]&c = 3(in - l ) (m - 2)Asc. 

LEMMA 6 .  AA,,, and are g iven  by  
m-1 

k = l  
m-1 

k = 2  

where 4, is the rate of transferring tasks out  of node 0, and 
q1 is the probability of a node transfervzng tasks to a node k 
hops away.  
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PROOF. To calculate AA,,, at node 0, we need to determine 

1) the load contributed to AA,TT at node 0 by a shortest 

2) the total number of shortest routes passing through 

It was verified in 1191 that all shortest routes between 
any pair of nodes are formed by links along at most 
two directions and thus can be represented by a se- 
quence of directions, d; d&i6, where 0 < j < 5, t is the 

length of the shortest route (1 < e < m - l), and i and 
t - i (1 5 i 5 t) are the number of hops from the source 
to the destination along dl and d,,+l16, respectively. 

Now, consider a sequence of directions, dj . The 

number of shortest routes associated with d; d&ii6 that 
pass through node 0 can be calculated as follows. There 

are (f) permutations for d,s and dLl+ll, s in the sequence 

route that passes through node 0; 

node 0 for all pairs of communicating nodes. 

d' d(6-1) each of which gives a possible shortest route. 
For each possible route, node 0 can be inserted in one of 
the e positions (including the destination) to be an in- 
termediate or destination node of the route. Thus, each 

sequence of the form di d,(:Lii6 represents (f) 4 short- 

est routes that pass through node 0. 

The load at node 0 contributed by a single shortest 
route (represented by d; that passes through 

node 0 can be expressed[ as A,, . q 6 / ( f ) ,  because a 

node sends packets to nodes e hops away at a rate of 

4, qe which is equally shared by all 

routes (under B2) 

The rate of task-transfer packets arriving at node 0 
can now be expressed as 

a A , T T  
5 m-l e c c 

j=o (=I ,=I 
load contributed by all routes represented by d; d&'i6 

The proof of the second part of the lemma resembles 
the first part except that for each possible route that 
can be represented by di node 0 cannot be the 
destination node. Thus, there are t-1 positions to in- 
sert node 0, and each sequence df gives 

( f )  . ((-1) shortest routes that pass through node 0. 

U 
N= le(e-l)+l 

U 

Fig. 4. Neighbors and packet flow around node i. 

4 T T  = 
5 m-1 c c 

,=U e=1 i=1 

transit load contributed by all routes represented by d,' d;;:;i6 

0 

Derivation of p i  The probability, pf, that a packet arriving 
at a node will be forwarded to one of its neighboring 
nodes is the ratio of the traffic bound for immediate 
neighbors to all traffic arriving at a node: 

' B  + ' T , B  + 'TT + 'T,?.? 
'f = 1, + a A , n  + + aA, i -T  . 

Using the results of Lemmas 5 and 6 along with 
m-1 

x 6 k . q ,  = 1, 
k = l  

we have 

Derivation of Throughput of a Node: To derive the 
throughput, A,, of a node i, we use the principle of 
flow conservation.q Specifically, let A, and A,, 0 5 k 55,  
represent the throughput of node i and its neighbor- 
ing nodes in directions d,-d,, respectively, and let 
P f J i  represent the probability that a packet complet- 
ing its service will be forwarded to the neighboring 
node in direction a,<, then the flow conservation prin- 
ciple enforces (Fig. 4) 

5 

Now, by the homogeneity of the C-wrapped H-mesh, 

The rate of transit traffic, ATT, at node 0 can now be 
9 Which states that at any branching point in a queuing network there IS 

expressed as no accumulation or loss of customers 
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3(m + 2)(m - 1). kSc + [I + 6 ~ ~ ~ , ' / ~ ~ ~ , ]  aJJ  
(6 (m - l ) A s c  + Air). (3.8) 

6('2 - 'laSC + ' J T  

Derivation of pc:  As discussed in Section 2.1, a packet can 
cut through an intermediate node only if no packets are 
being transmitted or waiting at that node. Using the 
Utilization Lazu [25]'" the probability of having no packet 
at a node is 1 - p, where pis the traffic intensity 

Here Tis the mean packet length, and can be ex- 
pressed as 

p c  can then be expressed as 

A, . 7 
p c = l - -  6 '  

where A, is expressed in (3.8). 

Derivation of Distribution of Packet Delivery Time: The 
delivery time for a packet traveling i hops, denoted by 
D,, depends on whether or not the packet can cut 
through intermediate nodes. If the packet cuts 
through an intermediate node (the probability of 
which is p c ) ,  its delay at the node is negligible and as- 
sumed to be 0. Otherwise, the packet experiences an 
exponential buffering delay, Yk, with rate ,U,,, (1 - p). 
Note that the time experienced by a packet buffered at 
an intermediate node depends on the throughput of 
the node, and is accounted for by the factor (1 - p). 
Moreover, the probability of a packet not cutting 
through j out of i - 1 intermediate nodes (when it 
travels i hops) is 

The distribution of D, can then be expressed as 

P(D, 5 t I buffered at 1 intermediate nodes) 

P(buffered at j intermdiate nodes) 
P(D,  5 t )  = 

where a packet always gets buffered at the source and 

destination nodes, and Y, + yi, + yl can be 

shown to have an Erlang distribution with parameters 
p,Jl - p) and j + 2 under B4. That is, the probability 

k=1 

density function of D, can be expressed as 

10. Note that the Utilization Law is valid for a G / G / l  queue 

3.4 Derivation of Task Waiting Time and Pro 

Having derived the probability density function of QL, 
(p,(n), n 2 01, and the probability density function of packet 
delivery time, f (C), t 2 0 , l  5 i 5 m - 1, we are now in a po- 
sition to derive the distribution of task waiting time. 

The probability density function of waiting time for a 
task queued on a node with state N 5 k is 

of Dynamic Failure 

D, 

where fw,,,)(tl N = n)  is the probability density function of 

waiting time given N = n, and can be shown under A1 and 
A2 in Section 3.1 to be n-stage Erlang. Thus, 

where &t) is the impulse function such that &) = 0 for t # 0; 

at) # 0 for t = 0, and 6(t)  dt = 1. 6 
The waiting tme for a task with laxity k depends on 

whether or not the task arrives at a node with QL 2 k. If the QL 
of the node at which the task arrives is 5 k, then the task expe- 
riences the waiting time with density function f ddk ( t  I N 2 k).  
Otherwise, the task has to be transferred, possibly several 
times until it arrives at a capable node. That is, the task ex- 
periences the delivery time(s) and the waiting time on a 
capable node. The possibility of multiple transfers results 
from the fact that the state at the selected receiver node i 
hops away at the time when  the task is sent by  the sender node 
may be different from that when  the transferred task arrives at  
the receiver node. The possibility of state inconsistency in- 
creases as the packet delivery time, D,, increases. 

Specifically, let fdNJt )  denote the density function of the 
waiting time experienced by a task with laxity k that ar- 
rived at an incapable node and is thus transferred out, then 
the density function of waiting time for tasks with laxity k 
can be expressed as: 

Here * denotes the convolution of two probability density 
functions, and ps,,, is the probability of state consistency within 
an i-hop delivery time, to be derived below. Note that fwlNJt) 
is expressed as a function of itself, thus a time-frequency 
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domain transformation (e.g., the Laplace transform) is neces- 
sary to obtain numerical solutions for f,,,jNJt), t 2 0. 

To derive pb,,,, two scenarios in which state inconsistency 
may occur are considered. In the first case (Fig. 5a), during 
the transfer of an overflow task Tfrom a sender node j to a 
receiver node i, a new task arrives at node i, making it be- 
come unable to complete the transferred task Tupon  its 
arrival. In the second case (Fig. 5b), node j receives an over- 
flow task T a n d  transfers it to an incapable node i before 
the broadcast packet (informing node j of node i's incapa- 
bility) from node i reaches node 3. Note that in both cases 
state inconsistency arises because a task arrives during the 
packet delivery time, D,. We thus approximate" pSc,, as the 
probability that no tasks arrive during the packet delivery 
time, D,, i.e., 

psc,I = P(No task arrives within an i - hop delivery time) 

Finally, the probability of dynamic failure, P,,,, experi- 
enced by a task with laxity k is 

Nodcj I Node I Node I 

Fig. 5. Two situations state inconsistency may arise. 

4 NUMERICAL EXAMPLES 
To evaluate the performance of LS while considering all LS- 
related communication activities, we used a discrete-event 
simulator which models the operations of the proposed LS 
mechanism in HARTS. The routing, broadcasting, and vir- 
tual cut-through schemes in [19], 1201, [22] are used to fa- 
cilitate LS-related communication activities. The goal of the 
simulation is two-fold: 

1) examine the impact of approximations/assumptions 

2) evaluate the integrated LS performance. 
The simulator was originally developed by the authors 

of [22] which accurately models the delivery of each packet 

made in the analysis, and 

11. Note that psc,l errs on the conservative side, because the selected re- 
ceiver node (node i in Fig. 5) of a transferred task 7"ay still complete !Tin 
time after receiving a new task as long as the QL of the receiver node after 
receiving the new task is still less than or equal to the laxity of 

by emulating the routing hardware along the route of a 
packet at the microcode level. It also captures the internal 
bus access overheads experienced by packets as they pass 
through an intermediate node. For example, when a packet 
arrives at a node, the following sequence of events is initi- 
ated. First, the receiver for the link on which the packet ar- 
rived waits for the packet header to become available. It 
then examines the packet header to determine the packet 
type. Lastly, the receiver schedules events to signal the 
completion of the packet transmission at this node. This 
may involve unreserving a transmitter if the packet success- 
fully cuts through and/or informing the module which 
handles buffered messages. 

We modified the simulator to include modules that 

1) model task arrival, transfer, and completion activities 
under the proposed LS mechanism, 

2) generate task-transfer and broadcast packets (along 
with their proper headers) at the time of task transfer 
and state-region change, and 

3) update the preferred list of a node upon receipt of a 
broadcast packet, so that the main features of the pro- 
posed LS mechanism may be incorporated into the 
simulator. 

The simulator differs from the analytical mode! in that: (Dl) 
if a node considers none of the nodes in its preferred list is 
capable of completing its overflow task in time, the overflow 
task is declared failed and taken into account of the statistics 
for Pdyn; (D2) the length of a packet is determined at the time 
of its birth and remains unchanged while the packet traverses 
through the network. The latter is used to inspect the dis- 
crepancy between the packet delivery time analytically com- 
puted under A4 in Section 3.3 and that observed in practice. 

An H5 is used as an example for all simulation runs. The 
buddy set is chosen to be an H-mesh of dimension 4 (hence 
each buddy set consists of 37 nodes). For convenience, ,uUr is 
set to 1, and all time-related parameters are expressed in 
units of 1/pP The threshold values are set to TH, = 1, TH, = 3, 
and TH, = 5 unless specified otherwise. Simulations are 
carried out for a task set with the external task arrival rate 
;1T on each node varying from 0.1 to 0.9, the mean task- 
transfer packet length varying from 0.1 to 5.0, and the 
mean broadcast packet length varying from 0.01 to 0.15. 
The distribution of task laxity is assumed to be a geometric 
distribution with pc+, = Y . F e ,  where 1 5 e 5 5, and Y is cho- 
sen as 0.2, 0.5, 1.0, 2.0, and 5.0. Note that Y = 1.0 gives a uni- 
form distribution. 

For each combination of parameters, the number of simu- 
lation runs needed is determined such that a 95% confidence 
level in the results for a maximum error of 5% of the specified 
probability can be achieved. We also compare the numerical 
results obtained with two other baselines whenever appro- 
priate. The first baseline is an M/M/l queue, representing 
the case of no load sharing, and the second baseline is an 
M / M / 3 7  queue, representing the case of perfect load sharing 
where each node has perfect state information of other nodes 
in the buddy set and incurs no time overheads in task trans- 
fers and state-change broadcasts. 
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Fig. 6. Traffic generated by LS (measured in terms of An, Asc, q2, and 

pet) for different external task arrive rate, 1, The distribution of task 
laxity is assumed to be uniformly distributed over [ I ,  51, = 0.5, - 
e ,  = 0.05. 

The traffic overhead introduced by LS and its impact on 
the possibility of cut-through are plotted in Fig. 6, where 
hT vs. 4, Asc vs. 4, q2 vs. 4, and pci vs. /&- are plotted. As 
expected, &, Ascl and qh all increase as 4 increases. Conse- 
quently, cut-through is more unlikely to be established at 
intermediate nodes as 4 increases (Fig. 6d). hLTT and qh also 
increase as the task laxity gets tighter, but ,Isc decreases as 
the laxity gets tighter, where the tightness of laxity is meas- 
ured in terms of r as defined above. The latter phenomenon 
is perhaps due to the fact that an incapable node tends to 
locate idle nodes for its overflow tasks with tight laxities. 
Under such a scenario, both the sender node and the idle 
destination node need not broadcast a region-change mes- 
sage upon arrival of a tight-laxity task," and hence ,Isc 
slightly decreases as task laxity gets tighter. 

(dl Pct VS. AF 
Fig. 6 (continued). Traffic generated by LS (measured in terms of Am, 
AS,, qh, and Pcd for  

As shown in Fig. 6a and d, the analytic results predict, 
with a reasonable accuracy, the simulation results (usually 
within a 6% difference in all our simulations). The fact that 
the analytic model overestimates pct at higher loads is per- 
haps because the model does not consider the overhead of 
processing packet headers. This overhead becomes non- 
negligible when the number of packets traversing the net- 
work is high. 

Fig. 7 shows the plots of 1 - P,,, vs. /&- and 1 - Pg, vs. Y. 

The proposed LS mechanism significantly outperforms the 
case of no LS (the M/M/l  system) especially at high system 
loads or tight task laxity, but is still inferior to perfect LS 
(the M / M / 3 7  system). The latter also suggests that the time 
overheads in task transfers and state-change broadcasts 
cause deterioration in the LS performance and thus an effi- 
cient communication system that supports time-constrained 
communication is essential to real-time LS. The fact that the 
analytic model slightly overestimates 1 - P,,, at higher 
loads is partly because of D1 stated above. 

The impact of communication delays on the perform- 
and (and con- 12. Note that TH, = 1, and thus when QL changes from 0 to 1, no message ance of LS is studied by varying both is broadcast 
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(a) 1 - fdy,, VS. ;1T 

1- - -A M/M/1 system 
A -.  -U MiM/37 systcm 

Analylical 
+ Simulation 

(b) 1 - Pdyn vs. r ( A ,  = 0.8) 

Fig. 7 .  1 - fdyn VS. 1, and tightness of task laxity r. The distributio? of 
task laxity is uniformly distributed over [ l ,  51 in (a) and is geometrically 

distributed with fie+, = r .  f i t ,  for 1 5 e 5 5. 1, = 0.8, e R  = 0.5, 

e ,  = 0.05. 

- 

- 

sequently A). Fig. Sa and b shows the plots of pci vs. and 
1 - Pdyn vs. G, respectively. (The effect of varying on LS 
is similar to, but less pronounced than," that of G, and 
thus omitted.) As shown in Fig. 8a, pct drops abruptly as 
increases beyond a certain value. This indicates that when 
tB  becomes very large (or equivalently, the speed of the 
BMU is slow), the network becomes saturated and incapa- 
ble of handling all incoming packets (introduced by LS). 
Consequently, packets will be queued at every intermediate 
node, thus delaying or even blocking the operation of task 
transfers and state-change broadcasts, and hence 1 ~ E',,, 
decreases until it reaches approximately the value of Pdyn of 
anM/M/1 system (no LS). 

- 

13. This is because A, = 6(n + l)Asc and LAB = 3n(n + 111 are usually 
much larger than hT and AA,x, and thus dominate the determination of &. sc 

737 

length of broadcast packels, In 

- 
(b) 1 - PdYn VS. e, 

Fig. 8. The effect of 

laxity is uniformly distributed over [ l ,  51, and e, = 0.5. 

on pct and 1 - Pdy,,. The distribution of task 

5 CONCLUSION 
The analysis presented in this paper is essential to the design 
of any LS mechanism for real-time applications. First of all, the 
model gives a quantitative measure of traffic overheads 
(through &, AB, and FD, ( t )  ) introduced by the LS mechanism. 
Second, one can determine many LS design parameters (e.g., 
the size of buddy sets, NB, and the threshold values, TH,, for 
state-change broadcasts) by determining the parameter values 
which minimize P,,,. (This problem is currently under investi- 
gation.) Third, one can investigate whether or not the under- 
lying routing and broadcasting schemes can support the LS 
mechanism in delivering packets and collecting & maintaining 
up-to-date state information. 

The analysis methodology presented here (Fig. 3)  is quite 
general in the sense that it can be extended to 

1) other LS mechanisms such as LS with random selec- 
tion, LS with state probing, and LS with perfect in- 
formation, and 

2) other homogeneous interconnection topologies such 
as hypercubes, rings, or square meshes, to name a 
few. 
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Extending this methodology to other LS mechanisms, one 
only needs to properly derive the parameters a(n) and fin) 
which characterize the transfer policy and the location pol- 
icy, respectively. Once d n )  and En) are determined, the 
derivation of the others (e.g., p&), &, AB, and ql,) follows 
the same approach. Similarly, extending the methodology 
to other homogeneous interconnection topologies, one only 
needs to specify the parameters pf and pc. The key to the 
specification of pf (and consequently p,) is the determination 
of transit loads at each node. That is, one must determine 
the fraction of shortest routes between all pairs of commu- 
nicating nodes that pass through a given node as an inter- 
mediate node. Once pf and p c  are determined, the derivation 
of packet delivery time distribution does not depend on the 
interconnection topology. 

LIST OF SYMBOLS 

P,,,: the probability of a node failing to complete a task be- 
fore its deadline. 
H,: A C-wrapped hexagonal mesh of dimension e. 
M: the number of nodes in the distributed system, e.g., M = 

m: the dimension of the buddy set which itself is a hexago- 

N,: the number of nodes in a buddy set, i.e., N ,  = 

d,, 0 2 i 2 5: the (60 . +degree clockwise direction to the 

L,: the ith row in each direction in an hexagonal mesh. 
k,, i = 0, 1,2: the number of hops from the source node to the 

destination node along the d, direction. Negative value 
means that the move is along opposite direction, d,r+3,, . 

K,: the number of state regions in region-change broad- 
casts. 

TH,, 1 2 i 2 K ,  - 1: thresholds that divide the (workload) 
state space into K ,  state regions. 

4: external task arrival rate at a node. 
1 /,U,: mean task execution time. 
p?,  0 2 & 2 L,,,: the probability that a task is associated with 

a laxity t .  L,,,, is the maximum task laxity in the task 
system. 

{p,(n), M 2 0):lthe probability density function of the queue 
length of a node. 

d n ) :  the rate of transferring tasks out of a node given that 
the node’s state is n. 

,&): the rate of transferring tasks into a node given that the 
node’s state is n. 

&I?): the composite (both external and transferred) task ar- 
rival rate at a node with Q L  = n. 

7; = P(N 2 j ) :  the probability that a node’s Q L  2 j. 
4,: the rate of transferring tasks out of a node. 
Asc: the rate of state-region-change broadcasts. 
ql,: the probability of sending a task to a node h hops away. 
R,: the ith state region. 
Til: the mean recurrent time of RI; the expected time until the 

first transition into R, given that a node’s state starts in RI. 
T,: the average time the continuous-time Markov chain, 3 4 ,  

constructed in Section 3.1 spends in R,. 

3e(e -- 1) + 1 in He. 

nal mesh, i.e., the buddy set is a Hln. 

3m(m ~ 1) + 1. 

horizon. 

n,: the stationary probability that the underlying discrete 
time Markov chain for 3 4  stays in state k. 

p i  the probability that a packet arriving (and receiving 
services if necessary) at a node will be forwarded to one 
of its neighboring nodes. 

A: the throughput rate of a node. 
pc: the probability of a packet cutting through an intermedi- 

f D ,  ( t ) :  the probability density function of the time needed 

t B  : the mean length of broadcast packets 
E,, : the mean length of task transfer packets. 
4 : the mean packet length. 
AB, 

ate node. 

for a packet to travel i hops. 
- 

- 

- 

AT,B: the rate of generating broadcast packets at a 
node, the rate of terminal broadcast packets arriving at a 
node, and the rate of transit broadcast packets arriving at 
a node, respectively. 

&,TT: the rate of generating task-transfer packets 
at a node, the rate of terminal task-transfer packets ar- 
riving at a node, and the rate of transit task-transfer 
packets arriving at a node, respectively. 

A,,, 

p: the traffic intensity of the queuing network of interest. 
r: the distribution of task laxity is assumed to be geometric 

with pcil = Y . p t .  
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